
28th International Conference on
Automated Planning and Scheduling

June 24-29, 2018, Delft, the Netherlands

2018 - Delft

UISP 2018
Proceedings of the 2nd Workshop on

User Interfaces and
Scheduling and Planning

Edited by:

Richard G. Freedman, Jeremy D. Frank,
J Benton, Ronald P. A. Petrick

Organization

Jeremy D. Frank
NASA Ames Research Center, USA

Richard G. Freedman
University of Massachusetts Amherst, USA

J Benton
NASA Ames Research Center, USA

Ronald P. A. Petrick
Heriot-Watt University, UK

Program Committee

Amedeo Cesta
Italian National Research Council & ISTC-CNR, Italy

Tathagata Chakraborti
Arizona State University, USA

Scott Sanner
University of Toronto, Canada

Neil Yorke-Smith
Delft University of Technology, The Netherlands

ii

Foreword

As one of the early areas of interest in artificial intelligence research, automated planning and scheduling technologies
have been used in a variety of applications that involve problem solving. Although the capabilities of these technolo-
gies have matured over the years, the user interfaces of automated planners have not matured as rapidly. For those
who are less familiar with the paradigms used within the ICAPS community, the advances in automated planning
and scheduling are more difficult to use and interpret, even in domains where it is the most appropriate method to
use. We believe that this may be one of the reasons that those who need automated planning technology are not
considering its adoption, even as artificial intelligence research is finally being brought to ubiquity for the masses of
average users.

Following the inaugural workshop last year, the User Interfaces and Scheduling and Planning (UISP) Workshop
encourages the investigation of how user interfaces can play a role in automated planning and scheduling technologies.
This is mutually beneficial because good user interfaces not only make it easier to use and develop with automated
planning and scheduling technologies, but these technologies are also tools available for solving user interface prob-
lems. The research and workshop discussions last year presented ideas, questions, and challenges for what needs to
be considered to not just make good user interfaces, but ones that specifically synergize with the people who will be
using them with automated planning and scheduling technologies.

The works in this year’s proceedings continue those trends as well as introduce new things from alternative
interface modalities to examples of applications where improved interfacing can make a difference. People naturally
interact via communication based on their senses of hearing and sight, and newer technologies like ‘smart’ devices
embrace this through interaction modalities such as speech systems, virtual reality, and augmented reality. These
are vastly different from the traditional computing mediums that scientists have used for years, and it is important
that these evolutions are kept in mind as automated planning and scheduling technologies continue to improve. The
majority of average users (and potential adopters) do not think, interpret, or communicate in computer code and
mathematical representations.

Jeremy D. Frank, Richard G. Freedman, J Benton, and Ronald P. A. Petrick
June 2018

iii

Contents

Technologies for Mixed-Initiative Plan Management for Human Space Flight
Melissa Baltrusaitis, Karen Feigh, Martijn IJtsma, Amy Pritchett, William Lassiter, and Martin Savelsbergh 1

Visualizations for an Explainable Planning Agent
Tathagata Chakraborti, Kshitij P. Fadnis, Kartik Talamadupula, Mishal Dholakia, Biplav Srivastava, Jeffrey
O. Kephart, and Rachel K. E. Bellamy 10

Projection-Aware Task Planning and Execution for Human-in-the-Loop Operation of Robots in a
Mixed-Reality Workspace
Tathagata Chakraborti, Sarath Sreedharan, Anagha Kulkarni, and Subbarao Kambhampati 17

NL2PDDL: A Conversational Interface for Model Generation and Iteration
Kshitij P. Fadnis and Kartik Talamadupula 26

Generating Human Work Instructions from Assembly Plans
Csaba Kardos, András Kovács, Balázs E. Pataki, and József Váncza 31

MA-RADAR - A Mixed-Reality Interface for Collaborative Decision Making
Sailik Sengupta, Tathagata Chakraborti, and Subbarao Kambhampati 40

iv

Technologies for Mixed-Initiative Plan Management for Human Space Flight
Melissa Baltrusaitis, Karen M. Feigh, and Martijn IJtsma

Daniel Guggenheim School of Aerospace Engineering
Georgia Institute of Technology, Atlanta, GA 30332
{mbaltrusaitis3, karen.feigh, mijtsma3}@gatech.edu

Amy Pritchett
Department of Aerospace Engineering

Pennsylvania State University, State College, PA 16801
apritchett@psu.edu

William Lassiter and Martin Savelsbergh
H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology, Atlanta, GA 30332
wlassiter@gatech.edu, martin.savelsbergh@isye.gatech.edu

Abstract

As humans endeavor to explore Mars and other celes-
tial bodies further afield, we are faced with a bevy of
challenges unique to deep space travel. Given that as-
tronauts have traditionally relied on ground-based mis-
sion control to produce, manage, and adjust daily flight
plans as needed, one such challenge will be the time
lag in communications with mission control as a crew
moves further away from the Earth. This will necessitate
(automated) planning systems that will provide crews
greater autonomy in managing and adapting plans to re-
flect the current state of the mission. This paper details
the progress our research team has made in developing
a mixed-initiative plan management system for use on
future missions to Mars and beyond. We describe the
system’s design and intended capabilities and provide
the results of some preliminary testing with small sam-
ple plans.

Introduction
The idea of mixed-initiative planning (MIP) (Veloso, Mulve-
hill, and Cox 1997; Ai-Chang et al. 2004) is to “mix” the ca-
pabilities of both automatic and human planners to generate
plans that are at once compliant with a potentially large num-
ber of constraints, sensible and practical in their execution,
and near-optimal with respect to one or more mission ob-
jectives. Thus a successful MIP system rests on three major
building blocks: (1) a formal representation of the work en-
compassed in the plan (hierarchically-defined activities and
resources, and the constraints put upon them); (2) the in-
terface for a human planner to reason about (and build and
modify) a plan both at the detailed level of resource schedul-
ing and the high level abstractions, and in both nominal and
off-nominal conditions; and (3) computational methods to
create and, ultimately, optimize plans which can potentially
scale from focused, near-term off-nominal disturbance re-
sponse to more strategic planning of larger sets of activities
and longer durations.

It is with these three building blocks in mind that we have
developed a multi-disciplinary, integrated approach to MIP
that is not tied to any one method or tool. Specifically, we
are pursuing a tight integration between the needs of the hu-
man planner (as identified by specialists in cognitive engi-
neering) and of streamlined computation (as identified by

specialists in large-scale optimization) by developing a sys-
tem fully capable of automated planning and re-planning
but still largely reliant on human feedback and direction for
plan finalization. As such, plan modifications may be trig-
gered both automatically (according to some plan monitor-
ing protocol) and manually (according to the needs of hu-
man planners or agents), with automatic modifications re-
quiring approval from a human agent or planner. In order to
fully accommodate both of these modification schemes, our
system is comprised of three distinct components, all de-
scribed briefly below, working in concert with one another,
with each component intended to function as one of the three
aforementioned building blocks.
Work Models that Compute (WMC): A work modeling
and simulation framework that has previously been used
to analyze and synthesize function allocation between air
traffic controllers and an automated air traffic control sys-
tem, (Pritchett, Bhattacharyya, and IJtsma 2016), a pilot
and an autoflight system in the flight deck of an aircraft
(Pritchett, Kim, and Feigh 2014b; 2014a), and human and
robotic agents in manned space flight operations (IJtsma et
al. 2017a; 2017b).
Marvin: A plan display and interface tool initially built as a
timeline-tracking tool for extra-vehicular activities (EVA). It
is designed to allow a mission crew to interact with a plan via
both direct manipulation of individual activities and higher-
level manipulation of plan priorities and constraints (Miller,
Pittman, and Feigh 2017).
Optimizer: A generic term for a set of plan optimization
heuristics that we will be using to modify or generate plans
with the goal of reaching near-optimality with respect to one
or more plan objectives. The techniques that we are currently
exploring are inspired by meta-heuristic and local search
concepts commonly used by operations researchers to tackle
(machine) scheduling problems.

Figure 1 below is intended to represent how these three
components will interact with one another in the larger sys-
tem. WMC and the optimizer will be tightly coupled, com-
municating back and forth frequently and providing an up-
dated plan to Marvin to allow the crew to review and finalize
the modified plan.

Each component will be discussed in more detail in subse-
quent sections, but we first provide a brief synopsis of prior
related work and a description of the plan modeling frame-

1

Figure 1: A visualization of our system architecture

work that we have developed for the larger system.

Related Work
Various technologies for planning have been defined in
the literature. Of note, mixed-initiative planners have been
studied and applied in a range of domains, including un-
manned spacecraft science missions (Nothdurft et al. 2015;
Biundo et al. 2011; Myers et al. 2001; Wang et al. 2013;
Veloso, Mulvehill, and Cox 1997; Ai-Chang et al. 2004;
Maldague et al. 1998). However, these developments have
focused primarily on the technology and human aspects of
MIP without examining the work of planning and the con-
text within which it occurs. Within this limited framework,
this area of the literature has debated the merits of “planning
like the human” (interpreted as using some simple domain-
specific heuristics which do not fully utilize the machine
capabilities) (Seegebarth et al. 2012; van Wezel and Jorna
2009) or “using AI to plan” (interpreted as automatically
generating plans which the human may or may not be able to
interact with and modify, yet are reported to need interven-
tion some 30-40% of the time, particularly when the system
does not have full knowledge of the goals or constraints)
(Ai-Chang et al. 2004; Cegarra and van Wezel 2012). In
many of the “using AI to plan” cases, the underlying rep-
resentation of the plan’s rationale has not been clear to the
human, a difficulty reflected in the costs of user interfaces
associated with these various systems, reported as being up
to 70% of the cost of development (Cegarra and van Wezel
2012).

Critiques of MIP systems not developed around explicit
analysis of the underlying “work” to be performed have
noted key obstacles to their implementation. For example,
MIP has historically separated the “planning” of activities
from the “scheduling” of resources; in contrast, the work

of space flight planning must simultaneously consider what
is feasible in terms of resource constraints when planning
activities (Myers et al. 2001; Maldague et al. 1998). Like-
wise, human planners were found to use in their work
non-exclusive decompositions reflecting activities operat-
ing upon shared resources, and to create annotations within
structures intended to define resources to instead reflect
more abstract information about the plan. From a cognitive
engineering perspective, the obstacles faced by the current
state of the art reflect a lack of emphasis on understanding
the work of planning.

An awareness of the context of planning, i.e. recogniz-
ing that there can be multiple different strategies for plan-
ning based on the scenario within which planning is taking
place, is equally critical to building an effective MIP system.
For example, the notion of cognitive control describes how
human planners may employ different strategies depending
on the balance of resources (time-available, relevant knowl-
edge, etc.) versus demands (time pressure, unfamiliar situa-
tions, etc.) (Hollnagel 1993). Feigh’s work, for example, has
demonstrated how different strategies for airline operations
planning can be supported by different interfaces in such a
way that simpler, more-efficient-but-less-optimal strategies
can be easily invoked when efficiency is to be valued and
a different interface can be toggled to when time allows for
more strategic approaches (Feigh and Pritchett 2010).

Rather than relying on AI-based planning algorithms, we
are employing methods developed in operations research
(OR), a field that has long examined problems in planning
and scheduling, that have been extremely successful in solv-
ing large, complex, practical optimization problems. While
OR began as the study of deterministic and single-objective
(and thus largely impractical) problems, focus in recent
years has shifted to fields with more practical applications—

2

stochastic and robust optimization (Kleywegt and Shapiro
2007; Bertsimas, Brown, and Caramanis 2011), with which
plans that explicitly account for quantifiable future uncer-
tainties can be created, online optimization (Sgall 1998;
Kalai and Vempala 2005), with which plans can be adjusted
in real-time based on newly revealed information, and multi-
objective optimization (Ehrgott 2010), with which trade-
offs between competing plan objectives may be explored
and quantified. Local search techniques and heuristics have
also received quite a bit of attention and have proven to be
quite useful in solving large scheduling problems (Aarts and
Lenstra 2003). To our knowledge, these more advanced OR
techniques have never been integrated into a single decision
framework akin to the one necessary for deep space explo-
ration missions.

Plan-Modeling Framework
A robust plan-modeling framework is crucial to the efficacy
of any MIP system, and especially so for our system given
that it requires communication across three separate plat-
forms. The common framework that we have developed is
based on three main high-level constructs: activities, agents,
and resources. All members of these three constructs have
their own set of attributes that we have divided into three
separate categories: characteristics, current state, and plan
information. In the operation of our system, characteristics
are static input data, current state is dynamic input data, and
plan information is output data. A more detailed discussion
of each construct and its relevant attributes is given below.

Activities
Activities comprise everything that must be done in a given
time frame and are organized in a four-tier structure, with
activities (highest level) subdivided into tasks, tasks into
subtasks, and subtasks into procedures. This organizational
structure helps to facilitate flexibility with respect to the
amount of granularity required for planning or re-planning.
In the context of planning, we have developed and catego-
rized relevant attributes of activities as follows:

Characteristics Relevant activity characteristics include

• A unique identifier (e.g. activity name)

• Earliest (Latest) allowed start (completion) time

• Location and duration

• Activity tier, and parent (one tier higher) and child (one
tier lower) activities, if applicable

• Any preceding or succeeding activities

• Difficulty level (subjective, rated on to a numeric scale)

• Agent skills and/or resources required for execution.

Current State The only current state information needed
for an activity is a flag indicating whether or not it is al-
ready included in the current plan.

Plan Information Plan information for an activity includes
the agent(s) performing the activity, its start and end
times, and the identifiers of any resources it is using.

Agents
An agent is any entity capable of performing work; a plan’s
list of agents may include human crew members, robo-
nauts, robotic arms, astrobees and other such entities. The
attributes of agents that we have deemed relevant in the con-
text of planning are as follows:

Characteristic Relevant agent characteristics include a
unique identifier (e.g. agent name), oxygen and/or energy
consumption rates, agent skills (in order to match certain
agents with certain activities), and movement speed/range
of motion.

Current State Current state information for agents in-
cludes location, resources in possession (e.g. tools for
completing a maintenance activity), agent fatigue level
(calculated according to difficulty levels of activities ex-
ecuted) and times available (times in the plan when the
agent is not scheduled to be working).

Plan Information Plan information for a particular agent is
simply the set of activities that the agent has been tasked
with executing in the plan.

Resources
A resource is an inanimate object or supply which must be
utilized to perform certain activities. A resource may be a
tool, replacement part, EVA suit, oxygen tank, power cell,
or other such implement. Relevant attributes of resources in
the context of planning are as follows:

Characteristic Relevant resource characteristics include a
unique identifier (e.g. resource name + number if there are
more than one of something), energy consumption rate,
maximum battery and/or oxygen capacity (when applica-
ble), and storage location.

Current State Current state information for resources in-
cludes location, times available, and oxygen and battery
levels when applicable.

Plan Information Plan information for a particular re-
source is, similar to that of an agent, simply the set of
activities that utilize the resource in the plan.

These three constructs and their relevant attributes form
the backbone of our planning structure and must be inter-
preted and utilized by each component of our system archi-
tecture. We now proceed to discussing this architecture in
greater detail.

System Architecture
As was mentioned in the introduction, we have designed our
MIP system to address the needs of both the human planner
and streamlined computation. Of vital importance to the hu-
man planner is an adequate representation of the work to be
completed and a conception of how this work will flow in
a given plan. Streamlined computation requires a structure
that lends itself to the creation of robust, efficient modifica-
tion and optimization algorithms. With these ideas in mind,
this section is dedicated to our efforts so far in (1) the model-
ing and simulation of work and (2) the development of plan
optimization techniques.

3

Modeling Work
Provided the emphasis on the human in MIP, we have
extended this influence into the development of our model’s
work constraints. By taking a human-centered approach,
we have not only considered traditional technological
constraints, but we have also examined cognitive, social,
and physical factors that influence work. Thus, we have
defined the following requirements by resource, temporal,
and agent activities.

Resource Constraints
• Activity X requires Y resource <oxygen, CO2, water,

power, thermal> amount

• No more than Y resources used in Z time period

Temporal Constraints
• Activity X <before, after, at same time> Activity Y

• Perform Activity X at Time T

• Perform Activity X at RelativeTime R <prior, after> to
Time T

• Perform Activity X at RelativeTime R <prior, after> to
Activity Y

• Combine Activity X and Y into Activity Z in this order

• Break Activity X into Activity Y and Z at Step J

• Add task X <now, Time T>

• Remove Activity X

Agent Constraints
• Assign Activity X to Agent Y

• Split Activity X across Agents Y and Z

To further examine the factors that influence work in a MIP
system, specifically astronaut-system interactions, we devel-
oped three scenarios that span varying levels of safety and
time considerations. These scenarios include emergency,
mission impact, and optional events, with each defined in de-
tail in Figure 2 above. Building on these scenarios by creat-
ing storyboards, information flow diagrams, and initial user
environment design documents (Beyer and Holtzblatt 1998),
we reinforced the proposed work model for the optimization
algorithm and provided a foundation for initial interface de-
sign requirements.

Simulating Work: WMC
WMC is a computational simulation framework that has
been developed over several years, originally as a means of
evaluating function allocations between various automation,
robotic and human agents (Pritchett, Kim, and Feigh 2014b;
2014a). The high-level model structure of the framework
consists of a work model and an agent model, which are
then simulated through time as agents performing the work
in the work model. The work model is a representation of
the activities of a plan as well as the resources that are re-
quired for the work. Each activity has attributes that define
constraints such as its location, the resources that are used or

consumed and the duration it has. An agent model consists
of simple heuristics for executing each activity. WMC takes
two inputs: a function allocation that assigns each activity
to a performing agent and a plan that consists of steps with
activities and scheduled times.

The simulation loads the plan and function allocation into
its simulation core, and steps through this internal activ-
ity list sorted by scheduled time and calls associated agent
models to perform the activities due at the current simula-
tion time. When the agent model is called by the simula-
tion’s core to perform an activity, its internal checks account
for constraints in the work and the agent, such as the loca-
tion and availability of the required resources, the maximum
number of activities each agent can perform at a time, and
the location of each agent.

When constraints are not met, the agent model has sim-
ple heuristics to resolve a constraint violation. For example,
when a resource for an activity is not available at its orig-
inal scheduled time, the agent model will delay the activ-
ity until this resource becomes available (when the activ-
ity that was occupying the resource finishes). In case loca-
tions of resources or agents do not match, the simulation
can account for required traversal times to fetch resources
or change agent locations. These alterations to the plan are
logged and fed back to the optimization algorithm for further
iterations.

The framework furthermore logs several metrics during
simulations that can subsequently be used as objectives in
the optimization process. Examples of performance met-
rics are the total time to completion, the idle or down time
of agents and the total time on task for each agent. Addi-
tionally, WMC logs metrics capture some of the coordina-
tion or teamwork that is required between agents to make
a plan work. For example, instances of information shar-
ing between two agents (based on their activities and the
respective timing) are logged as a measure for the required
communication. When resources need to be shared between
agents, WMC logs the transfer of these resources as re-
quirements for physical interaction between agents in which
the resources are handed over. The traversal time associated
with such resource management, or simply to move from
one location to the other between consecutive activities, is
also logged as a metric.

Optimization
The plan-modeling framework detailed in the previous sec-
tion lends itself nicely to a scheduling theory-based ap-
proach to modification and optimization. Scheduling theory
is a branch of OR that has grown out of efforts to solve vari-
ations of the classic machine scheduling problem: the prob-
lem of scheduling n “jobs” on m “machines” in such a way
that some objective (e.g., the completion time of the last job)
is optimized. In the context of automated planning for hu-
man space flight, activities can be thought of as “jobs” and
agents as “machines”. Many of the temporal and agent con-
straints discussed above have natural representations within
the confines of a machine scheduling problem, and resource
constraints can fairly easily be tracked at a high level as well.

Thus, the Optimizer briefly described earlier essentially

4

Figure 2: Detailed description of the three scenarios. In this table, we consider: the amount of time that the optimizing system
has to evaluate and present a new plan to the team – time allowable; the amount of the plan that will need to be evaluated and
potentially modified – depth of re-plan; the introduction of new constraints that prioritize crew and structure health – safety
impact; and the type of method used to trigger a re-planning event — type of re-plan.

endeavors to solve (or come very close to solving) a machine
scheduling problem over given sets of activities and agents.
Given that the problem of optimally scheduling jobs on two
or more machines with an objective as simple as time to
completion has been shown to be NP-complete (i.e., com-
putationally intractable for large instances) (Ullman 1975),
solution techniques are generally heuristic in nature. Local
(or neighborhood) search is one such solution technique that
has proven effective in handling large instances, especially
when embedded in a meta-heuristic framework, making it
our method of choice for use in the Optimizer.

Our current local search algorithm is relatively simple.
The “neighborhood” around a given schedule is defined to
be all schedules that can be obtained from it by removing
a single activity and reinserting it elsewhere. An objective
value to optimize is specified at the outset, and at each iter-
ation a schedule in the neighborhood is selected at random.
If this new schedule has an objective value that is at least
as good as the current schedule, the algorithm “jumps” from
the latter to the former, and then repeats. Otherwise, the cur-
rent schedule remains as is and a different schedule in the
neighborhood is selected in the next iteration. This process
continues either for a set number of iterations or until the
schedule’s objective value reaches a threshold, depending
on the user’s preference. The algorithm can also consider
multiple objectives via added constraints that prevent jump-
ing to a new schedule if doing so would cause one or more
secondary objective values to exceed specified thresholds.

Given that as many as several thousand or more such
jumps may be necessary to obtain a close-to-optimal sched-
ule, examining resource availability, usage, and consump-
tion in depth at each iteration has the potential to be com-
putationally prohibitive. With this in mind, our algorithm
treats resource-related constraints at a coarse, high level and
relies on WMCs detailed evaluation process for resource-
related feedback and suggested schedule changes. The sec-
tion below discusses the integration between the Optimizer
and WMC in greater depth.

Integration
The optimization algorithm and WMC are written as sep-
arate processes in C++. Both contain similar objects, al-
beit for different purposes: the optimization algorithm uses
heuristics to reason using simple constraints and to construct
new plans, and WMC uses the objects to evaluate a plan
using a range of metrics. However, to assure the objects in
the two processes operate consistently on the same data, the
class attributes of each objects are populated from the same
XML input file, as shown in Figure 3.

This XML file defines the activities of the plan, the avail-
able agents and resources, and provides the optimizer and
WMC with information on the resource, temporal, and agent
constraints. Any input from the astronaut through the Mar-
vin interface will also be defined in this XML input format.
The file follows the same basic format as described in the
Modeling Framework section and thus contains static infor-
mation on objects (the Characteristics attributes), an initial
state of dynamic attributes (Current State attributes), and the
original plan that is used as a starting point for the optimiza-
tion (Plan Information attributes).

Then, during the optimization process, as different plans
are constructed and evaluated in WMC, the dynamic at-
tributes of objects change. To exchange this changing in-
formation - a plan change to be simulated in WMC and the
corresponding metrics to be considered in the optimization
algorithm - we use a C++ shared memory object. Compared
to other methods like external log files or message pass-
ing, shared memory is considered the most computationally
efficient method for interchanging data between processes.
To reduce the required communication, only the dynamic
attributes of objects are communicated through the shared
memory, including:
• Scheduled time for each activity.
• The function allocation denoting which agent is assigned

to perform each activity.
• Metrics of interest for the plan. Metrics in the initial im-

5

Figure 3: Diagram of the integration between the optimization algorithm and the WMC simulation framework.

plementation include the makespan (i.e., the total duration
of a schedule), mental and physical workload estimates
for each agent, time on task for each agent, the total num-
ber of physical resource exchanges between agents, and a
list of actions that are performed past their deadline.

Sample Case Study
To validate the coupling of the optimization algorithm and
WMC, we have constructed a use case emulating the re-
planning of one day’s existing schedule to produce a fea-
sible, modified solution. To enable this process, we have de-
veloped an example 12-hour mission schedule that reflects
the work, exercise, and leisure standards that are currently
employed by the Flight Planning team at NASA JSC. The
names of the activities in the schedule are shown in Figure 4.
Each activity in the schedule contains inherent characteris-
tics, including location, skills, mental and physical difficulty,
and temporal and resource dependencies, which are used to
constrain new solutions. The activity constraints contained
within the case study are designed explicitly to ensure that
the schedule captures all of the plan-specific work require-
ments that were outlined in the Modeling Work section.

For this particular case study we have limited ourselves to
considering two distinct objectives: (1) the plan’s makespan
(i.e. overall time to completion) and (2) workload balance
among agents. The results displayed below were obtained
by optimizing with respect to makespan, but the plan can
be optimized with respect to workload balance as well by
aggregating the difficulty levels of assigned activities across
all agents and minimizing variance between agents.

Figure 5 shows the existing 12-hour mission schedule be-
fore optimization (subfigure a) and the schedule after opti-
mization (subfigure b), in the form of time traces of when
each activity is performed and by which agent. For this pre-

liminary case study, we let the optimization algorithm per-
form ten thousand iterations, and subsequently simulated the
resulting best option in WMC for more detailed evaluation.

The optimization process resulted in a plan with a 45-
minute reduction in makespan, following a considerable
amount of activity re-scheduling (e.g., the order of activi-
ties for Agent 3 has changed notably) and/or re-assignment
(e.g., activity 14 is re-assigned from Agent 1 to Agent 2). All
changes that involve re-assigning activities from one agent
to another have been highlighted using dashed lines; most
re-assignments are found between Agents 1 and 2. Agent 3
has mostly changes in the order of his/her activities. These
changes result in a more condensed schedule, with a more
balanced workload distribution. Finally, the makespan can-
not be reduced any further since activities 38 and 39 (“Pre-
pare Findings Report 1” and “Prepare Findings Report 2”)
both have constraints that require them to be executed at
their respective times.

Future Work
In this paper, we present a novel approach to MIP for long-
duration spaceflight that focuses on the tight coupling of
three components: a work-modeling framework, an opti-
mization algorithm, and an intuitive user interface. While
the case study proved the feasibility of this design, signifi-
cant work remains to present a formal solution.

Better modeling the true nature of work is one focus
area. We are continuing to refine the example schedule to
better reflect mission-planning constraints and manage hu-
man abilities and preferences, including reducing the spac-
ing between activities. Additionally, we are modeling a new
mission-impact scenario that is focused on the inclusion of
an unplanned maintenance task, which will require direct in-
put from ground control.

6

Figure 4: Activities to be completed as part of case study.

Figure 5: Time trace of existing mission schedule before and after optimization.

7

Future work on the WMC framework will include feeding
back to the Optimizer more advanced metrics that would not
be easily evaluated in the optimization algorithm, such as
the required traversal of astronauts through the space station
and more detailed resource-related metrics. Another possi-
ble addition to WMC is to simulate uncertainty in the action
duration, allowing for estimates of the robustness of a plan
to natural variation in the work.

Work will also continue on improving our local search
heuristic for optimization. We anticipate developing more
efficient and problem-tailored algorithms through the use of
metaheuristics such as tabu search, adaptive large neighbor-
hood search, and multi-start search, as well as implementing
techniques to address new, more subtle objectives such as
agent preferences, resource consumption, and total number
of physical resource exchanges between agents.

We also plan to continue expanding upon the integra-
tion between the optimization algorithm and WMC, writing
more metrics from WMC to the shared memory and having
the optimizer use these simulation results in clever ways in
follow-up iterations. One important aspect to consider in the
integration is that when WMC performs its more detailed
evaluation it should provide rich feedback to the optimizer,
i.e., not just the metric values but also reasoning behind any
delays or changes in the schedule. Likewise, when the WMC
and optimizer combination is integrated with a human in-
terface, similar kind of informative feedback should be fed
back to the system’s user.

Finally, the development of the interface is an intended
area for future work. To date, we have developed scenar-
ios, storyboards, information flows, and user environment
designs to derive initial interface design requirements. Thus,
the next step will be to convert these requirements into
mockups and prototypes, and ultimately, a functional and
intuitive application.

Acknowledgments
This work is funded as part of a NASA Early Stage In-
novation Grant (NNX17AD12G), with Steve Hillenius and
Jeremy Frank serving as Program Managers. This work is
solely the responsibility of its authors and does not neces-
sarily represent the official views of NASA.

References
Aarts, E. H. L., and Lenstra, J. K. 2003. Local Search in
Combinatorial Optimization. Princeton University Press.
Ai-Chang, M.; Bresina, J.; Charest, L.; Chase, A.; Hsu, J.
C. J.; Jonsson, A.; Kanefsky, B.; Morris, P.; Rajan, K.; Ygle-
sias, J.; Chafin, B. G.; Dias, W. C.; and Maldague, P. F. 2004.
Mapgen: mixed-initiative planning and scheduling for the
mars exploration rover mission. IEEE Intelligent Systems
19(1):8–12.
Bertsimas, D.; Brown, D. B.; and Caramanis, C. 2011. The-
ory and applications of robust optimization. SIAM Review
53(3):464–501.
Beyer, H., and Holtzblatt, K. 1998. Contextual Design. San
Diego, CA: Academic Press.

Biundo, S.; Bercher, P.; Geier, T.; Mller, F.; and Schatten-
berg, B. 2011. Advanced user assistance based on ai plan-
ning. Cognitive Systems Research 12(3):219 – 236. Special
Issue on Complex Cognition.
Cegarra, J., and van Wezel, W. 2012. Revisiting decision
support systems for cognitive readiness: A contribution to
unstructured and complex scheduling situations. Journal of
Cognitive Engineering and Decision Making 6(3):299–324.
Ehrgott, M. 2010. Multicriteria optimization. Springer.
Feigh, K., and Pritchett, A. 2010. Modeling work for cogni-
tive work support system design in operational control cen-
ters. Journal of Cognitive Engineering and Decision Making
4:126.
Hollnagel, E. 1993. Human Reliability Analysis: Context
and Control. Academic Press.
IJtsma, M.; Ma, L. M.; Pritchett, A. R.; and Feigh, K. M.
2017a. Work Dynamics of Taskwork and Teamwork in
Function Allocation for Manned Spaceflight Operations. In
International Symposium on Aviation Psychology, 554–559.
IJtsma, M.; Pritchett, A. R.; Ma, L. M.; and Feigh, K. M.
2017b. Modeling Human-Robot Interaction to Inform Func-
tion Allocation in Manned Spaceflight Operations. In
Robotics: Science and Systems, Workshop: Bridging the Gap
in Space Robotics.
Kalai, A., and Vempala, S. 2005. Efficient algorithms for
online decision problems. Journal of Computer and System
Sciences 71(3):291 – 307. Learning Theory 2003.
Kleywegt, A. J., and Shapiro, A. 2007. Stochastic Optimiza-
tion. Wiley-Blackwell. chapter 102, 2625–2649.
Maldague, P.; Ko, A.; Page, D.; and Starbird, T. 1998. Ap-
gen: A multi-mission semi-automated planning tool. In First
International NASA Workshop on Planning and Scheduling.
Miller, M. J.; Pittman, C. P.; and Feigh, K. M. 2017. Next-
generation human extravehicular spaceflight operations sup-
port systems development. In International Aeronautical
Congress (IAC).
Myers, K.; Smith, S.; Hildum, D. W.; Jarvis, P.; and de La-
caze, R. 2001. Integrating planning and scheduling through
adaptation of resource intensity estimates. In Proceedings
5th European Conference on Planning.
Nothdurft, F.; Behnke, G.; Bercher, P.; Biundo, S.; and
Minker, W. 2015. The interplay of user-centered dialog
systems and ai planning. Proceedings of the 16th Annual
Meeting of the Special Interest Group on Discourse and Di-
alogue.
Pritchett, A. R.; Bhattacharyya, R. P.; and IJtsma, M. 2016.
Computational assessment of authority and responsibility in
air traffic concepts of operation. Journal of Air Transporta-
tion 24(3):93–102.
Pritchett, A. R.; Kim, S. Y.; and Feigh, K. M. 2014a. Mea-
suring human-automation function allocation. Journal of
Cognitive Engineering and Decision Making 8(1):52–77.
Pritchett, A. R.; Kim, S. Y.; and Feigh, K. M. 2014b. Model-
ing human-automation function allocation. Journal of Cog-
nitive Engineering and Decision Making 8(1):33–51.

8

Seegebarth, B.; Muller, F.; Schattenberg, B.; and Biundo, S.
2012. Making hybrid plans more clear to human users-a for-
mal approach for generating sound explanations. In Twenty-
Second International Conference on Automated Planning
and Scheduling.
Sgall, J. 1998. On-line scheduling. Berlin, Heidelberg:
Springer Berlin Heidelberg. 196–231.
Ullman, J. 1975. Np-complete scheduling problems. Jour-
nal of Computer and System Sciences 10(3):384 – 393.
van Wezel, W., and Jorna, R. 2009. Cognition, tasks and
planning: supporting the planning of shunting operations at
the netherlands railways. Cognition, Technology & Work
11(2):165–176.
Veloso, M. M.; Mulvehill, A. M.; and Cox, M. T. 1997.
Rationale-supported mixed-initiative case-based planning.
In Proceedings of the Fourteenth National Conference on
Artificial Intelligence and Ninth Conference on Innovative
Applications of Artificial Intelligence, AAAI’97/IAAI’97,
1072–1077. AAAI Press.
Wang, Z.; Wang, H.-W.; Qi, C.; and Wang, J. 2013. A
resource enhanced htn planning approach for emergency
decision-making. Applied Intelligence 38(2):226–238.

9

Visualizations for an Explainable Planning Agent

Tathagata Chakraborti1 and Kshitij P. Fadnis2 and Kartik Talamadupula2 and Mishal Dholakia2

Biplav Srivastava2 and Jeffrey O. Kephart2 and Rachel K. E. Bellamy2

1 Computer Science Department, Arizona State University, Tempe, AZ 85281 USA
tchakra2 @ asu.edu

2IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 USA
{ kpfadnis, krtalamad, mdholak, biplavs, kephart, rachel } @ us.ibm.com

Abstract

In this paper, we report on the visualization capabilities of an
Explainable AI Planning (XAIP) agent that can support hu-
man in the loop decision making. Imposing transparency and
explainability requirements on such agents is especially im-
portant in order to establish trust and common ground with
the end-to-end automated planning system. Visualizing the
agent’s internal decision making processes is a crucial step
towards achieving this. This may include externalizing the
“brain” of the agent – starting from its sensory inputs, to pro-
gressively higher order decisions made by it in order to drive
its planning components. We also show how the planner can
bootstrap on the latest techniques in explainable planning to
cast plan visualization as a plan explanation problem, and
thus provide concise model based visualization of its plans.
We demonstrate these functionalities in the context of the au-
tomated planning components of a smart assistant in an in-
strumented meeting space.

Introduction
Advancements in the fields of speech, language, and search
have led to ubiquitous personalized assistants like the Ama-
zon Echo, Google Home, Apple Siri, etc. Even though these
assistants have mastered a narrow category of interaction
in specific domains, they mostly operate in passive mode
– i.e. they merely respond via a set of predefined scripts,
most of which are written to specification. In order to evolve
towards truly smart assistants, the need for (pro)active col-
laboration and decision support capabilities is paramount.
Automated planning offer a promising alternative to this
drudgery of repetitive and scripted interaction. The use of
planners allows automated assistants to be imbued with
the complementary capabilities of being nimble and proac-
tive on the one hand, while still allowing specific knowl-
edge to be coded in the form of domain models. Addition-
ally, planning algorithms have long excelled (Myers 1996;
Sengupta et al. 2017) in the presence of humans in the loop
for complex collaborative decision making tasks.

eXplainable AI Planning (XAIP) While planners have
always adapted to accept various kinds of inputs from hu-
mans, only recently has there been a concerted effort on the

other side of the problem: making the outputs of the plan-
ning process more palatable to human decision makers. The
paradigm of eXplainable AI Planning (XAIP) (Fox, Long,
and Magazzeni 2017) has become a central theme around
which much of this research has coalesced. In this paradigm,
emphasis is laid on the qualities of trust, interaction, and
transparency that an AI system is endowed with. The key
contributions to explainability are the resolution of critical
exploratory questions – why did the system do something a
particular way, why did it not do some other thing, why was
its decision optimal, and why the evolving world may force
the system to replan.
Role of Visualization in XAIP One of the keys towards
achieving an XAIP agent is visualization. The planning
community has recently made a concerted effort to sup-
port the visualization of key components of the end-to-end
planning process: from the modeling of domains (Bryce et
al. 2017); to assisting with plan management (Izygon, Ko-
rtenkamp, and Molin 2008); and beyond (Sengupta et al.
2017; Benton et al. 2017). For an end-to-end planning sys-
tem, this becomes even more challenging since the systems
state is determined by information at different levels of ab-
straction which are being coalesced in the course of decision
making. A recent workshop (Freedman and Frank 2017) out-
lines these challenges in a call to arms to the community on
the topic of visualization and XAIP.
Contribution It is in this spirit that we present a set of vi-
sualization capabilities for an XAIP agent that assists with
human in the loop decision making tasks: specifically in
the case of this paper, assistance in an instrumented meet-
ing space. We introduce the end-to-end planning agent,
Mr.Jones (Chakraborti et al. 2017b), and the visualiza-
tions that we endow it with. We then provide fielded demon-
strations of the visualizations, and describe the details that
lie under the hood of these capabilities.

Introducing Mr.Jones
First, we introduce Mr.Jones (Chakraborti et al. 2017b),
situated in the CEL – the Cognitive Environments Labora-
tory – at IBM’s T.J. Watson Research Center. Mr.Jones is
designed to embody the key properties of a proactive assis-
tant while fulfilling the properties desired of an XAIP agent.

10

Figure 1: Architecture diagram illustrating the building blocks of Mr.Jones – the two main components Engage and Orchestrate situates
the agent proactively in a decision support setting with human decision makers in the loop. The top right inset shows the different roles of
Mr.Jones as a smart room orchestrator and meeting facilitator. The bottom right inset illustrates the flow of control in Mr.Jones – each
service runs in parallel and asynchronously to maintain anytime response of all the individual components.

Mr.Jones: An end-to-end planning system
We divide the responsibilities of Mr.Jones into two pro-
cesses – Engage, where plan recognition techniques are
used to identify the task in progress; and Orchestrate, which
involves active participation in the decision-making process
via real-time plan generation, visualization, and monitoring.

ENGAGE This consists of Mr.Jones monitoring vari-
ous inputs from the world in order to situate itself in the
context of the group interaction. First, the assistant gathers
various inputs like speech transcripts, live images, and the
positions of people within a meeting space; these inputs are
fed into a higher level symbolic reasoning component. Us-
ing this, the assistant can (1) requisition resources and ser-
vices that may be required to support the most likely tasks
based on its recognition; (2) visualize the decision process
– this can depict both the agent’s own internal recognition
algorithm, and an external, task-dependent process; and (3)
summarize the group decision-making process.

ORCHESTRATE This process is the decision support as-
sistant’s contribution to the group’s collaboration. This can
be done using standard planning techniques, and can fall un-
der the aegis of one of four actions as shown in Figure 1.
These actions, some of which are discussed in more de-
tail in (Sengupta et al. 2017), are: (1) execute, where the
assistant performs an action or a series of actions related
to the task at hand; (2) critique, where the assistant of-
fers recommendations on the actions currently in the col-
laborative decision sequence; (3) suggest, where the assis-
tant suggests new decisions and actions that can be dis-
cussed collaboratively; and (4) explain, where the assistant
explains its rationale for adding or suggesting a particular
decision. The Orchestrate process thus provides the “sup-
port” part of the decision support assistant. The Engage
and Orchestrate processes can be seen as somewhat paral-
lel to the interpretation and steering processes defined in

the crowdsourcing scenarios of (Talamadupula et al. 2013;
Manikonda et al. 2017). The difference in these new scenar-
ios is that the humans are the final decision makers, with the
assistant merely supporting the decision making.

Architecture Design & Key Components The central
component – the Orchestrator1 – regulates the flow of in-
formation and control flow across the modules that manage
the various functionalities of the CEL; this is shown in Fig-
ure 1. These modules are mostly asynchronous in nature and
may be: (1) services2 processing sensory information from
various input devices across different modalities like audio
(microphone arrays), video (PTZ cameras / Kinect), motion
sensors (Myo / Vive) and so on; (2) services handling the
different services of CEL; and (3) services that attach to
the Mr.Jones module. The Orchestrator is responsible for
keeping track of the current state of the system as well as
coordinating actuation either in the belief/knowledge space,
or in the actual physical space.

Knowledge Acquisition / Learning The knowledge con-
tained in the system comes from two sources – (1) the devel-
opers and/or users of the service; and (2) the system’s own
memory; as illustrated in Figure 1. One significant barrier to-
wards the adoption of higher level reasoning capabilities into
such systems has been the lack of familiarity of developers
and end users with the inner working of these technologies.
With this in mind we provide an XML-based modeling inter-
face – i.e. a “system config” – where users can easily config-
ure new environments. This information in turn enables au-
tomatic generation of the files that are internally required by
the reasoning engines. Thus system specific information is
bootstrapped into the service specifications written by expert

1Not to be confused with the term Orchestrate from the previ-
ous section, used to describe the phase of active participation.

2Built on top of the Watson Conversation and Visual Recogni-
tion services on IBM Cloud and other IBM internal services.

11

developers, and this composite knowledge can be seamlessly
transferred across task domains and physical configurations.
The granularity of the information encoded in the models
depends on the task at hand – for example, during the En-
gage phase, the system uses much higher level information
(e.g. identities of agents in the room, their locations, speech
intents, etc.) than during the Orchestrate phase, where more
detailed knowledge is needed. This enables the system to
reason at different levels of abstraction independently, thus
significantly improving the scalability as well as robustness
of the recognition engine.

Plan Recognition The system employs the probabilistic
goal / plan recognition algorithm from (Ramirez and Geffner
2010) to compute its beliefs over possible tasks. The algo-
rithm casts the plan recognition problem as a planning prob-
lem by compiling away observations to the form of actions
in a new planning problem. The solution to this new prob-
lem enforces the execution of these observation-actions in
the observed order. This explainsmini the reasoning process
behind the belief distribution in terms of the possible plans
that the agent envisioned (as seen in Figure 2).

Plan Generation The FAST-DOWNWARD planner
(Helmert 2006) provides a suite of solutions to the forward
planning problem. The planner is also required internally
by the Recognition Module when using the compilation
from (Ramirez and Geffner 2010), or in general to drive
some of the orchestration processes. The planner reuses the
compilation from the Recognition Module to compute plans
that preserve the current (observed) context.

Visualizations in Mr.Jones
The CEL is a smart environment, equipped with various sen-
sors and actuators to facilitate group decision making. Auto-
mated planning techniques, as explained above, are the core
component of the decision support capabilities in this set-
ting. However, the ability to plan is rendered insufficient if
the agent cannot communicate that information effectively
to the humans in the loop. Dialog as a means of interfacing
with the human decision makers often becomes clumsy due
to the difficulty of representing information in natural lan-
guage, and/or the time taken to communicate. Instead, we
aim to build visual mediums of communication between the
planner and the humans for the following key purposes –

- Trust & Transparency - Externalizing the various path-
ways involved in the decision support process is essential
to establish trust between the humans and the machine,
as well as to increase situational awareness of the agents.
It allows the humans to be cognizant of the internal state
of the assistant, and to infer decision rationale, thereby
reducing their cognitive burden.

- Summarization of Minutes - The summarization process is
a representation of the beliefs of the agent with regard to
what is going on in its space over the course of an activity.
Since the agent already needs to keep track of this infor-
mation in order to make its decisions, we can replay or
sample from it to generate an automated visual summary
of (the agent’s belief of) the proceedings in the room.

Figure 2: Snapshot of the mind of Mr.Jones externalizing differ-
ent stages of its cognitive processes.

- Decision Making Process - Finally, and perhaps most im-
portantly, the decision making process itself needs effi-
cient interfacing with the humans – this can involve a
range of things from showing alternative solutions to a
task, to justifying the reasoning behind different sugges-
tions. This is crucial in a mixed initiative planning setting
(Horvitz 1999; 2007) to allow for human participation in
the planning process, as well as for the planner’s partici-
pation in the humans’ decision making process.

Mind of Mr.Jones
First, we will describe the externalization of the “mind” of
Mr.Jones – i.e. the various processes that feed the differ-
ent capabilities of the agent. A snapshot of the interface is
presented in Figure 2. The interface itself consists of five
widgets. The largest widget on the top shows the various
usecases that the CEL is currently set up to support. In the
current CEL setup, there are nine such usecases. The wid-
get represents the probability distribution that indicates the
confidence of Mr.Jones in the respective task being the
one currently being collaborated on, along with a button for
the provenance of each such belief. The information used as
provenance is generated directly from the plans used inter-
nally by the recognition module (Ramirez and Geffner 2010)
and justifies why, given its model of the underlying plan-
ning problems, these tasks look likely in terms of plans that
achieve those tasks. Model based algorithms are especially
useful in providing explanations like this (Sohrabi, Baier,
and McIlraith 2011; Fox, Long, and Magazzeni 2017). The
system is adept at handling uncertainty in its inputs (it is in-
teresting to note that in coming up with an explanatory plan
it has announced likely assignments to unknown agents in
its space). In Figure 2, Mr.Jones has placed the maximum
confidence in the tour usecase.

Below the largest widget is a set of four widgets, each

12

of which give users a peek into an internal component of
Mr.Jones. The first widget, on the top left, presents a
wordcloud representation of Mr.Jones’s belief in each of
the tasks; the size of the word representing that task corre-
sponds to the probability associated with that task. The sec-
ond widget, on the top right, shows the agents that are rec-
ognized as being in the environment currently – this infor-
mation is used by the system to determine what kind of task
is more likely. This information is obtained from four inde-
pendent camera feeds that give Mr.Jones an omnispective
view of the environment; this information is represented via
snapshots (sampled at 10-20 Hz) in the third widget, on the
bottom left. In the current example, Mr.Jones has recog-
nized the agents named (anonymized) “XXX” and “YYY”
in the scenario. Finally, the fourth widget, on the bottom
right, represents a wordcloud based summarization of the
audio transcript of the environment. This transcript provides
a succinct representation of the things that have been said
in the environment in the recent past via the audio chan-
nels. Note that this widget is merely a summarization of the
full transcript, which is fed into the IBM Watson Conversa-
tion service to generate observations for the plan recogni-
tion module. The interface thus provides a real-time snap-
shot of the various sensory and cognitive organs associated
with Mr.Jones- the eyes, ears, and mind of the CEL. The
interface is organized at increasing levels of abstraction –

[1] Raw Inputs – These show the camera feeds and voice cap-
ture (speech to text outputs) as received by the system.
These help in externalizing what information the system
is working with at any point of time and can be used,
for example, in debugging at the input level if the system
makes a mistake or in determining whether it is receiving
enough information to make the right decisions. It is es-
pecially useful for an agent like Mr.Jones, which is not
embodied in a single robot or interface but is part of the
environment as a whole. As a result of this, users may find
it difficult to attribute specific events to the agent.

[2] Lower level reasoning – The next layer deals with the
first stage of reasoning over these raw inputs – What are
the topics being talked about? Who are the agents in the
room? Where are they situated? This helps an user iden-
tify what knowledge is being extracted from the input
layer and fed into the reasoning engines. It increases the
situational awareness of agents by visually summarizing
the contents of the scene at any point of time.

[3] Higher level reasoning – Finally, the top layer uses infor-
mation extracted at the lower levels to reason about ab-
stract tasks in the scene. It visualizes the outcome of the
plan recognition process, along with the provenance of
the information extracted from the lower levels (agents in
the scene, their positions, speech intents, etc.). This layer
puts into context the agent’s current understanding of the
processes in the scene.

Demonstration 1 We now demonstrate how the Engage
process evolves as agents interact in the CEL. The demon-
stration begins with two humans discussing the CEL en-
vironment, followed by one agent describing a projection

of the Mind of Mr.Jones on the screen. The other agent
then discusses how a Mergers and Acquisitions (M&A)
task (Kephart and Lenchner 2015) is carried out. A video
of this demonstration can be accessed at https://www.
youtube.com/watch?v=ZEHxCKodEGs. The video
contains a window that demonstrates the evolution of the
Mr.Jones interface through the duration of the inter-
action. This window illustrates how Mr.Jones’s beliefs
evolve dynamically in response to interactions in real-time.

Demonstration 2 After a particular interaction is com-
plete Mr.Jones can automatically compile a summariza-
tion (or minutes) of the meeting by sampling from the vi-
sualization of its beliefs. An anonymized video of a typi-
cal summary can be accessed at https://youtu.be/
AvNRgsvuVOo. This kind of visual summary provides a
powerful alternative to established meeting summarization
tools like text-based minutes. The visual summary can also
be used to extract abstract insights about this one meet-
ing, or a set of similar meetings together and allows for
agents that may have missed the meeting to catch up on
the proceedings. Whilst merely sampling the visualization
at discrete time-intervals serves as a powerful tool towards
automated summary generation, we anticipate the use of
more sophisticated visualization (Dörk et al. 2010) and
summarization (Shaw 2017; Kim, Chacha, and Shah 2015;
Kim and Shah 2016) techniques in the future.

Model-Based Plan Visualization : Fresco
We start by describing the planning domain that is used
in the rest of this section, followed by a description of
Fresco’s different capabilities in terms of top-K plan visu-
alization and model-based plan visualization. We conclude
by describing the implementation details on the back-end.

The Collective Decision Domain We use a variant of the
Mergers and Acquisitions (M&A) task called Collective De-
cision (CD). The CD domain models the process of gather-
ing input from a decision makers in a smart room, and the or-
chestration of comparing alternatives, eliciting preferences,
and finally ranking of the possible options.

Top-K Visualization
Most of the automated planning technology and literature
considers the problem of generating a single plan. Recently,
however, the paradigm of Top-K planning (Riabov, Sohrabi,
and Udrea 2014) has gained traction. Top-K plans are partic-
ularly useful in domains where producing and deliberating
on multiple alternative plans that go from the same fixed ini-
tial state and the same fixed goal is important. Many decision
support scenarios, including the one described above, are of
this nature. Moreover, Top-K plans can also help in realiz-
ing unspecified user preferences, which may be very hard
to model explicitly. By presenting the user(s) with multiple
alternatives, an implicit preference elicitation can instead be
performed. The Fresco interface supports visualization of
the K top plans for a given problem instance and domain
model, as shown in Figure 3a. In order to generate the Top-
K plans, we use an experimental Top-K planner (Katz et al.
2018) that is built on top of Fast Downward (Helmert 2006).

13

(a) Top-K plan visualization showing alternative plans for a given problem. (b) Action Descriptions

Figure 3: Visualization of plans in Fresco showing top-K alternative solutions (K=3) for a given planing problem (left) and on-demand
visualization of each action in the plan (zoomed-in; right) in terms of causal links consumed and produced by it.

Figure 4: Visualization as a process of explanation – minimized view of conditions relevant to a plan. Blue, green and red nodes indicate
preconditions, add and delete effects respectively. The conditions which are not necessary causes for this plan (i.e. the plan is still optimal in
a domain without these conditions) are grayed out in the visualization (11 out of a total 30).

Model-based Plan Visualization
The requirements for visualization of plans can have differ-
ent semantics depending on the task at hand – e.g. show-
ing the search process that produced the plan, and the deci-
sions taken (among possible alternative solutions) and trade-
offs made (by the underlying heuristics) in that process; or
revealing the underlying domain or knowledge base that
engendered the plan. The former involves visualizing the
how of plan synthesis, while the latter focuses on the why,
and is model-based and algorithm independent. Visualiz-
ing the how is useful to the developer of the system during
debugging, but serves little purpose for the end user who
would rather be told the rationale behind the plan: why is
this plan better than others, what individual actions con-
tribute to the plan, what information is getting consumed
at each step, and so on. Unfortunately, much of the visual-
ization work in the planning community has been confined
to depicting the search process alone (Thayer 2010; 2012;
Magnaguagno et al. 2017). Fresco, on the other hand, aims
to focus on the why of a plan’s genesis, in the interests of
establishing common ground with human decision-makers.
At first glance, this might seems like an easy problem – we
could just show what the preconditions and effects are for
each action along with the causal links in the plan. However,
even for moderately sized domains, this turns into a clumsy
and cluttered approach very soon, given the large number of
conditions to be displayed. In the following, we will describe
how Fresco handles this problem of overload.

Visualization as a Process of Explanation We begin by
noting that the process of visualization can in fact be seen
as a process of explanation. In model-based visualization, as
described above, the system is essentially trying to explain to
the viewer the salient parts of its knowledge that contributed

to this plan. In doing so, it is externalizing what each ac-
tion is contributing to the plan, as well as outlining why this
action is better that other possible alternatives.

Explanations in Multi-Model Planning Recent work has
shown (Chakraborti et al. 2017a) how an agent can explain
its plans to the user when there are differences in the models
(of the same planning problem) of the planner and the user,
which may render an optimal plan in the planner’s model
sub-optimal or even invalid–and hence unexplainable–in the
user’s mental model. An explanation in this setting consti-
tutes a model update to the human such that the plan (that
is optimal to the planner) in question also becomes optimal
in the user’s updated mental model. This is referred to as a
model reconciliation process (MRP). The smallest explana-
tion is called minimally complete (MCE).

Model-based Plan Visualization ≡Model Reconciliation
with Empty Model As we mentioned previously, expos-
ing the entire model to the user is likely to lead to cognitive
overload and lack of situational awareness due to the amount
of information that is not relevant to the plan in question.
We want to minimize the clutter in the visualization and yet
maintain all relevant information pertaining to the plan. We
do this by launching an instantiation of the model reconcilia-
tion process with the planner’s model and an empty model as
inputs. An empty model is a copy of the given model where
actions do not have any conditions and the initial state is
empty (the goal is still preserved). Following from the above
discussion, the output of this process is then the minimal set
of conditions in the original model that ensure optimality of
the given plan. In the visualization, the rest of the conditions
from the domain are grayed out. (Chakraborti et al. 2017a)
showed how this can lead to a significant pruning of condi-
tions that do not contribute to the generation of a particular

14

(a) Architecture diagram of Fresco. (b) Software stack

Figure 5: Illustration of the flow of control (left) in Fresco between the plan generator (FD), explanation generator (MMP), and plan
validator (VAL) with the visualization modules. The MMP code base is in the process of being fully integrated into Fresco, and it is
currently run as a stand-alone component. The software stack (right) shows the infrastructure supporting Fresco in the backend.

plan. An instance of this process on the CD domain is illus-
trated in Figure 4.

Note that the above may not be the only way to minimize
information being displayed. There might be different kinds
of information that the user cares about, depending on their
preferences. This is also highlighted by the fact that an MCE
is not unique for a given problem. These preferences can be
learned in the course of interactions.

Architecture of Fresco The architecture of Fresco,
shown in Figure 5a, includes several core modules such
as the parser, planner, resolver, and visualizer. These mod-
ules are all connected in a feed-forward fashion. The parser
module is responsible for converting domain models and
problem instances into python objects, and for validating
them using VAL (Howey, Long, and Fox 2004). Those ob-
jects are then passed on to the planner module, which re-
lies on Fast-Downward (FD) and the Multi-Model Plan-
ner (MMP) (Chakraborti et al. 2017a) to generate a plan
along with its explanation. The resolver module consumes
the plan, the explanation, and the domain information to not
only ground the plan, but also to remove any preconditions,
add, or delete effects that are deemed irrelevant by the MMP
module. Finally, the visualizer module takes the plan from
the resolver module as an input, and builds graphics that
can be rendered within any well-known web browser. Our
focus in designing the architecture was on making it func-
tionally modular and configurable, as shown in Figure 5b.
While the first three modules described above are imple-
mented using Python, the visualizer module is implemented
using Javascript and the D3 graphics library. Our applica-
tion stack uses REST protocols to communicate between the
visualizer module and the rest of the architecture. We also
accounted for scalability and reliability concerns by con-
tainerizing the application with Kubernetes, in addition
to building individual containers / virtual machines for third
party services like VAL, Fast-Downward, and MMP.

Work in Progress
While we presented the novel notion of explanation as visu-
alization in the context of AI planning systems in this paper
via the implemention of the Mr.Jones assistant, there is
much work yet to be done to embed this as a central re-
search topic in the community. We conclude the paper with
a brief outline of future work as it relates to the visualization
capabilities of Mr.Jones and other systems like it.

Visualization for Model Acquisition Model acquisition
is one of the biggest impediments towards the adoption of
planning technologies. Our own work with Mr.Jones is
not immune to this problem. Although we have enabled an
XML-based modeling interface, the next iteration of making
this easily consumable for non-experts involves two steps:
first, we impose an (possibly graphical) interface on top of
the XML structure to obtain information in a structured man-
ner. We can thenl provide visualizations such as those de-
scribed in (Bryce et al. 2017) in order to help with iterative
acquisition and refinement of the planning model.

Tooling Integration Eventually, our vision – not re-
stricted to any one planning tool or technology – is to inte-
grate the capabilities of Fresco into a domain-independent
planning tool such as planning.domains (Muise 2016),
which will enable the use of these visualization components
across various application domains. planning.domains
realizes the long-awaited planner-as-a-service paradigm for
end users, but is yet to incorporate any visualization
techniques for the user. Model-based visualization from
Fresco, complemented with search visualizations from
emerging techniques like WebPlanner (Magnaguagno et
al. 2017), can be a powerful addition to the service.

Mixed-Reality Finally, recent advances in mixed-reality
technologies provide exciting opportunities for newer modes
of interaction with AI agents (Williams et al. 2018). We ex-
plore such capabilities in the space of decision-support in
(Sengupta, Chakraborti, and Kambhampati 2018).

15

Acknowledgements A significant part of this work was
initiated and completed while Tathagata Chakraborti was an
intern at IBM’s T. J. Watson Research Center during the
summer of 2017. The continuation of his work at ASU is
supported by an IBM Ph.D. Fellowship.

References
Benton, J.; Smith, D.; Kaneshige, J.; and Keely, L. 2017.
CHAP-E: A plan execution assistant for pilots. In Proceed-
ings of the Workshop on User Interfaces and Scheduling and
Planning, UISP 2017, 1–7.
Bryce, D.; Bonasso, P.; Adil, K.; Bell, S.; and Kortenkamp,
D. 2017. In-situ domain modeling with fact routes. In Pro-
ceedings of the Workshop on User Interfaces and Scheduling
and Planning, UISP 2017, 15–22.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017a. Plan Explanations as Model Reconciliation:
Moving Beyond Explanation as Soliloquy. In IJCAI.
Chakraborti, T.; Talamadupula, K.; Dholakia, M.; Srivas-
tava, B.; Kephart, J. O.; and Bellamy, R. K. 2017b. Mr. Jones
– Towards a Proactive Smart Room Orchestrator. AAAI Fall
Symposium on Human-Agent Groups.
Dörk, M.; Gruen, D.; Williamson, C.; and Carpendale, S.
2010. A Visual Backchannel for Large-Scale Events. IEEE
Transactions on Visualization and Computer Graphics.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. In First IJCAI Workshop on Explainable AI (XAI).
Freedman, R. G., and Frank, J. D., eds. 2017. Proceedings of
the First Workshop on User Interfaces and Scheduling and
Planning. AAAI.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Horvitz, E. 1999. Principles of mixed-initiative user inter-
faces. In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, 159–166. ACM.
Horvitz, E. J. 2007. Reflections on challenges and promises
of mixed-initiative interaction. AI Magazine 28(2):3.
Howey, R.; Long, D.; and Fox, M. 2004. Val: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using pddl. In Tools with Artificial Intelligence, 2004.
ICTAI 2004. 16th IEEE International Conference on, 294–
301. IEEE.
Izygon, M.; Kortenkamp, D.; and Molin, A. 2008. A proce-
dure integrated development environment for future space-
craft and habitats. In Space Technology and Applications
International Forum.
Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018.
A Novel Iterative Approach to Top-k Planning. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Kephart, J. O., and Lenchner, J. 2015. A symbiotic cogni-
tive computing perspective on autonomic computing. In Au-
tonomic Computing (ICAC), 2015 IEEE International Con-
ference on, 109–114.

Kim, J., and Shah, J. A. 2016. Improving team’s consis-
tency of understanding in meetings. IEEE Transactions on
Human-Machine Systems 46(5):625–637.
Kim, B.; Chacha, C. M.; and Shah, J. A. 2015. Inferring
team task plans from human meetings: A generative mod-
eling approach with logic-based prior. Journal of Artificial
Intelligence Research.
Magnaguagno, M. C.; Pereira, R. F.; Móre, M. D.; and
Meneguzzi, F. 2017. Web planner: A tool to develop clas-
sical planning domains and visualize heuristic state-space
search. ICAPS 2017 User Interfaces for Scheduling & Plan-
ning (UISP) Workshop.
Manikonda, L.; Chakraborti, T.; Talamadupula, K.; and
Kambhampati, S. 2017. Herding the crowd: Using auto-
mated planning for better crowdsourced planning. Journal
of Human Computation.
Muise, C. 2016. Planning.Domains. In The 26th Interna-
tional Conference on Automated Planning and Scheduling -
Demonstrations.
Myers, K. L. 1996. Advisable planning systems. Advanced
Planning Technology 206–209.
Ramirez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In AAAI.
Riabov, A.; Sohrabi, S.; and Udrea, O. 2014. New algo-
rithms for the top-k planning problem. In Proceedings of the
Scheduling and Planning Applications woRKshop (SPARK)
at the 24th International Conference on Automated Planning
and Scheduling (ICAPS), 10–16.
Sengupta, S.; Chakraborti, T.; Sreedharan, S.; and Kamb-
hampati, S. 2017. RADAR - A Proactive Decision Sup-
port System for Human-in-the-Loop Planning. In AAAI Fall
Symposium on Human-Agent Groups.
Sengupta, S.; Chakraborti, T.; and Kambhampati, S. 2018.
MA-RADAR – A Mixed-Reality Interface for Collaborative
Decision Making. ICAPS UISP.
Shaw, D. 2017. How Wimbledon is using IBM Watson AI
to power highlights, analytics and enriched fan experiences.
https://goo.gl/r6z3uL.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2011. Preferred
explanations: Theory and generation via planning. In AAAI.
Talamadupula, K.; Kambhampati, S.; Hu, Y.; Nguyen, T.;
and Zhuo, H. H. 2013. Herding the crowd: Automated plan-
ning for crowdsourced planning. In HCOMP.
Thayer, J. 2010. Search Visualizations. https://www.
youtube.com/user/TheSuboptimalGuy.
Thayer, J. T. 2012. Heuristic search under time and quality
bounds. Ph. D. Dissertation, University of New Hampshire.
Williams, T.; Szafir, D.; Chakraborti, T.; and Ben Amor, H.
2018. Virtual, augmented, and mixed reality for human-
robot interaction. In Companion of the 2018 ACM/IEEE In-
ternational Conference on Human-Robot Interaction, 403–
404. ACM.

16

Projection-Aware Task Planning and Execution for Human-in-the-Loop
Operation of Robots in a Mixed-Reality Workspace ∗ †

Tathagata Chakraborti and Sarath Sreedharan and Anagha Kulkarni and Subbarao Kambhampati
Arizona State University, Tempe, AZ 85281 USA

{ tchakra2, ssreedh3, akulka, rao } @ asu.edu

Abstract

Recent advances in mixed-reality technologies have renewed
interest in alternative modes of communication for human-
robot interaction. However, most of the work in this direction
has been confined to tasks such as teleoperation, simulation
or explication of individual actions of a robot. In this paper,
we will discuss how the capability to project intentions affect
the task planning capabilities of a robot. Specifically, we will
start with a discussion on how projection actions can be used
to reveal information regarding the future intentions of the
robot at the time of task execution. We will then pose a new
planning paradigm – projection-aware planning – whereby a
robot can trade off its plan cost with its ability to reveal its
intentions using its projection actions. Finally, we will show
how in the context of task planning, projection actions may
also be useful for plan explicability and explanations. We will
demonstrate each of these scenarios with the help of a joint
human-robot activity using the HoloLens.

1 Introduction
Effective planning for human robot teams not only requires
the capacity to be “human-aware” during the plan genera-
tion process, but also the ability to interact with the human
during the plan execution phase. Prior work has underlined
this need (Karpas et al. 2015) as well as explored ways to
exchange (Tellex et al. 2014; Chakraborti et al. 2017c) in-
formation in natural language during interaction with the
human in the loop. However, the state of the art in natu-
ral language considerably limits the scope of such interac-
tions, especially where precise instructions are required. In
this paper, we present the case of wearable technologies (e.g.
HoloLens) for effective communication of intentions during
human-in-the-loop operation of robots.

The last decade has seen a massive increase in robots de-
ployed on the factory floor (Robotenomics 2017). This has
led to fears of massive job loss for humans in the manu-
facturing industry, as well concerns of security of jobs that
do remain. The latter is not an emerging concern, though.
Automation of the manufacturing industry has gone hand
in hand with incidents of misaligned intentions between the
robots and their human co-workers, leading to at least four
instances of fatality (Weiss 2015). This dates back to as

∗Parts of this project appeared in the U.S. Finals of the Mi-
crosoft Imagine Cup 2017. Details: http://www.ae-robots.com/
†An update version is available at https://goo.gl/ZFGjPK

Figure 1: A cloud-based distributed augmented workspace
to combat impedance mismatch in human robot interactions.

early as 1979 when a robot arm crushed a worker to death
while gathering supplies in the Michigan Ford Motor Fac-
tory, to as recent as 2015 in a much publicized accident at
the Volkswagen factory in Baunatal, Germany. With 1.3 mil-
lion new robots predicted to enter the workspace by next
year (PRNewswire 2016), such concerns are only expected
to escalate. A closer look at the dynamics of employment
in the manufacturing industry, however, reveals that the in-
troduction of automation has in fact increased productivity
(Muro and Andes 2015) as well as, surprisingly, contributed
to a steady increase in the number of jobs for human work-
ers (Look 2016) in Germany (which dominates in terms of
deployed robots in the industry). We posit then either a semi-
autonomous workspace in future with increased hazards due
to misaligned interests of robots in the shared environment,
or a future where the interests of the human workers will
be compromised in favor of automation. In light of this, it

17

is essential that the next-generation factory floor (Automa-
tion World 2016) is able to adapt to these new technologies.
Indeed, recent reports (Linette Lopez 2018) have hinted at
significant gains to be had from bridging this gap.

At the core of this problem is the impedance mismatch be-
tween humans and robots in how they represent and commu-
nicate information. Despite the progress made in natural lan-
guage processing, natural language understanding is still a
largely unsolved problem, and as such robots find it difficult
to express their own goals and intentions effectively. Thus
there exists a significant communication barrier to be over-
come from either side. While this may not always be a se-
rious concern for deploying completely autonomous agents
in isolated environments such as for space or underwater ex-
ploration, the priorities change considerably when humans
and robots are involved in collaborative tasks, especially for
concerns of safety, if not just to improve the effectiveness of
collaboration. This is emphasized in the Roadmap for U.S.
Robotics (Christensen et al. 2009) – “humans must be able
to read and recognize robot activities in order to interpret
the robot’s understanding”.

Related Work The concept of intention projection for au-
tonomous systems has, of course, been explored before. An
early attempt was made in (Sato and Sakane 2000) in a pro-
totype Interactive Hand Pointer (IHP) to control a robot in
the human’s workspace. Similar systems have since been
developed to visualize trajectories of mobile wheelchairs
and robots (Watanabe et al. 2015; Chadalavada et al. 2015),
which suggest that humans prefer to interact with a robot
when it presents its intentions directly as visual cues. The
last few years have seen active research (Omidshafiei et al.
2015; 2016; Shen, Jin, and Gans 2013; Ishii et al. 2009;
Mistry et al. 2010; Leutert, Herrmann, and Schilling 2013;
Turk and Fragoso 2015; Maurtua et al. 2016) in this area,
but most of these systems were passive, non-interactive and
quite limited in their scope, and did not consider the state of
the objects or the context of the plan pertaining to the action
while projecting information. As such, the scope of inten-
tion projection has remained largely limited. Indeed, recent
works (Andersen et al. 2016; Chakraborti et al. 2017a) have
made the first steps towards extending these capabilities to
the context of task planning and execution, but fall short of
formalizing the notion of intention projections beyond the
current action under execution.

Instead, in this paper, we demonstrate a system that is able
to provide much richer information to the human during col-
laboration, in terms of the current state information, action
being performed as well as future parts of the plan under ex-
ecution, particularly with the notion of explicating or fore-
shadowing future intentions. Recent advances (Williams et
al. 2018) in the field of mixed reality make this form of on-
line interactive plan explication particularly compelling.

Note that the ability to communicate information, and
planning with the knowledge of that ability when it is use-
ful to disambiguate intentions, is not necessarily unique to
mixed-reality interactions only. One could use the planner
introduced in Section 4.4 to generate content for traditional
speech-based interactions as well (c.f. recent works on ver-

balization of intentions in natural language (Tellex et al.
2014)). However, as demonstrated in this paper, the medium
of mixed-reality provides a particularly concise and effective
alternative vocabulary of communication, especially in more
structured scenarios such as in collaborative manufacturing.

Recent work in the scope of human-aware task and mo-
tion planning has focused on generation of legible motion
plans (Dragan and Srinivasa 2013) and explicable task plans
(Zhang et al. 2017; Kulkarni et al. 2016) with the notion of
trading off cost of plans with how easy they are to inter-
pret for a human observer. This runs parallel to our work on
intention projections. Note that, in effect, either during the
generation or the execution of a plan, we are, in fact, try-
ing to optimize the same criterion. However, in our case, the
problem becomes much more intriguing since the robot gets
to enforce legibility or explicability of a plan by foreshadow-
ing of actions that have not been executed yet. Indeed, this
connection has also been hinted at in recent work (Gong and
Zhang 2018). However, to the best of our knowledge, this is
the first task-level planner to achieve this trade-off.

The plan explanations and explicability process forms a
delicate balancing act, as we have investigated in recent
work (Chakraborti, Sreedharan, and Kambhampati 2018).
This also has interesting implications to the intention pro-
jection ability as we demonstrate in the final section.

Similarly, in recent work (MacNally et al. 2018), authors
have looked at the related problem of “transparent plan-
ning” where a robot tries to signal its intentions to an ob-
server by performing disambiguating actions in its plan. In-
tention projection in the medium of mixed-reality is likely
to be a perfect candidate for this purpose without incurring
unnecessary cost of execution.

Contributions Thus the contributions of our paper are –

- In Sections 4 and 5, we demonstrate how an Augmented
Workspace can assist in task-level planning and execution
in collaborative human-robot interactions.

- In Section 4, we show how the intention projection tech-
niques can be used to reduce ambiguity over possible
plans during execution.
- In Section 4.4, we show how this can be used to realize

a first of its kind task planner that instead of consider-
ing only cost optimal plans, generates plans which are
easier to explicate using intention projection actions.

- In Section 5, we demonstrate how the ability to project
world information applies to the process of explanations
for inexplicability of a plan during execution.

2 The Augmented Workspace
Our primary focus here is on structured settings like the
manufacturing environment where wearables can be a vi-
able solution for improving the workspace. Indeed, a reboot
of the safety helmet and goggles only requires retro-fitting
existing wearables with sensors that can enable these new
technologies. Imagine, then, a human and robot engaged in
an assembly task, where they are constructing a structure
collaboratively. Further suppose that the human now needs a
tool from the shared workspace. At this time, neither agent is

18

sure what tools and objects the other is going to access in the
immediate future - this calls for seamless transfer of relevant
information without loss of workflow. Existing (general pur-
pose) solutions will suggest intention recognition or natural
language communication as a means to respond to this sit-
uation. While natural language and intent or gesture recog-
nition techniques remain the ideal, and sometimes the only,
choice (such as assistive robots that need to interact in daily
settings), we note that these are inherently noisy and am-
biguous and need not necessarily be the medium of choice
in controlled environments such as on the factory floor or by
the assembly line where the workspace can be engineered
to enforce protocols in the interests of safety and productiv-
ity, in the form of safety helmets integrated with wearable
technology (Ruffaldi et al. 2016).

Instead, in our proposed system, the robot projects its in-
tentions as holograms thus making them directly accessi-
ble to the human in the loop, e.g. by projecting a pickup
symbol on a tool it might use in future. Further, unlike in
traditional mixed reality projection systems, the human can
directly interact with these holograms to make his own in-
tentions known to the robot, e.g. by gazing at and selecting
the desired tool thus forcing the robot to replan. To this end,
we develop, with the power of the HoloLens, an alternative
communication paradigm that is based on the projection of
explicit visual cues pertaining to the plan under execution
via holograms such that they can be intuitively understood
and directly read by the human partner. The “real” shared
human-robot workspace is now thus augmented with the
virtual space where the physical environment is used as a
medium to convey information about the intended actions of
the robot, the safety of the work space, or task-related in-
structions. We call this the Augmented Workspace. Recent
development of augmented reality techniques (Williams et
al. 2018) has opened up endless possibilities in such modes
of communication. In this paper, we will use the classic (In-
ternational Planning Competition 2011) BlocksWorld do-
main as a proxy to a collaborative assembly domain. Here
the robot is tasked with making words (or configurations)
out of lettered (or colored) blocks using stacking and un-
stacking actions, to mimic assembly of specified structures.
This will be used as the domain to illustrate various use cases
and demonstrations in the rest of the paper.

3 Preliminaries of AI Planning

A Classical Planning Problem (Chakraborti et al. 2017b)
is a tuple M = 〈D, I,G〉 with domain D = 〈F,A〉 -
where F is a set of fluents that define a state s ⊆ F , and
A is a set of actions - and initial and goal states I,G ⊆
F . Action a ∈ A is a tuple 〈ca, pre(a), eff±(a)〉 where
ca is the cost, and pre(a), eff±(a) ⊆ F are the precon-
ditions and add/delete effects, i.e. δM(s, a) |= ⊥ if s 6|=
pre(a); else δM(s, a) |= s \ eff−(a)∪ eff+(a) where δM(·)
is the transition function. The cumulative transition function
is δM(s, 〈a1, a2, . . . , an〉) = δM(δM(s, a1), 〈a2, . . . , an〉).

Note that the “model” M of a planning problem includes
the action model as well as the initial and goal states of an

agent. The solution toM is a sequence of actions or a (sat-
isficing) plan π = 〈a1, a2, . . . , an〉 such that δM(I, π) |=
G. The cost of a plan π is C(π,M) =

∑
a∈π ca if

δM(I, π) |= G; ∞ otherwise. The cheapest plan π∗ =
arg minπ C(π,M) is the (cost) optimal plan with cost C∗M.

Projection actions can include information regarding either
the state of the world or the robot’s plans – both of these can
reveal information regarding the robot’s future intentions,
i.e. goals or plans. In this work, we assume a very simple
projection model based on the truth value of specified con-
ditions in parts of the plan yet to be executed –

An Action Projection AP is defined as a mapping u :
[0 . . . |π|]×A 7→ {T, F} indicating ∃ j ≥ iwhere ai, aj ∈ π
if u(j, ai) = T and ai, aj 6∈ π otherwise – i.e. existence or
membership of an action in the rest of the plan.

A State Value Projection SVP is defined as a mapping v :
F × A 7→ {T, F} so that there exists a state in the state
sequence induced by the sub-plan starting from ai where
the state variable f ∈ F holds the value v(f, ai), i.e. ∃ s′ :
δM(s, π′) |= s′ where s is the current state and π′ is the sub-
plan (π)

k≤|π|
k=i and f ∈ s′ iff v(f, ai) = T, f 6∈ s otherwise.

In the following sections, we will discuss how a robot can
determine when to deploy which of these projections in order
to better explicate its plans to a human in the loop.

4 Projections for Ambiguous Intentions
In this section, we will concentrate upon how projection ac-
tions can resolve ambiguity with regards to the intentions of
a robot in the course of execution of a task plan.

4.1 Projection-Aware Plan Execution
The first topic of consideration is the projection of intentions
of a robot with a human observer in the loop.

Illustrative Example. Consider a robot involved in a mock
assembly task (i.e. block stacking) as shown in Figure 2a.
We will be using this setting throughout the rest of the pa-
per. Here, the robot’s internal goal is to form the word BRAT.
However, given the letters available to it, it can form other
words as well – consider two more possible goals BOAT
and COAT. As such, it is difficult to say, from the point of
view of the observer, by looking at the starting configura-
tion, which of these is the real outcome of the impending
plan. The robot can, however, at the start of its execution,
choose to indicate that it has planned to pick up the block
R later (by projecting a bobbing arrow on top of it), thereby
resolving this ambiguity. Note that directly displaying the
actual goal – here, the final word – is not possible in general
across different domains. A video demonstrating this can be
viewed at https://goo.gl/SLgCPE.

A Projection-Aware Plan Execution Problem PAPEP is
a tuple Φ = 〈π,Π, {AP}, {SV P}〉 where π is the robot’s
plan up for execution, Π (including π) is the set of possible
plans it can execute, and {AP} and {SV P} are the set of
action and state value projections available (i.e. due to π).

19

(a) The robot projects (AP) a green arrow to indicate pickup of a block that is part of an optimal plan to only one of its possible goals.

(b) The robot inverts the projection context and this time shows (SVP) which block is not going to be available using a red cross.

Figure 2: Projection-Aware Plan Execution for human observer and human-in-the-loop scenarios.

The solution to Φ is a composite plan πc ◦ π where πc ⊆
{AP}∪{SV P} are the projection actions that disambiguate
the plans at the time of execution. We compute this using the
concept of resource profiles, as introduced in (Chakraborti et
al. 2016). Informally, a resource (Chakraborti et al. 2016) is
defined as any state variable whose binary value we want
to track. We will use this concept to tie each action or state
value projection action to a single resource variable, whose
effect can be monitored. For example, a not-clear pred-
icate will indicate that a block is in use or not available
while an action that produces or negates that predicate – e.g.
pick-up can be similarly tracked through it. This mapping
between projection actions and the corresponding resource
variables is domain-dependent knowledge that is provided.

A Resource Profile Rπ induced by a plan π on a resource
r is a mapping Rπ : [0 . . . |π|] × r 7→ {0, 1}, so that r is
locked by π at step i ifRπ(r, i) = 1 and it is free otherwise.

A Cumulative Resource Profile RΠ induced by a set
of plans Π on a resource r is a mapping RΠ :
[0 . . . maxπ∈Π |π|] × r 7→ [0, 1], so that r is locked with a
probability RΠ(r, i) =

∑
π∈ΠRπ(r, i)×P (π), where P (π)

is the prior probability of plan π (assumed uniform).

The set of projection actions πc in the solution π∗ to the
PAPEP Φ are found by computing –

arg min
r

∑

π∈Π

Rπ∗ × RΠ (1)

Thus, we are post-processing to minimize the conflicts be-
tween the current plan and other possible plans, so that the
projection actions that are tied to the resources with the min-
imal conflicts give us the most distinguishing projection.

4.2 Projection-Aware Human-in-the-Loop Execution
In the previous example, we confined ourselves to situations
with the human only as the observer. Now, we consider a
situation where both the human and the robot are involved

in task planning in a collaborative sense, i.e. both the human
and the robot perform actions in a joint plan to achieve their
goals which may or may not be shared.

Illustrative Example. Going back to the running example of
the block stacking task, now consider that the robot and the
human both have goals to make a three letter word out of
ART, RAT and COB (as seen in Figure 2b). The robot has
decided to make the word ART, but realizes that this leaves
the human undecided on how to proceed. Thus the disam-
biguating projection action here includes annotating the R
block with a “not available” symbol so that the only possi-
ble goal left for the human is COB. A video demonstrating
this can be viewed at https://goo.gl/SLgCPE (same
as in Section 4.1). Note that in this case the robot, in coming
up with a useful projection action, has reversed the perspec-
tive from what is relevant to its own plan, to information that
negates possible plans of the human in the loop.

A Projection-Aware Human-in-the-Loop Plan Execu-
tion Problem PAHILPEP is defined as the tuple Ψ =
〈ΠR,ΠH ,G, {AP}, {SV P}〉 where ΠR and ΠH are the
set of possible plans the robot and the human can execute
respectively, G is their shared team goal, and {AP} and
{SV P} are the set of action and state value projections
available to the robot (i.e. induced by ΠR).

The solution to Φ is, as before, a composite plan πc ◦ πR
where the projection actions are composed with the robot’s
component of the joint team plan, such that δ(I, πc ◦ πR ◦
πH) |= G. The set of projection actions πc in the solution to
the PAHILPEP Ψ is again found by computing –

arg max
r

RΠH × RΠR

(2)

Notice the inversion to argmax, since in the case of an ac-
tive human in the loop, so as to provide the most pertinent
information regarding conflicting intentions to the human.

Remark. Joint plans (Chakraborti et al. 2015) to reason over

20

Figure 3: Interactive execution of a plan in the Augmented Workspace - (a) the robot wants to build a tower of height three
with blocks blue, red and green. (b) Blocks are annotated with intuitive holograms, e.g. an upward arrow on the block the robot
is going to pick up immediately and a red cross mark on the ones it is planning to use later. The human can also gaze on an
object for more information (in the rendered text). (c) & (d) The human pinches on the green block and claims it for himself.
The robot now projects a faded out green block and re-plans online to use the orange block instead (as evident by pickup arrow
that has shifted on the latter at this time). (e) Real-time update and rendering of the current state showing status of the plan and
objects in the environment. (f) The robot completes its new plan using the orange block.

Figure 4: Interactive plan execution using the (a) Holographic Control Panel. Safety cues showing dynamic real-time rendering
of volume of influence (b) - (c) or area of influence (d) - (e), as well as (i) indicators for peripheral awareness. Interactive
rendering of hidden objects (f) - (h) to improve observability and situational awareness in complex workspaces.

different modes of human-robot interactions has been inves-
tigated before, particularly in the context of using resource
profiles (Chakraborti et al. 2016) for finding conflicts in the
human’s and the robot’s plans. It is interesting to note the
reversed dynamics of interaction in the example provided
above – i.e. in (Chakraborti et al. 2016) the resource profiles
were used so that the robot could replan based on probable
conflicts so as to preserve the expected plans of the human.
Here, we are using them to identify information to project to
the human, so that the latter can replan instead.

4.3 Closing the Loop – Interactive Plan Execution
Of course, it may not be possible to always disentangle plans
completely towards achievement of a shared goal in a col-
laborative setting. In the next demonstration, we show how
the communication loop is closed by allowing the humans
to interact directly with the holograms in the augmented
workspace and spawn replanning commands to be handled
by the robot, in the event of conflicting intentions.

Replanning – In the previous examples, the robot pro-
jected annotations onto the objects it is intending to manip-
ulate into the human’s point of view with helpful annota-
tions or holograms that correspond to its intentions to use
that object. The human can, in turn, access or claim a par-
ticular object in the virtual space and force the robot to re-

plan, without there ever being any conflict of intentions in
the real space. The humans in the loop can thus not only
infer the robot’s intent immediately from these holographic
projections, but can also interact with them to communicate
their own intentions directly and thereby modify the robot’s
behavior online. The robot can also then ask for help from
the human, using these holograms. Figure 3 demonstrates
one such scenario. The human can also go into finer control
of the robot by accessing the Holographic Control Panel, as
seen in Figure 4(a). The panel provides the human controls
to start/stop execution of the robot’s plan, as well as achieve
fine grained motion control of both the base and the arm
by making it mimic the user’s arm motion gestures on the
MoveArm and MoveBase holograms attached to the robot.
Assistive Cues – The use of AR is, of course, not just
restricted to procedural execution of plans. It can also be
used to annotate the collaborative workspace with artifacts
derived from the current plan under execution in order to
improve the fluency of collaboration. For example, Figure
4(b-e) shows the robot projecting its area of influence in its
workspace either as a 3D sphere around it, or as a 2D circle
on the area it is going to interact with. This is rendered dy-
namically in real-time based on the distance of the end effec-
tor to its center, and to the object to be manipulated. This can
be very useful in determining safety zones around a robot in
operation. As seen in Figure 4(f-i), the robot can also render

21

(a) Generating a plan that has the most discriminating projection (green arrow on B – only one word BAT possible).

(b) Trading-off cost of plan with ambiguity (α = 100; green arrow on C – two words ACT and CAT possible).

(c) Trading-off cost of plan with ambiguity (α = 1000; green arrow on R – only one (longer) word BRAT possible).

Figure 5: Projection-aware plan generation illustrating trade-off in plan cost and goal ambiguity during execution.

hidden objects or partially observable state variables rele-
vant to a plan, as well as indicators to improve peripheral
vision of the human, to improve their situational awareness.

Demonstrations for Sections 4.3 and 4.3 can be viewed at
https://goo.gl/pWWzJb.

4.4 Projection-Aware Plan Generation
Now that we have demonstrated how intention projection
can be used to disambiguate possible tasks at the time of ex-
ecution, we ask is it possible to use this ability to generate
plans that are easier to disambiguate in the first place?

Illustrative Example. Consider again the blocks stacking do-
main, where the robot is yet to decide on a plan, but it has
three possible goals BAT, CAT and ACT (as seen in Fig-
ure 5a). From the point of view of cost optimal planning,
all these are equally good options. However, notice that the
letter B is in only one of the words, while the others are in at
least two possible words. Thus the robot is able to reduce the
ambiguity in plans by choosing the word BAT as a means of
achieving the goal of making a word from the given set.

Illustrative Example. Now imagine that we have extended
the possible set of words { BAT, CAT, ACT } with a longer
word BRAT. The robot responds by projecting R and com-
pletes this longer word now, given R is the most discriminat-
ing action, and the possibility of projecting it ahead com-
pletely reveals its intentions even though it involves the
robot doing a longer and hence costlier plan as seen in

Figure 5c. This trade-off in the cost of plans and the am-
biguity of intentions forms the essence of what we refer to
as projection-aware planning. In fact, we can show that by
correctly calibrating this trade-off, we can achieve different
sweet spots in how much the robot decides to foreshadow
disambiguating actions. As seen in Figure 5b, in cases where
the action costs are relatively greater than gains due to re-
solved ambiguity, the robot achieves a middle-ground of
generating a plan that has the same cost as the optimal plan
to achieve the goal of making a word from this set, but also
involves reasonable forecasting of (two) possible goals by
indicating a future pick-up action on C. A video demon-
stration can be viewed at https://goo.gl/bebtWS.

A Projection-Aware Planning Problem PAPP is defined as
the tuple Λ = 〈M, κ, {AP}, {SV P}〉 whereM is a plan-
ning problem and κ is a set of disjunctive landmarks.

The solution to Λ is a plan such that –
– π achieves the goal; and
– commitments imposed by the projection actions, i.e.

future state conditions indicated by SVPs or actions
promised by APs (Section 3) are respected.

The search for which projection actions to include is
achieved by modifying a standard A-star search1 (Hart, Nils-
son, and Raphael 1968; Chakraborti et al. 2017b) so that the

1Note that to speed up search we used “outer entanglement”
analysis (Chrpa and Barták 2009) to prune unnecessary actions for
the blocks stacking domain.

22

objective function trades off actions costs and ambiguity of
future plans (to possible landmarks) from the current state
(as shown in Algorithm 1). This is given by –

α C(π̂,M) + β E(Π, π̂) (3)

Here Π is a set of possible plans that the robot can pur-
sue from the current state. These are the top-K plans (Ri-
abov, Sohrabi, and Udrea 2014) to the landmarks (Karpas
and Domshlak 2009) in the domain2. E(Π) is the entropy
of the probability distribution (Ramırez and Geffner 2010)
over the plan set Π given the current plan prefix π̂ to that
state. Since a full evaluation of the plan recognition problem
in every node is prohibitively expensive, we use a simple
observation model where the currently proposed projection
action tests membership of its parent action if it is an AP (or
state value if it is an SVP) in the delete-relaxed plans (Bryce
and Kambhampati) to each landmark –

αC(π,M) + β
∑

κ

I(ai ∈ π − del) (4)

where I is the indicator function indicating if the current ac-
tion ai is part of the delete-relaxed plan π − del from the
current state to each of the landmarks κ. The details3,4 of
the search are provided in Algorithm 1. Notice that the indi-
cator function only comes into play when projection actions
are being pushed into the queue, thus biasing the planner to-
wards producing plans that are easier to identify based on the
projections. Also note how the cost of actions corresponding
to projections in the plan prefix are discounted by a factor γ
(to be set depending on how much the designer wants to in-
centivize projection actions).

5 Projections for Inexplicable Actions
In the previous section, we had focused on dealing with am-
biguity of intentions during execution of a plan. Now we
will deal with inexplicability of actions, i.e. how to use pro-
jection capabilities to annotate parts of the world so that a
plan under execution “makes sense” to the observer.

Illustrative Example. Going back to our block stacking set-
ting, consider a scenario where the human-in-the-loop asks
the robot to make a tower of height three with the red block
on top (please refer to the attached supplementary video
file). Here the optimal plan from the point of view of the
observer is likely to be as follows –
>> Explicable Plan

>> action :: pick-up green

>> action :: stack green blue

>> action :: pick-up red

>> action :: stack red green

2In our demonstration, the plan set was composed of the opti-
mal plan (top-1) to the landmarks induced by the all possible words
in the domain needed to reach the goal of forming any word.

3We currently handle only APs in the solution to a PAPP. Also,
the number of APs in a solution were restricted to a maximum of
two to three due to the time consuming nature of computing Π.
This can be sped up by precomputing the relaxed planning graph.

4AP (a) = 〈c,∅,∅〉 refers to the projection action correspond-
ing to action a ∈ A. Similarly, AP−1(a) denotes the physical ac-
tion corresponding to a projection action a.

Algorithm 1 Projection-Aware Planning Algorithm
1: procedure PAPP-SEARCH

2: Input: PAPP Λ = 〈M, κ, {AP}, φ〉
3: Output: Plan π

4: Procedure:

5: A ← A∪ {AP} . Add projections to action set
6: fringe← Priority Queue()

7: fringe.push(〈I, 〈〉〉, 0)

8: while True do

9: 〈Ŝ, π̂〉, c← fringe.pop()

10: if goal check true then return π̂ . Refer to Section 4.4
11: else

12: for a ∈ A do
13: if ŝ |= pre(a) then
14: ŝ′ ← δ(ŝ, a)

15: fringe.push(〈ŝ′, π̂ + a〉, F (ŝ′, a, π̂))

16: procedure F(ŝ′, a, π̂)

17: if a 6∈ {AP} andAP (a) 6∈ π̂ then
18: return ca + C(π̂,M)

19: else
20: if a ∈ {AP} then

21: Compute Π = {delete− relaxed plans to κ}
22: N ← 0

23: for π ∈ Π do
24: ifAP−1(a) ∈ π then
25: N ← N + 1

26: return α(ca + C(π̂,M)) + βN . (Equation 4)

27: else
28: return γca + C(π̂,M)

However, not all the blocks are reachable, as determined
by the internal trajectory constraints of the robot. So the op-
timal plan for the robot would instead be longer –

>> Robot Optimal Plan

>> action :: pick-up red

>> action :: put-down red

>> action :: pick-up yellow

>> action :: stack yellow blue

>> action :: pick-up red

>> action :: stack red blue

This plan is, of course, inexplicable if the observer knows
that the robot is a rational agent, given the former’s under-
standing of the robot model. The robot can chose to mitigate
this situation by annotating the unreachable blocks as “not
reachable” as shown in Figure 6. A video demonstration can
be seen at https://goo.gl/TRZcW6.

The identification of projection actions in anticipation of in-
explicable plans closely follows the notion of multi-model
explanations studied in (Chakraborti et al. 2017b).

A Multi-Model Planning Problem is the tuple Γ =
〈MR,MR

h 〉 where MR = 〈DR, IR,GR〉 and MR
h =

〈DR
h , IRh ,GRh 〉 are respectively the planner’s model of a

planning problem and the human’s understanding of it.

In our block stacking domain, multiple models are spawned
due to internal constraints of the robot that the human may

23

Figure 6: The human has instructed the robot to make a tower of height 3 with the red block on top. Since the blue block is not
reachable it has to unstack red in order to achieve its goal. This is a suboptimal plan to the observer who is not aware of the
robots internal trajectory constraints. The robot thus decides to project a red error symbol on the blue block indicating it is not
reachable. The optimal plans in both models now align.

not be aware of (e.g. reachability) while the world model
(i.e. how the world works - the robot has to pick up and
object to put it down, etc.) is shared across both the mod-
els. As these models diverge, plans that are optimal in the
robot’s model may no longer be so in the human’s and thus
become inexplicable. The robot can mitigate these situation
by generating multi-model explanations studied extensively
(Chakraborti et al. 2017b; Sreedharan, Chakraborti, and
Kambhampati 2017; Chakraborti, Sreedharan, and Kamb-
hampati 2018; Chakraborti et al. 2018a) in recent literature.

A Multi-Model Explanation is a solution to an MMP in
the form of a model update to the human so that the optimal
plan in the robot’s model is now also optimal in the human’s
updated model. Thus, a solution to Γ involves a plan π and
an explanation E such that –

(1) C(π,MR) = C∗MR ;

(2) M̂R
h ←−MR

h + E ; and

(3) C(π,M̂R
h) = C∗M̂R

h

.

We use the same to generate content for the explanations
conveyed succinctly through the medium of mixed reality,
as described in the illustrative example above.

6 Conclusion
In conclusion, we showed how an augmented workspace
may be used to improve collaboration among humans and
robots from the perspective of task planning. This can be ei-
ther in terms of an interactive plan execution process where
the robot can foreshadow future actions to reveal its inten-
tions, or in the context of a projection-aware plan generation
process where the robot can trade-off the ambiguity in its in-
tentions from the perspective of the human in the loop with
the cost of plans. Finally, we showed how explanatory “di-
alogs” with the human as a response to inexplicable plans
can be conducted in this mixed-reality medium.

In recent work (Chakraborti et al. 2018b), we looked at
how the beliefs and intentions of an AI agent can be visual-
ized for transparency of its decision-making processes – we
refer to this as a process of “externalization of the brain”
of the agent. Mixed-reality techniques, such as the ones dis-
cussed in this paper, can play a pivotal role in this process as
we demonstrate in (Sengupta, Chakraborti, and Kambham-
pati 2018). Indeed, interfacing with virtual agents embody

many parallels to gamut of possibilities in human-robot in-
teraction (Williams et al. 2018).

Video Demonstrations. Demonstrations of all the use
cases in the paper can be viewed at https://goo.gl/
Gr47h8. The code base for the projection-aware plan gen-
eration and execution algorithms are available at https:
//github.com/TathagataChakraborti/ppap.

Acknowledgements. This research is supported in part
by the AFOSR grant FA9550-18-1-0067, the ONR
grants N00014-16-1-2892, N00014-13-1-0176, N00014-13-
1-0519, N00014-15-1-2027, N00014-18-1-2442 and the
NASA grant NNX17AD06G. The first author is also sup-
ported by the IBM Ph.D. Fellowship from 2016-18. We also
thank Professors Heni Ben Amor and Yu “Tony” Zhang
(Arizona State University) for their valuable inputs.

References
Automation World. 2016. President Barack Obama and Ger-
man Chancellor Angela Merkel visit Weidmullers Industry
4.0 Cockpit. https://bit.ly/2ICUjD5.
Linette Lopez. 2018. The robots are killing Tesla. https:
//read.bi/2IcOxrw. Business Insider.
Andersen, R. S.; Madsen, O.; Moeslund, T. B.; and Amor,
H. B. 2016. Projecting robot intentions into human environ-
ments. In RO-MAN, 294–301.
Bryce, D., and Kambhampati, S. A tutorial on planning
graph based reachability heuristics. AI Magazine.
Chadalavada, R. T.; Andreasson, H.; Krug, R.; and Lilien-
thal, A. J. 2015. That’s on my mind! robot to human inten-
tion communication through on-board projection on shared
floor space. In ECMR.
Chakraborti, T.; Briggs, G.; Talamadupula, K.; Zhang, Y.;
Scheutz, M.; Smith, D.; and Kambhampati, S. 2015. Plan-
ning for serendipity. In IROS, 5300–5306.
Chakraborti, T.; Zhang, Y.; Smith, D.; and Kambhampati.,
S. 2016. Planning with resource conflicts in human-robot
cohabitation. In AAMAS.
Chakraborti, T.; Sreedharan, S.; Kulkarni, A.; and Kamb-
hampati, S. 2017a. Alternative modes of interaction in
proximal human-in-the-loop operation of robots. CoRR
abs/1703.08930. UISP 2017 and ICAPS 2017 Demo Track.

24

Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017b. Plan Explanations as Model Reconciliation:
Moving Beyond Explanation as Soliloquy. In IJCAI.
Chakraborti, T.; Talamadupula, K.; Dholakia, M.; Srivas-
tava, B.; Kephart, J. O.; and Bellamy, R. K. 2017c. Mr.Jones
– Towards a Proactive Smart Room Orchestrator. In AAAI
Fall Symposium on Human-Agent Groups.
Chakraborti, T.; Sreedharan, S.; Grover, S.; and Kambham-
pati, S. 2018a. Plan Explanations as Model Reconciliation
– An Empirical Study. ArXiv e-prints.
Chakraborti, T.; Fadnis, K. P.; Talamadupula, K.; Dholakia,
M.; Srivastava, B.; Kephart, J. O.; and Bellamy, R. K. 2018b.
Visualizations for an explainable planning agent. UISP.
Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2018.
Balancing Explanations and Explicability in Human-Aware
Planning. In AAMAS Extended Abstract.
Christensen, H. I.; Batzinger, T.; Bekris, K.; Bohringer,
K.; Bordogna, J.; Bradski, G.; Brock, O.; Burnstein, J.;
Fuhlbrigge, T.; Eastman, R.; et al. 2009. A Roadmap for
US Robotics: From Internet to Robotics.
Chrpa, L., and Barták, R. 2009. Reformulating planning
problems by eliminating unpromising actions.
Dragan, A., and Srinivasa, S. 2013. Generating legible mo-
tion. In Proceedings of Robotics: Science and Systems.
Gong, Z., and Zhang, Y. 2018. Robot signaling its inten-
tions in H-R teaming. In HRI 2018 Workshop on Explain-
able Robotic Systems.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics.
International Planning Competition. 2011. IPC Competition
Domains. https://goo.gl/i35bxc.
Ishii, K.; Zhao, S.; Inami, M.; Igarashi, T.; and Imai, M.
2009. Designing laser gesture interface for robot control.
In INTERACT.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI.
Karpas, E.; Levine, S. J.; Yu, P.; and Williams, B. C. 2015.
Robust execution of plans for human-robot teams. In ICAPS.
Kulkarni, A.; Chakraborti, T.; Zha, Y.; Vadlamudi, S. G.;
Zhang, Y.; and Kambhampati, S. 2016. Explicable Robot
Planning as Minimizing Distance from Expected Behavior.
CoRR abs/1611.05497.
Leutert, F.; Herrmann, C.; and Schilling, K. 2013. A spa-
tial augmented reality system for intuitive display of robotic
data. In HRI.
Look, C. 2016. Robots are coming, but not for your job.
Bloomberg. https://goo.gl/ePzcta.
MacNally, A. M.; Lipovetzky, N.; Ramirez, M.; and Pearce,
A. R. 2018. Action selection for transparent planning. AA-
MAS.
Maurtua, I.; Pedrocchi, N.; Orlandini, A.; de Gea Fernández,
J.; Vogel, C.; Geenen, A.; Althoefer, K.; and Shafti, A. 2016.
Fourbythree: Imagine humans and robots working hand in
hand. In ETFA, 1–8. IEEE.

Mistry, P.; Ishii, K.; Inami, M.; and Igarashi, T. 2010.
Blinkbot: look at, blink and move. In UIST, 397–398. ACM.
Muro, M., and Andes, S. 2015. Robots seem to be improving
productivity, not costing jobs. Harvard Business Review.
Omidshafiei, S.; Agha-Mohammadi, A.-A.; Chen, Y. F.; Ure,
N. K.; How, J. P.; Vian, J.; and Surati, R. 2015. Mar-
cps: Measurable augmented reality for prototyping cyber-
physical systems. In AIAA ARC.
Omidshafiei, S.; Agha-Mohammadi, A.-A.; Chen, Y. F.; Ure,
N. K.; Liu, S.-Y.; Lopez, B. T.; Surati, R.; How, J. P.; and
Vian, J. 2016. Measurable augmented reality for proto-
typing cyberphysical systems: A robotics platform to aid
the hardware prototyping and performance testing of algo-
rithms. IEEE Control Systems 36(6):65–87.
PRNewswire. 2016. Global survey: 1.3 million industrial
robots to enter service by 2018. IFR.
Ramırez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In AAAI.
Riabov, A.; Sohrabi, S.; and Udrea, O. 2014. New algo-
rithms for the top-k planning problem. In SPARK, 10–16.
Robotenomics. 2017. Industrial robot.
Ruffaldi, E.; Brizzi, F.; Tecchia, F.; and Bacinelli, S. 2016.
Third point of view augmented reality for robot intentions
visualization. In AVR, 471–478. Springer.
Sato, S., and Sakane, S. 2000. A human-robot interface
using an interactive hand pointer that projects a mark in the
real work space. In ICRA, volume 1, 589–595. IEEE.
Sengupta, S.; Chakraborti, T.; and Kambhampati, S. 2018.
MA-RADAR – A Mixed-Reality Interface for Collaborative
Decision Making. UISP.
Shen, J.; Jin, J.; and Gans, N. 2013. A multi-view camera-
projector system for object detection and robot-human feed-
back. In ICRA.
Sreedharan, S.; Chakraborti, T.; and Kambhampati, S. 2017.
Handling model uncertainty and multiplicity in explanations
via model reconciliation. In ICAPS.
Tellex, S.; Knepper, R.; Li, A.; Rus, D.; and Roy, N. 2014.
Asking for help using inverse semantics. In RSS.
Turk, M., and Fragoso, V. 2015. Computer vision for mobile
augmented reality. In Mobile Cloud Visual Media Comput-
ing: From Interaction to Service.
Watanabe, A.; Ikeda, T.; Morales, Y.; Shinozawa, K.;
Miyashita, T.; and Hagita, N. 2015. Communicating robotic
navigational intentions. In IROS, 5763–5769. IEEE.
Weiss, S. 2015. Could your robot hurt you? perhaps, but not
intentionally. Brown Human-Robot Interaction (HRI) Lab.
Williams, T.; Szafir, D.; Chakraborti, T.; and Ben Amor, H.
2018. Virtual, augmented, and mixed reality for human-
robot interaction. In Companion of the International Con-
ference on Human-Robot Interaction, 403–404. ACM.
Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.;
Zhuo, H. H.; and Kambhampati, S. 2017. Plan Explicability
and Predictability for Robot Task Planning. In ICRA.

25

NL2PDDL: A Conversational Interface for Model Generation and Iteration

Kshitij P. Fadnis and Kartik Talamadupula
IBM Research

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

{kpfadnis, krtalamad} @ us.ibm.com

Abstract

Although the automated planning community has seen many
advances to planning techniques in the past decade, domain
model creation and maintenance has remained the central bot-
tleneck preventing wider adoption of planning technology in
the real world. While there has been some work on learning
these models in an automated fashion, there has been very
little focus on user-friendly interfaces for the creation, query-
ing, and editing of planning models. In this work, we present
a novel approach to interfacing with planning models using
natural language via a conversation modality. We detail the
construction of the system, its capabilities, as well as some
key opportunities and challenges that are brought up by this
unique interface with planning models.

1 Introduction
In recent years, automated planning techniques and systems
have achieved an impressive scale-up in terms of the size
of the problems that they can handle. Planners such as Fast
Downward (Helmert 2006) and its descendants routinely
solve problem instances of real world size in a matter of
seconds. Unfortunately, this scale-up has not led to a signifi-
cant increase in the adoption of planning techniques for real
world applications. One of the main reasons for this is the
extremely cumbersome task of specifying domain models
for planning tasks. The most widely accepted specification
language – PDDL (Mcdermott et al. 1998) – and its variants
are still fairly complex and have a steep learning curve. This
complexity of PDDL is a necessary evil, since the language
also needs to be expressive enough to model real domains.
Indeed, much planning work over the past two decades has
focused on this tension between increased expressivity on
the one hand, and planner efficiency on the other.

Rather than focus on this known problem, planning prac-
titioners should instead look at the other, much narrower end
of this real world bottleneck for planners – the modeling and
specification of domains. Even today, this is more of a dark
art than a science, and it is handled by a small group that can
afford to spend the time needed to truly straddle two realms.
One is the world of planning research; the other is that of
the real world application. Only such people are currently
able to identify the correct abstraction level needed to con-
vert an application into a decision making problem, and then
model that abstraction into PDDL. This has long remained

the elephant in the room for the planning community: an in-
convenient truth that gets truly discussed and debated only
in workshops and systems demonstrations.

In this paper, we introduce the NL2PDDL system, whose
ultimate form is intended to make the specification of plan-
ning domains – agnostic of representation language – easier
for subject matter experts (SMEs) who are not familiar with
planning technology. Our system introduces, for the first
time, the medium of conversation (and dialog) as the back-
ing technology for the creation and maintenance of planning
models. The reasons for using this medium are straightfor-
ward, and we list them here.
Conversation as a Medium for Planning One of the main
reasons for using conversation is that expressing new ideas
and specifications is easier through natural language, and
certainly more natural than filling out cumbersome forms
based on the rules of a syntax. Besides, while using conver-
sation, the burden of translating an utterance into the rep-
resentation language’s syntax falls on the authoring system,
and not on the SMEs who are using the system. This lends
itself to easy automation of the translation from natural lan-
guage to the desired representation, while ensuring that the
cognitive burden of learning yet another new interface is
non-existent. Conversation also provides a natural avenue
for two-way – and if needed, multi-way – interaction. The
system can prompt, clarify, and inform the user when nec-
essary; this can even be done without explicit tasking, as
the agent recognizes mistakes being made in the authoring.
Such an interactive process – conducted through dialog – is
also very educational, and can be used to teach the process
and pitfalls of domain modeling to an SME who is a novice
when it comes to PDDL.

Finally, the use of conversation gives the system a stored
history of the domain authoring process. While version con-
trol systems can track model updates just as well, there is
a fundamental difference in terms of the information that
is stored: version control techniques are restricted to the
syntactic information alone, while the conversation history
can capture the SME’s interaction in its entirety. A good
domain modeling assistant can use this rich history from
past conversations to ensure that the modeling process is
on the right track. The conversation thus serves as a natu-
ral, human-readable log of the modeling process: this can be
used when the domain needs to be augmented, or a similar

26

Figure 1: The architecture of the NL2PDDL system.

domain modeled sometime in the future. The conversation
history is also a valuable resource to train language models
for better prompt generation and interaction.

In this paper, we detail the first steps towards realizing
a conversational assistant for domain modeling tasks via
the NL2PDDL system. We first look at related work in the
field of knowledge engineering for planning and schedul-
ing (KEPS), and point out differences and synergies with
our contribution. We then describe the architecture of the
NL2PDDL system and its constituent components, as well as
a specific web-based implementation of a minimum viable
product. This is followed by a demonstration of the system’s
current capabilities, and a discussion about existing limita-
tions and future work. This paper describes the first iteration
of an ambitious system, and we ask that it be seen as a report
on work in progress.

2 Related Work
Over the past decade or so, the planning community has em-
braced the difficulty as well as the importance of the knowl-
edge engineering task; and the bottleneck posed by it for
the wider adoption of planning technology. Motivated by
McCluskey’s early work (McCluskey 2000) and the KEPS
(Knowledge Engineering in Planning and Scheduling) series
of workshops, this area has received steady attention.

The prior work we highlight in this section can be di-
vided into three distinct categories: theoretical, applications,
and tools. Theoretical work focuses on the verification and
modeling challenges inherent in the knowledge engineering
for planning space, without looking at specific application
domains. Application work, on the other hand, combines
planning techniques with real world problem domains. Fi-
nally, tools offer an implementation of knowledge engineer-
ing methods in an overall system, in order to elicit planning
models. Our work intersects with all three of these cate-
gories, and can be extended in conjunction with many of
the prior efforts mentioned here.

Theoretical The backing engine for a tool like NL2PDDL
needs to necessarily accommodate functionalities that de-
termine whether a planning model is being built correctly,

and in a fashion that will work efficiently with planners. Al-
though the current beta version of our tool does not handle
this – and instead places the burden of ensuring model cor-
rectness on the user – prior work on testing and verifying
that a model satisfies a given set of requirements (Raimondi,
Pecheur, and Brat 2009) can be very useful for this exten-
sion. Another important issue that needs to be handled is
that of domain model configuration (Vallati et al. 2015) –
this will eventually determine the computational efficiency
of planners that use such a model. Finally, more recent work
by McCluskey et al. (McCluskey, Vaquero, and Vallati 2016;
2017) defines measures for planning model elicitation that
go beyond mere correctness, and look instead at a host of
other metrics including accuracy, consistency, completeness,
adequacy, and operationality. All of these ideas can be oper-
ationalized in a framework such as VAL (Howey, Long, and
Fox 2004), which can then be integrated with NL2PDDL.

Applications Natural language interfaces – of the kind
used by the NL2PDDL system – have not been used exten-
sively in conjunction with automated planning work. To be
sure, there has been a lot of work in the opposite direction,
in applying planning techniques to the problem of dialog
management: led by the seminal work of Williams & Young
(2007). However, to the best of our knowledge, the work by
Yates et al. (Yates, Etzioni, and Weld 2003) is the only work
that uses natural language as a medium to automatically gen-
erate planning knowledge – in their case, the goals needed
for household appliances to carry out their tasks. We believe
there is much more promise in this direction. On the model
creation and maintenance side, a rather interesting applica-
tion of planning was the work of Puissant et al. (Puissant,
Mens, and Van Der Straeten 2010) on resolving model in-
consistencies in software engineering models with the help
of automated planning.

Tools Knowledge engineering have vastly improved in
the past decade, under the aegis of the twin KEPS work-
shops and the International Competition on KEPS (ICK-
EPS). Most modeling tools build up from some notion of
ontology all the way to the planning model (Vaquero et al.
2013; Wickler, Chrpa, and McCluskey 2014); while PDDL

27

Figure 2: The NL2PDDL system’s infrastructure.

Studio (Plch et al. 2012) provides a number of useful fea-
tures for users who are already familiar with PDDL. A good
overview of such tools is provided by Jilani et al. (Jilani et al.
2014). PRIDE (Bonasso and Boddy 2010) supports a com-
plex query structure, but relies heavily on the availability
of a domain ontology: a requirement that is self-identified
by the authors as non-trivial. PRONTOE (Bell et al. 2013)
addresses ontology design by providing a graphical editing
tool that allows users to define various ontology kernels that
can be used to separate complex systems into their con-
stituent components – however, it is accompanied by a steep
learning curve when it comes to usage. itSIMPLE2.0 (Va-
quero et al. 2013) similarly uses a UML-driven interface
for domain modeling, which comes with its own learning
curve and limitations. Our work is complementary to many
of these tools, in that it can be extended by combining with
any (or indeed all) of them. However, the availability of a
simple natural language interface will significantly decrease
the load on users trying to model novel domains.

The work that is closest in spirit to the NL2PDDL system
is that of Sethia et al. (Sethia, Talamadupula, and Kambham-
pati 2014), which uses the Google API in order to construct a
mapping between higher level actions at the PDDL abstrac-
tion, and lower level actions that are present in a humanoid
robot’s internal libraries. However, even this interface is very
form-like, and insists upon the user providing information in
the same order as that desired by the PDDL syntax. It also
does not allow the user to query an existing model.

3 System Architecture
In this section, we describe the architecture of the NL2PDDL
system, outlined in Figure 1. We follow a modular de-

sign, where each component of the system can be accessed
through a simplified set of APIs. There are six major com-
ponents in the system:

• Natural Language Understanding (NLU): The job of
the NLU component is to process a text utterance, in order
to identify the entities and intents present in it. For exam-
ple, on the input ”show me some actions in this domain”,
the output will be the entity ”actions” and the intent ”in-
form”. We employ lexical and fuzzy matching to explore
a given input for valid entities, while intent is identified
using the Watson Natural Language Classifier (NLC) by
IBM. The NLC is trained with ten different intents, which
broadly cover the space of interaction this system is de-
signed to handle.1 One of the key features of our NLU
is that it restricts its entity matching to a set of concepts
and their paraphrases from the domain of interest. This
reduces the scope of the entity detection, which in turn
provides both speed-up and an accuracy boost.

• Search Engine: The search engine component is primar-
ily responsible for retrieving knowledge about the entities
that are present in the text input. This component formu-
lates queries based on the available entities and their sub-
fields.

• Knowledge Service: This service is the internal memory
of the system. It reads in an existing planning domain
(when available) and builds a graphical representation of
the concepts in that domain. Each type, predicate, and
action are considered a separate node in this graph; the
edges reflect the associations between them. For example,
an action X with precondition y will feature an edge from
the x node to the y node, with the ”precondition” relation.
This graphical representation allows for easier query and
update mechanisms over planning domains. The knowl-
edge service also bootstraps the NLU with concepts asso-
ciated with the domain of interest.

• Editor: The Editor is responsible for edits to the model
that are requested by a user. These include things like the
addition or removal of type definitions, the addition or re-
moval of predicates from the add or delete effects of an
action, and so on. The Editor retrieves the entities iden-
tified by the NLU and sends the appropriate update re-
quest to the Knowledge Service. The Editor is currently
intended to support simple edit capabilities like the re-
moval of types, predicates, or actions by name; and the
addition of new types. We are in the process of extending
the Editor’s functionality to handle more complex opera-
tions like action editing.

• Natural Language Generation (NLG): The NLG is a
critical component that differentiates NL2PDDL from pre-
vious model editors, with its ability to produce conver-
sation. It enables feedback in natural language, which
makes interaction with the system more natural. We cur-
rently employ a rule-based system with a few predefined
response classes; however, our aim is to replace this with

1The data that we used to train this classifier will be made avail-
able, along with the entire source code.

28

a generative model in order to deliver more human-like
responses.

• Orechestrator/Inference Engine: This component is the
brain of the system – all communication flows through it.
Messages in the system are tagged with their source at
the point of their origin. The job of the orchestrator is to
determine where the message should be sent next, based
on where it came from and what it contains. For example,
a message originating from the Search Engine is tagged
with that source; when it arrives at the orchestrator, it is
redirected to the NLG in order to generate an appropriate
response based on the search results.

On the platform side, the knowledge service is a standalone
RESTful service deployed as a Docker container in a Kuber-
netes cluster. All the information serviced by the system is
backed up using a persistent storage mechanism. As seen in
Figure 2, the Knowledge Service provides the ‘/domain’ and
‘/query’ endpoints. The remaining components of the sys-
tem (detailed above) are written in Python. NL2PDDL also
comes with a built-in web-based chat application written in
NodeJS; this is introduced in the next section.

4 Instruction Set
As we have stated earlier in the paper, this is a first-of-a-kind
solution that attempts to provide a natural language interface
via the conversation modality for planning models. We use
this section to advise readers on the current (limited) expres-
siveness of the NLU component. The NLU handles spelling
mistakes in the name of concepts (types, predicates, actions)
as well as certain grammatical mistakes; this flexibility ex-
ists as long as syntactic parsing and part-of-speech tagging
are still possible on the input sentence. To assist readers, we
list a few typical queries that are currently supported by the
system:

• What-type questions regarding top-level concepts:

– What are types available in this domain?

– What are actions in this domain?

– What are available predicates?

• What-type and To be-type questions with a condition:2

– Is there action named <NAME>?

– What are actions with addeffects
<PREDICATE-NAME>?

– Is there a predicate with argument
<TYPE-NAME>?

– What are all actions with preconditions
<PREDICATE-NAME>?

• Greeting statements: Simple greetings to initiate the conversa-
tion.

– hello

– hi

– good morning

2Please note that words like named, addeffects and
argument are necessary for conditional statements in order to
uniquely identify appropriate nested concepts. Proper nouns like
action, type, or predicate names must also be capitalized.

Figure 3: Some examples of queries that are possible on
NL2PDDL: (a) Action (b) Predicate (c) Types.

– good evening

• Closing statements: Simple utterances to end the current con-
versation.

– thank you

– no. that will be it.

– i am all set

– nm. i am done.

– thanks

5 Demonstration
The NL2PDDL system currently includes a web-based in-
terface, which can be used to interact with the system and
explore a planning model. A live demonstration of our sys-
tem and this interface can be viewed at the following URL:
ibm.biz/nl2pddl. Please see Section 4 for a descrip-
tion of the interactions that are currently supported.

29

In this section, we explain the various features of this in-
terface via a few examples. In Figure 3(a), we ask the system
to return actions that satisfy a given query pertaining to add
effects. The system returns an action (‘load’) that satisfies
this query. The right-hand side pane on the interface allows
a user to check on how the system interpreted their utter-
ance. In this particular example, the system identified that
an action with an add effect on the ‘in’ predicate was being
requested. Figure 3(b) and Figure 3(c) demonstrate that we
currently support different degrees of granularity when in-
quiring about the domain physics. Figure 3(c) highlights the
system’s ability to look for major artifacts in the domain def-
inition, like types, predicates, or actions. Figure 3(b), on the
other hand, shows an example of narrowing the scope of the
query further, in order to identify predicates that take certain
argument types.

The system allows for spelling mistakes by using a built-
in spelling correction mechanism with a settable parameter
for its minimum match threshold. Currently, we set it to re-
quire a minimum threshold of 85% spelling match with a
suggested correction. Each intent also features eight to ten
phrasal variations, granting coverage over a wider range of
conversation. Finally, the system currently only supports a
limited subset of possible ways to declare an entity. Specif-
ically, we insist that users capitalize the name of an action,
predicate, or type fully: for example, ‘IN’ in Figure 3(a), or
‘CRATE’ in Figure 3(b).

6 Future Work
As we have stressed throughout this paper, the NL2PDDL
system is currently the first, work-in-progress version of a
much larger vision that involves more natural authoring and
maintenance of planning models. There are many avenues of
extension, which we list here in no specific order. First, we
have partially implemented an ‘edit’ functionality that com-
plements the ‘query’ functionality that we demonstrated in
this paper. This allows users to add or change things in the
domain of interest; we will be deploying this shortly. We are
also extending the system so that it can deal with more than
just a single proof-of-concept domain (currently Depots). A
more challenging future direction involves the integration
of NL2PDDL with existing domain authoring, maintenance,
and verification tools like VAL and itSIMPLE: we would
like for the system to provide (automated) intelligent feed-
back to domain authors. On the natural language and con-
versation side, we are exploring ways to liberate the system
from its current rule-based NLU and NLG implementations,
and move to a more natural, automatically learned model of
conversation. Finally, we hope to release a more polished
interface for demonstration at ICAPS 2018.

References
Bell, S.; Bonasso, P.; Boddy, M.; Kortenkamp, D.; and
Schreckenghost, D. 2013. Prontoe a case study for develop-
ing ontologies for operations.
Bonasso, P., and Boddy, M. 2010. Eliciting planning in-
formation from subject matter experts. In Proceedings of

ICAPS 2010 Workshop on Scheduling and Knowledge Engi-
neering for Planning and Scheduling (KEPS), 5–12.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Int. Res. 26(1):191–246.
Howey, R.; Long, D.; and Fox, M. 2004. Val: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using pddl. In Tools with Artificial Intelligence, 2004.
ICTAI 2004. 16th IEEE International Conference on, 294–
301. IEEE.
Jilani, R.; Crampton, A.; Kitchin, D. E.; and Vallati, M.
2014. Automated knowledge engineering tools in planning:
state-of-the-art and future challenges.
McCluskey, T. L.; Vaquero, T.; and Vallati, M. 2016. Issues
in planning domain model engineering.
McCluskey, T. L.; Vaquero, T. S.; and Vallati, M. 2017. En-
gineering knowledge for automated planning: Towards a no-
tion of quality. In Proceedings of the Knowledge Capture
Conference, 14. ACM.
McCluskey, T. 2000. Knowledge engineering for planning
roadmap.
Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL - the
planning domain definition language. Technical Report TR-
98-003, Yale Center for Computational Vision and Control,.
Plch, T.; Chomut, M.; Brom, C.; and Barták, R. 2012.
Inspect, edit and debug pddl documents: Simply and effi-
ciently with pddl studio. System Demonstrations and Ex-
hibits at ICAPS 15–18.
Puissant, J. P.; Mens, T.; and Van Der Straeten, R. 2010. Re-
solving model inconsistencies with automated planning. In
Proceedings of the 3rd Workshop on Living with Inconsis-
tencies in Software Development, 8–14.
Raimondi, F.; Pecheur, C.; and Brat, G. 2009. Pdver, a tool
to verify pddl planning domains.
Sethia, S.; Talamadupula, K.; and Kambhampati, S. 2014.
Teach Me How To Work: Natural Language Model Updates
and Action Sequencing. In ICAPS 2014 Systems Demon-
strations.
Vallati, M.; Hutter, F.; Chrpa, L.; and McCluskey, T. L. 2015.
On the effective configuration of planning domain models.
In IJCAI, 1704–1711.
Vaquero, T. S.; Silva, J. R.; Tonidandel, F.; and Beck, J. C.
2013. itsimple: towards an integrated design system for real
planning applications. The Knowledge Engineering Review
28(2):215–230.
Wickler, G.; Chrpa, L.; and McCluskey, T. L. 2014. Kewi: A
knowledge engineering tool for modelling ai planning tasks.
Williams, J. D., and Young, S. 2007. Partially observable
markov decision processes for spoken dialog systems. Com-
puter Speech & Language 21(2):393–422.
Yates, A.; Etzioni, O.; and Weld, D. 2003. A reliable natural
language interface to household appliances. In Proceedings
of the 8th international conference on Intelligent user inter-
faces, 189–196. ACM.

30

Generating Human Work Instructions from Assembly Plans

Csaba Kardosa,b, András Kovácsa, Balázs E. Patakic, József Vánczaa,b

aEPIC Center of Excellence in Production Informatics and Control, Inst. Comp. Sci. & Control, Hun. Acad. Sci.
bDepartment of Manufacturing Science and Technology, Budapest University of Technology and Economics,

cDepartment of Distributed Systems, Institute for Computer Science and Control, Hungarian Academy of Sciences,
{csaba.kardos, andras.kovacs, pataki.balazs, vancza}@sztaki.mta.hu

Abstract

Despite enormous robotization efforts, most of the as-
sembly process is still executed by human workforce
in many industries performing the assembly of me-
chanical products. Therefore, a crucial component of
any automated planning system in those applications
is the worker instruction system that presents the au-
tomatically generated plans to human assembly work-
ers. In case of complex products and processes, find-
ing the most efficient presentation to workers with dif-
ferent skills and background is a great challenge. This
paper proposes novel methods for generating context-
dependent, animated work instructions from automati-
cally generated assembly plans. The proposed approach
is demonstrated on an industrial case study that involves
the manual assembly of an automotive supercharger.

Introduction
While a significant portion of the research on automated
planning and scheduling focuses on decision making in
autonomous systems, in many applications, the generated
plans are still executed by human actors. In such applica-
tions, a key success factor is the effective instruction system
that presents the complex plan to the human worker. This is
the case in mechanical assembly as well: despite intensive
robotization efforts, the assembly of mechanical products in
many industries still requires human workforce.

The motivation for replacing classical static, often still
paper-based work instructions by enhanced digital Worker
Instruction Systems (WIS) and automatically generated in-
structions is manifold. Firstly, shortening product life cy-
cles and increasing variety make it difficult to maintain
and regularly update static instructions, and hence, the abil-
ity to dynamically adjust the digital content to the chang-
ing production environment is the most attractive charac-
teristic of WIS (Leu et al. 2013; Lušić et al. 2014). Most
commercial WIS implementations offer interfaces to Enter-
prise Resource Planning (ERP), Product Lifecycle Manage-
ment (PLM) and Manufacturing Execution Systems (MES),
which enables the import of product and process data, sup-
ports the definition of instruction templates, and hence, al-
lows maintaining consistent and up-to-date work instruc-
tions.

In line with the above, vast effort is being invested

into computer-aided process planning (CAPP) techniques to
manage the complexity of planning, and to support the pro-
cess engineer in defining the most efficient assembly pro-
cesses for the products (Hu et al. 2011; Ghandi and Mase-
hian 2015). As the final step of the process planning work-
flow is the generation of program codes for robotic resources
and instructions for human workers, the automation of pro-
cess planning is incomplete without automated methods for
instruction generation as well (Kaipa et al. 2012).

Finally, it must be recognized that the increasing com-
plexity of products and production systems puts a heavy
cognitive load on assembly workers as well (Leu et al. 2013;
Lušić et al. 2016). Therefore, human workers need en-
hanced support from the WIS, in the form of unambigu-
ous instructions delivered using the modality that suits the
given environment the best; in addition to classical text in-
structions, figures, videos, 3D animations, audio instruc-
tions, or even augmented reality (AR) can be used, too.
Instructions can be tailored further by exploiting context
awareness (Bader and Aehnelt 2014; Bannat et al. 2008;
Claeys et al. 2016). Efficient WIS and instructions have a
special role in supporting the training of the workers (Micha-
los et al. 2014) and in solving one-of-a-kind issues in main-
tenance and rework operations (Fiorentino et al. 2014).

This paper presents novel methods for the automated gen-
eration of work instructions for mechanical assembly. The
methods proposed in this paper support the final step of the
workflow in a full-fledged workcell configuration toolbox,
which includes efficient optimization methods for assembly
sequence planning, resource assignment (i.e., action plan-
ning) and path planning, by presenting the resulting plans
to human workers. For fully exploiting the opportunities of
digital WIS, the methods support the generation of context-
aware instructions augmented with 3D animations of the as-
sembly process.

Problem Definition
The objective of assembly workcell configuration is to man-
age the journey of assembled products on their way from
design ideas to the reality of production. Its two main sub-
problems, which approach the same problem from the view-
points of the assembly process and the assembly resources,
respectively, are assembly process planning and workcell
layout design. Both of these sub-problems involve various

31

Figure 1: Workflow of assembly workcell process planning. The sub-problem in scope, instruction generation, is highlighted in
blue.

types of decisions. In case of assembly process planning, it
is common to differentiate macro-level planning, which is a
combinatorial problem involving decisions on the assembly
task sequence and the resources assigned to the tasks; and
micro-level planning, which is responsible for elaborating
the details of each individual task. The latter includes, e.g.,
assembly path planning, fixturing, or tooling. The workflow
of assembly workcell configuration applied in this paper, de-
parting from the conversion of legacy CAD models of the
product into feature-based models directly processable for
automated planners, and concluding at the generation of hu-
man work instructions and robot program codes, is presented
in Fig. 1.

In case of assembly tasks performed by human workers,
the final step of the workcell configuration workflow is the
generation of work instructions for the workers, which is
the focus of this paper. Instructions must be generated from
a structured representation of the assembly process plan,
which includes the sequence of assembly tasks, a feature-
based representation of the technological content of each
task, as well as a collision-free assembly path. It has to
be noted that in an actual manufacturing environment, hu-
man supervision and interaction are still inevitable before
finalizing instructions. Therefore, there are two main user
roles in an instruction generation system: process engineers
who participate in the creation of instructions, and workers
to whom the instructions are delivered via the multi-modal
interfaces. The goal here is to automatically generate draft
instructions that will be verified and finalized by a process
engineer. Thus, effective work instructions must fulfill the
following key requirements:

• Instructions must be easily and unambiguously inter-
pretable by the workers. For this purpose, classical textual
instructions can be accompanied by images or animations.

• Context-dependent instructions should be applied to fit
the actual conditions, e.g., the worker’s skill, language,
devices and presentation preferences, as much as possi-
ble.

• Instructions should be delivered using the modality that
suits the actual application the best. Beyond instructions
displayed on screens, audio instructions are also in scope.

• The generation of instruction should be automated as
much as possible. Nevertheless, the system should enable
editing and approving the instructions by a process engi-
neer.

• It should be possible to generate the instructions from
legacy representations, such as the existing CAD models
of the products.

In the sequel, a brief overview is given of the overall
methodology applied to assembly workcell configuration,
focusing on sub-problems related to assembly process plan-
ning, and then the proposed approach to work instruction
generation is presented in detail.

Assembly Planning Approach
Feature-based Assembly Model
A key challenge in process planning in any manufacturing
domain is to match the different views of the planning prob-
lem, related to geometry, technology, tooling, etc. The clas-
sical approach to responding to this challenge is to use a so-
called feature-based representation, in which features give
a holistic description of the micro-worlds related to an in-
dividual manufacturing or assembly operation. Examples of
features in assembly include placing two parts on each other,
insertion of a part into a hole on another part, or screwing.
The complete specification of such a feature then consists of
the geometries of the corresponding parts, the relative po-
sition of the parts in the target configuration, and the def-
inition of the movement that can join the parts, including
the direction of the motion and the technological parame-
ters. The model also allows organizing individual features
that belong together in a sense, e.g., parallel screwing fea-
tures that join the same parts, into so-called composite fea-
tures. The assembly planner then assigns a single assembly
task to the composite feature, which involves creating all in-

32

y
x

z

y
x

z

y

x

z

y

x

z

t

t0

y

x

z

y
x

zy

x

z

l

y

x

z

Placing Insertion Screwing RLW (circular)

Goal position: P(x,y,z,α,β,γ)

Safety distance: d

Direction: -Z

Insertion depth: di

Goal position: P(x,y,z,α,β,γ)

Safety distance: d

Direction: -Z

Threaded depth: t

Non threaded depth: t0

Lead: l

Torque: M

Goal position: P(x,y,z,α,β,γ)

Safety distance: d

Direction: -Z

Goal position: P(x,y,z,α,β,γ)

Radius: r

Incidence angle (max): α

Welding speed: S

Welding power: P

d d

d

Figure 2: Types of assembly features and their parameters.

dividual features in parallel or in a given sequence, as de-
fined by the ordering flag in the composite (see details later).
Some assembly features and their parameters are presented
in Fig. 2, whereas a generic presentation of feature-based as-
sembly planning is given in (Wang, Keshavarzmanesh, and
Feng 2011).

Formally, there is given a set of assembly tasks (and po-
tentially some auxiliary tasks) that must be executed in an
appropriate order using suitable resources to arrive from the
set of parts into an assembled product. The technological
content of each assembly task is specified by the assembly
feature assigned to it, which defines the set of base parts and
moved parts, along with the parameters of the motion that
joins the two sets of parts (Fig. 2). This motion can be sub-
divided into two phases: an approach motion that takes the
parts from their storage locations to a so-called near posi-
tion using an arbitrary collision-free trajectory, and the lo-
cal motion from the near position into the final configura-
tion. The latter, local motion is perfectly defined in the as-
sembly feature. It is assumed that each assembly task re-
quires two resources for its execution: a fixture that holds the
base parts at their place and a tool that executes the task on
the moved parts. The assembly planner also adds so-called
changeover tasks to the plan at points where some of the as-
signed resources differ between consecutive assembly tasks.
The details of the feature-based assembly process planning
model are presented in (Kardos, Kovács, and Váncza 2016;
2017).

Assembly Sequence Planning and Resource
Assignment
Since assembly process planning involves making diverse
types of decisions, it is typical to solve it using decompo-
sition into macro-level planning, which is a combinatorial
problem responsible for defining the structure of the plan,
and micro-level planning, which elaborates the details of
each individual task. In this paper, the decomposition ap-
proach presented in (Kardos, Kovács, and Váncza 2017) is
adopted, which uses a macro-level planner to optimize the

assembly task sequence and the assignment of the resources
(tools and fixtures) to the tasks, while a collection of micro-
level sub-problem solvers ensures that the planned tasks can
be implemented in physical reality. Sub-problem solvers in
the current implementation include technological feasibility,
collision avoidance, fixturing, and tooling modules.

The solution approach proposed in (Kardos, Kovács, and
Váncza 2017) is Benders decomposition with a mixed-
integer linear programming (MILP) model applied to solv-
ing the macro-level planning master problem and various
customized lower-level solvers generating feasibility cuts
for the master problem. This approach guarantees the opti-
mality of the macro-level plan and its micro-level feasibility
according to all micro-level aspects investigated. The MILP
formulation of the master problem is solved using the com-
mercial mathematical programming software FICO Xpress
7.8. The Benders framework, as well as the sub-problem
solvers responsible for technology, fixturing, tooling, and
collision avoidance, have been implemented in Python. The
latter module performs collision detection using the Flexible
Collision Library (FCL) (Pan, Chitta, and Manocha 2012)
on the STL triangle mesh models of the involved objects.

Assembly Path Planning
Assembly path planning is performed for each task sepa-
rately at two distinct phases of the workflow: (1) during
assembly process planning as a micro-level sub-problem to
assess the geometrical feasibility of an assembly sequence,
and (2) during motion planning for generating the motion
sequence to be actually executed. In both phases, the mo-
tion path of the ensemble of moved parts and the attached
tool (gripper or an actual tool, e.g., screwdriver), treated as a
single solid object, is planned from a remote position to the
near position of the corresponding assembly feature. The
base parts and the fixture are considered to be the obstacles.
Planning is performed using an implementation of the clas-
sical Rapidly-exploring Random Trees (RRT) algorithm.

In phase (1), when the workcell layout is unknown and
the actual resources to carry out the task are not selected

33

yet, path planning handles the moved parts as free-flying
objects with 3 or 6 degrees of freedom (DoF): for most of
the assemblies investigated during preliminary experiments,
it was found that allowing translational movements results
in a feasible path when there exists one. Nevertheless, the
path planner can consider 6-DoF problems as well for more
complicated geometries. The only answer expected from the
path planner in this phase is a yes (a collision-free path has
been found) or no (the iteration limit has been hit without
finding a collision-free path) answer, and the quality of the
path is disregarded.

In contrast, at the phase of motion planning, the goal is
to generate paths that will be actually executed. Here, the
details of the method differ for robots and for humans. For
tasks performed by humans, which is the focus of the present
paper, path planning is still performed for free-flying objects
(hence, it is implicitly assumed that where parts and tools fit,
there the human worker can also access the location of the
task). However, path smoothing is applied to the results of
RRT to arrive at a path which looks reasonable to workers on
animated work instructions. For a robotic task, path planning
is performed in the robot’s joint space, taking into account
the results of workcell layout design, including the pick-up
and put-away locations of the parts and equipment (the latter
function is not fully implemented yet).

Generating and Presenting Work Instructions
Assembly systems are moving towards using digital tech-
nologies for handling and dispatching work instructions.
Digital WISs offer, on the one hand, consistency and main-
tainability for the content, while on the other hand, they also
provide a wide set of multi-modal, interactive input/output
interfaces. In a modern changing and complex assembly pro-
duction environment, it is also important that the WIS is
connected to the execution control and supervisory systems,
which provide information regarding the shop floor status,
thus tailoring the delivered information to the actual context.

The approach of the paper follows the workflow shown
in Fig. 3, which explains how WIS is involved in the gen-
eration and the context aware delivery of instructions. The
aim of automated instruction generation is to create ani-
mated 3D and textual content. An assembly process engineer
can use this content as a basis for finalizing the instructions
(by tailoring or extending them with additional content, e.g.,
videos, pictures, etc.). However, during instruction genera-
tion, it has to be taken into consideration that workers may
have different skills, language proficiency and content de-
livery devices at hand. These properties define the part of
the worker context which needs to be addressed during in-
struction generation. After content generation, instructions
are delivered by the WIS according to the complete context,
which is defined by the following aspects:

• Process context: the task to be executed, which triggers
the instruction delivery, coming from execution tracking.

• Worker activity context: actions performed by the workers
which form commands toward the execution tracking sys-
tem. The commands (e.g., acknowledgement, failure) are

Figure 3: Overview of WIS’s role in generation and context-
aware delivery of instructions. The connection to the work-
cell configuration is highlighted in blue.

interpreted by the WIS and sent to the execution tracking
system.

• Worker location context: actual position of the worker in
the shop floor, which identifies the worker in the workcell,
thus enables delivering location-aware instructions (e.g.,
increasing font size or volume when the worker is further
away from the devices).

• Worker properties context: skills, preferences of the
worker. This information, stored in the worker database,
has to be taken into account during instruction generation
and delivery in order to ensure that the displayed instruc-
tions match the requirements of the given worker.

For the automatic generation of work instructions the fea-
tures serve as basic templates of instructions. Each individ-
ual feature-based task defines the micro-world of its execu-
tion. In the presented approach, instructions are skill level-
dependent: more skilled workers only require the core in-
structions (highlighted in bold in the template below). The
following hierarchical template structure is used for generat-
ing instructions from the feature-based plan representation:

1. simple feature task(feature, base part, moved part, skill)

1.1. approach(location(moved part)) - Approaching loca-
tion

1.2. pick up(moved part) - Picking up part
1.3. core task(base part, moved part, type(feature)) -

Performing the core corresponding to the feature type
* insert(base part, moved part) - Inserting moved part

into base part
* place(base part, moved part) - Placing moved part to

base part
* screw(base part, moved part) - Inserting and tighten-

ing screw (moved part) into base part

2. changeover task(old equipment, new equipment), [part],
skill)

34

2.1. release(old equipment) - Releasing installed equip-
ment (tool or fixture)

2.2. pick up(old equipment)
2.3. approach(pick up location(old equipment))
2.4. put away(old equipment)
2.5. approach(pick up location(new equipment))
2.6. pick up(new equipment)
2.7. install(new equipment, [part]) - Install tool / Grasp

part in fixture
3. composite feature task({simple feature}, ordering, skill)
• ordering - Specifying sequence for features inside com-

posite features
* parallel
* sequential
* arbitrary

3.1. composite header(simple feature task(), ordering) -
Performing multiple tasks in composite feature based
on the first task according to ordering

3.2. repeat(simple feature, ordering) - Performing a list of
simple features according to ordering

For the above hierarchical approach to work, the follow-
ing helper functions are required:
• subassembly(part) - Returns the subassembly to which the

part belongs
• pick up location(object) - Returns the pick-up location of

the object
• put away location(object) - Returns the put away location

of the object
• type(simple feateure) - Returns the type of the simple fea-

ture

Generating Textual Instructions
Textual instructions traditionally serve as the elementary
method for delivering information to workers. The paper-
based and the newer digital approaches are both limited by
the human effort required to keep them up-to date, which
opens up potential for automated or semi-automated textual
instruction generation.

Textual instructions are generated for task execution by
using the following instruction templates and the data from
the tasks:
• approach(location): “Go to location”
• pick up(object): “Take object [in subassembly subassem-

bly(object)]”
• insert(base part, moved part): “Insert part moved part [in

subassembly subassembly(move part)] into base part [in
subassembly subassembly(base part)]”

• place(base part, moved part): “Place part moved part [in
subassembly subassembly(move part)] to base part [in
subassembly subassembly(base part)]”

• screw(base part, moved part): “Insert screw moved part
into base part [in subassembly subassembly(base part)]
and tighten it”

Figure 4: An example of a task delivered to a less skilled
worker in more details.

• composite header(simple feature task, ordering): “Exe-
cute on all items in the ordering order.”

• release(object): “Release object”

• grasp(fixture, part): “Grasp part [in subassembly sub-
assembly(part)] in fixture fixture”

For workers with advanced skill levels, only the core as-
sembly instructions are delivered using repetition and order-
ing flags for composite instructions, while for workers in
training every step is displayed (e.g., approach, pick-up, core
instruction). This is in line with industrial practice, where
the supervision of task execution is done on a lower level for
workers in training, hence it is required to display and have
every step acknowledged. This approach also allows using
a single workflow for generating content for both beginner
and experienced workers.

Generating Visual Instructions
Micro-level planning enables using the geometrical models
in generating animated instructions as well. In order to im-
plement this, X3D format was chosen for displaying 3D in-
struction content.

X3D is an extension of the VRML format and is part
of the HTML5 standard, which means content can be dis-
played and manipulated through web-browsers. It also sup-
ports linking geometries to reference frames and thus en-
ables building up kinematic chains. Using this approach the
assembly tree and its components are represented in a mul-
tiple level reference frame hierarchy. Additionally, rearrang-
ing the nodes of the model is done through the HTML’s Doc-
ument Object Model (DOM) (e.g., attaching the model of

35

<X3D>
<Scene>
<Transform DEF=” Subassembly 2 ”>
<Transform DEF=” Subassembly 1 ”>
<Transform DEF=” Heat p r o t e c t i o n ”>
<Shape><I n d e x e d T r i a n g l e S e t . . . ></Shape>
</Transform>
<Transform DEF=” R e s o n a t o r bot tom ”>
<Shape><I n d e x e d T r i a n g l e S e t . . . ></Shape>
</Transform>

</Transform>
<Transform DEF=” Sound p r o t e c t i o n ”>
<Shape><I n d e x e d T r i a n g l e S e t . . . ></Shape>
</Transform>

</Transform>
</Scene>

</X3D>

Table 1: A sample assembly tree with three parts and the structure of the corresponding X3D representation.

the tool to the moved object).
The geometric models applied in planning are triangle

mesh models, which offer generic and open access repre-
sentation. These models can be easily translated into the (in-
dexed) triangle set representation of the X3D format. More-
over, as the required resolution for displaying instruction is
lower than that of planning, in order to enhance the ren-
dering speed, the 3D models are resampled by applying
edge decimation algorithms over the triangle meshes (e.g.,
quadratic edge collapse (Garland and Heckbert 1997), see
Fig. 5).

Each geometry in the model (parts, tools, fixtures) are
translated into X3D format in such a way that the shape
node containing the indexed face set representation of the
geometry is appended to a transform node. The transform
node allows the application of geometric transformation to
its children shapes by exposing its translation and orienta-
tion fields. Similarly to parts, each node in the assembly tree
(i.e., subassembly) is represented by its own transform node
and therefore contains all the previously assembled parts of
its branch (see Table 1).

Building up the X3D scene in a structure symmetrical to
the assembly tree enables setting attributes of already assem-
bled parts in either one field at the top of the hierarchy, or
by searching recursively via the DOM structure of the X3D-
scene (e.g., by using jquery). This applies to transformations
(position and orientation, exposed by the transform node;
note that planning assumes that parts once assembled remain
in this state) and to display options such as switching ren-
dering and changing color. Hence, the scene (the displayed
objects and their position and orientation) can be set to suit a
given state defined by an assembly step. Also, the models of
tools and fixtures are attached to the corresponding parts or
subassemblies dynamically, according to the displayed step.
Each assembly step is described by the following data:

• ID of the assembly step

• IDs of the moved parts/subassemblies

• IDs of the base parts/subassemblies

• Transformation of the near position

• Nodes of the path

• ID of the tool

• Tool Center-Point Frame (TCPF) transformation of the
tool

• ID of the fixture

• Transformation of the fixture

For displaying 3D instructions two cases are distin-
guished: (1) showing a static view of components in assem-
bled or disassembled (near position) state; (2) animation of
movement provided by path planning. In both cases, it might
be required to show only the base and moved components,
therefore turning off rendering for all the nodes which are
not in the branch of the assembly tree starting from the sub-
assembly node of the actually displayed assembly step. The
implemented visual instructions are the following:

• approach(location): static view of location

• pick up(object): static view of object

• insert(base part, moved part): animation of local and ap-
proach motion

• place(base part, moved part): animation of local and ap-
proach motion

• screw(base part, moved part): animation of local and ap-
proach motion

• composite header(simple feature, ordering): visualiza-
tion according to the underlying simple features and or-
dering flag

• release(object): static view of object

• grasp(fixture, part): static view of fixture and part

36

(a) (b)

Figure 5: Two triangle mesh models, representing the same object before (a) and after (b) resampling. By applying a 0.9
reduction the number of vertices were reduced from ˜90k to ˜10k, which has a significant impact on the rendering speed.

Figure 6: Illustration of X3D animation of two components
being assembled, the moved component is shown in green.

As there is no animation in case (1), the assembled and
the disassembled state can be displayed by simply apply-
ing the transformation of the near position to the transform
node of the moved component. The transformation applies
to all the children nodes (i.e., parts or subassemblies). To
create animated movements along the nodes of the path, the
Interpolator X3D node is utilized, which implements linear
interpolation between each node (see Fig. 6). The duration
of the interpolation is calculated assuming a constant speed
along the path.

Figure 7: Assembly process plan for the case study, show-
ing the assembly steps from S00 to S11. Parts in composite
features (i.e., screws) are highlighted in orange.

Case Study
The proposed approach is demonstrated in a case study from
the automotive industry. The assembly, namely the inlet by-
pass is part of a so-called supercharger component com-
posed of 29 parts. The inlet bypass is built up by 12 parts: 6
main components and 6 screws (see Fig. 8). There are five
simple features and two composite features, either of them
involving joining a set of parts by 3-3 screws, and one aux-
iliary task. Solving the CAPP model of the problem resulted
in the assembly sequence shown in Fig. 7, which minimizes
the time of tool and fixture changeovers.

The demonstration is part of a research project aiming
to develop a WIS for supporting multi-modal and context-

37

Figure 8: The assembly of the case study contains 12 compo-
nents (6 screws). The coloring of the parts is similar to that
in the assembly process plan (Fig. 7), except for the screws
in the composite features.

aware instruction delivery in flexible workcells. The de-
veloped system is connected to a workcell-level controller,
which controls and tracks task execution and triggers in-
struction delivery to multiple devices. The WIS has a
frontend-backend architecture, where the content database
of the backend is populated with the automatically gener-
ated instructions based on the CAPP solution. The frontend
is responsible for delivering the instructions to the devices
of the worker (e.g., smartphone, tablet, screen, headphones).
The visual instructions are delivered through a responsive
HTML5 web-page, which also utilizes a text-to-speech li-
brary for the audio delivery of the textual instructions.

In the case study, instructions were generated for work-
ers with two different skill levels. One is the worker with
advanced skills, who receives only the core instructions, the
other is the worker under training, who receives more de-
tailed instructions. Figs. 4 and 9 show screenshots of the
WIS frontend. In addition to displaying the generated in-
structions, the WIS frontend can also be configured to dis-
play safety or quality symbols (see the upper right corner
of Figs. 4 and 9). The research project is now in its clos-
ing phase, where the focus is on the development of demon-
strator case studies and the evaluation of the perceived work
experience with using the generated content and the multi-
modal content delivery system.

Conclusions
This paper presented a novel approach to the automated
generation and the presentation of context-sensitive work
instructions for human workers in mechanical assembly.
The methods have been implemented and integrated into a
module of a comprehensive assembly workcell configura-
tion toolbox, to visualize the assembly plans generated by a
mixed-initiative, optimizing process planner. The generated
work instructions contain both textual instructions, delivered
either visually on a screen or as an audio stream using text-
to-speech tools, as well as X3D animations. The main ad-
vantage of the approach is the ability to efficiently generate
and present customized, context-sensitive instructions that
take into account the workers’ skill levels, language, devices
and presentation preferences.

In order to proceed from the current, prototype-level im-
plementation to an industrial deployment, future work must

Figure 9: An example of a composite task delivered to an
expert worker using the repetition and ordering flags.

focus on extending the instructions to satisfy all relevant
industrial standards, such as placing identifiers and safety
symbols on the instruction screens, preferably in an auto-
matically generated way. In a wider context, the further de-
velopment of various planning functions in the overall as-
sembly workcell configuration toolbox holds numerous re-
search challenges. Above all, a stronger support and inte-
gration is required for the generation of the feature-based
assembly model from legacy design representations.

Acknowledgements
This research has been supported by the GINOP-2.3.2-15-
2016-00002 grant on an “Industry 4.0 research and inno-
vation center of excellence” and by the EU H2020 Grant
SYMBIO-TIC No. 637107.

References
Bader, S., and Aehnelt, M. 2014. Tracking assembly pro-
cesses and providing assistance in smart factories. 161–168.
SCITEPRESS—Science and and Technology Publications.
Bannat, A.; Wallhoff, F.; Rigoll, G.; Friesdorf, F.; Bubb, H.;
Stork, S.; Müller, H. J.; Schubö, A.; Wiesbeck, M.; and Zäh,
M. F. 2008. Towards optimal worker assistance: A frame-
work for adaptive selection and presentation of assembly in-
structions. In Proceedings of the 1st international workshop
on cognition for technical systems, Cotesys.
Claeys, A.; Hoedt, S.; Landeghem, H. V.; and Cottyn, J.
2016. Generic model for managing context-aware assem-
bly instructions. IFAC-PapersOnLine 49(12):1181–1186.
Fiorentino, M.; Uva, A. E.; Gattullo, M.; Debernardis, S.;
and Monno, G. 2014. Augmented reality on large screen for
interactive maintenance instructions. Computers in Industry
65(2):270–278.
Garland, M., and Heckbert, P. S. 1997. Surface simplifi-
cation using quadric error metrics. In Proceedings of the

38

24th annual conference on Computer graphics and interac-
tive techniques, 209–216. ACM Press.
Ghandi, S., and Masehian, E. 2015. Review and taxonomies
of assembly and disassembly path planning problems and
approaches. Computer-Aided Design 67-68:58–86.
Hu, S.; Ko, J.; Weyand, L.; ElMaraghy, H.; Lien, T.; Koren,
Y.; Bley, H.; Chryssolouris, G.; Nasr, N.; and Shpitalni, M.
2011. Assembly system design and operations for product
variety. CIRP Annals 60(2):715–733.
Kaipa, K.; Morato, C.; Zhao, B.; and Gupta, S. K. 2012.
Instruction Generation for Assembly Operations Performed
by Humans. In 32nd Computers and Information in Engi-
neering Conference, Parts A and B, volume 2, 1121–1130.
ASME.
Kardos, C.; Kovács, A.; and Váncza, J. 2016. Towards
feature-based human-robot assembly process planning. Pro-
cedia CIRP 57:516–521.
Kardos, C.; Kovács, A.; and Váncza, J. 2017. Decomposi-
tion approach to optimal feature-based assembly planning.
CIRP Annals—Manufacturing Technology 66(1):417–420.
Leu, M. C.; ElMaraghy, H. A.; Nee, A. Y.; Ong, S. K.;
Lanzetta, M.; Putz, M.; Zhu, W.; and Bernard, A. 2013.
CAD model based virtual assembly simulation, planning
and training. CIRP Annals—Manufacturing Technology
62(2):799–822.
Lušić, M.; Schmutzer Braz, K.; Wittmann, S.; Fischer, C.;
Hornfeck, R.; and Franke, J. 2014. Worker information
systems including dynamic visualisation: A perspective for
minimising the conflict of objectives between a resource-
efficient use of inspection equipment and the cognitive load
of the worker. Advanced Materials Research 1018:23–30.
Lušić, M.; Fischer, C.; Bönig, J.; Hornfeck, R.; and Franke,
J. 2016. Worker information systems: State of the art and
guideline for selection under consideration of company spe-
cific boundary conditions. Procedia CIRP 41:1113–1118.
Michalos, G.; Makris, S.; Spiliotopoulos, J.; Misios, I.;
Tsarouchi, P.; and Chryssolouris, G. 2014. ROBO-
PARTNER: Seamless human–robot cooperation for intelli-
gent, flexible and safe operations in the assembly factories
of the future. Procedia CIRP 23:71–76.
Pan, J.; Chitta, S.; and Manocha, D. 2012. FCL: A gen-
eral purpose library for collision and proximity queries. In
IEEE International Conference on Robotics and Automa-
tion, 3859–3866.
Wang, L.; Keshavarzmanesh, S.; and Feng, H.-Y. 2011. A
function block based approach for increasing adaptability of
assembly planning and control. Int J of Production Research
49(16):4903–4924.

39

MA-RADAR – A Mixed-Reality Interface for Collaborative Decision Making

Sailik Sengupta∗ and Tathagata Chakraborti∗ and Subbarao Kambhampati
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University

{ sailiks, tchakra2, rao } @ asu.edu

Abstract
There has been a lot of recent interest in the planning com-
munity towards adapting automated planning techniques for
the role of decision support for human decision makers in
the loop. A unique challenge in such settings is the presence
of multiple humans collaborating during the planning process
which not only requires algorithmic advances to handle issues
such as diverging mental models and the establishment of
common ground, but also the development of user interfaces
that can facilitate the distributed decision making process
among the human planners. We posit that recent advances in
augmented reality technology is uniquely positioned to serve
this need. For example, a mixed-reality workspace can be
ideal for curating information towards the particular needs
(e.g. explanations) of the individual decision makers. In this
paper, we report on ongoing work along these directions and
showcase MA-RADAR, the multi-agent version of the decision
support system RADAR (Sengupta et al. 2017).

In (Sengupta et al. 2017), we explored the evolving roles of
an automated planner in the scope of decision support for
a single human in the loop. Specifically, we outlined how
well-established principles of naturalistic decision-making
and the automation hierarchy studied in existing litera-
ture on human-computer interaction (Parasuraman, Sheri-
dan, and Wickens 2000; Klein 2008) can be adopted for the
design of automated decision support using planners as well.
In this regard, we demonstrated how the traditional role of
an automated planner changes from one of plan generation
to more nuanced roles of plan validation, recognition, rec-
ommendation, critique, explanations, and so on. However,
most of these techniques, as well as the GUI itself, were
specifically designed to deal with a single human decision
maker in the loop. As we illustrate in the paper, these be-
come ineffective in a distributed setting.

What if there are multiple humans in the loop?
A common feature of most collaborative planning settings
is the presence of multiple human decision makers who are
actively involved in the construction of the plan on a shared
graphical user interface (GUI) in “control room” styled
environments (Chakraborti et al. 2017b; Karafantis 2013;
Murphy 2015). For the design of decision support technolo-
gies, this raises several unique challenges such as (1) dealing

∗Authors marked with ∗ contributed equally.

with diverse points of view, preferences, and goals; (2) di-
verging beliefs and mental models; (3) resolution of compet-
ing truths and establishment of common ground; and so on.
Some of these issues have been highlighted recently in (Kim
and Shah 2017). From the perspective of the GUI itself, the
presence of multiple decision makers poses new challenges
on how information is presented to the end users, not only in
the way it is displayed, but also the approach to generate that
information which drives the decision support infrastructure
in the back-end. Recent advances in augmented-reality tech-
nologies in opening up newer channels of communications
with AI agents (Williams et al. 2018) can begin to address
some of these challenges.

What can augmented reality bring to the table?
We argue that augmented reality (AR) brings in capabilities
that are uniquely suited for this purpose. This is because AR
can, in effect, provide different versions of the same inter-
face to the commanders based on their specific needs, while
still preserving the convenience and efficiency of collabora-
tion across a shared GUI. In this work, we thus will build
on our previous decision support system – c.f. RADAR (Sen-
gupta et al. 2017) – and highlight challenges, especially as
it relates to the design of the interface for the decision sup-
port system, when the collaborative decision making setting
is extended to deal with multiple human planners simultane-
ously. We will, in particular, show how –

- Augmented reality provides an effective medium of aug-
menting the shared GUI with private information (as stud-
ied in planning literature (Brafman and Domshlak 2008))
– thus the same plan will appear differently on the shared
GUI than in the mixed-reality view where the private ac-
tions will be coupled with the public plan; and

- Augmented reality can reduce irrelevant information on
the screen by porting them into the mixed-reality view.
Such situations can occur, for example, when one user
asks for an explanation, which the others may not require
and thus should not appear on the shared GUI and poten-
tially cause cognitive overload.

Finally, we will end with a discussion on the current work
in progress and considerations of the trade-offs in AR ver-
sus distributed graphical interfaces. We note, as far as the
vitamin versus aspirin question is concerned, AR firmly

40

Figure 1: Multiple commanders involved in the collaborative decision making process on the MA-RADAR interface. The shared
interface (GUI) provides an overview of the public plan and resources, constraints, etc. pertaining to the planning problem.
The mixed-reality view for each commander augments private information (such as private action in the plan) or personalized
explanations of the plan for the commander. Refer to Figures 2 and 3 for the augmented view for each of these use cases.

lies with the former group – after all, the humans could be
equipped with separate personal screens on top of a shared
GUI. However, we argue, and hopefully this is apparent
in the demonstrations as well, that AR provides an attrac-
tive solution towards providing personalized planning inter-
faces to the human decision makers while still leveraging
the paradigm of a shared collaborative interface of a control
room accepted as the de-facto standard in these settings.

MA-RADAR
In the following, we will briefly introduce the fire fighting
domain (Sengupta et al. 2017) which we will use to illustrate
the UI challenges addressed in the paper.

The Fire-Fighting Domain The fire fighting domain in-
volves extinguishing fire at a particular location (Tempe, in
our case). It requires two commanders (henceforth referred
to as Comm-I and Comm-II) to come up with a plan or
course of action (CoA) which involves coordination with
the police, medical and transport authorities. Each com-
mander might have a personalized model of this domain,
which (1) may have certain actions that are private to them,
i.e. unknown to the other commanders; and (2) incorrect
ideas about the actual domain, for example, an incorrect ac-
tion definition (according to the model of the decision sup-
port agent). A detailed description of the domain used by

MA-RADAR is available in (Sengupta et al. 2017). We as-
sume that these personalized models (of the two experts)
are available to MA-RADAR, which helps it to distinguish
between private and public actions (Brafman and Domshlak
2008). While MA-RADAR uses a centralized model to help in
validating plans and generating action or plan suggestions,
the response to the users needs to be carefully curated since
showing one user’s private data to another user is problem-
atic. Furthermore, explanations are inherently user specific
(as are information that is being consumed by private actions
only) and should not clutter a shared GUI.

Privacy Preserving Planning
In the first demonstration, we will tackle the issue of private
information in the individual models of the commanders.

Background In (Brafman and Domshlak 2008) authors
explored multi-agent planning scenarios where each agent
has a different domain model with individual actions that
can have private preconditions and effects which are not
accessible to other agents. Planning in such scenarios be-
comes more complex because state-space search techniques
have to ensure that private state variables of an agent are
not exposed to other agents (Brafman 2015). As men-
tioned before, the interface in MA-RADAR follows this no-
tion of private and public predicates/actions and communi-

41

(a) Comm-I, who is responsible for communication with the media,
has a private action to contact media as visible only in his POV.

(b) Comm-II, who is in charge of communicating with the medical
units, has a private action to alert the medical chief in the area.

Figure 2: Mixed-reality capture illustrating how the public plan in the shared GUI can be overlayed with information on private
actions (private actions are in red; public actions are in green) (Brafman and Domshlak 2008) of individual decision makers
thereby still allowing the use of a shared collaborative workspace.

cates information (e.g. explanations and plan suggestions)
to the user without revealing private data of another hu-
man in the team. Note that, from the point of view of de-
cision support, the agent itself is not following planning
algorithms as outlined in (Brafman and Domshlak 2008;
Brafman 2015) since the human planners are in charge of
the planning process and they, of course, are not maintaining
separate priority queues in their heads. However, it might be
interesting to explore how the distributed planning paradigm
among humans in the presence of private information can be
modeled from the perspective of decision support.

Demonstration For the purpose of our demonstration
(shown in Figure 2), we assume that apart from the main task
of extinguishing the fire, each of the commanders have spe-
cific tasks they need to achieve. Furthermore, only the com-
mander (in charge of a specific task) and MA-RADAR have
the knowledge of these private tasks.

In our scenario, while Comm-I is in charge of handling the
communication with the media, which is an important aspect
in the case of disaster response scenario, Comm-II needs to
take care of all communication and deployment of medical
help for rescued victims. The private actions of the two com-
manders follow. To reduce clutter, we only provide the ac-
tion names as opposed to the full action definition (which
also have the private predicates).

Comm-I
CONTACT MEDIA
ADDRESS MEDIA

Comm-II
ALERT MEDICHIE
ATTEND CASUALTIES

ISSUE LOCAL ALERT
SET UP HELPLINE

When the commanders ask MA-RADAR to suggest missing
actions or complete the plan in order to achieve the goal of
extinguishing the (big) fire, it needs to communicate most of
the private actions mentioned here, but only to the specific
commander in charge of the private task. Showing these on
the common user interface would result in (1) confusion as
each commander is oblivious to the private actions of the
other commander and (2) loss of privacy which might be im-
portant in complex decision making scenarios with multiple
commanders (e.g. army, navy, etc.).

Thus, in such scenarios, MA-RADAR tries to display these
private actions in the augmented view of each commander
(highlighted in red in Figure 2). Since each action in the plan
occupies a substantial amount of space in the 3D-view, we
show only 10 actions at any point in time. This ensures that
the commander does not have to stare away from the com-
mon interface, which can lead to loss of situational aware-
ness as other commanders might make changes to common
elements in that time (e.g. by updating resources, rearrang-
ing or removing public actions, etc.).

Multi-Model Explanations
The second demonstration looks at plan explanations for
model reconciliation introduced in (Chakraborti et al.
2017a) – the aim of explanations of this form is to provide
updates to the user’s possibly faulty understanding of the
planning problem to make sure that the optimal plans in the
planner’s model are also optimal in the human’s. Thus the
process of model reconciliation is crucial in maintaining that
the decision support agent is on the same page as the human
in the loop and thus the establishment of common ground.

42

(a) Comm-I, who is unaware of the procedure that a fire-chief needs
to be alerted first before deploying the fire engines, is provided this
explanation to justify the suggested (public part of the) plan.

(b) Comm-II, unaware that a fire-chief needs to be alerted before
deploying any kind of resources (fire engines or rescuers) from a fire
station, is provided both of these model updates as explanations.

Figure 3: Mixed-reality capture illustrating how the multi-model explanation generation algorithm (Sreedharan, Chakraborti,
and Kambhampati 2018) can be used to provide targeted explanations to each commander based on their models without
inundating the other commanders with superfluous or unsolicited information.

Background The above model reconciliation process is
only feasible if inconsistencies of the planner’s model with
the user’s mental model are known precisely, or in general,
if there is a single model that needs to be reconciled. Instead,
in a team decision making setting, the decision support agent
may end up having to explain its decisions with respect to a
set of models one for each human in the loop. In this situa-
tion, MA-RADAR can look to compute explanations for each
possible configuration. However, computing separate expla-
nations (Chakraborti et al. 2017a) for each agent can result
in situations where the explanations computed for individual
models independently are not consistent across all the possi-
ble target domains. In the case of multiple teammates being
explained to, this may cause confusion and loss of trust, es-
pecially in teaming with humans who are known to rely on
shared mental models. Instead, in (Sreedharan, Chakraborti,
and Kambhampati 2018) we proposed an explanation gener-
ation process such that a single model update that makes the
given plan optimal (and hence explained) in all the updated
domains (or in all possible domains).

In order to deal with multiple humans in the loop, we have
thus shifted towards (Sreedharan, Chakraborti, and Kamb-
hampati 2018) instead of (Chakraborti et al. 2017a) as origi-
nally demonstrated in (Sengupta et al. 2017). However, from
the point of view of the interface, there still remains the mat-
ter of filtering out superfluous information (due to the single
explanation or model update being computed that suffice for
all the models) as they are being presented to the individual
users. We will illustrate this next.

Demonstration For our demonstration (shown in Fig-
ure 3), we assume that the two commanders have different
understanding about the domain used by MA-RADAR. We
further assume that this knowledge about the actual domain
is (1) different for the different commanders, which is often
the case in real-world scenarios (as there may be many ways
of being incorrect about the correct procedure) and (2) these
explanations are, for the purpose of this example, limited

to updates about public actions. In scenarios where expla-
nations are about private predicates or private actions of a
commander, MA-RADAR , with the models of both the com-
manders, filters out these (private explanations) when gener-
ating explanations for the other commander.

In order to highlight the domain differences, we will first
show the part of the actual model (that MA-RADAR has)
about which the commanders have incorrect idea.

(: a c t i o n d e p l o y b i g e n g i n e s
: p a r a m e t e r s (? a − f i r e ? from −

f i r e s t a t i o n ? t o − p o i s)
: p r e c o n d i t i o n (and

(a l e r t e d ? from)
(h a s b i g e n g i n e s n u m b e r ? from)

)
: e f f e c t (and

(n o t (a l e r t e d ? from))
. . .

)
)
(: a c t i o n d e p l o y r e s c u e r s

: p a r a m e t e r s (? a − f i r e ? from −
f i r e s t a t i o n ? t o − p o i s)

: p r e c o n d i t i o n (and
(a l e r t e d ? from)
(h a s r e s c u e r s n u m b e r ? from)

)
: e f f e c t (and

. . .
)

)

We now show the model that Comm-I has, where the precon-
dition for alerting the authority at a fire-station is missing as
a precondition for deploying (big) fire engines –

(: a c t i o n d e p l o y b i g e n g i n e s

43

: p a r a m e t e r s (? a − f i r e ? from −
f i r e s t a t i o n ? t o − p o i s)

:precondition (and
(has big engines number ?from)
)

: e f f e c t (and
(n o t (a l e r t e d ? from))
. . .

)
)
(: a c t i o n d e p l o y r e s c u e r s

: p a r a m e t e r s (? a − f i r e ? from −
f i r e s t a t i o n ? t o − p o i s)

: p r e c o n d i t i o n (and
(a l e r t e d ? from)
(h a s r e s c u e r s n u m b e r ? from)

)
: e f f e c t (and

. . .
)

)

For Comm-II, who is completely unaware that fire-stations
need to be alerted in order to deploy fire engines or rescuers,
the domain model looks as follows –

(: a c t i o n d e p l o y b i g e n g i n e s
: p a r a m e t e r s (? a − f i r e ? from −

f i r e s t a t i o n ? t o − p o i s)
:precondition (and

(has big engines number ?from)
)

: e f f e c t (and
(n o t (a l e r t e d ? from))
. . .

)
)
(: a c t i o n d e p l o y r e s c u e r s

: p a r a m e t e r s (? a − f i r e ? from −
f i r e s t a t i o n ? t o − p o i s)

:precondition (and
(has rescuers number ?from)
)

: e f f e c t (and
. . .

)
)

When the commanders ask MA-RADAR to suggest a plan (or
complete a plan) in order to achieve the goal of extinguish-
ing big fire, it will suggest a plan that has both the actions
of deploying big engines and rescuers. Since both of these
actions need to alert the authority at the fire station, there
will be two alert firechief actions which makes the
alerted firechief proposition (which is a precondi-
tion of these two actions in the original domain) true.

In this situation, although both the commanders might
be surprised at the suggested plan and ask for explana-
tions, Comm-I just needs to be told about the missing

precondition of the deploy big fire engine action,
whereas, Comm-II, in addition to that explanation, also
needs to be told about the missing precondition of the action
deploy rescuers. The augmented reality workspace
helps us to provide personalized explanations to both the
commanders (see Figure 3).

Work in Progress
Currently, we are working on making the mixed-reality dis-
play more interactive and porting more of the utilities in the
shared GUI into it. This, of course, raises interesting chal-
lenges from the point of view of intra-team interactions –

- “Hiding” much of the interface, even though not relevant
to the team, can cause inefficiency and friction in the col-
laborative process. It may well be possible that revealing
too little information as needed can cause lack of situa-
tional awareness while leaving it all out there is likely to
cause cognitive overload. As such, there needs to be a del-
icate balance between how much of the shared GUI can
be abstracted out into the mixed reality workspace.

- Allowing for a distributed workspace also requires pro-
cessing of concurrent requests (for replanning, validation,
etc.) which needs to be handled gracefully at the frontend
– e.g. two commanders making concurrent edits on the
public plan in their own mixed-reality spaces is undesir-
able and needs to be orchestrated effectively.

We hope to discuss some of these challenges, as well as re-
port on our work in progress, at the workshop.

The system will be demonstrated live in the ICAPS-2018
System Demonstrations Track. An updated description of
the system (presented at the ICAPS-2018 Workshop on
User Interfaces and Scheduling and Planning) can be ac-
cessed online at http://rakaposhi.eas.asu.edu/
ma_radar.pdf.

Acknowledgements. This research is supported in part
by the AFOSR grant FA9550-18-1-0067, the ONR
grants N00014-16-1-2892, N00014-13-1-0176, N00014-13-
1-0519, N00014-15-1-2027, N00014-18-1-2442 and the
NASA grant NNX17AD06G. Chakraborti is also supported
by the IBM Ph.D. Fellowship for the years 2016-18.

44

References
Brafman, R. I., and Domshlak, C. 2008. From one to
many: Planning for loosely coupled multi-agent systems. In
ICAPS, 28–35.
Brafman, R. I. 2015. A privacy preserving algorithm for
multi-agent planning and search. In IJCAI, 1530–1536.
Chakraborti, T.; Sreedharan, S.; Kambhampati, S.; and
Zhang, Y. 2017a. Explanation generation as model recon-
ciliation in multi-model planning. Technical report.
Chakraborti, T.; Talamadupula, K.; Dholakia, M.; Srivas-
tava, B.; Kephart, J. O.; and Bellamy, R. K. 2017b. Mr. Jones
– Towards a Proactive Smart Room Orchestrator. AAAI Fall
Symposium on Human-Agent Groups.
Karafantis, L. 2013. NASA’s Control Centers: Design and
History. Engineering and Technology.
Kim, J., and Shah, J. 2017. Towards intelligent decision
support in human team planning. In AAAI Fall Symposium
on Human-Agent Groups.
Klein, G. 2008. Naturalistic decision making. The Journal
of the Human Factors and Ergonomics Society.
Murphy, M. 2015. Searching for Eureka: IBMs path back to
greatness, and how it could change the world. Quartz.
Parasuraman, R.; Sheridan, T. B.; and Wickens, C. D. 2000.
A model for types and levels of human interaction with au-
tomation. Trans. Sys. Man Cyber. Part A.
Sengupta, S.; Chakraborti, T.; Sreedharan; and Kambham-
pati, S. 2017. RADAR - A Proactive Decision Support Sys-
tem for Human-in-the-Loop Planning. In ICAPS Workshop
on User Interfaces for Scheduling and Planning (UISP).
Sreedharan, S.; Chakraborti, T.; and Kambhampati, S. 2018.
Handling Model Uncertainty and Multiplicity in Explana-
tions as Model Reconciliation. In ICAPS.
Williams, T.; Szafir, D.; Chakraborti, T.; and Ben Amor, H.
2018. Virtual, augmented, and mixed reality for human-
robot interaction. In Companion of the 2018 ACM/IEEE In-
ternational Conference on Human-Robot Interaction, 403–
404. ACM.

45

