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Foreword

Automated planners are increasingly being integrated into online execution systems. The integration may, for exam-
ple, embed a domain-independent temporal planner in a manufacturing system (e.g., the Xerox printer application)
or autonomous vehicles (e.g., a planetary rover or a underwater glider). The integration may resemble something
more like a ”planning stack” where an automated planner produces an activity or task plan that is further refined
before being executed by a reactive controller (e.g., robotics). Or, the integration may be a domain-specific policy
that maps states to actions (e.g., reinforcement learning). Models for planning and execution can be integrated
or distinct, the planning model can define context-dependent actions schema for on-line (re-)planning or can just
specify flexibility to be handled separately at execution time. Online learning may or may not be involved, and may
include adjusting or augmenting the model, determining when to repair versus replan, learning to switch policies,
etc. A specific focus of these integrations involves online deliberation and execution management, bringing to the
foreground concerns over how much computational effort planning should invest over time.

In any of these systems, a planner generates action sequences that are eventually dispatched to an executive,
yet taking action in a dynamic world rarely proceeds according to plan. When planning assumptions are challenged
during execution, it raises a number of interesting questions about how the system should respond and what is the
scope of online deliberation versus execution. Is the ”acting” side of the system responsible for a response or the
”planning” side? Or do the two need to cooperate and how much? When should the activity planner abandon or
preempt the current goals? Should the task planner repair a plan or replan from scratch? Should the executive
adjust its current policy, switch to a new one, or learn a new policy from more relevant experience? Objectives and
Topics

Similar to IntEx 2017, the workshop aims to (1) provide a forum for discussing the challenges of integrating online
planning, acting, and execution, and (2) to assess the potential for holding an integrated execution competitions at
ICAPS. We seek original papers concentrating on the following topics:

• online planning, acting, and execution

• position papers, benchmarks, or challenge problems for integrated execution

• improving planning performance from execution experience

• anytime or incremental planning

• discussions of plan dispatching or plan executives

• execution monitoring; comparing replanning, plan repair, regoaling, plan merging

• managing open worlds with closed-world planners; model learning from experience

• determining an observation policy; policy switching; incremental policy adjustment

• modelling, languages and knowledge engineering for interleaved planning and execution

• architectures and application for integrated planning and execution, execution monitoring, mixed-initiative
on-line re-planning and execution

Tiago Vaquero, Mark Roberts, Sara Bernardini, Tim Niemueller, and Simone Fratini
June 2018
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Automated Adversary Emulation: A Case for Planning and Acting with
Unknowns

Doug Miller, Ron Alford, Andy Applebaum, Henry Foster, Caleb Little, and Blake Strom
The MITRE Corporation

7515 Colshire Drive
McLean, Virginia 22102

{dpmiller, ralford, aapplebaum, hfoster, clittle, bstrom}@mitre.org

Abstract
Adversary emulation assessments offer defenders the
ability to view their networks from the point of view of
an adversary. Because these assessments are time con-
suming, there has been recent interest in the automated
planning community on using planning to create solu-
tions for an automated adversary to follow. We devi-
ate from existing research, and instead argue that auto-
mated adversary emulation – as well as automated pene-
tration testing – should be treated as both a planning and
an acting problem. Our argument hinges on the fact that
adversaries typically have to manage unbounded un-
certainty during assessments, which many of the prior
techniques do not consider. To illustrate this, we pro-
vide examples and a formalism of the problem, and dis-
cuss shortcomings in existing planning modeling lan-
guages when representing this domain. Additionally,
we describe our experiences developing solutions to this
problem, including our own custom representation and
algorithms. Our work helps characterize the nature of
problems in this space, and lays important groundwork
for future research.

Introduction
To best understand the security of their systems, network

defenders often use offensive testing techniques and assess-
ments. These types of assessments come in many forms,
ranging from penetration tests – where a team of “white
hats” probe the network to identify weaknesses and vulner-
abilities – to full-scale red team or even adversary emula-
tion exercises, wherein a team fully emulates an adversary,
beginning with reconnaissance, tool and infrastructure de-
velopment, and initial compromise, and only ending when
they reach the specified adversary’s goals. As opposed to
pure defensive analysis, offensive testing can provide con-
crete measures of the security of a network by illustrating
real attack paths that an adversary could take.

While offensive testing has clear benefits for defenders,
it can be difficult for them to actually employ: these tests
can be increasingly costly, time-consuming, and personnel
constrained. In lieu of easy-to-access offensive testing, an
emerging trend in the security community is to launch au-
tomated offensive assessments. Tools in this space range

Copyright c© 2018, The MITRE Corporation. All rights reserved.
Approved for public release. Distribution unlimited 18-0944-1.

in capability, from those that focus on technique execution
(Smith, Casey 2017) to those that seek to fully emulate an
adversary by engaging the full post-compromise adversary
life-cycle (Applebaum et al. 2016).

Similarly, the automated planning community has re-
cently taken an interest in security assessments and tests.
(Bozic and Wotawa 2017) identify the natural application
of automated planning to security: attacks are typically de-
scribed as a sequence of steps that ultimately achieve a goal,
similar in many ways to a plan. They argue that by using
automated planning, we can construct tests that we can run
against our systems that can identify weaknesses; the au-
thors specifically identify how planning can be used to as-
sess web applications (e.g., SQL injection) as well as the
SSL/TLS protocol. Other recent applications include using
automated planning and plan recognition to identify larger
attack paths (Amos-Binks et al. 2017) as well as vulnerabil-
ity assessment (Khan and Parkinson 2017).

More specific to offensive testing is the line of work dedi-
cated towards using automated planning specifically for pen-
etration tests. Obes, Sarraute, and Richarte (2010) present
a model that leverages a deterministic planner alongside a
domain description of exploits and connectivity to diagram
paths that adversaries could take. Followup work in Sar-
raute, Buffet, and Hoffmann (2012) expands the model by
adding in uncertainty – leaving the core security domain the
same – and now using a Partially Observable Markov De-
cision Process (POMDP) to solve the problem. Shmaryahu
et al. (2017) would later acknowledge this POMDP model’s
success and accuracy, but note its shortcomings – mainly
in time-to-compute – as a motivation for using partially ob-
servable contingent planning, an approach they argue lies
between that of full-knowledge classical planning and multi-
belief POMDPs.

Recognizing the wide array of work on automated plan-
ning for penetration testing, Hoffman (2015) offers a survey
of the literature where he identifies the two main dimensions
of existing research: how the approach handles uncertainty
from the point of view of the adversary, and how the at-
tack components interact with each other. Hoffman similarly
enumerates eight key assumptions, and surveys the literature
mapping each to its appropriate assumptions as well as how
the approach maps to the two dimensions he identifies.

Despite all of the work dedicated to using automated plan-
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ning for penetration testing, little has been done to investi-
gate how the planning portion of the problem relates back to
the acting portion for the problem – most of the approaches
assume that the plan will be generated before execution, with
the “acting” portion merely following the plan’s script. As
per Ghallab, Nau, and Traverso (2014), this problem space
is not unique in only considering the planning portion of the
problem, but for the solutions that have been developed to
be commonly deployed, we believe that the field must start
embracing acting as part of its paradigm.

Contribution In this paper, we argue that automated ad-
versary emulation – and its cousin, automated penetration
testing – is not strictly a planning problem, but rather a joint
planning and acting problem. Our argument hinges on a
unique characterization of the uncertainty that adversaries
face when targeting a network – specifically, that real adver-
saries work in the face of unbounded uncertainty, wherein
they are unable to enumerate the outcomes of a sensing ac-
tion without actually executing it. This makes it all-but-
impossible to create an a-priori plan or policy to account for
all states, and, accordingly, adversaries that target systems in
the wild tend to interleave planning and acting concurrently.

Our views in this paper are influenced heavily by our
prior research in (Applebaum et al. 2016) and (Applebaum
et al. 2017), as well as our implementation and testing of
the CALDERA automated adversary emulation system1. As
part of this body of work, we consider the task of adver-
sary emulation as opposed to the traditional penetration test-
ing, and in doing so, the specific techniques we consider
in this paper are much more varied than those in the litera-
ture which focus exclusively on vulnerabilities and exploits.
This paper expands on how the adversary emulation problem
should be modeled and describes the integrated planning and
acting techniques that we have developed to facilitate auto-
mated adversary emulation.

Building Automated Adversary Emulation
The goal of automated adversary emulation is to provide

defenders with a tool that is able to execute a full-scale as-
sessment of their network, operating in a way that is sim-
ilar to a real adversary. Such a tool has significant utility
for defenders, including providing a baseline for what their
network looks like to an adversary, generating training data,
identifying weaknesses and/or misconfigurations, and test-
ing in-place security measures and tools, all the while pro-
viding useful empirical evidence for a defensive blue team
to build upon. We contrast this with a tool that, for example,
only identifies attack paths without executing them: such a
tool can provide a map of what the network looks like, but
typically will fail to achieve other use cases as it abstracts
away important, hard-to-measure details and lacks the real-
ism of actual execution. Specific goals driving automated
adversary emulation include:

1. Intelligent. The system should choose and chain actions
in ways similar to how an adversary would.

1https://github.com/mitre/caldera

2. Low Overhead. Defenders should be able to use the tool
without needing explicit configuration details, as these are
not only time consuming to collect, but are almost impos-
sible for defenders to fully track.

3. Realism. The system should execute the same techniques
that a real adversary would, and, like a real adversary,
should start at initial compromise and only end after
achieving (or failing to achieve) a specific set of goals.

4. Modular. Users of the system should be able to run as-
sessments with techniques of their choosing, as well as
have the ability to add new techniques.

Adversary Model In the context of this paper, we use
the MITRE ATT&CK framework2 as our adversary model,
specifically focusing on post-compromise techniques – i.e.,
those used after an adversary has breached a network – that
target enterprise systems. ATT&CK provides added insight
into the adversary’s lifecycle by decomposing it into the
top-level tactical goals that adversaries try to achieve and
the techniques that adversaries use to achieve those goals.
ATT&CK is unlike other threat models in that it was built by
analyzing publicly available threat reports – each technique
in ATT&CK is grounded in that it has either been used ac-
tively by real advanced persistent threats, or that it is com-
mon knowledge for red teamers. Moreover, whereas other
threat models tend to overly focus on vulnerabilities and ex-
ploits, ATT&CK describes behaviors commonly employed
by real adversaries, which increasingly involve re-using be-
nign, normal functionality (e.g., built-in system tools) to
achieve malicious effects. These features position ATT&CK
well within the context of our goals.

Characterizing Uncertainty in Automated
Adversary Emulation

Cyber intrusions can be broken down into a series of con-
stituent actions executed by the adversary. These actions
typically fit into two buckets: actions that expand the adver-
sary’s foothold, and actions that expand on what the adver-
sary knows. Depending on the circumstances, some actions
can span both categories by expanding on the adversary’s
foothold while also providing new knowledge. To illustrate
this, below we describe three common actions – taken from
the ATT&CK framework – that adversaries typically execute
during engagements.

Exploiting a Vulnerability When most people think of
cyber attacks, they think of zero-days and exploits used
against vulnerable software. With this technique, the ad-
versary expands its foothold by exploiting a vulnerability –
i.e., a buffer overflow, remote code inclusion, SQL injection,
etc. – on a target system in order to gain access or achieve
a malicious effect. Adversaries can have a variety of end
goals when using this technique, though common ones in-
clude exploiting a remote system for lateral movement and
exploiting a local kernel vulnerability for privilege escala-
tion. To successfully launch this technique, an adversary

2attack.mitre.org
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need only have access to the knowledge the vulnerability ex-
ists, the right exploit code, and know that the vulnerability is
present on the target. This technique expands the adversary’s
foothold and is an action the adversary takes to acquire new
access which can be a new system or level of privilege.

Remote System Discovery In order for an adversary to
operate against a network, they need to know exactly what
systems are on that network. Consider the case for an adver-
sary who just successfully phished an employee within an
enterprise; after enumerating the details of the compromised
host, they would likely try to seek out another host within
the internal network so that they can enlarge their foothold.
Before expanding laterally, the adversary would need to dis-
cover the remote systems first. Depending on the platform,
there are many ways to achieve this (e.g., ping) – in Win-
dows enterprise systems, the common way is running the
net view command, which will return a list of all hosts in
the local domain. This technique is an example of a knowl-
edge gaining technique.

Credential Dumping Credential dumping is a favorite for
red teamers and real adversaries targeting enterprise sys-
tems. To run this technique, an adversary only needs ele-
vated (i.e., SYSTEM) access on a target host. After running
it, the technique will extract all cached domain credentials
(i.e., passwords and/or hashed passwords) from the running
host; cached credentials include all of the credentials of the
accounts of users that have logged on since the last reboot.
Extracted credentials can be useful later for the adversary
as they laterally move through the network, using the stolen
credentials to access capabilities they would not otherwise
be able to access. This technique both gains new knowledge
(e.g., what accounts exist) as well as expands the adversary’s
territory (i.e., by gaining access to credentials).

Central to each three of these actions is the concept of un-
certainty. While not covered here, we note that some actions
can also create new domain objects (for example, remotely
copying a file from a compromised host to an uncompro-
mised host as a means for lateral movement). This can pose
an interesting problem for planning, as many representations
do not allow for the creation of new domain objects.

Managing Uncertainty
Uncertainty factors into each of these techniques in vastly

different ways. Consider the first technique, exploiting a
vulnerability. In executing this technique, we can charac-
terize two main sources of uncertainty:
• Is the target susceptible to this exploit?
• Was the exploit technique executed successfully?
Both of these questions are enumerable: each is a simple
yes or no question, making it easy to construct contingency
plans that branch over all scenarios. Additionally, these out-
comes are sensible, in that we can execute other techniques
that e.g. check to see if a target is susceptible to an exploit
or determine if an exploit ran successfully. Indeed, the ap-
proach in (Shmaryahu et al. 2017) explicitly models sensing
actions for both. After successfully executing this technique,

the adversary will have a new foothold (in the case of lateral
movement) or have elevated privileges on an already com-
promised host (in the case of privilege escalation).

The uncertainty when dumping credentials, however, is
different. Unlike exploiting a vulnerability, the uncertainty
in dumping credentials is specifically in the technique out-
put. When dumping credentials, we know that the adversary
will obtain all cached credentials, but in practice the adver-
sary will rarely have any apriori knowledge of what these
cached credentials are. This makes it much harder to encode
than exploiting a vulnerability, as the adversary may get:

• no credentials;

• credentials for accounts it has never heard of;

• credentials that it can not currently use; or

• credentials that it can immediately use.

In fact, these outcomes tend to occur together: the adversary
will likely obtain credentials for accounts it has not heard
of while also obtaining credentials for accounts that it has
heard of. Enumerating each of these states is possible at the
abstract level, but this approach decouples the action from
the grounded solution – i.e., references to the objects in the
environment, such as John’s account or Pete’s workstation –
making it hard to link the consequences of dumping creden-
tials to enabling actions in the future, and further making it
difficult to do goal-based planning to achieve real objectives.

At a more abstract level, adversaries tend to execute tech-
niques that deal with unbounded uncertainty when targeting
systems; while some of the uncertainty can be characterized,
the uncertainty is typically hard to qualify in a way that can
be explicitly bound without losing too much precision. We
contrast this description with bound uncertainty. To under-
stand the distinction, consider an action that scans a target
for running services to discover exploits. We might consider
such an action as being able to identify vulnerability 1, vul-
nerability 2, ..., etc., where the quantity of vulnerabilities is
a known, finite amount that reflects the adversary’s toolkit.
Scanning for vulnerabilities, then, is a mapping from the un-
known state into one where zero or more vulnerabilities –
that have already been enumerated beforehand – are known.
By contrast, dumping credentials can result in any number
of real accounts being discovered, and while each individual
account may have some sort of mapping, it is hard for the
adversary to explicitly bound the uncertainty, as it does not
know the accounts that it does not know.

This kind of scenario is commonplace, and while adver-
saries will target networks with specific goals in mind, they
will often bring about those goals in non-specific ways. Ad-
versaries typically approach networks with a mental play-
book – based on their goals, experience, and results – spec-
ifying how they should generally behave, describing their
tactical goals as well as the constituent actions they should
use throughout the intrusion. How these actions are ordered
is left to the adversary to determine at run-time: because of
the extreme uncertainty that adversaries have when operat-
ing against networks, conformant or contingent plans are too
difficult for an adversary to construct when operating in a
network. Nonetheless, as we seek to automate the adversary
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emulation process, it is critical that we attempt to provide as
much detail – and intelligence – that we can in order to have
the most accurate results.

Formal Problem Description

We define our planning problem in two stages: first, the
large, agent-agnostic description of the problem, and the
smaller adversary-oriented view of what the problem looks
like. For the former, we define the general description of
the problem as a quadruple: π = 〈P,A, I,G〉, where P is
a set of propositions, A a set of actions, I ⊂ P the starting
state (i.e., a set of propositions), and G ⊂ P the goal propo-
sitions. For every proposition p ∈ P , p can be assigned a
truth value of either true or false. Each action a ∈ A is a
double, {prea, posta}, where prea is the set of propositions
that must be true to execute action a (i.e, the preconditions),
and posta is the set of propositions that will be true after
executing a. In our model, we assume that the truth of P is
static – i.e., a proposition p’s truth value remains the same
unless changed by the adversary.

A solution to π is a sequence of actions S =
{a1, a2, ..., an} such that, when started from I, executing
the actions of S in sequence would result in the propositions
in G all being true (or false, if specified as such). We refer to
this as an conformant solution.

In our scenario, a conformant solution to π is unrealistic
due to the adversary’s uncertainty: because the agent has
unbounded uncertainty, it is unlikely for our adversary to be
able to construct an explicit solution before acting. Thus,
we redefine our problem as follows: let πi be a tuple πi =
〈Fi,A, I,G〉, where Fi ⊆ P is the set of propositions that
the adversary knows exist at time i, regardless of whether the
adversary knows their truth value. At first glance, it might
seem that if a proposition p ∈ Fi, then the adversary knows
the truth value of p, however this is not always the case.
As an example, an adversary may dump credentials and find
that joe is a user account. Because joe is a user account, the
adversary can infer that joe may be a domain admin – i.e.,
domain(joe) ∈ Fi – but while the adversary can infer this
proposition exists, it does not know if it is true.

The differentiator between π and πi is in the space of
propositions – an actor working with π has a fully enu-
merated proposition space, while an actor working with πi
knows that the proposition space is only a subset of what
truly exists. Because of this, solving πi is different than
solving π in that the former necessitates acting: the agent
must perform discovery actions to identify unknown propo-
sitions, with planning beyond this point particularly diffi-
cult. We can contrast that with an agent working with π
who knows that there are no new propositions to be gained
during an operation, and thus can plan for all contingencies.
Under this formalism, then, the adversary emulation prob-
lem should not be treated as a strict planning problem, but
rather as a selection problem, where the agent seeks to find
the best action now, to maximize its chances of achieving G
in the future.

Representing Planning Problems for
Adversary Emulation

The formalism of πi in the previous section calls for the
representation of a set of propositions to denote the cyber
domain, but is agnostic as to the particular language that
represents the propositions. At first glance, this may seem to
be a relatively unimportant detail, but our experiments have
shown that this situation mandates nuance when represented
as a planning problem. Generally, we have observed the fol-
lowing guidelines when tackling this problem:

Object-oriented description. Our representations allow
us to reason about the objects (i.e., hosts, users, accounts,
etc.) typically found in networks in contrast to e.g. state-
based approaches. This approach offers many benefits, and
is particularly relevant as objects in the cyber domain are
well-structured; for example, networks are typically com-
prised of multiple hosts, each of which have standard-
ized fields such as fully qualified domain name, user ac-
counts that are administrators, operating system, etc. More
abstractly, this guideline lends itself well towards object-
oriented planning (Katz, Moshkovich, and Karpas 2016).

Parameterized actions. We tend to refer to our action
space as a set of ungrounded, parameterized actions; collo-
quially, we might traditionally refer to these as techniques.
This, in large part, is due to the uncertainty problem men-
tioned before: suppose we have a technique of dumping
credentials from a host. In a traditional representation, we
would have n instances of this action represented in A,
where n is the number of hosts in the network; i.e., dump-
ing credentials on host 1 is an action, dumping credentials
on host 2 is an action, etc. However, because the adversary
does not know all of the hosts on the network, it might only
have access to a subset of A alongside the ungrounded, pa-
rameterized version of the action.

Deterministic action outcome. Executing an action will
always result in the same outcome in the same environment.
This has likewise been acknowledged in the POMDP ap-
proach (Sarraute, Buffet, and Hoffmann 2012), where un-
certainty is instead modeled in the adversary’s belief space
of what the current state is (which indeed more accurately
represents what penetration testers do in practice). Alterna-
tive approaches, such as the one in (Durkota 2014), abstract
this uncertainty instead into the action’s outcome.

Monotonic action consequences. Our representations are
all delete-free. This assumption appears to be consistent
with the literature – no representations that we have seen
explicitly model deletes – although we note that the solution
techniques such as using POMDPs (Sarraute, Buffet, and
Hoffmann 2012) or contingency planning (Shmaryahu et al.
2017) are robust enough to handle deletes if the model does
include them.

Early Work in K
Our first attempt (Applebaum et al. 2016), (Applebaum et

al. 2017) at modeling this problem was to use a representa-
tion encoded in the K (Eiter et al. 2000) planning language,
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Figure 1: Example encoding of an enterprise system. Each box
represents an individual workstation with edges representing al-
lowed traffic flows. The name of the workstation is on the first
line within each box, with authorized remote logins in black and
local administrators in blue. Active logins are denoted by italics.
The red box around pers1 signifies the adversary’s foothold there.

which we could solve using the DLVK3 planning system. We
initially chose K as the implementation language due to its
ability to express uncertainty, our familiarity in Datalog, the
ability to encode inferences and axioms, and the availabil-
ity of the DLVK solver, which itself gave us a fair degree of
flexibility during use.

The initial data model that we constructed was simple:
it only contained two types of objects, accounts and hosts.
Our fluents described both the state of the network – includ-
ing hosts that were connected and which accounts could log
in where – as well as the state of the adversary. This in-
troduced our first challenge, in that we could have a fluent
which described the state of the world, and then we would
need a corresponding fluent to denote when the adversary
was aware of that state. As an example:

connected(X, Y) requires host(X), host(Y).

knowsConnected(X, Y) requires host(X), host(Y).

Above, the first first predicate connected(X, Y) de-
notes that two hosts in the model can communicate over the
network and the second adds it to the adversary’s knowledge
base. To discover these connections, the adversary has ac-
cess to a simple action:

executable enumerateHost(X) if hasFoothold(X),

escalated(X), not hostEnumerated(X).

caused knowsConnected(X, Y) if connected(X, Y)

after enumerateHost(X).

caused hostEnumerated(X) after enumerateHost(X).

In words, for the adversary to execute the
enumerateHost action, it must have an escalated
foothold (i.e., executing under root or SYSTEM) on a host
and have not previously enumerated it. After execution, it
will know all valid connections to or from that host.

Using this problem encoding, we were able to construct
plans over our model for the adversary to achieve arbitrary
goals. As an example walkthrough, consider the network
represented in Figure 1. From this view, we can see a clear
path from the adversary’s initial foothold on pers1 to reach

3http://www.dlvsystem.com/k-planning-system/

pers4 with the following plan: dump credentials on pers1
to obtain steve’s credentials, use steve to remotely log in
to pers5, use steve again to move from pers5 to pers3,
dump credentials on pers3 to obtain ritchie’s credentials,
and then use ritchie’s account to remotely login to pers44.

This representation is useful in mapping out the weak-
nesses in the generated networks from a general perspective,
but stops short of being able to entirely represent the features
needed for automated adversary emulation: from the adver-
sary’s point of view, the adversary only has partial view of
the network and cannot deterministically reason about the
consequences of actions. In Figure 1, the adversary only
has a foothold on pers1, and without doing anything, only
knows that pers1 exists, nevermind any of the accounts it
would need to laterally move to pers4 (or even that pers4
exists). Consider the action to dump credentials:

executable dumpCreds(X) if hasFoothold(X), escalated(X).

caused knowsCreds(A) if activeCreds(A, X)

after dumpCreds(X).

It is easy to see when the adversary can dump credentials:
it only needs an escalated foothold on a host to do so. How-
ever, the exact consequences to the adversary are unknown
and unbounded: this predicate can only be evaluated after
running this technique, as the active credentials on a host
are unmeasurable from the adversary’s point of view.

Developing a Planning and Acting Environment To fa-
cilitate experiments with the DLVK format, we developed
a turn-based simulation system wherein an adversary agent
could maintain its own internal state, interfacing with a
global agent that had full visibility of the world. Our ad-
versary agent starts with a simple view of the world – it has
an initial foothold on the network – as well as the action def-
initions and inference rules that are used in the real model.
It does not, however, know anything about the network: it is
unaware of what hosts and accounts exist, what the topology
looks like, what the trust relationships are, etc. Instead, the
adversary learns these features as it executes actions.

During a simulation run, the adversary sends its
chosen action to the global agent, which first checks
to see if the action is legal, and, if so, determines
what changes should be made to the real model and
which new knowledge should be passed to the adver-
sary. As an example, looking at Figure 1, the adver-
sary would gain knowsRemote(steve, pers1)
and knowsCreds(steve) after executing
dumpCreds(pers1).

Pythonic Representation
Our work using K was useful as a testbed for us to de-

velop planning algorithms. However, from an implementa-
tion standpoint, it had several weaknesses, primarily in con-
verting from it to what our tool was executing and what it
needed for technique execution; K did not follow the object-
oriented guideline we would ideally follow. This led us to
develop a custom representation that easily facilitated both
planning and acting.

4Note that in our model the adversary would have to perform
some knowledge gathering actions throughout this plan as well.
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Actions in CALDERA are each represented as a Python
class. Each class contains fields that describe how the tech-
nique is executed and implemented, some metadata, and
then a Python representation of the logic. At a high level,
the logic provides information on the pre and postcondi-
tions of the actions, represented in a way that talks strictly
about the objects that are involved5. Treating pre and post-
conditions as restrictions on objects meshed well with our
implementation: the logic explicitly maps to the objects in
the database schema and couples well with the action exe-
cution code. The internal data model features 15 top level
objects, each of which has a set of fields. Field values can
either be integers, strings, references to other objects, lists
of things, booleans, or dates. Example objects and fields
include: Remote Access Trojans (RATs), which have host
(object), elevated (boolean), and username (string) fields,
and Hosts, which have admins (list), fully qualified domain
name (string), and hostname (string) fields, amongst others.

One of the downsides of the Pythonic representation is
difficulty for human operators to read. For example, con-
sider the following action to copy a file to a network share:

preconditions = [("rat", OPRat),

("share", OPShare({"src_host": OPVar("rat.host")}))]

postconditions =

[("file_g", OPFile({’host’: OPVar("share.dest_host")}))]

preproperties = [’rat.executable’, ’share.share_path’]

postproperties = [’file_g.path’]

This syntax defines four main components: preconditions,
which must be true to execute the technique, postconditions,
which at least will be true after executing the technique,
pre-properties, which are things that must be defined to ex-
ecute the technique, and post-properties, which are things
that will be defined after executing the technique. Parsing
each of these, the first precondition states the the identi-
fier rat must be of type OPRat. The second requirement
states that share must be of type OPShare, where the
src_host field is equal to the rat’s host field. The post-
condition states that a new object file_g of type OPFile
will be created, where the host field of the new file_g
object is equal to the original share’s dest_host field.
The pre-properties specify the rat’s executable and the
share’s share_path fields must also be defined, and the
post-properties state that the file_g’s path field will be
defined after execution.

This representation facilitates reasoning over objects as
opposed to strictly properties, and is handy in the cyber do-
main: most of the techniques either add knowledge or create
objects, with modifying objects an atypical use case. In fact,
both adding knowledge and creating objects are represented
the same in the Pythonic representation – both involve the
agent adding new objects (either those that are discovered or
those that are created) to its knowledge base.

Converting the Pythonic Representation Instead of rea-
soning directly with the Pythonic representation, we created

5A full description of the syntax can be found at
http://caldera.readthedocs.io/en/latest/
add_technique.html.

Figure 2: Workflow of plan-and-act paradigms considered for au-
tomated adversary emulation.

an intermediary language that converted the Python require-
ments to Datalog6. For example, the copy action above was
converted as follows:

Parameters:

EXECUTABLE, HOST, RAT, SHARE, SHARE_PATH, SRC_HOST

Preconditions:

has_property(RAT, executable, EXECUTABLE)

has_property(RAT, host, SRC_HOST)

has_property(SHARE, dest_host, HOST)

has_property(SHARE, share_path, SHARE_PATH)

has_property(SHARE, src_host, SRC_HOST)

oprat(RAT)

opshare(SHARE)

Postconditions:

+ defines_property(FILE_G, path)

+ has_property(FILE_G, host, HOST)

+ opfile(FILE_G)

This conversion is relatively straightforward: we see
predicates like oprat(RAT), which declare that the
RAT parameter must be of type oprat, matching the
Pythonic requirement. Under the preconditions, the second
and fifth predicates mandate that the host property of
RAT must be the same as the src_host property of
SHARE. For preproperties, note that the first precondition –
has_property(RAT, executable, EXECUTABLE)
– is the only one to specify a requirement on EXECUTABLE;
this parameter must merely be defined, but does not need to
be explicit.

While the Pythonic code is dense, its Datalog trans-
lation is very straightforward. Each object requirement
is specified as a type restriction in Datalog. Each pre-
property or postproperty is specified as an unbounded
has_property statement on that object. Preconditions
and postconditions are specified with type requirements as
well as specific restrictions over properties, again leveraging
the has_property predicate.

Choosing Adversary Techniques
In this section, we discuss some of the practical solutions

that we have experimented with to solve the planning and
acting problem for automated adversary emulation, describ-
ing theoretical algorithms that work in ourK environment as

6For ease of integration, we avoided converting to K – which
required the DLV solver – and instead converted to native Datalog.
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well as the one implemented in CALDERA. All of the algo-
rithms discussed in this section leverage the same planning-
and-acting paradigm (visualized in Figure 2):

1. Obtain and update the world state.

2. With the world state, use the precondition model to iden-
tify which actions are valid at the current time step.

3. Building off of step 2, construct a set of plausible plans.

4. Evaluate each plan constructed in the previous step.

5. Execute the first action in the highest rated plan.

6. Observe the responses, stopping if the goal state has been
observed and going back to step 1 otherwise.

This paradigm operates in a way that is fire-and-forget: even
though the algorithms construct plans, they only execute the
first action in the plan, completely re-planning each time
they have to construct new plans.

Evaluating Plans
All of our techniques evaluate plans based on the metric

first proposed in (Applebaum et al. 2016). This technique
assumes we have access to some reward function R : A →
R that maps each action to some numeric reward. Then,
given a set P of plans, where each plan is a sequence of
actions a1, ..., an: for a plan p ∈ P , we define its score as:

S(p) =
n∑

i=1

R(ai)

i

In words, each plan is assigned a score that represents a de-
creasing weighted sum over its constituent actions. We note
that this is in fact very similar to using a finite horizon over
a Markov decision process (MDP) to calculate reward, al-
though here we use a linearly decreasing score as opposed
to an exponential one that is typically used in MDPs. In line
with the guidelines that we discussed in the previous sec-
tion, the scoring algorithm treats each action as ungrounded
– dumping credentials, for example, on host 1 would yield
the same reward as dumping credentials on host 2, regard-
less of any differences in hosts 1 and 2.

Constructing Plans
The difficulty in constructing real plans stems primarily

from the knowledge disparity facing the adversary: there
are propositions in the world-space that the adversary is
unaware of. In the generalized case, reasoning over all
unknown propositions would be challenging, however, by
leveraging our representation – i.e., that we have a data
schema, ungrounded action definitions, and a feel for what
the world should look like – we can still approximate what
might be considered “good” solutions to this problem. Thus,
our initial approach worked as follows:

1. Construct a fictional world P ′.

2. Merge P ′ with Fi. In the case that some proposition in
P ′ conflicts with Fi, defer to the known proposition to
ensure consistency.

3. Initialize an empty set of plans, P .

4. For each action type – i.e., for each ungrounded action –
obtain the set of plans that executes that action the soon-
est. For example, if we can dump credentials – regardless
of the host – at time step three and no sooner, add all plans
of length three that dump credentials to P . Repeat this for
each action type.

5. Return P .
This process is executed multiple times each time step in a
Monte-Carlo style simulation: after each individual run, P
would be evaluated and the best action would be recorded.
After running all of the Monte-Carlo trials, each “best” ac-
tion would be given a vote, and the action with the most
votes would be executed. Experimenting in our K domain,
this setup performed reasonably well, outperforming strate-
gies that iterated through actions in a discrete sequence (i.e.,
a finite-state machine) as well as a greedy strategy that
skipped the plan construction step.

In practice, however, this technique was unfeasible as it
required full world simulation when constructing P ′. This is
largely impractical as the more the planner needs to “guess”
what the real world looks like, the more inaccuracies it will
add. Moreover, creating the entire network and reasoning
over it was a time consuming procedure.

To improve on this procedure, we created a variant of the
above approach that differed only in how it constructed the
initial P ′ fictional world. Instead of trying to fully simu-
late what the world might look like, the planner would make
small increments to Fi based on a fixed set of rules that
would enumerate some of the potential configurations. For
example, if the planner knew some hosts existed, but did not
know the admins on those hosts, the planner would guess
who the admins were, with probabilities for guessing that a
known or unknown account was an admin. This slight modi-
fication provided significant performance increases over our
initial approach; the full results of these tests can be found
in (Applebaum et al. 2017).

While these two approaches provided strong laboratory-
based results, they both sat too far away from the actual
CALDERA implementation. Both approaches proved to be
too intensive for the large data model that CALDERA was
using – how do we, for example, simulate what a random
process might look like, given that it has 15 different fields?
How many processes should we infer exist? Moreover, the
representation in K did not lend itself well to meeting our
guidelines for modeling this domain.

Instead, we developed a relatively simplistic approach
that leveraged our Pythonic data representation, converted
to Datalog. To get plans, the planner would explore each
possible action – in sequence – popping its execution onto a
stack and recursing, stopping when it reaches a fixed depth;
in essence, the planner explores all possible plans of a fixed
length starting at the current state via a depth-first search
over the action space. This approach is fairly immature as
opposed to traditional planning techniques, however we de-
veloped several heuristics to help reduce redundancy and op-
timize the search:
• The algorithm never explores the same action twice.
• If two actions have the same effects, only explore one.
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To understand this, consider the following action to iden-
tify all hosts running in a domain:

Parameters:

RAT

Preconditions:

oprat(RAT)

Postconditions:

+ defines_property(HOST_G, fqdn)

+ defines_property(HOST_G, os_version)

+ ophost(HOST_G)

+ oposversion(OS_VERSION_G)

To check if this action is valid, the planner runs a Data-
log query to ground its preconditions, in this case returning
all objects of type oprat. After execution, it will create a
new host – “+ ophost(HOST_G)” – with the associated
properties; from an execution standpoint, the planner, when
considering this action, will internally execute it, adding the
appropriate facts to the knowledge base. In this case, since
the postconditions are not tied to the preconditions or pa-
rameters, all of the facts will be brand new – that is, it will
know that it needs to create new objects to match the condi-
tions. Once it finishes exploring this path, it will pop these
postconditions off its stack and move on to the next branch
in the tree. To avoid complexity, if multiple RATs match the
precondition, it will only explore the paths with one of them
since the postconditions are the same, regardless of the RAT.
Note that instead of explicitly declaring its in-practice func-
tionality – discovering all hosts – the representation only
adds one new host to the knowledge base.

Interestingly, this approach completely eschews the need
to simulate or guess what the unknown propositions in the
world are by leveraging its representation. While we have
not conducted any rigorous trials to showcase its efficacy,
we have found that, with this algorithm and representation,
CALDERA is able to successfully achieve full compromise
of setup lab environments. Prior to deploying the techniques
in this paper, CALDERA leveraged a hard-coded finite-state
machine: by comparison, the planning-based approach is
smoother, easier to vary, more adaptable, and much easier
to extend, in addition to some efficiency boosts. We note
that, because the new approach is much easier to extend and
adapt, other researchers were able to use our public imple-
mentation of CALDERA to integrate their own techniques –
modeling and coding them in our Pythonic representation –
with the planner integrating the new actions seamlessly into
its operations (Bottomley, P. and Beukema, W. 2018).

Discussion
Our hope with this paper is twofold: first, to call atten-

tion to the need for a planning and acting paradigm within
the security and planning community, and second, to raise
awareness of the particular types of uncertainty considered
in the automated adversary emulation problem. With re-
gards to the latter, our primary call-to-action is inspired by
our experiences and design goals: we wish to avoid hav-
ing users explicitly input network parameters, or even net-
work possibilities, when they run their tests. This con-
trasts with approaches previously identified in the literature,

where they assume access to either a network map, or have
clearly bounded uncertainty with which they can run tradi-
tional planning techniques. In our own modeling efforts, we
have found this to be a difficult task.

We note that the approaches discussed in this paper have
been designed to exhibit emergent behavior, as opposed to
explicit goals or alternative execution strategies. While this
is similar to real adversaries, who typically have semi-vague
goals (e.g., “exfiltrate all sensitive files”), we believe that
this is an area for further research. As it stands, the cur-
rent heuristic approach prioritizes executing “goal actions”
as soon as possible. By contrast, some adversaries may pre-
fer to lay-in-wait, achieving their goals on each host simul-
taneously – i.e., laterally move to all hosts and then encrypt
them, as opposed to encrypting them as you move through
the network. Similarly, a system that could achieve a specific
goal – i.e., compromise a specific host – would be of great
utility for defenders. Towards this, the heuristic approach
can be modified to exhibit this type of behavior, however
it involves a significant amount of manual analysis of both
goal and reward, and is not guaranteed to be optimal. In-
stead, we believe it may be possible to leverage the unique
cyber domain properties to construct a planner that can more
accurately achieve this. As it stands, our current approach
offers a workable solution for smaller problems, but blows
up combinatorially as the depth and domain grows.

Most of the formal modeling in the automated planning
community of cyber is either domain specific – i.e., net-
work protocols – or heavily focused on exploits. Because
adversaries tend to re-use existing functionality, these lat-
ter models lack realism; adversaries do not achieve lateral
movement only through exploits. Instead, an ideal repre-
sentation would cover other ordinarily benign activities that
adversaries also use. Based on our experiences, this can be
challenging to do from the adversary’s perspective (i.e., in
bounding the adversary’s uncertainty). Additionally, while
not covered in high detail in this paper, that adversaries cre-
ate and reason over new domain objects is a similar encod-
ing issue. We are currently developing a translation from
our Pythonic model to PDDL(McDermott et al. 1998), but
have found that we often need to use unnatural constructs to
represent key cyber concepts. We also plan on investigat-
ing the use of epistemic planning (Löwe, Pacuit, and Witzel
2011) to represent the adversary’s changing belief states –
as encoded, maintaining dual states between the world and
the adversary’s knowledge is cumbersome, and we believe
we can leverage existing strategies to optimize our process.

Conclusion Both industry and academia have recognized
the utility of automated adversary emulation and penetration
testing, the former solving it from an implementation-first
perspective, and the latter working on the theory. Neither
side, however, seems to have recognized the key challenges
that make this a hard problem, nor have others formalized
the requirements that an ideal automated offensive solution
should meet. We hope that in publishing this paper, we can
better characterize these challenges and requirements, help-
ing others better understand the nature of the problem and
encouraging future research.
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Abstract

A significant problem for integrating acting and planning is
how to maintain consistency between the planner’s descrip-
tive action models, which abstractly describe what the actions
do, and the actor’s operational models, which tell how to per-
form the actions with rich control structures for closed-loop
online decision-making. Operational models allow for deal-
ing with a variety of contexts, and responding to unexpected
outcomes and events in a dynamically changing environment.
To circumvent the consistency problem, we use the actor’s
operational models both for acting and for planning. Our
acting-and-planning algorithm, APE, uses hierarchical oper-
ational models inspired from those in the well-known PRS
system. But unlike the reactive PRS algorithm, APE chooses
its course of action using a planner that does Monte Carlo
sampling over simulated executions of APE’s operational
models.
Our experiments with this approach show significant bene-
fits in the success rates of the acting system, in particular for
domains with dead ends.

Introduction
The integration of acting and planning is a long-standing
AI problem that has been discussed by many authors. For
example, (Pollack and Horty 1999) argue that despite suc-
cessful progress to go beyond the restricted assumptions of
classical planning (e.g., handle uncertainty, partial observ-
ability, or exogenous events), in most realistic applications
just making plans is not enough. Their argument still holds.
Planning, as a search over predicted state changes, uses de-
scriptive models of actions (what might happen). Acting, as
an adaptation and reaction to an unfolding context, requires
operational models of actions (how to do things) with rich
control structures for closed-loop online decision-making.

A recent survey shows that most approaches to integrating
acting and planning seek to combine descriptive and opera-
tional representations, using the former for planning and the
latter for acting (Ingrand and Ghallab 2017). This has several
drawbacks in particular for the development and consistency
verification of the models. To ensure consistency, it is highly
desirable to have a single representation for both acting and
planning. But if this representation were a descriptive one, it

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

wouldn’t provide sufficient functionality. Instead, the plan-
ner needs to be capable of reasoning directly with the actor’s
operational models.

In this paper, we provide an integrated acting-and-
planning system, APE (Acting and Planning Engine). APE’s
operational representation language and its acting algorithm
are inspired by the well-known PRS system (Ingrand et al.
1996). The operational model is hierarchical: a collection of
refinement methods offers alternative ways to handle tasks
and react to events. Each method has a body that can be
any complex algorithm. In addition to the usual program-
ming constructs, the body may contain commands (includ-
ing sensing commands), which are sent to an execution plat-
form in order to execute them in the real world, and sub-
tasks, which need to be refined recursively. APE’s acting en-
gine is based on an expressive, general-purpose operational
language with rich control structures for closed-loop online
decision-making.

To integrate acting and planning, APE extends the reactive
PRS-like acting algorithm to include a planner, APE-plan.
At each point where APE needs to decide how to refine a
task, subtask, or event, APE-plan does Monte Carlo rollouts
with a subset of the applicable refinement methods. At each
point where a refinement method contains a command to the
execution platform, APE-plan takes samples of its possible
outcomes using a predictive model of what each command
will do.

We have implemented APE and APE-plan and have done
preliminary empirical assessments of them on four domains.
The results show significant benefits in the success rates of
the acting system, in particular for domains with dead ends.

The related work is described in the following section.
Then we briefly summarize the operational model. APE and
APE-plan are presented in the following section. We present
our benchmark domains and experimental results. Finally,
we discuss the results and provide conclusions.

Related Work
To the best of our knowledge, no previous approach has pro-
posed the integration of acting and planning by looking di-
rectly within the language of a true operational model like
that of APE. Our approach is based on the operational rep-
resentation language and RAE algorithm in (Ghallab, Nau,
and Traverso 2016, Chapter 3), which in turn were inspired
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by PRS (Ingrand et al. 1996). RAE operates purely reac-
tively. If it needs to choose among several refinement meth-
ods that are eligible for a given task or event, it makes the
choice without any attempt to plan ahead. The approach has
been extended with some planning capabilities in Propice-
Plan (Despouys and Ingrand 1999) and SeRPE (Ghallab,
Nau, and Traverso 2016). The two systems model com-
mands with classical planning operators; they both require
the action models and the refinement methods to satisfy clas-
sical planning assumptions of deterministic, fully observable
and static environments, which are not acceptable assump-
tions for most acting systems.

Various acting approaches similar to PRS and APE have
been proposed, e.g., (Firby 1987; Simmons 1992; Sim-
mons and Apfelbaum 1998; Beetz and McDermott 1994;
Muscettola et al. 1998; Myers 1999); some of these pro-
vide refinement capabilities. While such systems offer ex-
pressive acting environments, e.g., with real time handling
primitives, none of them provide the ability to plan with the
operational models used for acting, and thus cannot integrate
acting and planning as we propose here. Most of the men-
tioned systems do not reason about alternative refinements.

Finite State Automata (FSA) and Petri Nets have also
been used as representations for acting models, e.g.,(Verma
et al. 2005; Wang et al. 1991), again without planning ca-
pability. For example, the ROS execution system SMACH
(Bohren et al. 2011), implements an automata-based ap-
proach, where each state of a hierarchical state machine cor-
responds to the execution of a command. However, the se-
mantics of constructs available in SMACH is limited for rea-
soning on goals and states, and there is no planning.

The Reactive Model-based Programming Language
(RMPL) (Ingham, Ragno, and Williams 2001) is an object-
oriented language that allows a domain to be structured
through an object hierarchy with subclasses and multiple in-
heritance. It combines a system model with a control model,
using state-based, procedural control and temporal represen-
tations. The system model specifies nominal as well as fail-
ure state transitions with hierarchical constraints. The con-
trol model uses standard reactive programming constructs.
RMPL programs are transformed into Temporal Plan Net-
works (TPN)(Williams and Abramson 2001), an extension
of Simple Temporal Networks with symbolic constraints
and decision nodes. Temporal reasoning consists in finding
a path, i.e., a plan, in the TPN that meets the constraints.
The execution of generated plans allows for online choices
(Conrad, Shah, and Williams 2009). TPNs are extended with
error recovery, temporal flexibility, and conditional execu-
tion based on the state of the world (Effinger, Williams, and
Hofmann 2010). Primitive tasks are specified with distri-
butions of their likely durations. A probabilistic sampling
algorithm finds an execution guaranteed to succeed with a
given probability. Probabilistic TPN are introduced in (San-
tana and Williams 2014) with the notions of weak and strong
consistency. (Levine and Williams 2014) add the notion of
uncertainty to TPNs for contingent decisions taken by the
environment or another agent. The acting system adapts the
execution to observations and predictions based on the plan.
RMPL and subsequent developments have been illustrated

with a service robot which observes and assists a human.
It is a quite comprehensive CSP-based approach for tempo-
ral planning and acting; it provides refinement, instantiation,
time, nondeterminism, a plan repair. Our approach does not
handle time; it focuses instead on decomposition into com-
municating asynchronous components.

Behavior trees (BT) (Colledanchise 2017; Colledanchise
and Ögren 2017) aim at integrating acting and planning
within a hierarchical representation. Similarly to our frame-
work, a BT can reactively respond to contingent events that
were not predicted. The authors propose a mechanism to
synthesize a BT that has a desired behavior. The construc-
tion of the tree refines the acting process by mapping the
descriptive model of actions onto an operational model. Our
approach is different since APE provides the rich and general
control constructs of a programming language and we do
planning directly within the operational model, rather than
through a mapping from the descriptive to an operational
model. Moreover, the BT approach does not allow for re-
finement methods, which are a rather natural and practical
way to specify different possible refinements of tasks.

Approaches based on temporal logics or situation calculus
(Doherty, Kvarnström, and Heintz 2009; Hähnel, Burgard,
and Lakemeyer 1998; Claßen et al. 2012; Ferrein and Lake-
meyer 2008) specify acting and planning knowledge through
high-level descriptive models and not through operational
models like used in APE. Moreover, these approaches inte-
grate acting and planning without exploiting the hierarchical
approach based on refinement methods described in this pa-
per.

Our framework has some similarities with HTN (see, e.g.,
(Nau et al. 1999)), since tasks can be refined with different
methods. However, our methods are significantly different
from HTN ones since our methods are programs that can
encode rich control constructs rather than simple sequences
of primitive tasks. This is what allows us to provide a frame-
work for acting and planning.

(Bucchiarone et al. 2013) propose a hierarchical represen-
tation framework that includes abstract actions and that can
interleave acting and planning for composing web services.
However this work focus on distributed processes, which are
represented as state transition systems, and does not allow
for refinement methods.

Finally, a wide literature on probabilistic planning and
Monte Carlo tree search refers to simulated execution, e.g.,
(Feldman and Domshlak 2013; Feldman and Domshlak
2014; Kocsis and Szepesvári 2006; James, Konidaris, and
Rosman 2017) and sampling outcomes of action models
e.g., the RFF algorithm (Teichteil-Königsbuch, Infantes, and
Kuter 2008), FF-replan (Yoon, Fern, and Givan 2007) and
hindsight optimization (Yoon et al. 2008). Beyond the fact
that all these works are based on a probabilistic MDP frame-
work, the main conceptual and practical difference with our
work is that they consider just a descriptive model, i.e., ab-
stract actions on finite MDPs. Their focus is therefore en-
tirely on planning, and do not allow for an integration of
acting and planning. Most of the papers refer to doing the
planning online – but they are doing the planning using de-
scriptive models rather than operational models. There is no
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notion of integration of acting and planning, hence no notion
of how to maintain consistency between the planner’s de-
scriptive models and the actor’s operational models. More-
over, they have no notion of hierarchy and refinement meth-
ods.

Operational Models
Our formalism for operational models of actions is based on
the one in (Ghallab, Nau, and Traverso 2016, Chapter 3).
It has features that allow for dealing with a dynamic envi-
ronment which has other actors and exogenous events. The
main ingredients are tasks, events, commands, refinement
methods, and state variables. Some of the state variables are
observable, i.e., the execution platform will automatically
keep them up-to-date through sensing operations. We illus-
trate this representation through the following examples.
Example 1. Consider several robots (UGVs and UAVs)
moving around in a partially known terrain, performing op-
erations such as data gathering, processing, screening and
monitoring. In this domain, let
• R = {g1, g2, a1, a2} be the set of robots,
• L = {base, z1, z2, z3, z4} be the set of locations,
• survey(r, l) be a command performed by robot r in loca-

tion l that surveys l and collects data
• loc(r) ∈ L and data(r) ∈ [0, 100] be observable state

variables that contain the robot r’s current location and
the amount of data it has collected.
Let explore(r, l) be a task for robot r ∈ R to reach loca-

tion l ∈ L and perform the command survey(r, l). In order
to survey, the robot needs some equipment that might either
be available or in use by another robot. Robot r should col-
lect the equipment, then move to the location l and execute
the command survey(r, l). Each robot can carry only a lim-
ited amount of data. Once its data storage is full, it can ei-
ther go and deposit data to the base, or transfer it to an UAV
via the task depositData(r). Here is a refinement method to
do this.

m1-explore(r, l)
task: explore(r, l)

body: get-Equipment(r, ‘survey’)
moveTo(r, l)
if loc(r) = l then:

Execute command survey(r, l)
if data(r) = 100 then:

depositData(r)
return success

else return failure

Above, get-Equipment(r, ‘survey’), moveTo(r, l) and de-
positData(r) are subtasks which need to be further refined
via suitable refinement methods. Only UAVs have the ability
to fly. So, there can be different possible refinement methods
for the task moveTo(r, l) based on whether r can fly or not.

Each robot can hold a limited amount of charge and is
rechargeable. Depending on what locations it needs to sur-
vey, it might need to recharge by going to the base where
the charger is located. Different ways of doing this can be
captured by multiple refinement methods for the task doAc-
tivities(r, locList). Here are two of them:

m1-doActivities(r, locList)
task: doActivities(r, locList)

body: for l in locList do:
explore(r, l)

moveTo(r, ‘base’)
if loc(r) = ‘base’:

recharge(r)
else return failure
return success

m2-doActivities(r, locList)
task: doActivities(r, locList)

body: for l in locList do:
explore(r, l)
moveTo(r, ‘base’)
if loc(r) = ‘base′:

recharge(r)
else return failure

return success

Note that a refinement method for a task t specifies how
to perform t, i.e., it gives a procedure for accomplishing t by
performing subtasks, commands and state variable assign-
ments. This procedure can include any of the usual program-
ming constructs, e.g., if-then-else, loops and so forth.

The above example illustrates tasks and refinement meth-
ods. Let us give the robots a method for reacting to an event.
Example 2. Suppose that an alien is spotted in one of the
locations l ∈ L of Example 1 and a robot has to react to it
by stopping its current activity and going to l. Let us repre-
sent this with an event alienSpotted(l). We also need an ad-
ditional state variable: alien-handling(r)∈{T, F} which indi-
cates whether the robot r is engaged in handling an alien.
Here is a refinement method for this event:

m-handleAlien(r, l)
event: alienSpotted(l)
body: if alien-handling(r) = F then:

alien-handling(r)← T
moveToAlien(r, l)
Execute command negotiate-with-alien(r, l)
alien-handling(r)← F
return success

else return failure

This method can succeed if robot r is not already engaged in
negotiating with another alien. After negotiations are over,
the methods changes the value of alien-handling(r) to F.

APE and APE-plan
Algorithm 1, APE (Acting and Planning Engine), is based
loosely on the RAE (Refinement Acting Engine) algorithm
in (Ghallab, Nau, and Traverso 2016, Chapter 3). APE’s first
inner loop (line (1)) reads each new job, i.e., each task or
event that comes in from an external source such as the user
or the execution platform, as opposed to the subtasks gen-
erated by APE’s refinement methods. For each such job τ ,
APE creates a refinement stack analogous to a computer pro-
gram’s execution stack. Agenda is the set of all current re-
finement stacks.

In the second inner loop (line (4)), for each refinement
stack in Agenda, APE progresses the topmost stack ele-
ment by one step. The stack element includes (among other
things) a task or event τ and the method instance m that
APE has chosen to use for τ . The body of m is a program,
and progressing the stack element (the Progress subroutine)
means executing the next step in this program. This may in-
volve monitoring the status of a currently executing com-
mand (line (6)), following a control structure such as a loop
or if-then-else (line (7)), executing an assignment statement,
sending a command to the execution platform, or handling
a subtask τ ′ by pushing a new stack element onto the stack
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APE( )
Agenda← empty list
loop

for each new task or event τ in the input stream, do (1)
s← current state
M ← {applicable method instances for τ in state s}
T ← APE-plan(M, s, τ) (2)
if T = failed then output(“failed to address”, τ )
else do

m← the method instance at the top of T (3)
stack← a new, empty refinement stack
push (τ,m, nil, ∅) onto stack
insert stack into Agenda

for each stack ∈ Agenda do (4)
Progress(stack)
if stack is empty then remove it from Agenda (5)

Progress(stack)
(τ,m, step, tried)← top(stack)
if step 6= nil then // i.e., if we have started executing m

// step is the current step of m
if type(step) = command then (6)

// step is running on the execution platform
case execution-status(step):

still-running: return
failed: Retry(stack); return
successful: pass // continue to next line

if there are no more steps in m then pop(stack); return
step← next step of m after accounting for the effects

of control statements (loops, if-then-else, etc.) (7)
case type(step):

assignment: update s according to step; return
command:

send step to the execution platform; return (8)
task: pass // continue to next line

τ ′ ← step; s← current state (9)
M ′ ← {applicable method instances for τ ′ in state s}
T ′ ← APE-plan(M ′, s, τ ′) (10)
if T ′ = failed then Retry(stack); return
m′ ← the method instance at the top of T ′ (11)
push (τ ′,m′, nil, ∅) onto stack (12)

Retry(stack)
(τ,m, step, tried)← pop(stack)
add m to tried // the things we tried that didn’t work
s← current state
M ← {applicable method instances for τ in state s}
T ← APE-plan(M \ tried, s, τ) (13)
if T 6= failed then

m′ ← the method instance at the top of T (14)
push (τ,m′, nil, tried) onto stack

else if stack is empty then
output(“failed to accomplish”, τ )
remove stack from Agenda

else Retry(stack)

Algorithm 1: APE, the Acting and Planning Engine.

(line (12)). A method succeeds in accomplishing a task when
it returns without any failure.

Whenever APE creates a stack element for a task τ , it must
choose (lines (3), (11), and (14)) a method instance m for τ .
In order to make an informed choice of m, APE calls (lines

(2), (10), and (13)) a planner, APE-plan, that returns a plan
for accomplishing τ . The returned plan, T , will begin with
a method m to use for τ . If m contains subtasks, then T
must include methods for accomplishing them (and so forth
recursively), so T is a tree with m at the root.

Once APE has selected m, it ignores the rest of T . Thus
in line (9), where m has a subtask τ ′, APE doesn’t use the
method that T used for τ ′. Instead, in line (11), APE calls
APE-plan to get a new plan T ′ for τ ′. This is a receding-
horizon search analogous to how a game-playing program
might call an alpha-beta game-tree search at every move.1

The pseudocode of APE-plan is given in the appendix. It is
a modified version of the APE pseudocode that incorporates
these main modifications:

1. Each call to APE-plan returns a refinement tree T whose
root node contains a method instancem to use for τ . The
children of this node include a refinement tree (or termi-
nal node) for each subtask (or command, respectively)
that APE-plan produced during its Monte Carlo rollout
of m.

2. In lines (2), (10), and (13), APE-plan calls itself recur-
sively on a set M ′ ⊆ M that contains the first b mem-
bers ofM a list of method instances ordered according to
some domain-specific preference order (with M ′ = M
if |M | < b), where b is a parameter called the search
breadth.This produces a set of refinement trees. If the set
is nonempty, then APE-plan chooses one that optimizes
cost, time or any other user-specified objective function.
If the set is empty, then APE-plan returns the first method
instance from M ′ if |M ′| >= 1; otherwise it returns
failed. See Figures 5 and 6 in the appendix for more
details.

3. Each call to Retry is replaced with an expression that just
returns failed. While APE needs to retry in the real world
with respect to the real actual state, APE-plan considers
that a failure is simply a dead end for that particular se-
quence of choices.

4. In line (8) (the case where step is a command), instead
of sending step to the actor’s execution platform, APE-
plan invokes a predictive model of what the execution
platform would do. Such a predictive model may be any
piece of code capable of making such a prediction, e.g.,
a deterministic, nondeterministic, or probabilistic state-
transition model, or a simulator of some kind. Since dif-
ferent calls to the predictive model may produce differ-
ent results, APE-plan calls it b′ times, where b′ is a pa-
rameter called the sample breadth. From the b′ trial runs,
APE-plan gets an estimate of step’s expected time, cost,
and probability of leading to success. See Figures 8 and
10 in the appendix for more details.

1(Ghallab, Nau, and Traverso 2016) describes a “lazy looka-
head” in which an actor keeps using its current plan until an unex-
pected outcome or event makes the plan incorrect, and a “concur-
rent lookahead” in which the acting and planning procedures run
concurrently. We tried implementing these for APE, but in our ex-
perimental domains they did not make much difference in APE’s
performance.
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5. Finally, APE-plan has a search depth parameter d. When
APE calls APE-plan, APE-plan continues planning ei-
ther to completion or depth d, whichever comes earlier.
Such a parameter can be useful in real-time environ-
ments where there may not be enough time to plan all
the way to completion.

Experimental Evaluation
Domains
We have implemented and tested our framework on four do-
mains. The Explorable Environment domain (EE) extends
the UAVs and UGVs setting of Example 1 with some addi-
tional tasks and refinement methods. This domain has dead
ends because a robot may run of charge in an isolated loca-
tion.

The Chargeable Robot Domain (CR) consists of several
robots moving around to collect objects of interest. The
robots can hold a limited amount of charge and are recharge-
able. To move from one location to another, the robots use
Dijkstra’s shortest path algorithm. The robots don’t know
where objects are unless a sensing action is performed in
the object’s location. They have to search for an object be-
fore collecting it. Also, the robot may or may not carry the
charger with it. The environment is dynamic due to emer-
gency events as in Example 2. A task reaches a dead end
when a robot, which is far away from the charger, has run
out of charge.

The Spring Door domain (SD) has several robots are try-
ing to move objects from one room to another in an envi-
ronment with a mixture of spring doors and ordinary doors.
Spring doors close themselves unless they are held. A robot
cannot carry an object and hold a door simultaneously. So,
whenever it needs to move through a spring door, it needs to
ask for help from another robot. Any robot which is free can
act as the helper. The environment is dynamic because the
the type of door is unknown to the robot. But, there are no
dead ends.

The Industrial Plant domain (IP) consists of an industrial
workshop environment, as in the RoboCup Logistics League
competition. There are several fixed machines for painting,
assembly, wrapping and packing. As new orders for assem-
bly, paint, etc., arrive, carrier robots transport the necessary
objects to the required machine’s location. An order can be
complex, like, paint two objects, assemble them together,
and pack the resulting object. Once the order is done, the
final product is delivered to the output buffer. The environ-
ment is dynamic because the machines may get damaged
and need repair before being used again; but there are no
dead ends.

These four domains have different properties, summa-
rized in Figure 1. CR includes a model for the sensing ac-
tion where the robot can sense a location and identify ob-
jects in that location. SD models a situation where robots
need to collaborate with each other. They can ask for help
from each other. EE models a combination of robots with
different capabilities (UGVs and UAVs) whereas in the other
three domains all robots have same capabilities. It also mod-
els collaboration like the SD domain. In the IP domain, the

Domain Dynamic Dead Sensing Robot Concurrent
events ends collaboration tasks

CR X X X – X
EE X X – X X
SD X – – X X
IP X – – X X

Figure 1: Properties of our domains

allocation of tasks among the robots is hidden from the user.
The user just specifies their orders; the delegation of the sub-
tasks (movement of objects to the required locations) is han-
dled inside the refinement methods. CR and EE are domains
that can represent dead-ends, whereas SD and IP do not have
dead-ends.

Experiments and Analysis
The objective of our experiments was to examine how APE’s
performance might depend on the amount of planning that
we told APE to do. For this purpose, we created a suite of
test problems. Each test problem included 1 to 4 jobs to ac-
complish, and for each job, there was a randomly chosen
time point at which it would arrive in APE’s input stream.

The amount of planning done by APE-plan depends on its
search breadth b, sample breadth b′, and search depth d. We
used b′ = 1 (one outcome for each command), and d = ∞
(planning always proceeded to completion), and five differ-
ent search breadths, b = 0, 1, 2, 3, 4. Since APE tries b al-
ternative refinement methods for each task or subtask, the
number of alternative plans examined by APE is exponential
in b. As a special case, b = 0 means running APE in a purely
reactive way without any planning at all. Our objective func-
tion for the experiments is the number of commands in the
plan.

In the CR, EE, SD and IP domains, our test suites con-
sisted of 60, 54, 60, and 84 problems, with the numbers of
jobs to accomplish being 114, 126, 84 and 276, respectively.
In our experiments we used simulated versions of the four
environments, running on a 2.6 GHz Intel Core i5 processor.

Success ratio. Figure 2 shows APE’s success ratio, the pro-
portion of jobs that it successfully accomplished in each do-
main. For the two domains with dead ends (CR and EE), the
success ratio generally increases as we increase the value
of b. In the CR domain, the success ratio makes a big jump
from b = 1 to b = 2 and then remains nearly the same for
b = 2, 3, 4. This is because for most of the CR tasks, the sec-
ond method in the preference ordering (in our experiments,
this order is decided by the domains’ author)turned out to
be the best one, so higher value of b did not help much. In
contrast, in the EE domain, the success ratio continued to
improve significantly for b = 3 and b = 4.

In the domains with no dead ends, b didn’t make very
much difference in the success ratio. In the IP domain, b
made almost no difference at all. In the SD domain, the suc-
cess ratio even decreased slightly from b = 1 to b = 4. This
is because in our preference ordering for the tasks of the SD
domain, the methods appearing earlier are better suited to
handle the events in our problems whereas the methods ap-
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Domains having dead ends: Domains having no dead ends:

Figure 2: Success ratio (number of successful jobs / total
number of jobs) for different values of search breadth b.

pearing later produce plans that are shorter but less robust to
unexpected events. These experiments confirm the expecta-
tion that planning is critical in domains where the actor may
get stuck in dead ends. It also has benefits in acting costs (the
retry ratio and speed to success measurements described be-
low).

Retry ratio. Figure 3 shows the retry ratio, i.e., the number
of times that APE had to call the Retry procedure, divided by
the total number of jobs to accomplish. The Retry procedure
is called when there is a failure in the method instancem that
APE chose for some task τ (see Algorithm 1). Retry works
by trying to use another applicable method instance for τ
that it hasn’t tried already. Although this is a little like back-
tracking, a critical difference is that since the method m has
already been partially executed, it has changed the current
state, and in real-world execution (unlike planning), there is
no way to backtrack to a previous state. In many applica-
tion domains it is important to minimize the total number
of retries, since recovery from failure may incur significant,
unbudgeted amounts of time and expense.

In all four of the domains, the retry ratio decreases slightly
from b = 0 (purely reactive APE) to b = 1, and it generally
decreases more as b increases. This is because higher values
of b make APE-plan examine a larger number of alternative
plans before choosing one, thus increasing the chance that it
finds a better method for each task. In the CR domain, the
big decrease in retry ratio from b = 1 to b = 2 corresponds
to the increase in success ratio observed in Figure 2. The
same is true for the EE domain at b = 2 and b = 4. Since the
retry ratio decreases with increasing b in all four domains,
this means that the integration of acting and planning in APE
is important in order to reduce the number of retries.

Speed to success. An acting-and-planning system’s perfor-
mance cannot be measured only with respect to the time
to plan; it must also include the time to success, i.e., the
total amount of time required for both planning and act-
ing. Acting is in general much more expensive, resource
demanding, and time consuming than planning; and unex-
pected outcomes and events may necessitate additional act-
ing and planning.

For a successful job, the time to success is finite, but for a
failed job it is effectively infinite. To make all of the numbers
finite so that they can be averaged, we use the reciprocal

Domains having dead ends: Domains having no dead ends:

Figure 3: Retry ratio (number of retries / total number of
jobs) for different values of search breadth b.

Domains having dead ends: Domains having no dead ends:

Figure 4: Speed to success ν averaged over all of the jobs,
for different values of search breadth b.

amount, the speed to success, which we define as follows:

ν =

{
0 if the job isn’t successful,
α/(tp + ta + nctc) if the job is successful,

where α is a scaling factor (we used α = 10, 000, otherwise
all of our numbers would be very small), tp and ta are APE-
plan’s and APE’s total computation time, nc is the number of
commands sent to the execution platform, and tc the average
amount of time needed to perform a command. In our exper-
iments we used tc = 250 seconds. The higher the average
value of ν, the better the performance.

Figure 4 shows how the average value of ν depends on
b. In the domains with dead-ends (CR and EE), there is a
huge improvement in ν from b = 1 (where ν is nearly 0)
to b = 2. This corresponds to a larger number of successful
jobs in less time. As we increase b further, we only see slight
change in ν for all the domains even though the success ratio
and retry ratio improve (Figures 2 and 3). This is because of
the extra time overhead of running APE-plan with higher b.

In summary, for domains with dead ends, planning with
APE-plan outperforms purely reactive APE. The same oc-
curs to some extent in the domains without dead ends, but
there the effect is less pronounced thanks to the good do-
main specific heuristics in our experiments.

Concluding Remarks
We have proposed a novel algorithm APE for integrating
acting and planning using the actor’s operational models.
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Our experimentation covers different interesting aspects of
realistic domains, like dynamicity, and the need for run-
time sensing, information gathering, collaborative and con-
current tasks (see Figure 1). We have shown the difference
between domains with dead ends, and domains without dead
ends through three different performance metrics: the suc-
cess ratio, retry ratio and speed to success. We saw that act-
ing purely reactively in the domains with dead ends can be
costly and dangerous. The homogenous and sound integra-
tion of acting and planning provided by APE is of great ben-
efit for domains with dead ends which is reflected through a
higher success ratio. In most of the cases, the success ratio
increases with increase in the parameter, search breadth, b
of APE-plan. In the case of safely explorable domains, APE
manages to have a similar ratio of success for all values of b.

Our second measure, the retry ratio, counts the number of
retries of the same task done by APE before succeeding. Per-
forming many retries is not desirable, since this has a high
cost and faces the uncertainty of execution. We have shown
that both in domains with dead ends and without, the retry
ratio significantly diminishes with APE-plan, demonstrating
the benefits of using APE-plan also in safely explorable do-
mains.

Finally we have devised a novel, and we believe realistic
and practical way, to measure the performance of APE and
similar systems. While most often the experimental evalu-
ation of systems addressing acting and planning is simply
performed on the sole planning functionality, we devised a
speed to success measure to assess the overall time to plan
and act, including failure cases. It takes into account that
the time to execute commands in the real world are usu-
ally much longer than the actor’s computation time. We have
shown that, in general, the integration of APE-plan reduces
time significantly in the case of domains with dead ends,
while there is not such significant decrease in performance
in the case of safely explorable domains.

Future work will include more elaborate experiments,
with more domains and test cases, and different settings of
APE-plan’s search breadth, search depth, and sample breadth
parameters. We also plan to test with different heuristics,
compare APE with other approaches cited in the related
work, and finally do testing in the physical world with ac-
tual robots.

Appendix
In this section, we describe the pseudocode of APE-plan, the
planner of our acting-and-planning engine, APE. b, b′ and d
are global variables representing the search breadth, sample
breadth and search depth respectively (described in the main
paper). The main procedure of APE-plan is shown in Fig-
ure 5. APE-plan receives as input a task τ to be planned for,
a set of methodsM and the current state s. APE-plan returns
a refinement tree T for τ . It starts by creating a refinement
tree with a single node n labeled τ and calls a sub-routine
APE-plan-Task which builds a complete refinement tree for
n.

APE-plan has three main sub-procedures: APE-plan-Task,
APE-plan-Method and APE-plan-Command. APE-plan-Task
looks at b method instances for refining a task τ . It calls

APE-plan (M, s, τ)
n← new tree node
label(n)← τ
T0 ← tree with only one node n
(T, v)← APE-plan-Task(s, T0, n,M, 0)
if v 6= failure then

return (T, v)
else:

B ← { Applicable method instances for τ in M
ordered according to a preference ordering }

if B 6= ∅ then
n← Create new node
label(n)← B[1]
T ← tree with only one node n as the root
return (T, 0)

else:
return null, failure

Figure 5: The pseudocode of the planner used by APE

APE-plan-Method for each of the b method instances and re-
turns the tree with the most optimal value. Every refinement
tree has a value based on probability and cost. Once APE-
plan-Task has chosen a method instance m for τ , it re-labels
the node n from τ to m, in the current refinement tree T .
Then it simulates the steps in m one by one by calling the
sub-routine APE-plan-Method.

APE-plan-Task (s, T, n,M, dcurr)
τ ← label(n)
B ← { Applicable method instances for τ in M ordered

according to a preference ordering }
if |B| < b then

B′ ← B
else:

B′ ← B[1...b]
U, V ← empty dictionaries
for each m ∈ B′ do

label(n)← m
U [m], V [m]← APE-plan-Method(

s, T, n,M, dcurr + 1)
mopt ← arg-optimalm{V [m]}
return (U [mopt], V [mopt])

Figure 6: The pseudocode for APE-plan-Task

APE-plan-Method first checks whether the search has
reached the maximum depth. If it has reached the maximum
depth, APE-plan-Method makes an heuristic estimate of the
cost and predicts the next state after going through the steps
present inside the method. Otherwise, it creates a new node
in the current refinement tree T labeled with the first step in
the method. If the step is a task, then APE-plan-Task is called
for the task. If the step is a command, then APE-plan-Method
calls the sub-routine APE-plan-Command.

APE-plan-Command first calls the sub-routine Sam-
pleCommandOutcomes. SampleCommandOutcomes sam-
ples b′ outcomes of the command com in the current state s.
The sampling is done from a probability distribution speci-
fied by the domain’s author. SampleCommandOutcomes re-
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APE-plan-Method (s, T, n,M, dcurr)
m← label(n)
if dcurr = d then

s′, cost′ ← HeuristicEstimate(s,m)
n′, d′ ← NextStep (s′, T, n, dcurr)

else:
step← first step in m
n′ ← new tree node
label(n′)← step
Add n′ as a child of n
d′ ← dcurr
cost′ ← 0
s′ ← s

case type(label(n′)):
task: T ′, v′ ← APE-plan-Task(s′, T, n′,M, d′)
command: T ′, v′ ← APE-plan-Command(

s′, T, n′,M, d′)
end: T ′ ← T ; v′ ← 0

return (T ′, v′ + cost′)

Figure 7: The pseudocode for APE-plan-Method

APE-plan-Command (s, T, n,M, dcurr)
res← SampleCommandOutcomes (s, label(n))
value← 0
for (s′, v, p) in res do

n′, d′ ← NextStep (s′, T, n, dcurr)
case type(label(n′)):

command:
Ts′ , vs′ ← APE-plan-Command(

s′, T, n′,M, dcurr)
task:

Ts′ , vs′ ← APE-plan-Task(s′, T, n′,M, dcurr)
end:

Ts′ ← T ; vs′ ← 0
value← value+ (p ∗ (v + vs′))

return T, value

Figure 8: The pseudocode for APE-plan-Command

turns a set consisting of three tuples of the form (s′, v, p),
where s′ is a predicted state after performing command com,
and v and p are the cost and probabilities of reaching that
state estimated from the sampling. We need the next state
s′ to build the remaining portion of the refinement tree T
starting from the state s′. The cost v contributes to the ex-
pected value of T with probability p. Now, after getting this
list of three tuples from SampleCommandOutcomes, APE-
plan-Command calls the NextStep sub-routine.

NextStep (shown in Figure 9) takes as input the current
refinement tree T and the current node n being explored. If
n refers to some task or command in the middle of a refine-
ment method m, then NextStep creates a new node labeled
with the next step inside m. The depth of nnext will be same
as n. Otherwise, if n is the last step of m, it continues to
loop and travel towards the root of the refinement tree until
it finds the root or a method that has not been fully simulated
yet. It returns end when T is completely refined or a node
labeled with the next step in T according to s and its depth.

NextStep (s, T, n, dcurr)
dnext ← dcurr
while(True)

nold ← n
n← parent(nold) in T
m← label(n)
step← next step in m after label(nold) depending on s
if step is not the last step of m then

nnext ← new tree node
label(nnext)← step
break

else
dnext ← dnext − 1
if dnext = 0 then

nnext ← new tree node
label(nnext)← end
break

else
continue

return nnext, dnext

Figure 9: The sub-routine NextStep

After APE-plan-Command gets a new node n′ and its
depth from NextStep, it calls APE-plan-Command or APE-
plan-Task depending on the label of n′. It does this for every
s′ in res and estimates a value for T from these runs.

SampleCommandOutcomes (s, com)
S ← φ
Cost,Count← empty dictionaries
loop b′ times:

s′← Sample(s, com)
S ← S ∪ {s′}
if s′ in Count:

Count[s′]← 1
Cost[s′]← costs,m[i](s

′)
else:

Count[s′]← Count[s′] + 1
normalize(Count)
res← φ
for s′ ∈ S do

res← res ∪ {(s′,Cost[s′],Count[s′])}
return res

Figure 10: The sub-routine SampleCommandOutcomes
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1 Introduction
Since its introduction by (Vidal and Ghallab 1996) and (Vi-
dal and Fargier 1999), there has been considerable research
in the area of controllability of temporal networks in the
presence of uncertainty. Controllability asks: can events be
scheduled to satisfy constraints in the presence of uncer-
tain outcomes? The simplest problems assume no qualita-
tive information is known about the timing of some events.
More complex problems combine temporal constraints, un-
certainty, and preferences. Uncertainty can be generalized so
that algorithms must handle probabilities over when events
occur. When it is impossible to ensure all constraints are
satisfied, bounding below the probability of a constraint vi-
olation leads to new risk-bounded and chance-constrained
problems; if the solution is still unsatisfactory, the con-
straints and risk bound can be relaxed.

Diverse though these problems are, there are gaps in ex-
isting research, as well as new problems to address. We sys-
tematically describe recent results on controllability of tem-
poral networks with uncertainty in order to understand the
current state of the art in controllability problems and al-
gorithms, and rationalize prior definitions. We then examine
results for these problems, and identify gaps in problems that
have been studied. Finally, we provide recommendations for
work in this area, both to study newly identified problems,
and to revisit old problems with new approaches.

The scope of this paper is limited to generalizations of
the Simple Temporal Network (STN) to include probabil-
ity, bounds on failure, preferences, and costs on relaxation
of constraints and the bounds on failure. While recent work
also includes control of disjunctive temporal networks, con-
ditional constraints, and partial observability, a more com-
plete survey is left to future work.

2 Notation and Definitions
Definition 1 (STN) (Dechter, Meiri, and Pearl 1991) Sim-
ple Temporal Networks (STNs) consist of timepoints T with
domain of ti ∈ T = R. and constraints c(ti, tj) of the form
(tj − ti) ∈ [lti,tj , uti,tj ].

Definition 2 (STNU) (Vidal and Ghallab 1996) (Vidal and
Fargier 1999) Simple Temporal Networks with Uncertainty
(STNUs) consist of Activated time-points ai, i.e. those as-
signed by the agent, A = ∪iai and received time-points ri,

i.e. those assigned by the external world, R = ∪iri. The set
of timepoints T = A ∪ R. The domain of ti ∈ T = R. Free
constraints c(ti, tj) have the form (tj − ti) ∈ [lti,tj , uti,tj ].
Let C = ∪ti,tj c(ti, tj). Contingent constraints g(ai, rj)
have the form (rj − ai) ∈ [lai,rj , uai,rj ] where ai ∈ A, rj ∈
R; the semantics is that ∃v ∈ [lai,rj , uai,rj ] | rj − ai = v
but v is only observed during execution. Let G = ∪ai,rj
g(ai, rj). An STNU is a 4-tuple <A,R,C,G >.
Definition 3 A schedule s is an assignment to ai ∈ A. De-
note the value of ai in s by s(ai). Denote by S the set of all
schedules.

Ideally, a schedule works regardless of the uncertain out-
comes in an STNU. A less stringent requirement is to gen-
erate a strategy that reacts to observed events to ensure con-
straints are satisfied. These ideas are formalized in the defi-
nitions of controllability of STNUs.
Definition 4 (Controllability of STNU) (Vidal and
Fargier 1999) Let P be an STNU. Let V = ×gai,rj

[lai,rj , uai,rj ] (the cross product of all possible uncertain
outcomes of all contingent constraints). P is Strongly Con-
trollable (SC) if there is a schedule s such that ∀v ∈ V , s
satisfies all constraints c(ti, tj). Denote the time a received
timepoint ri occurs and is observed by v(ri); denote the
time a controllable event ai is executed by e(ai). P is
Dynamically Controllable (DC) if there is an execution
strategy πdc satisfying all constraints c(ti, tj), such that
e(ai) derived from πdc may depend only on previously
observed uncontrollable event occurrences v(rj) ≤ e(ai).

Controllability in the presence of preferences typically
must achieve the best possible schedule, with an option to
‘ignore’ outcomes that lead to preferences below a thresh-
old, as formalized below:
Definition 5 (STPPU) (Rossi, Venable, and Yorke-Smith
2006) Let fs be a preference function on schedules. A Sim-
ple Temporal Problems with Preferences and Uncertainty
(STPPU) is a 5-tuple <A,R,C,G,fs >.
Definition 6 Let P be an STPPU. Let V = ×gai,rj

[lai,rj , uai,rj ] (the cross product of all possible uncertain
outcomes of all contingent constraints). fs(s, v) is the value
of a schedule s combined with a set of outcomes v ∈ V . Let
fs(opt, v) = maxs fs(s, v) be the value of the best schedule
given outcome v.
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Definition 7 (Controllability of STPPUs) (Rossi, Ven-
able, and Yorke-Smith 2006) Let P be an STPPU. P
is Optimally Strongly Controllable (OSC) if there is a
schedule s such that ∀v ∈ V , s satisfies all constraints
c(ai, rj) and s is optimal for each v ∈ V (that is,
∀v ∈ V, (∀s′ ∈ S(fs(s

′, v) ≤ fs(s, v))).
P is α-Strongly Controllable (α-SC) if, ∀v ∈ V , s

satisfies all constraints c(ai, rj) and fs(opt, v) ≤ α ⇒
fs(s, v) ≤ fs(opt, v).
P is Optimally Dynamically Controllable (ODC) if there

is an execution strategy πodc satisfying all constraints
c(ti, tj) such that, for v1, v2 ∈ V , 1) s(ai) derived from
πodc may differ depending only on previously observed un-
controllable event occurrences in v1, v2, 2) s1 is a schedule
consistent with v1 and s2 is a schedule consistent with v2

and 3) fs(s1, v1) and fs(s2, v2) are optimal.
P is α-Dynamically Controllable (α-DC) if if there is an

execution strategy παdc satisfying all constraints c(ti, tj)
such that, for v1, v2 ∈ V , 1) s(ai) derived from παdc may
differ depending only on previously observed uncontrollable
event occurrences in v1, v2, 2) s1 is a schedule consistent
with v1 and s2 is a schedule consistent with v2 and 3)
fs(s1, v1) ≤ α and fs(s2, v2) ≤ α

PSTNs generalize STNUs by adding probability of dura-
tion. Typical approaches transform a PSTN into an STNU
and then evaluate controllability. Risk describes the proba-
bility that, given a schedule or strategy, an outcome v ∈ V
violates some constraint. To compute risk for an STNU,
we must measure how much probability mass is not cov-
ered after ‘squeezing’ to transform it into a contingent link,
i.e. transforming d(ai, rj) to g(ai, rj). We formalize the
’squeeze’ operation below.

Definition 8 (PSTN) (Tsamardinos 2002) Let a probabilis-
tic duration constraint d(ai, rj) : Ωai,rj → R+ be a random
variable describing the probability of the difference rj − ai,
P (v(rj)−s(ai) = ω), where ai ∈A, rj ∈R. LetD= ∪ai,rj
d(ai, rj). (Duration constraints d(ri, rj) are also permit-
ted.) A Probabilistic Simple Temporal Networks (PSTN) is
a 4-tuple <A,R,C,D>.

Definition 9 Let ρd:D⇒G transform a duration constraint
into a contingent link by choosing a compact subset
[lai,rj , uai,rj ] ⊂ Ωri . Let ρD = {ρd}. Let P be a PSTN.
Then ρD(P ) = P ′ where P ′ is the STNU derived from P .

Definition 10 Let P be a PSTN. Let P ′ = ρD(P ) be an
STNU derived from P . Let ρd(d(ai, rj)) = g(ai, rj). Let
[lai,rj , uai,rj ] be the contingent constraint interval defined
by g(ai, rj). Let Φg = ω ∈ Ωri |ω ≤ lai,rj . Let Θg = ω ∈
Ωri |ω ≥ uai,rj . The risk of d(ai, rj) relative to ρd, denoted
δ(ρd, d(ai, rj)), is

∫
ω∈Φg∪Θg

P (ω). The symmetric case of
d(ri, aj) is similar. The risk of P relative to ρD, denoted
δ(P, ρD), is 1−

(∏
d∈D(1− δ(ρd, d(ti, tj)))

)
.

Definition 11 P is SC with risk ∆ if ∃P ′ = ρD(P ), P ′

is SC, and δ(P, ρD) =∆. P is DC with risk ∆ if ∃P ′ =
ρD(P ), P ′ is DC, and δ(P, ρD) =∆.

PSTN problems can now be characterized as searching
over ρD in order to minimize δ(P, ρD), or satisfying some

risk bound ∆. While (Wang and Williams 2015) and (Lund
et al. 2017) (implicitly) address this problem, it has not been
crisply distinguished from finding the most preferred sched-
ule while bounding the risk. For this reason, we introduce a
new definition:

Definition 12 (BPSTN) A (Risk-) Bounded PSTNs (BP-
STN) is a PSTN and a risk bound ∆, thus, a 5-tuple
<A,R,C,D,∆ >.

Definition 13 (CCPSTN) (Fang, Yu, and Williams 2014) A
Chance-Constrained PSTN (CCSTN) is a PSTN, a function
fs : S → R, and a risk bound ∆ ∈ [0, 1], thus, a tuple
<A,R,C,D,∆,fs >.

The RCCPSTN of (Yu, Wang, and Williams 2015) allows
relaxation of the free constraints and the risk bound. These
notions are defined somewhat informally; a slightly more
formal definition is provided here.

Definition 14 A relaxation of a constraint c(ti, tj) with
bound [lti,tj , uti,tj ] is defined as a new bound [l′ti,tj , u

′
ti,tj ]

such that l′ti,tj ≤ lti,tj and u′ti,tj > uti,tj or l′ti,tj < lti,tj
and u′ti,tj ≥ uti,tj ; the set of relaxations is denoted R(c).
A relaxation of ∆ is ∆’ > ∆. Denote a PSTN P r that is a
relaxation of P by P ⊂ P r.
Definition 15 (RCCPSTN) (Yu, Wang, and Williams 2015)
A Relaxable CCPSTNs (RCCPSTN) is a PSTN, a risk bound
∆, a set of functions fc : c′ ∈ R(c) → R+, and a function
f∆ : [0, 1]→ R+, thus, a tuple <A,R,C,D,∆,{fc}, f∆ >.

Notes: We define CCPSTNs to include f(s) (schedule op-
timization) because (Fang, Yu, and Williams 2014) was pub-
lished first; we introduce the name BPSTN to distinguish
CCPSTNs from the problem of only minimizing or bound-
ing risk. (Wang and Williams 2015) generalize PSTNs by
permitting multiple risk bounds over subplans; we have not
included this PSTN variant in our definitions. The original
definitions of RCCPSTNs and PSTNs allows bounding the
risk on a subset of the constraints ((Fang, Yu, and Williams
2014) p. 4); other constraints may have arbitrary risk. We
have not made this minor nuance explicit in our definitions.
The definition of RCCPSTNs in (Yu, Wang, and Williams
2015) restricts the set of constraints that can be relaxed; our
definition ensures there is a relaxation function on all the
links and ∆. Finally, we have omitted the PSTNUs of (San-
tana et al. 2016) as they are a minor elaboration of PSTNs.

Table 1 surveys previous work in controllability. Figure
1 shows the relationship between the different controllable
problems described in the definitions. We use the definitions
OSC, α-SC, ODC and α-DC notation from (Rossi, Venable,
and Yorke-Smith 2006) for all problems, even CCPSTNs, in
deference to their early work.

3 Unaddressed Problems, Theoretical
Analysis, and Empirical Studies

In this section we discuss unaddressed problems, theoretical
analysis, and empirical studies that should be undertaken to
advance work in controllability.
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Input Ctrl Risk Opt Notes
STNU SC N/A N/A Polynomial time (O(n3), (Morris 2014)).
STNU DC N/A N/A Polynomial time (O(n3), (Morris 2014)).
STPPU OSC N/A fs Tractable in limited cases (semi-convex preferences on c-semirings) (Rossi, Ven-

able, and Yorke-Smith 2006)
STPPU ODC N/A fs Tractable in limited cases (semi-convex preferences on c-semirings) (Rossi, Ven-

able, and Yorke-Smith 2006)
STPPU α-SC N/A fs Tractable in limited cases (semi-convex preferences on c-semirings) (Rossi, Ven-

able, and Yorke-Smith 2006)
STPPU α-DC N/A fs Tractable in limited cases (semi-convex preferences on c-semirings) (Rossi, Ven-

able, and Yorke-Smith 2006)
PSTN SC mins δ(P, ρD) N/A General optimization. Local Optimal only. (Tsamardinos 2002)
PSTN SC mins δ(P, ρD) N/A Polynomial time (complexity depends on size of LP). Sound but incomplete: risk

is bounded above using piecewise constant bounds on probabilities, complete for
uniform distributions. Empirical results on Gaussian distributions. (Santana et al.
2016)

PSTN DC minρD δ(P, ρD) N/A General optimization. Informal algorithm using SC algorithm described, no re-
sults. (Tsamardinos 2002)

BPSTN SC ∃ρD| δ(P, ρD)≤∆ N/A General optimization. Conflict-driven search over risk. Nonlinear solver allocates
risk, analysis of infeasible STNUs generates conflicts that drive repeated nonlin-
ear search; number of nonlinear solve operations polynomially bounded. Exact
probability of success computed, requires conditionally independent probabili-
ties. (Wang and Williams 2015)

BPSTN SC ∃s| δ(P, ρD) ≤∆ N/A Pseudo-polynomial time; binary search over relaxations of probabilistic ranges,
complexity depends on size of LP. Sound but incomplete, uses LP approximation
of probabilities (nonbounding constant approximation of tails of distributions)
Risk roughly equally allocated over each tail of each probability. Exact probabil-
ity of success computed, requires conditionally independent probabilities. Em-
pirical results on Gaussian distributions with varying σ. (Lund et al. 2017)

BPSTN DC ∃ρD| δ(P, ρD)≤∆ N/A Not considered.
CCPSTN OSC δ(P, ρD) ≤∆ fs General optimization. Optimal, risk is bounded above by

∑
d∈D δ(ρd, d(ti, tj)),

arbitrary (including joint) probability distributions. Empirical results on Gaussian
distributions; objective is makespan. (Fang, Yu, and Williams 2014)

CCPSTN OSC δ(P, ρD) ≤∆ fs Polynomial time (complexity depends on size of LP formed). Sound but incom-
plete in general: risk is bounded above using LP approximation of probabilities
(piecewise constant), complete for uniform distributions. Empirical results on
Gaussian distributions; objective is schedule makespan. (Santana et al. 2016)

CCPSTN α-SC, δ(P, ρD) ≤∆ fs Not considered
CCPSTN ODC, δ(P, ρD) ≤∆ fs Not considered
CCPSTN α-DC, δ(P, ρD) ≤∆ fs Not considered
RCCPSTN SC δ(P, ρD) ≤∆ fc Not considered
RCCPSTN DC δ(P, ρD) ≤∆ fc General optimization. Branch and bound on cost of fixing conflicts. Risk is

bounded above, arbitrary functional form of probability distributions. Empirical
results on Gaussian and Uniform distributions. (Yu, Wang, and Williams 2015)

Table 1: Previous work in controllability.

3.1 Unaddressed Problems
Consider the problem of finding P ′ = ρD(P ) such that P ′ is
DC for a BPSTN P . While unaddressed, the algorithms de-
scribed in (Santana et al. 2016), (Wang and Williams 2015)
or (Lund et al. 2017) can be adapted to address this prob-
lem with relative ease. This is because all search over ρD,
in different ways, then solve a sub-problem to find the best
SC schedule; the sub-problem can instead be a DC check.
While seemingly straightforward, doing so would fill a gap
in controllability research.

Of more interest, there are several unaddressed problems
in finding an optimal DC policy for PSTNs and their descen-
dants. Initially, one could apply the tractability results for
STPPUs with semirings (Rossi, Venable, and Yorke-Smith

2006) to obtain new algorithms and results. However, more
general preference functions should be considered as the
foundation for optimal DC problems, such as the additive
convex preferences of (Morris et al. 2004).

3.2 Controlling for Expected Value
Suppose that the smallest risk for which a controllable
STNU can be extracted from a PSTN is ‘too high’. This
leads to an undesirable states of affairs; either there is no
solution to the PSTN, the RCCPSTN must be used to re-
lax some or all of the constraints, or at execution time, it
is very likely that a bad outcome v ∈ V will break the
strategy. An alternative solution to this problem is to try to
satisfy as many constraints as possible at execution time.
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STN STNU PSTN BPSTN

CCPSTN

RCCPSTN
STPP STPPU EPSTN

(new)

g(ai,rj) d(ai,rj) Δ

g(ti,tj)

fs
fs

fc
fs qc(ti,tj)

ρD

Figure 1: PSTN ’family tree’, including the new EPSTN.

If some constraints are more important than others, then a
natural optimization criteria for the strategy is to maximize
the expected value of satisfied constraints. This new prob-
lem blends several notions explored in the controllability lit-
erature to date. Accepting risk implies accepting outcomes
that violate some constraints. Applying preferences to satis-
fied constraints suggests control of expected schedule qual-
ity based on past information and the probability and cost of
future constraint violations.

Denote by qc(ti, tj) ∈ R+ the value of satisfying con-
straint c(ti, tj). Given a PSTN P , an STNU P ′ = ρD(P ),
satisfying some risk bound ∆, we can compute the expected
value of the schedule; with some more work, we should be
able to do the same for a strategy. This simple Expected
Value PSTN (EPSTN) can then be generalized with more so-
phisticated preferences similar to those used in (Rossi, Ven-
able, and Yorke-Smith 2006) and (Morris et al. 2004).

3.3 Empirical Analysis
(Santana et al. 2016) and (Lund et al. 2017) are similar al-
gorithms for solving controllability problems on PSTNs, in
that they both search over ρD to find STNUs, then employ
LP formulations to find an SC plan; a non-bounding approx-
imation of risk is used in (Lund et al. 2017), a piecewise
constant bound in (Santana et al. 2016). Other LP formu-
lations are possible, e.g. a piecewise linear approximation
of the probability distribution over d(ti, tj) guaranteed to
be convex, using LP formulations in (Frank et al. 2006) and
(Morris et al. 2004), that directly captures the risk of a sched-
ule. All approaches trade low computational complexity for
a loose bound on risk (compared to more powerful nonlin-
ear optimizers). Some approaches may employ larger LPs
but bound risk more tightly, and perhaps eliminate outer-
loop search. A head-to-head comparison of these three ap-
proaches should be done, focusing on tradeoffs of the true
risk achieved vs computation time.

In STNUs, there is no theoretical advantage to pre-
computing the DC policy vs re-solving after new informa-
tion is achieved, because there is a response to all possible
uncertain outcomes. When minimizing or bounding the risk
of a PSTN, recomputation of policies can recover from bad
outcomes (those violating constraints in the STNU), or re-
duce or redistribute the risk when new information is avail-

able. DREA (Lund et al. 2017) recomputes the policy when
new information is achieved; it is therefore unsurprising that
it outperforms algorithms like SREA and DC. The recompu-
tation strategy for DREA should be extended to other PSTN
approaches, e.g. PARIS (Santana et al. 2016); even simple
earliest first with recomputation may be a viable strategy.

Distributions used in prior empirical studies have been
limited to Gaussians and Uniform. Skewed distributions,
heavy-tailed distributions, and bimodal distributions should
also be studied. Joint probability distributions should be
studied, e.g. joint probability over event start time and du-
ration. Such distributions should cause fewer problems for
a recomputation strategy like DREA, as discussed above,
but may lead to poor true risk for static strategies. Study of
such distributions may also lead to a principled algorithm to
produce a DC policy for joint distributions. Finally only a
few benchmarks exist (ride sharing (Fang, Yu, and Williams
2014), UAV (Yu, Wang, and Williams 2015), simple multi-
robot domains (Lund et al. 2017)). More benchmarks, with
different structural properties, should be created.

3.4 Other Theoretical Considerations

STPPs with convex additive preferences as described in
(Morris et al. 2004) can be modeled as LPs using piecewise
linear functions. Additive preferences are more satisfactory
than the ‘max’ semirings used to develop previous STPPU
theory (Rossi, Venable, and Yorke-Smith 2006). The theory
of STPPUs should be extended using such preferences; this
may lead to tractable SC and DC results for STPPUs with
more intuitive and useful preference functions.

The usual means of measuring the flexibility of a schedule
s that addresses the constraints in a scheduling problem is
to evaluate the solution space of the STN derived from the
activity ordering decisions; new work in this area appears
in the main conference (Huang et al. 2018). However, treat-
ing the uncontrollables as controllables in order to measure
flexibility is inappropriate. Fundamentally, flexibility’s pur-
pose is to allow a policy that minimizes risk. If the original
scheduling problem with uncertainty can produce a PSTN or
one of its variants, instead of an STN, we can now pose and
solve problems such as BPSTN to find the minimum risk
STNU, formally defined by δ(P, ρD), for a given PSTN. We
can then look for the schedule whose PSTN achieves the
minimum risk STNU in an ‘outer loop’ search.

It may be possible to transform an RCCPSTN into a
CCPSTN. One transformation (linear decreasing preference
functions for values below or above the bound) leads to
piecewise constant, linear fs; such functions can be posed
and solved in CCPSTNs. Other transformations may be
more complex. If the RCCPSTN is preferred, the reverse
transformation is also worth exploring.

Finally, suppose a BPSTN or other variant of a PSTN
has multiple STNUs of equal risk. Other properties of the
STNUs, derived from the approximation, could be identi-
fied to select the best solution. For instance, is it better to
try evenly distributing risk among uncertain durations as a
secondary criteria?
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Abstract

The CoBot robots, as other service robots, autonomously
navigate in building environments performing different types
of tasks that include item transportation and person guid-
ing between locations. The CoBots can execute their planned
routes, localize in the environment, avoid obstacles, and ask
for help to humans to overcome their actuation limitations.
However, they were not able to handle high-level unexpected
events during execution, such as interruptions with new task
requests that may need a careful analysis of rescheduling
trade-offs. Unexpected events can be failures if their influ-
ence is on the pending tasks or opportunities if it is on the
robot expectations. This work presents a new task-execution,
monitoring, and rescheduling architecture, which includes a
representation of new task features to be monitored to detect
failures and opportunities, as well as a task scheduler to eval-
uate time and task features constraints. We demonstrate the
new features in a task that needs to deliver hot coffee at some
time, noting that the coffee gets cold with interruption delays.

Introduction
The development of autonomous service robots has been an
important research topic in recent times. One notable ex-
ample is the CoBot robots. CoBots are autonomous agents
that exploit their presence to interact with people (Veloso et
al. 2015). Their tasks involve physical movement from one
place to another and different kinds of physical interactions
with the real world, as to deliver a message or an object, to
go to another place, to escort someone to an office, etc. The
nature of these tasks is sequential and they cannot overlap.

Currently, a CoBot is basically a mobile robotic base with
a computer, several sensors and a surface or basket to store
objects. Any task that requires physical manipulation, like
opening doors, pushing elevator buttons or getting objects,
requires human help. CoBots are designed to ask for help
to nearby people if they do not have the capability to per-
form a certain action of a task (Rosenthal and Veloso 2012).
Tasks are created by the users using a web interface (Coltin,
Veloso, and Ventura 2011) or just using the embedded touch-
screen. Users can assign several time constraints to tasks.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The robot has a task scheduler module in charge of finding a
plan to perform all the operations. If the new task cannot be
scheduled, the user is asked to change the parameters.

The scheduler can be considered as a high-level planner
in a multi-level architecture like NAOTherapist (González,
Pulido, and Fernández 2017). This hierarchical view of
robotic architectures has been long discussed in the litera-
ture (Ghallab, Nau, and Traverso 2014). NAOTherapist uses
a triple-layer planning mechanism where a high-level plan-
ner generates a plan to determine the tasks, or high level
goals, to perform in a session (exercises to do). Tradition-
ally, this high level works in an offline phase, without any
rescheduling abilities. Then, a medium level controls and
monitors the actions for each planned task to face unex-
pected events during their execution (movements of each ex-
ercise), sometimes even interrupting the current action. The
low level acts like a path planner for each action, working
directly with the robot platform.

CoBots can also replan their behavior in these medium
and low levels of planning, avoiding obstacles, canceling a
task if the target person is not in the place, etc. However,
there are high-level events out of the control of these robots.
One clear example arises when the robot has to deliver a
spoken message to someone. It will try to find the recipient
of the message in her office, but if, by chance, the person
appears near the robot in its way, it will just continue driving
to the office wasting the opportunity to deliver the message
at that moment. The situation, in fact, will probably end up
with a task fail since the person will not be at the office when
the robot arrives. A failure also happens if the robot has to
deliver an object, but loses it in the way. Therefore, CoBot
was not able to tag these high-level events as opportunities
or failures to avoid wasting time in unnecessary operations.

Being able to detect and act accordingly to some of these
events is important to increase the autonomy of a robotic
platform like CoBot. The automated planning field (Ghallab,
Nau, and Traverso 2004) has approaches dealing with oppor-
tunities and failures. There are works about fast recovering
of failures (Guzmán et al. 2015; Alcázar et al. 2010), which
interleave planning and execution although they are more
focused in the middle and low levels of planning. Other ap-
proaches use goal management techniques to take advantage
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of some detected opportunities (Schermerhorn et al. 2009)
by triggering soft goals at certain moments. Also, temporal
planning has been used in opportunistic planning (Cashmore
et al. 2017) approaches. However, the task scheduling prob-
lem addressed in this manuscript is heavily based on num-
bers and currently automated planning does not have good
heuristics for numerical fluents.

Planning a schedule is a problem of mathematical opti-
mization. There can be many feasible schedules for the same
task pool with very different quality. The scheduler must try
to find not only a suitable schedule, but also the optimal one
in a limited amount of time. This time depends on the re-
sponse time requirements of each application. All numeric
variables used in CoBots can be restricted to integers with-
out affecting the quality of the predictions, so Mixed Inte-
ger Programming (MIP) (Chen, Batson, and Dang 2010) is
a useful technique for this work. This is the same technique
used in the original CoBot scheduler (Coltin, Veloso, and
Ventura 2011), but this work greatly improves the capabili-
ties of that MIP model.

The main paper contribution is a novel architecture for a
task scheduler that is able to detect and manage some oppor-
tunities and failures. It can also manage complex time con-
straints like delivering a coffee before it gets cold (cooldown
time). Furthermore, this component can be reused in other
multilayer architectures to control high-level events by
defining only the interfaces and the available tasks types.
With this scheduler, the high-level module gets also the abil-
ity to replan according to new high-level events, bringing it
to an online phase allowing it changing its tasks and sched-
ules dynamically.

High-level Task Scheduler Architecture
In CoBots, the scheduler is in charge of generating a valid
schedule for the pool of remaining tasks and also manag-
ing their monitoring and execution to reschedule according
to opportunities and failures. Figure 1 shows the different
modules of the architecture of the developed component.
Basically, users send tasks through an interface to the sched-
uler. Monitoring checks if a new task is valid by generat-
ing a MIP problem with some static data gathered from a
shared knowledge base (for example distance among all in-
volved locations). Then it sends this problem to an external
solver which returns a valid schedule, if possible, in a certain
amount of time. The tasks that are not executed yet are stored
in the task pool. Afterward, the next task is sent to Execution
when needed. Execution is just an interface for lower levels
of planning of the robot. The robot constantly informs about
the current state of the world. Monitoring gets these states
and reasons if an opportunity or a failure has appeared, tak-
ing then the appropriate actions for each case. The rest of the
CoBot works in a lower level, so the particular way it has to
achieve each task is transparent for the scheduler.

High-level events can affect not only the movement or
even the current task, but also future tasks in the sched-
ule. These can be classified as opportunities and failures that
must be detected by the robot in order to interrupt the exe-
cution if needed. They may not be easy to detect since they
do not affect the execution of current medium or low-level
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Figure 1: Architecture of the high-level task scheduler com-
ponent.

actions. The need for the different modeled task parameters
is motivated with a guiding example: delivering a hot coffee
to someone.

Modeling of the Tasks
Tasks are modeled as a sequence of subtasks with different
parameters. A subtask is a part of the task that can be inter-
leaved with subtasks from other tasks. In CoBots, the size of
the sequence is determined by the times that the robot must
change the location sequentially to accomplish the task. For
each task and subtask, several parameters must be specified,
as described in Table 1, which shows the decomposition of
the DeliverDrink task. The task decomposition and the pa-
rameters (task type, type owner, etc.) are specified by the
designer of the robotic use case, so the architecture can rea-
son with them. The meaning of each parameter is specified
in the following paragraphs. The parameter set is enough for
the example followed in this paper, but should be updated
for different tasks and/or use-cases.

The developed graphic user interface (GUI) eases the in-
sertion of high-level tasks like delivering a coffee. It pro-
cedurally decomposes each possible task type into the sub-
tasks, according to the task description defined by the de-
signer. Breaking them into parts permits to interleave sub-
tasks of different tasks to improve the global performance of
the executed schedule. Although delivering a coffee is used
in this manuscript as an example, this mechanism can be
used to model any other task that has a part that must be fin-
ished before a time threshold, and could be extended to more
complex decompositions with three or more subtasks.

In the example, the user sets the time window in which
the task can be executed, while the GUI gathers the infor-
mation from a knowledge base to fill optional parameters,
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 Task Subtask-1 Subtask-2 

Task type 
Task owner 
Location start 
Location end 
Time start min 
Time end max 
Person target 
Object 
Priority 

DeliverDrink 
Alice 

- 
- 
0 
15 

Alice 
HotCoffee 

- 

MakeHotDrink 
Alice 

CoffeMaker 
CoffeMaker 

0 
15 
- 

HotCoffee 
10 

DeliverObject 
Alice 

CoffeMaker 
AliceOffice 

0 
15 

Alice 
HotCoffee 

10 

Time operation 
Time cooldown 
Task depending 
Opportunities 
Failures 

- 
- 
- 

VIP 
TO, BP 

5 
- 
- 

HotCoffee, VIP 
TO, BP 

2 
6 

Subtask-1 
Person target, VIP 
HotCoffee, TO, BP 

U
se

r 
In

te
rn

al
 

Table 1: Task model instantiated in the decomposition of a
DeliverDrink task type. Inherited parameters are in italic.

like location start with Alice’s usual office and the nearest
coffee machine. The GUI also fills internal parameters like
an estimation of the operation time and the cooldown time.
A subtask can only be executed after the subtask indicated in
Task depending is finished. The task types used in this work
are: go to location, deliver message, telepresence, attract at-
tention, deliver object, deliver drink, escort someone, wait
for emergency services and recharge battery.

Failures
A failure is a situation that impedes the success of the cur-
rent task. It may require some actions to correct the problem
or to abort the task if it is not feasible now. A generic failure
can appear when a subtask cannot be completed because of
blocked paths (BP) or a timeout (TO) due too many accumu-
lated execution delays. Sometimes tasks have some specific
failures. In the coffee example, the receipt could be indeed
in his office, but the coffee could be stolen by someone from
the basket. The internal parameter Failures indicates which
other parameters must be invariant along the execution of
the subtask. In Subtask-2 the robot must have HotCoffee in
the basket at all times, as defined in Table 1.

Opportunities
In the DeliverDrink example, a specific opportunity appears
when the robot is going to a room with the hot coffee in the
basket and finds the target person in the corridor. It can try to
deliver the coffee in that moment. This allows to finish the
current task earlier and probably avoiding a future failure.
The Opportunity internal parameter indicates which other
parameters must be monitored along the execution of the
subtask to detect potential specific opportunities, as shown
in Table 1. A generic opportunity (valid for all tasks) can
also improve the whole schedule. For instance, CoBot could
identify a very important person (VIP) during the execution
of the schedule. The robot could approach the VIP to greet
him or just ask him whether it can help somehow. Spending
time on this opportunity will delay the rest of the scheduled
tasks, but the gain obtained by executing this important task
could worth it if it has enough Priority.

Interrupting Tasks
Generic opportunities and failures must be defined in Moni-
toring for each application domain. For CoBots, a high prior-
ity VIP task is added in the task pool when the sensors iden-
tify a VIP in its surroundings. The internal predicates Fail-
ures and Opportunities control the specific high-level events
to be detected for each subtask during all their execution.

Decomposing tasks in subtasks is very useful when in-
terrupting high-level tasks. In the coffee example, if the
robot already has the hot coffee in its basket and a VIP ap-
pears, Monitoring detects it as an opportunity. If the robot
interrupts the coffee delivering to talk with the VIP, the
coffee could be delivered cold. This is controlled with the
Cooldown time internal parameter, which indicates the max-
imum time allowed after Task depending was finished.

In the DeliverDrink example, a change in the task pool
(VIP) can force the robot to reason about the convenience
of scheduling or not a certain task after making the coffee
(CoffeeA) and before its delivery (CoffeeB). In this work
there can be:
• Redoing CoffeeA. “I prefer to remake the coffee. The

VIP can’t wait, and I can deliver the coffee later”
• VIP between CoffeeA and CoffeeB. “I can spend some

time talking with the VIP and then deliver the coffee on
time”

• VIP after CoffeeB. “I can’t redo the coffee later, but the
VIP will be there for some time”

• Cancel DeliverDrink. “The VIP can’t wait, and I can’t
redo the coffee later either. I prefer to cancel the coffee
and talk with VIP”

• Cancel VIP. “The VIP can’t wait, and I can’t redo the
coffee later either. I prefer to continue with my previous
task and omit the VIP”
The result will depend on the gain that it will get after

completing the schedule. This gain is modeled in the sched-
uler to allow the system to reason over these concepts.

Numerical Predictions for Tasks
The problems addressed in this work are deeply based on
numbers. The constraints that involve the ordering of tasks
depend mainly on the starting and ending time of them. The
times indicated in a schedule are, in the best case, just a
good prediction of their values. In particular, distance mea-
sures can also be expressed in time units because the average
speed of the robot along each path is known, as well as the
average time to perform certain operations like asking some-
one, preparing a drink, etc.

In fact, planning a schedule is a problem of mathematical
optimization. There can be many feasible schedules for the
same task pool with very different quality. The scheduler
must try to find not only a suitable schedule, but also the
optimal one in a limited amount of time. This time depends
on the response time requirements of each application.

All numeric variables used in the scheduler can be re-
stricted to integers without affecting the quality of the pre-
dictions, so Mixed Integer Programming (MIP) (Chen, Bat-
son, and Dang 2010) is a useful technique for this work. It
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allows finding solutions to numerical optimization problems
thanks to mechanisms like simplex. This is the same tech-
nique that the original scheduler used (Blind Reference 3).
A MIP solver receives the input data and uses a model which
describes all needed mathematical constraints to find a valid
schedule. The quality of the solution is evaluated using an
objective function, so after finding a valid one the scheduler
can continue the searching until it can demonstrate that the
last was optimal.

In the MIP aspect, this work contributes with a new way to
solve a kind of temporal problem (cooling down time) with
it, taking priorities into account. The next sections explain
the underlying architecture of the developed scheduler, de-
tailing how this MIP model was created to obtain schedules
that address the improvements mentioned here. They also
describe the mechanisms and policies followed to detect op-
portunities and failures and how to manage the rescheduling
processes they cause.

Modeling the MIP Problem
The scheduler has a pool of remaining tasks with different
parameters. It requires a model to describe the constraints
that must be fulfilled to obtain a valid solution. The model
works with the input data provided, which in this case is
the task pool. The solution returned is a valid schedule, if
any. The variables that the solver tries to optimize are the
starting s and ending e time for each task. It also optimizes
the auxiliary binary variable Previous(a, b) to calculate the
optimal path according to the location of the previous task.
The rest of the parameters is fixed by the input data. The for-
malization of the model is explained here with the symbols,
the binary predicates and the constraints used. It is impor-
tant to note that the distance measures described are mod-
eled as predictions of how much time the robot needs to go
from one location to another. All needed distances are pre-
calculated with the help of the knowledge base before run-
ning the solver.

Positive integer parameters:
i, j, k: Any task of the pool
wmin: Minimum start time
wmax: Maximum end time
s: Start time (variable)
e: Ending time (variable)
o: Operation time
c: Cooling down time
p: Priority value higher than 0
ls: Starting location
le: Ending location
d(a, b): Distance (time estimation) between a and b

Binary parameters:
Previous(i, j): Task i starts just before j (variable)
Depends(j, i): Task j must start after i

Constraints:
wmin

i ≤ si ≤ wmax
i − oi − d(lsi , l

e
i )

wmin
i + oi + d(lsi , l

e
i ) ≤ ei ≤ wmax

i
Previous(i, j)⇒ si < ei < sj
¬Previous(i, j)⇒ si < sk < sj
Previous(i, j)⇒ ej ≥ sj + oj + d(lei , l

s
j) + d(lsj , l

e
j )

Depends(j, i)⇒ ei < sj
Depends(j, i)⇒ cj ≥ ej − ei

Objective function:

Minimize
n∑

i=1

eipi

The first two constraints restrict the value that the start
and ending time variables can have to ease the searching
process, taking the operation time and distance into account.
The third constraint avoids the overlapping of tasks by stat-
ing that the starting time of a task must be lower than its
ending time and that the ending time of a previous task must
be lower than the starting time of any other one that follows
it. The fourth one states that a task i cannot be previous of a
task j if there is any other task k which starts between i and
j. The fifth determines that the ending time must be greater
or equal than the starting time plus the operation time plus
the time needed to travel between the ending location of the
previous task and the starting location of the current one and
plus the time to travel between the starting and end locations
of the current task. The sixth one controls the dependence
of a task by stating that a task that depends on another must
start after the other has finished. The last one states that the
cooling down time must be greater or equal than the time
between the ending of its dependence and the ending of the
dependent task.

The model has an objective function to optimize the so-
lutions. This function is the sum of the ending time of each
task multiplied by their priorities. This guides the search to
reduce the total time span of the schedule, but also to exe-
cute tasks with high priority earlier. A dummy initial task to
take the initial location of the robot into account is used to
improve this optimization.

When all constraints are met, a valid schedule has been
found. However, this solution will probably not be optimal.
The scheduler will continue searching for an optimal solu-
tion during a certain time threshold. If the optimal schedule
is found, the solver returns it to start the execution of the
first task when needed. If the solver cannot find an optimal
solution in the given time, it returns a suboptimal solution.

The solver sometimes detects when a schedule is unfeasi-
ble, but if the problem is too hard, the solver could continue
searching forever. If the solver cannot find a suboptimal so-
lution in the given time, the schedule is considered unfeasi-
ble. This leads to different policies that are explained in the
next section.

Before starting the search, the solver also checks if the
input data are valid to avoid wasting time searching for an
impossible solution. All integer variables must be positive,
and priority higher than 0. Additionally, it considers these
additional conditions.

Checks:
wmin

i + oi + d(lsi .l
e
i ) < wmax

i
ci ≥ oi + d(lsi .l

e
i )

These checks can rely only on parameters of the own task.
That is why they do not include the distance between the
ending location of the previous task and the starting of the
current one. That has to be calculated by the solver.
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Monitoring
The Monitoring part receives partial states of the world from
Execution, as shown in Figure 1. These states contain differ-
ent elements like the current state of the task, the identity
of the people near the robot or the objects placed in its bas-
ket. Monitoring receives this partial state and detects oppor-
tunities and failures for the task being executed, using the
task definition (as the one shown in Table 1). Then, it de-
cides whether it is necessary to run the MIP solver to take
the possible generic and specific opportunities and failures
into account and reschedule if needed. The outcome of this
reschedule may cause the interruption of the current task.
Monitoring sends the updated task pool to the MIP sched-
uler and receives a solution. Then it sends the first task to
Execution.

There are two ways to add tasks to the pool. In the first
one, the user sends a task to the robot through the user inter-
face. The task is received, and the scheduler component tries
to obtain a valid schedule. If it cannot, the new task is re-
jected, and the user must change the parameters of the task.
In the second way, a task is generated internally by the robot
in response to a detected opportunity. Tasks can be removed
from the pool if a user aborts them or if they cannot be ex-
ecuted anymore because a failure. A task can finish earlier
than expected due to a detected opportunity or a failure.

Opportunities can appear at any moment and may modify
the current schedule. Generic internal parameter Opportuni-
ties of each task may indicate the existence of potential op-
portunities for the CoBot domain. Monitoring has a record
of these parameters for all task and when something in the
state of the world matches such parameters, a scheduled task
can be modified or canceled, triggering then a rescheduling
process. The outcome of this reschedule may cause the in-
terruption of the present task. Currently all reschedules are
done from scratch, without reusing previous solutions.

For example, DeliverDrink can have a person as a re-
ceiver. If the robot detects that person while it has the ob-
ject in the basket, it can interrupt the current task to give the
object to that person. This can happen with other tasks such
as DeliverMessage and Escort. Similarly, if the robot has to
give an object to someone and it detects that it already has
one in its basket, the robot can deliver that object directly. In
the same way, if the robot detects a very important person,
Monitoring can add a new high priority task to the pool to
reach him and perform a demonstration or give him infor-
mation. The mechanism to determine if this new task can be
scheduled or not is based in a gain metric explained in the
next subsection.

Failures are similar to opportunities, except because they
are unavoidable. Currently, CoBots control some lower-level
failures like people not answering questions or not present
to get some objects from the basket. Others like someone
stealing an object from the basket that needs to be delivered,
need the control of invariants along all the tasks of the pool.
If an invariant parameter of a task changes in the state of
the world (registered in the internal parameter Failures), the
task is modified or even canceled, triggering a reschedule.
Monitoring can also add tasks on failures to redo a chain
of dependent tasks. Other possible failures are the need to

charge the battery and reaching a certain delay threshold in
which the planned starting time of the next task and the ac-
tual time is too much.

Rescheduling Policy
In response to a failure, Monitoring can remove tasks from
the pool if the solver cannot find a suitable plan while
rescheduling (it cannot redo a task because there is not
enough time, for example). In this case, priority and ampli-
tude of the time window are important parameters to cancel
a task or not. The tasks that now do not have enough time to
be completed are canceled directly. If, after this, the solver
cannot find a plan, Monitoring starts canceling the next task
with the lowest priority and the smallest time window that
overlaps another. This process will continue until a sched-
ule is found. When a task ends unexpectedly, the owner is
alerted by email.

In the case of opportunities, if a task ends earlier than ex-
pected, Monitoring also triggers a reschedule to take advan-
tage of it. If a new task is added into the pool (talk with the
spotted VIP, for instance) and the scheduler cannot find a
plan, then Monitoring evaluates the situation. The metric to
determine this is the gain value g which is the sum of the
priorities of the scheduled tasks.

Gain: g =
n∑

i=1

pi

A VIP task has a very small-time window and very high
priority. Canceling a DeliverDrink task to redo it later is a
valid option if possible because more tasks can be done,
and more gain will be obtained. The policy developed in
this work tries to preserve the tasks already scheduled be-
cause it only considers redoing the current one. This could
be problematic if there is a tight cooling-down time for the
task, but subdivisions of tasks like DeliverDrink could relax
the constraints by delaying the delivering of the drink if the
cooling-down time is not reached.

For instance, in case that a VIP task appears just after a
hot coffee is made and before delivering it, the scheduler has
to consider all the cases explained in the Interrupting Tasks
section. Basically, it tries to schedule everything by redoing
the current subtask later (in the case of the drink in this ex-
ample). If it cannot, it tries to redo the whole DeliverDrink
task. If it is impossible, then it evaluates whether to cancel
the current task or the new important task by using the gain
measure. This means that the solver has to be called 1, 2 or
4 times, depending on the case.

Rescheduling can take some time, so although it can be
done while the robot is traveling, opportunities may need a
fast response to take advantage of them. In CoBot a reason-
able time for each schedule could be 10 seconds, for exam-
ple. With that threshold, we may need up to 40 seconds in
the worst case scenario.

Experiments
The goal of this section is to evaluate the rescheduling archi-
tecture as an effective way to organize, execute and monitor
the tasks performed by the robot in a social environment.
Therefore, it is required to determine whether the system is
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fast enough to provide good schedules in a small amount
of time. In this sense, a maximum running time of 10 sec-
onds (under regular computing capabilities) is desired as the
maximum time that the robot should be waiting to the solver.
This evaluation separately describes two main aspects of this
work1. The first one is the performance of the developed
scheduler in terms of solving time and schedule quality. The
second one highlights the behavior of the Monitoring part
by using an example task pool and three feasible schedules.
Using robot execution time (for instance, navigation time)
to reduce decision delays (using that time to compute new
schedules or improve current ones) is out of the scope of
this work.

MIP scheduler
The external MIP solver used is GLPSOL2. To cover the
temporal requirement specified above, the solver permits to
limit the time used to find a solution in several ways. The
experiments performed are focused in two of them: limiting
the maximum solving time and accepting a solution when a
certain quality measure is reached. Solvers provide the rela-
tive MIP gap percentage, which gives an indirect insight of
the quality of a solution. In essence, this measure is related
to the current numerical upper and lower bounds, so when
it reaches 0 % the solution is proven optimal. However, for
clarity purposes, these experiments also use a function to
represent quality (q) more directly:

q = (
n∑

i=1

ei)/n

Quality is the sum of the end times for each task (ei) di-
vided by the number of tasks in the pool (n). The number by
itself is meaningless, but when compared, it gives the aver-
age amount of time that a task will be delayed while using a
configuration of the solver instead of another. It does not use
priorities, but it is enough for the purposes of this section.

The experiments evaluate three configurations: 1) Solving
time limited to 10 seconds with 4.4 % of relative MIP gap
tolerance, 2) 10 seconds limit without tolerance and 3) 30
seconds limit. The memory usage is always under 100 MiB
so there is no need to limit it too. The solver uses a base set
of 480 random instances of task pools (set A). This set has
some unfeasible or too hard instances so, to make some com-
parisons, the results also refer to subsets B and C which are
contained in A. Subset B has 12 random instances per each
size of the task pool, ranging from 1 to 15 (180 instances).
They have been solved in all three configurations. Subset C
is the same as B except that the ranges of pool sizes are lim-
ited from 8 to 15 (96 instances) to focus on the hardest ones.

The 4.4 % tolerance value used in the first configuration is
the average relative MIP gap reached in the second config-
uration. Figure 2 uses the set B to show the average solving
times for each task pool size and configuration, where in-
stances have at least one solution in all cases.

1All experiments were carried out in an Intel Core i3-2330M
CPU at 2.2 GHz with 4 GiB of RAM.

2http://www.gnu.org/software/glpk
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Figure 2: Evolution of the average solving time along differ-
ent task pool sizes (set B ⊂ A).

The solver starts using the whole time allowed when the
pool has 11 tasks in it, except when there is a MIP gap tol-
erance of 4.4 %. In this case, the average maximum solving
time is under 8 seconds. That indicates that a valid solution
is found fast and the rest of the time is used to optimize it
or prove its optimality. The gap tolerance could be useful if
the impact on the quality of the solution is acceptable for the
intended application. Figure 3 shows the qualities for the set
B. Time is measured in minutes.
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Figure 3: Average quality of the planned schedules with dif-
ferent pool sizes (set B ⊂ A). The Y axis starts at 500 to
improve readability, but instances for sizes lower than 3 are
hidden below.

Spending 30 seconds to plan the schedule is usually much
better, in terms of quality, than using only 10 seconds with
tolerance at 4.4 %. However, when there are 10 tasks or
fewer, 10 seconds seem enough. CoBot should start respond-
ing in 10 seconds at most, although the results show that
spending some seconds more can save much time. Table 2
details the 6 types of outcomes that the solver can return.

For the full set A of 480 instances, only 0.8 % of the in-
stances passed the checks and were proven unfeasible. Also,
only 11 % of the instances reached the time threshold with-
out being solved. Sets B and C were solved by all configura-
tions. Few optimal solutions were found from 10 to 30 sec-
onds, but the average quality increased especially in the set
C of difficult instances. Using the gap tolerance reduces the
solving time sensibly but also the quality of the solutions.
From 10 to 30 there is a reduction of 12 minutes of delay
per task in set C. All these results suggest that the relative
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MIP gap tolerance could be tuned to find a feasible schedule
very fast to start responding as soon as possible, and then
continue refining the schedule while the robot is working or
waiting to start the next scheduled task. 

 

  
Configuration 10 s, 4.4% tol. 10 s 30 s 

Time out: no solut. 11.0% 11.0% 8.8% 

Proven unfeasible 0.8% 0.8% 0.8% 

Check failed 4.4% 4.4% 4.4% 

Proven optimal 16.3% 42.7% 43.1% 

Min. gap reached 54.0% 0.0% 0.0% 

Time out: found 13.5% 41.0% 42.9% 

Solutions found 83.8% 83.8% 86.0% 

Proven optimal 17.8% 51.1% 52.2% 

Min. gap reached 68.3% 0.0% 0.0% 

Time out: found 13.9% 48.9% 47.8% 

Av. solver time (s) 2.14 ± 3.6 5.07 ± 4.9 14.7 ± 14.8 

Av. quality (min) 611 ± 256 596 ± 250 590 ± 247 

Proven optimal 0.0% 10.4% 12.5% 

Min. gap reached 74.0% 0.0% 0.0% 

Time out: found 26.0% 89.6% 87.5% 

Av. solver time (s) 3.98 ± 4.1 9.24 ± 2.5 26.88 ± 8.6 

Av. quality (min) 738 ± 135 721 ± 137 709 ± 137 

S
et

 A
 

S
et

 B
 

S
et

 C
 

Table 2: Solution type for the three configurations. Set C ⊂
B⊂A. Subsets B and C also have average solving times and
qualities.

Monitoring
The target of this section is to evaluate how the rescheduling
module works when some unexpected event occurs. Table 3
illustrates three possible schedules after the arrival of a VIP
at minute 20. There are two kinds of tasks in each sched-
ule: three Deliver coffee (C1, C2, C3) for the same person
and one Show off (VIP). Deliver coffee is subdivided in two
tasks that must be executed in order. All tasks have priority
1 except VIP, which has 100. The cooling down time for the
coffee is 15 minutes. The time to travel from the initial loca-
tion is 4 minutes. The time to travel from the coffee maker to
the delivering location is 3. The VIP is in the same location
of the coffee maker.

These schedules could be planned applying the described
rescheduling policies in less than 10 seconds. This was be-
cause the pool is small enough and VIP can be scheduled be-
fore or after C1b, so there is no need to run the solver more
times. Currently the system schedules from scratch when a
new task arrives, so the results of the previous subsection are
valid also in this one.

As it can be seen, the scheduler has locations into account,
changing the duration of the tasks if the robot has to move to
another place to perform them. Because of this, the sched-
uler tries to join all first parts and all second parts of Deliver
coffee tasks to save trips. This is a clear improvement over
the original scheduler. In schedule A, it is only possible to
join two of them because the cooling down value of 15 min-
utes is too small.

 

 

 

 

 

 

 

 

 

 

 

  

Task Start End 

… 0 10 
C1a 11 20 
C2a 21 26 
C1b 27 31 
C2b 32 33 
VIP 34 39 
C3a 40 45 
C3b 46 50 

Cost 605 

Task Start End 

… 0 10 
C1a 11 20 
C2a 21 26 
C1b 27 31 
C2b 32 33 
C3a 34 42 
C3b 43 47 
VIP 48 53 

Cost 739 

Task Start End 

… 0 10 
C1a 11 20 
VIP 21 23 
C2a 24 29 
C1b 30 34 
C2b 35 36 
C3a 37 45 
C3b 46 50 

Cost 454 

Schedule B Schedule C Schedule A 

Table 3: Valid schedule examples after the arrival of a new
task VIP at time 20. Units expressed in minutes.

The VIP task is performed at different positions in each
table and this has an effect in the total time of the schedule
and the cost that the scheduler has to minimize. Schedule A
is the worst because the important task is executed later, and
it takes 3 minutes more than the others because it needs an
extra trip. Schedule B is much better because it saves one trip
and executes the important task earlier. Schedule C executes
the VIP task as soon as it arrives because the cooling down
time is wide enough to perform VIP and C2a between C1a
and C1b. All three schedules are valid because the only hard
constraint is that VIP must start at or after minute 20. To
execute the most important tasks first is a soft constraint.

As shown in the previous section of the experimentation,
in scenarios with constrained task pools the optimal plan is
not always obtained because of the need of fast responses.
Sometimes false negatives occur (solutions not found by
the solver that exist), which is undesirable especially when
rescheduling a new task like VIP. However, in practice, the
monitoring part works as intended because of the low plan-
ning time limit and because normally there are few remain-
ing tasks in the task pool. There are also some online videos
to watch the new scheduler at work3.

Conclusion
This manuscript presents a new architecture of task exe-
cution, monitoring and rescheduling, which was developed
in top of the current CoBots to improve their capabili-
ties. Apart from the scheduling abilities of the original ap-
proach (Coltin, Veloso, and Ventura 2011), the new one is
focused on fast solving times to ease the human-robot inter-
action, opportunity and failure detection, rescheduling with
task interruptions, priority optimization and dependent tasks
with cooling down times (a hot coffee cannot be delivered
much later after being done). The developed component is
generic enough to be applied in other multilevel architec-
tures like NAOTherapist (González, Pulido, and Fernández
2017) by changing only the task specification and the com-
munication interfaces. The experimentation shows that the
system can perform well in normal conditions, although in
scenarios with numerous remaining tasks the quality of the

3http://goo.gl/r2cszx
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obtained schedules can be affected, especially if the allowed
solving times are low.

Future work may include deeper integration with the cur-
rent architecture to take control of some aspects that are
managed in a lower level. The policies to take advantage
of opportunities could also be improved by trying a quicker
version of the VIP task, for example, in difficult task pools.
This could lead in more reschedules, but they could be
done while the robot is working. Also, alternative contin-
gent plans could be considered, for example, to give a coke
instead of a coffee because it is better than nothing. This
would use more the concept of gain.
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Abstract

Generating and executing multi-agent schedules is difficult
in uncertain environments. The current state-of-the-art al-
gorithm maintains a high success rate by rescheduling fre-
quently, but this approach involves substantial resource over-
head due to computing and communicating new schedules.
Aggressive rescheduling could thus reduce overall mission
duration in situations where agents have limited energy
and computing power. We thus explore the trade-off be-
tween the number of reschedules and success rate. Specif-
ically, we propose three new algorithms that strategically
decide when rescheduling is most likely to meaningfully in-
crease the probability of success. Additionally, we empiri-
cally show that, while there is a trade-off between the num-
ber of reschedules and schedule success rate, it is possible
to reduce the number of reschedules without proportionally
decreasing success. We find that one of our approaches, Al-
lowable Risk, allows us to gracefully trade reductions in suc-
cess rate for significant reductions in the number of resched-
ules, and thus communication, of a state-of-the-art dynamic
scheduling algorithm.

Introduction
Generating and executing in multi-agent systems is an en-
abling technology for many applications, such as cooper-
ative teams of airborne, surface operating, or underwater
robots. Providing this capability requires effective multia-
gent coordination, since these applications involve uncer-
tain environments that may challenge the success of a mis-
sion. In this paper, we focus on a scenario where this re-
quirement is met by scheduling centrally and broadcasting
a joint schedule to individual agents. However, a fixed, pre-
defined schedule only uses the information that was avail-
able when it was created. As the mission progresses, un-
certain events (e.g. unexpectedly long task durations) may
disrupt the schedule. To take advantage of this new infor-
mation, we need an algorithm to reschedule in response to
these uncertain events.

Dynamic execution algorithms reschedule in response
to new information, potentially increasing the chance that

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the mission succeeds. However, they may reschedule fre-
quently, which means that the centralized scheduler would
have to frequently send out new schedules to agents. While
this frequent communication would not be a problem in
some circumstances, in many applications, conserving bat-
tery power is an issue and communications are energy in-
tensive, so any extra communication detracts from the time
agents can spend completing their mission. To address this
problem, we propose three new execution algorithms that
limit how often schedules are sent:
• Sufficient Improvement sends out a new schedule only if

it is likely to significantly increase the predicted proba-
bility of success;

• Allowable Risk reschedules more often when schedules
are more risky and less often when schedules are less
risky; and,

• Coordination Targeting uses constraints between agents
to determine when to reschedule.

We conduct an empirical evaluation showing that Sufficient
Improvement and Allowable Risk can decrease reschedul-
ing without proportionally decreasing success rate, and
evaluate the trade-offs between rescheduling frequency and
success rate. We find that Allowable Risk allows us to
gracefully trade reductions in success rate for significant re-
ductions in the number of reschedules, and thus communi-
cation, of a state-of-the-art dynamic scheduling algorithm.

Background
Unmanned aerial vehicles (UAVs) have been used for mis-
sions ranging from collecting data on wildlife to monitoring
wildfires. More complex missions have been proposed and,
on small scales, demonstrated using UAV teams that com-
municate over radio cross-links with each other (e.g. Cesare
et al.; Li et al. (2015; 2016)). Despite numerous advances
in energy storage, battery life generally limits UAV mission
duration (Quach et al. 2013). In particular, communications
between UAVs and between the UAV and base stations can
consume considerable energy, spurring research in energy-
efficient communications between UAVs to enable relays
(Zhang, Zheng, and Zheng 2017). In a UAV team, conduct-
ing missions in the presence of uncertainty that may require32



rescheduling, communicating the new schedule consumes
energy, and could therefore shorten the mission.

Let us consider a wildfire surveillance coordination prob-
lem involving two UAVs, Agent A and Agent B. Both
agents must capture infrared images of the wildfire from
different locations and send them back to a base station.
Suppose for the entirety of this example that Agent B is
between Agent A and the base station, and can communi-
cate with both, but Agent A can only communicate with
Agent B. Agent A takes an infrared image, but must sub-
sequently relocate to a safe position due to unsafe flying
conditions in its vicinity. Once Agent A is in its new po-
sition, it must send the image to Agent B, which can later
send the image to the base station. However, Agent B must
also travel a (shorter) distance before relaying Agent A’s
image, because it must take a second image at the new lo-
cation. Agent B’s second image acquisition must take place
immediately after its first image, and thus before receiving
Agent A’s communication. Agent A’s and Agent B’s nav-
igation tasks take around 40 and 10 seconds, respectively,
and these durations are uncertain due to wind and localiza-
tion error. The image sending/receiving task also takes an
uncertain amount of time–around 5 seconds. Because the
agents would have to do much more than mentioned (i.e.
this subproblem is a small portion of a much larger prob-
lem), we want the agents to finish their tasks within a spec-
ified amount of time, namely 60 seconds.

In general, this class of problem can be posed and solved
as a Decentralized Partially Observable Markov Decision
Problem (DEC-POMDP). For instance, Wu, Zilberstein,
and Chen (2011) consider how to reschedule in such cases
in the presence of little communication. For our work, we
limit the expressiveness of the problem under consideration
to Probabilistic Simple Temporal Networks (PSTNs), de-
fined in the next section. While tractable, the PSTN frame-
work still exposes the fundamental problem of deciding
when to reschedule, and how to communicate changes of
schedules between agents.

Probabilistic Simple Temporal Networks
A Simple Temporal Network (STN), S = (T,C), consists
of a set T = {t0, t1, . . . , tn}, where each timepoint ti rep-
resents the time at which a distinct event happens, and a set
C of binary constraints cij on events in T . These constraints
are of the form tj − ti ≤ bij , for some bij ∈ R (Dechter,
Meiri, and Pearl 1991). The two constraints between ti and
tj can be written concisely as tj − ti ∈ [−bji, bij ]. STNs
are often encoded as directed graphs, where events are ver-
tices and constraints are edges. A schedule is an assignment
of values to events such that all constraints are satisfied. An
STN is considered consistent if it has at least one schedule.

Since the physical world is inherently uncertain, account-
ing for uncertainty in our representation allows it to bet-
ter model real-world problems. In a Simple Temporal Net-
work with Uncertainty (STNU), the set of constraints C
is divided into two disjoint subsets, called CR, the set of
requirement edges, and CC , the set of contingent edges.
Requirement edges are identical to the constraint edges in
a standard STN. A contingent edge, however, represents
that the time that elapses from ti to tj , given by βij ∈
[−bji, bij ], is chosen by an uncontrollable process and is

unknown prior to execution (Vidal and Ghallab 1996).
An event whose incoming edges are all requirement

edges is known as an executable timepoint, because the
agent executing the schedule controls when it happens, or
executes. A timepoint with an incoming contingent edge is
known as a contingent timepoint, since it happens automat-
ically some time after the timepoint that initiates the contin-
gent edge. When a contingent timepoint happens it is said
to be received. We call the set of contingent timepoints TC ,
and the set of executable timepoints TX .

STNUs are strongly controllable if each executable time-
point can be restricted such that, for all possible contingent
timepoint outcomes, all requirement constraints are satis-
fied. Not all STNUs satisfy this restrictive property. Some
STNUs are dynamically controllable, which means a lim-
ited form of contingent schedule can be produced prior
to execution; these schedules describe, in a compact way,
when to schedule future executable timepoints in response
to contingent timepoint outcomes. In this paper, we use dy-
namic rescheduling to address these uncertain outcomes.

A Probabilistic Simple Temporal Network (PSTN) ex-
tends an STNU by adding information about the uncer-
tain processes that govern contingent edges. For a PSTN’s
contingent edges, the time that elapses from ti to tj is
chosen by a random variable Xij , whose value is deter-
mined at execution by some PDF Pij (Tsamardinos 2002;
Brooks et al. 2015). Since contingent edges in PSTNs are
governed by unbounded probability distributions, they can-
not be strongly controllable. However, as we will later dis-
cuss, some algorithms still use the idea of strong controlla-
bility to solve PSTNs.

Figure 1: PSTN for our example problem.

Example Problem The PSTN representation of our run-
ning UAV example problem is shown graphically in Figure
1. Each vertex represents a timepoint. The agent to which a
particular timepoint corresponds is indicated by the super-
script. Two such timepoints could be the start and end times
of Agent A’s image taking task, which are represented as
tA0 and tA1 , respectively. Directed edges represent tempo-
ral constraints and are labeled with the range of time that
is allowed to elapse between the occurrence of the events
represented by the source and target timepoints. There are
three types of directed edges: thick edges represent contin-
gent edges, dashed edges represent interagent constraints,
and straight, slim edges represent requirement edges. All
tasks must be completed within 60 seconds, shown by the
constraint [0,60] above each vertex. Agent A’s subproblem
is contained in the top half of the figure, while Agent B’s
subproblem is contained in the bottom half of the figure.33



Execution Algorithms for PSTNs
Early First Early First is a naı̈ve algorithm for decid-
ing when to execute the timepoints in a PSTN. As its
name implies, it executes timepoints as soon as they can
be executed–when they are both live, meaning that they are
within their acceptable time range, and enabled, meaning
that all predecessor timepoints have been executed.

The Static Robust Execution Algorithm While algo-
rithms like Early First can be effective in practice, they are
agnostic as to the impact of uncertainty on performance. In
our UAV example problem, if both agents start navigating
as soon as possible, it is highly likely that Agent B will ar-
rive at its destination more than 10 seconds before Agent A,
resulting in failure. To maximize the probability of success,
Agent B should wait before navigating. The Static Robust
Execution Algorithm (SREA) was motivated by this limi-
tation (Lund et al. 2017). SREA tries to address this lim-
itation by maximizing robustness, the probability that all
events are executed without violating constraints (Brooks
et al. 2015). Robustness is the complement of risk, intro-
duced in (Fang, Yu, and Williams 2014).

In order to maximize robustness, SREA attempts to cre-
ate a strongly controllable STNU with a minimum proba-
bility of failure. SREA sets a maximum probability α that a
contingent edge in the original PSTN fails because it is too
short or too long. This makes 1−α the minimum probabil-
ity mass of the contingent edge captured by a corresponding
interval in the STNU. To find the optimally robust sched-
ule, SREA does a binary search over α. For each α, it uses
a linear program to maximize the probability mass captured
by the interval over each contingent timepoint. In a sense,
SREA maximizes the probability that uncertain events will
occur during these intervals. Once it finds the optimally ro-
bust schedule, it can execute this more constrained sched-
ule using Early First. In our running example, SREA would
constrain Agent B to wait before navigating to maximize
the probability that the arrival times of both agents overlap.

SREA is good at using initial information to maximize
the probability of success. However, it can fail when un-
certain timepoints fall outside of their designated intervals
during execution. In addition, SREA is limited because it
cannot re-optimize constraints when new real-time infor-
mation, such as the actual time of an uncertain event, is
gained. This is because SREA is a static algorithm, in that
it does not change the schedule in real-time. Therefore, dy-
namically updating the guiding schedul can be beneficial in
situations with uncertain events.

The Dynamic Robust Execution Algorithm The Dy-
namic Robust Execution Algorithm (DREA) builds on
SREA with the goal of maximizing robustness by adding
the ability to incorporate new information during execution
Lund et al. (2017). It creates an initial schedule by running
SREA and uses it to guide execution. Whenever a contin-
gent timepoint is received or enabled, DREA updates the
PSTN with this new information, and calls SREA to create
a new schedule.

Reducing Communication in DREA
DREA has a significantly higher success rate than Early
First on the set of benchmark PSTNs in Lund et al. (2017).

However, this high success rate comes with the cost of large
amounts of rescheduling. In many scenarios, including as
our UAV example, communicating new schedules is costly,
so DREA may have undesireably high computational over-
head.

With this in mind, we have investigated three possible
methods for limiting when DREA reschedules such that
communication is reduced without drastically diminish-
ing success rate. Sufficient Improvement seeks to reduce
rescheduling frequency by only rescheduling when the
new schedule has a better predicted probability of success
than the previous one. Allowable Risk makes reschedul-
ing frequency proportional to the quantity of risk present
in the problem. Coordination Targeting attempts to focus
rescheduling only in preparation for events subject to inter-
agent constraints.

Our algorithms are modifications to DREA. They act ex-
actly as DREA does except when a timepoint is enabled
or received, in which case, instead of always rescheduling,
they more judiciously decide whether to reschedule. Suffi-
cient Improvement and Allowable Risk use the minimum
improvement thresholds m and x, respectively, in their cal-
culations to make this decision. Allowable Risk also uses a
counter k that increments whenever a timepoint is received
and resets when rescheduling. The value of this counter and
the threshold inputs is explained in our algorithm details.
We rewrite DREA as a routine that utilizes our subroutines
in Algorithm 1.

Algorithm 1: Modified DREA
Input : A PSTN S, a rescheduling strategy s
Input : A min improvement threshold 0 < m < 1
Input : A min success threshold 0 < x < 1
guideSTN,α← SREA(S) ;
k ← 0 ;
while S.isConsistent() and not S.allExecuted() do

if any t ∈ TC is received or enabled then
S.update(t);
if t is received then

k ← k + 1 ;
(guideSTN,α, k)←
maybeReschedule(guideSTN, s,m, x, α, k)

else
foreach live & enabled t ∈ TX according to
guideSTN do
S.execute(t);
guideSTN .execute(t);

Sufficient Improvement
The concept underlying Sufficient Improvement (SI) is to
only use schedules that sufficiently improve the chances of
success. Like DREA, it will always create a new schedule
any time it gets new information. Unlike DREA, SI will
only send out this new schedule if it calculates that the new
schedule has a significantly larger probability of success
than the schedule currently in use.

We represent SI as part of the maybeReschedule
subroutine of DREA presented as Algorithm 2. The34



maybeReschedule subroutine is called whenever a time
point is received or enabled. SI requires an input minimum
threshold for improvement 0 < m < 1. When we run SI,
it first calculates a new potential schedule with SREA, then
records the number of contingent events left in our STN.
SI then uses these values to determine if the difference be-
tween the probability of success of the new schedule and
the probability of success as calculated at the last resched-
uled is sufficient. When DREA runs SREA to generate a
schedule, as noted above, it creates an interval around each
uncertain edge that captures some amount of the probabil-
ity mass of that edge. For each duration, this interval cap-
tures at least 1 − α of the probability mass. SI calculates
the probability of a schedule executing without violating a
constraint by multiplying the captured probability mass for
each uncertain edge. Generally speaking, this probability is
bounded by p← (1−α)n, where n is the number of uncer-
tain edges. Note that this is actually an underestimate, since
SREA expands the intervals somewhat beyond 1−α of the
probability mass. SI then takes the difference between the
new probability and the old probability. If this difference is
above our threshold value m, it uses the new schedule.

If a contingent edge invalidates the current schedule gen-
erated by SREA by falling outside of its allowed range, SI
continues to use the now-violated schedule until reschedul-
ing is triggered. The execution is not considered failed un-
less one of the constraints from the original STN is violated.
All of our rescheduling strategies handle violations of the
SREA-generated schedule in this fashion.

Algorithm 2: maybeReschedule() Subroutine
Input : An STNU guideSTN
Input : A rescheduling strategy s
Input : A min robustness α
Input : A received contingent event count k
Input : A min improvement threshold 0 < m < 1
Input : A min success threshold 0 < x < 1
if s == “SI” then

(maybeGuideSTN,α1)← SREA(S) ;
n← maybeGuideSTN.numCEventsLeft() ;
p0 ← (1− α)n ;
p1 ← (1− α1)

n ;
if p1 − p0 > m then

guideSTN ← maybeGuideSTN ;
α← α1 ;

return (guideSTN,α, k)

else if s == “AR” then
n← 0 ;
while ((1− α)n+1 > x) do

n← n+ 1 ;
if k ≥ n then

(guideSTN,α)← SREA(S) ;
k ← 0 ;

return (guideSTN,α, k)

SI’s threshold influences how often the algorithm
reschedules. If the threshold is low, we expect the algorithm
will reschedule often, resembling DREA. Alternatively, if
the threshold is high, the algorithm will reschedule less of-

ten, performing like SREA. In between extreme values, we
expect to see a trade-off, where we reduce communication
but also decrease the success rate as we increase the thresh-
old.

Allowable Risk
Our next rescheduling strategy reduces rescheduling de-
pending on the riskiness of a schedule. Allowable Risk
(AR) decides how many uncertain events it can allow to
occur statically with an acceptably high probability of suc-
cess, as defined by a threshold. Then it simply allows those
events to occur without intervening, and reschedules when
they have all happened. This strategy limits communication
by setting the rescheduling frequency in direct proportion
to the risk associated with the intervals generated by SREA,
since lower risk will allow larger groups of uncertain events
to execute statically.

AR is also designed as part of the maybeReschedule
subroutine of DREA in Algorithm 2. It requires an input
0 < x < 1 to represent the minimum robustness thresh-
old. AR first finds the largest integer value of n such that
(1 − α)n > x for threshold x. AR then reschedules if the
received event counter k exceeds n (see Alg. 1). When it
reschedules, AR resets k to 0. Rescheduling will also pro-
duce a new α, leading to a new value for n (in the while
loop of Alg. 2). Thus, if SREA generates a schedule with
high α, AR will reschedule sooner than if SREA had gen-
erated a schedule with low α. As a proxy for probability of
failure, α ties rescheduling frequency to the risk present in
the schedules generated by SREA.

Since AR treats a threshold as a minimum probability of
success allowed, a higher threshold could lead to frequent
rescheduling, resembling DREA. However, a lower thresh-
old could lead to low success rate from too little reschedul-
ing, performing like SREA.

Coordination Targeting
Our last rescheduling strategy seeks to use the structure of
STNs to identify occasions when rescheduling will be most
meaningful. Intuitively, it seems likely that rescheduling in
preparation for constraints between events belonging to dif-
ferent agents, or interagent constraints, will be particularly
impactful, because these constraints represent more com-
plex interactions involving multiple agents.

Based on this observation, we design Coordination Tar-
geting (CT) to reschedule right before we execute exe-
cutable events that are subject to interagent constraints, and
right before we execute the last executable events preceding
contingent events that are subject to interagent constraints.
First, it sets a flag to track whether a timepoint has been
received or enabled since last rescheduling. Next, if any ex-
ecutable timepoints are enabled, it creates a copy of the cur-
rent PSTN with all requirement edges removed. The algo-
rithm then checks whether any timepoints involved in inter-
agent constraints are reachable from the currently enabled
executable timepoints. If that condition is true and the flag
is set to true, then CT calls SREA to generate a new sched-
ule, and sets the flag to false. This way, we are able to focus
rescheduling around the decisions we expect to matter the
most: the final executable timepoints before an interagent
constraint.35



To further explain CT, consider running CT on the ex-
ample PSTN illustrated in Figure 1. For the interagent con-
straint tB2 −tA2 ∈ [−5, 5] the algorithm reschedules right be-
fore tA1 and right before tB2 , since tB2 is an executable time-
point and tA1 is the last executable before tA2 , a contingent
timepoint. For the interagent constraint tB3 − tA3 ∈ [−5, 5],
the algorithm provides no additional rescheduling, because
there are no executable timepoints between tA2 and tA3 , nor
between tB2 and tB3 . In other words, rescheduling at this
point would not be useful, since we don’t get to make any
new decisions before tA3 and tB3 are received.

This algorithm could fail to reduce rescheduling if all
events are constrained by interagent constraints. If there are
not enough events under interagent constraints, this algo-
rithm may act similarly to SREA, and therefore have lower
robustness. Unlike our other two algorithms, the limitations
of this algorithm are entirely dependent on the input. Thus,
this algorithm cannot be tuned.

Algorithm 3: Coordination Targeting
Input : A PSTN S
guideSTN ← SREA(S) ;
while S.isConsistent() and not S.allExecuted() do

new ← False ;
resched← False ;
foreach t received or enabled ∈ TC do

S.update(t) ;
new ← True ;

foreach t enabled ∈ TX do
if t is controllable then

pGraph← guideSTN.justCEdges ;
foreach interagent constrained s ∈ T do

if t.reachs(s, pGraph) and new then
resched← True

if resched then
guideSTN ← SREA(S) ;
new ← False ;

foreach live & enabled t ∈ TX according to
guideSTN do
S.execute(t);
guideSTN .execute(t);

Experimental Setup
Next we describe our experimental setup for empirically
evaluating our approaches.

Scheduling Problem Testbed
Our evaluation methods attempt to recreate the experiments
of Lund et al. (2017) to yield comparable results. First, our
data set contains the same PSTNs used to evaluate DREA
in Lund et al. (2017). These PSTNs were generated by the
random robot navigation problem generator of Brooks et al.
(2015). They generally have 20 timepoint variables divided
among 2 to 4 agents, 20 to 35 total constraints, and a max-
imum of 15 contingent edges. We generated 30 PSTNs per
combination of input features, totaling to 1620 schedules.

To evaluate a wide range of problems, our PSTNs were
constructed from varying three input features: degree of
synchronization, interagent constraint density, and stan-
dard deviation. The first feature is degree of synchroniza-
tion, which sets a time upper bound between any two con-
strained events for different agents. In other words, it is the
“tightness” of bounds on interagent constraints. From the
Lund et al. (2017) data set, degree of synchrony varies be-
tween 1000, 2000, and 4000 times the standard deviation
(described later in this section).

Another input feature is interagent constraint density,
which defines the fraction of requirement constraints that
are between agents. Varying our results across different val-
ues for interagent constraint densities reveals the impact of
agent coupling intensity on the success of our algorithms.
Interagent constraint density is set to 0.4 or 0.8.

The last input feature is standard deviation of uncertain
events to measure the degree of uncertainty in the input
PSTN. The higher the degree of uncertainty, the wider the
constraint probability distributions, and the harder it is for
SREA to obtain a large α value. Varying the degree of un-
certainty informs our understanding of our execution al-
gorithms’ performance since they aim to find a success-
ful schedule in uncertain situations. The standard deviation
was measured by a kurtosis metric for contingent edge dis-
tributions, which took values 1, 3, and 5. Kurtosis is a mea-
sure of how “peaky” a distribution is. A kurtosis value of 3
corresponds to a normal distribution, while a kurtosis of 1
corresponds to a flatter distribution with higher standard de-
viation, and a kurtosis of 5 corresponds to a more “peaky”
distribution with lower standard deviation.

These problem features may generally impact the trade-
off between robustness and communication that our algo-
rithms are designed to manage. If we find our algorithms
behave consistently across different values of these three
input features, we will have a stronger basis to claim that
our results generalize to different types of input scenarios.
On the other hand, if our results are inconsistent across dif-
ferent values of one feature, we gain more insights into the
scenarios in which one algorithm outperforms another.

Simulation

We also adapted the simulation software used in Lund et
al. (2017). The simulation uses our data set to measure av-
erage success rate and duration. We additionally measured
two other metrics, number of reschedules and accumulated
bandwidth, to analyze trade-offs. The number of resched-
ules counts how often an algorithm sends out a new sched-
ule, and accumulated bandwidth sums the sizes of all sent
schedules, where the sizes are calculated as the sum of the
number of edges and number of timepoints in the schedule.

We evaluate each algorithm on each PSTN in the data set
390 times, sampling uncertainty distributions during execu-
tion. For SI, we evaluate thresholds from 0.1 to 0.5 in steps
of 0.1. For AR, we vary the threshold from 0.1 to 0.9 in
steps of 0.2. In varying the thresholds, we gain more insight
into the trade-offs between relaxed rescheduling constraints
and schedule success rate.36
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Figure 2: Simulated results for Sufficient Improvement (SI) and Allowable Risk (AR). We plot the success rate, number of
reschedules, and bandwidth for each threshold as percent reduction relative to DREA.

Counting Rescheduling in DREA
DREA reschedules whenever a contingent timepoint is re-
ceived or enabled. This means that between the time a
contingent timepoint becomes enabled and the time it is
received, DREA is continuously rescheduling. However,
in practice, the simulator that we adapted is event-based,
which only yields opportunity to reschedule when time-
points are received or executed. This behavior prevents
DREA from rescheduling continuously between events,
significantly reducing how often it reschedules. We expect
that our rescheduling strategies would dramatically reduce
continuous scheduling between timepoints in DREA imple-
mentations that use a time-based simulator, so their reduc-
tion in rescheduling would be even greater.

Empirical Evaluation
The ultimate goal of our analysis is to understand the trade-
off between rescheduling and success rate in our algo-
rithms. We consider the thresholds of SI and AR, because
thresholds control how selective an algorithm is about send-
ing out new schedules, which then impacts success rate. We
compare the success rates and number of reschedules of our
algorithms to those of DREA and the minimally scheduling
algorithms, Early First and SREA. Finally, we further ex-
amine the trade-off between rescheduling and success rate
for different thresholds of AR. Through such analysis, in-
dividuals can determine which algorithm and threshold are
most appropriate for their purposes.

Impact of Thresholds
First, we compare the performance SI and AR with dif-
ferent thresholds against DREA. In Figure 2, we graph a
percent reduction in success rate, number of reschedules,
bandwidth, and simulation duration from DREA in tandem
across all thresholds for a single algorithm. Our percent de-
crease for SI, for example, is calculated as in Equation 1.

Dec = 100 · xDREA − xSI

xDREA
. (1)

Here, xDREA is the average value of that metric for
DREA, xSI is that for SI, and Dec is the percent decrease

in the metric. We expect a positive value, because DREA
generally has higher values for all the dependent metrics. A
near zero value signifies this algorithm performs similarly
to DREA, and a larger value indicates a larger decrease
in that metric for the algorithm. Ideally, for the new algo-
rithms, success rate would not decrease relative to DREA;
however, rescheduling, bandwidth proxy, and runtime ide-
ally would decrease.

We make three significant observations about SI from
Figure 2a. First, note that all values are positive. Since the
graph depicts the percent reduction from DREA, that means
our algorithms have a lower success rate as well as less
rescheduling than DREA, as expected. Additionally, the
metrics do not vary much across thresholds for SI; the total
ranges are only 3.66% ± 2.52% for success rate, 4.34% ±
0.70% for number of reschedules, and 3.78% ± 0.76% for
bandwidth. Thus, our thresholds (0.1 - 0.5) have no sig-
nificant impact on the functionality of the algorithm. We
theorize that if we had expanded our range of thresholds
to contain negative values (i.e. the new schedule is riskier
than the old), then as the threshold approached -1, the per-
formance would approach that of DREA. Such behavior oc-
curs because a very low threshold allows the algorithm to
reschedule in more cases, approaching the functionality of
DREA. Likewise, in the higher range, SI may reschedule
infrequently, and thus act more similarly to SREA. Finally,
the percent reduction for success rate (42.45%± 0.78% on
average) is significantly lower than the percent reduction
in number of reschedules and bandwidth (74.26%± 0.22%
and 67.44% ± 0.24% on average respectively). This com-
parison signifies that the proportional loss in success rate is,
on average, 31.81%± 0.81% and 24.99%± 0.82% smaller
than the proportional loss in the respective communication
metrics. Thus, SI results are promising in reducing commu-
nication to a large extent while preserving a higher success
rate.

Figure 2b plots the same data across different thresholds
for AR. From this plot, we see many of the same patterns
present in the corresponding SI graph. All values are within
error of or above zero, so AR consistently has lower success
rates and communication metrics, as expected. The gaps37



AR Threshold Reschedules Success Rate
0.1 1.7 21%
0.3 2.8 22%
0.5 3.9 27%
0.7 5.8 30%
0.9 6.7 32%

Table 1: For each threshold of Allowable Risk (AR), we
also compute the average number of reschedules and the
average success rate across all runs over all inputs.

between the success rate with number of reschedule and
bandwidth reductions are smaller (16.84% ± 0.84% and
12.14% ± 0.84% on average respectively) so AR is less
effective at lowering rescheduling than SI. However, AR
does a better job of maintaining success rate. Its success
rate is within error of DREA’s at threshold values of .7 and
.9, where success rate is reduced by 1.14% ± 3.12% and
−2.78%± 3.22% compared to DREA, respectively.

The main difference is that the performance of AR varies
with respect to threshold. As the threshold decreases, the
success rate and rescheduling reductions all decrease at ap-
proximately the same rate (on average, 9.67% ± 1.17%
and 12.75% ± 0.46% per 0.2 units of threshold respec-
tively). We expect this result, because at a threshold of 0,
AR will always reschedule, and thus act like DREA, while
at a threshold of 1, it will never reschedule, and thus act
like SREA. This graph explores thresholds in between and
depicts a reasonable downward trend. AR also decreases
communication more than success rate. In addition, varying
the parameter depicts a clear trade-off between low thresh-
olds (following low communication) with low success rate.
Therefore, AR is tunable across the range 0.1 to 0.9.

In Figure 2, we also map the percent reduction for run-
time. For AR, the runtime depicts the same general down-
ward trend across threshold as the other metrics. This
downward trend is expected, because AR refrains from
computing new schedules when it decides against sending
one. SI does not exhibit this same property; it always cal-
culates a new schedule, then decides whether to send it out.

Trade-offs Within Allowable Risk
We also attempt to more clearly understand the magnitude
trade-offs between number of reschedules and success rate
in AR. In Table 1, we calculate AR’s average success rate
and number of reschedules for a given threshold. Note, this
table represents the same experiment as in Figure 2b, but
this time we present the absolute (vs. relative) success rate
and number of reschedules. We observe that average suc-
cess rate tends to increase as average number of resched-
ules increases. We would expect this trade-off, because the
higher the number of reschedules, the more information
used in rescheduling, the better the performance. Note this
pattern is not evident for SI.

Across our analyses, we explore a number of ways to
represent the trade-offs between success rate and commu-
nication. Our algorithms successfully explore the space be-
tween SREA and DREA in terms of amount of communica-
tion and success rate. In addition, we find the AR threshold
corresponds well with amount of communication, and thus
provides a good basis for directly analyzing the trade-off

between communication and success rate.

Impact of Problem Features
Beyond evaluating threshold effects, we compare our algo-
rithms with DREA, SREA, and Early First across different
classes of inputs. Figure 3 show two examples of simple av-
erage metric comparison across different algorithms. For all
algorithms, we graph the success rate, number of resched-
ules, and bandwidth as functions of degree of synchrony,
interagent constraint density, and standard deviation. This
arrangement yields a unique graph for each pairing of a
dependent and independent variable (ie, success rate and
degree of synchrony). With these graphs, we can directly
compare the performance of all parameters for each metric
across all input features.

In this paper, we only show success rate and number of
reschedules for degree of synchrony in Figure 3. We se-
lected these graphs to show clear trends from several input
values. However, the same trends are also present for inter-
agent constraint density and standard deviation.

Figure 3a shows that the success rate of all of our algo-
rithms is consistently between that of DREA and SREA,
as expected. Our algorithms all are modifications of DREA
that schedule less, and therefore don’t utilize as much infor-
mation. However, they all still reschedule more than SREA.
It is also noteworthy that SI and AR outperform Early First,
while only CT seems to track Early First, even though Early
First never communicates. Therefore, CT failed to preserve
a large enough success rate to make rescheduling worth-
while in comparison.

In addition, we note that as degree of synchrony in-
creases, success rate increases. Such a correlation makes
sense, because the higher the value, the larger the possible
acceptable time range for constraints between agents. The
constraints are simply less strict, and thus easier to satisfy.

Similarly, Figure 3b shows that the number of resched-
ules of all of our algorithms is consistently between DREA
and SREA. SI reschedules at a rate close to SREA, which is
optimal. CT and AR both consistently outperform DREA,
but are not as good as SI in this sense. Lastly, there is no
trend in number of reschedules as degree of synchrony in-
creases.

Figure 3, as well as all graphs of this class, additionally
express that the aforementioned results hold across differ-
ent input feature values. The input features are designed
to represent important aspects of scenarios, implying our
conclusions hold for many different types of scenarios. Our
results are thus more generalizable.

Discussion
In this paper, we augment Lund et al. (2017)’s DREA to
maintain its high success rate while simultaneously reduc-
ing its high number of reschedules. To this end, we propose
three new algorithms: Sufficient Improvement (SI), Allow-
able Risk (AR), and Coordination Targeting (CT).

Our exploration of these algorithms and their parameters
shows a clear trade-off between rescheduling and success.
We are therefore unable to conclude which of our algo-
rithms is best, because it depends on the relative importance
of rescheduling and success for a given application.38
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Figure 3: Results of all our algorithms across different degrees of synchronization. The thresholds were selected to be inter-
mediate values in the tested range, 0.3 for Sufficient Improvement (SI) and 0.5 for Allowable Risk (AR).

SI and AR show promise, where CT was unable to out-
perform Early First. Results for SI and AR are consistent
for simulations that were run and evaluated on PSTNs vary-
ing across a number of identified features. Our analysis is
thus generalizable to many different kinds of input scenar-
ios.

SI has an impressive gap between its percent reduction
of success rate and communication with respect to DREA.
This difference means that the loss in algorithm success for
the amount it reschedules is relatively low, resulting in a
less costly trade-off between success rate and communi-
cation. Unfortunately, changing the SI threshold does not
appear to affect success rate or communication. Therefore,
threshold tuning within our explored range has a negligi-
ble effect on the performance of the algorithm. Future work
might consider exploring other values of the SI threshold
outside our range, particularly negative values.

While AR does not decrease communication as much as
SI, for certain thresholds it reaches much higher success
rates. Most importantly, AR exhibits a clear trade-off: as
threshold increases, amount of communication decreases
and success rate increases. Thus, AR is more tunable to be
appropriate for the situation in which it is used. In scenarios
where communication is especially costly, like in our UAV
example, lower thresholds are preferable. However, if com-
munication is only slightly limited, the AR threshold can be
increased to capture a larger success rate. Thus, AR is more
adjustable for various situations than SI.

As we can see, there is no clear winner between SI and
AR; each algorithm may be preferable in different situa-
tions. Moreover, in scenarios where communication cost is
negligible, DREA may be more suitable, and in scenarios
where communication cost is extreme, Early First might be
best. In any case, our contributions have successfully ex-
plored the trade-offs between success rate and communica-
tion in the region between DREA and static algorithms.

Future research could explore combining these algo-
rithms in an attempt to reduce scheduling further. SI might,
for example, be layered on top of AR. Such an algorithm
might vary its rescheduling frequency based on the risk
present in the system (like AR), and then only sends out

new schedules if they constitute a significant improvement
over the current one. SI itself might attain higher robustness
(probably accompanied by a higher rescheduling rate) by
rescheduling when new schedules constitute a significant
change in predicted success rate, rather than a significant
improvement in predicted success rate.

Another possible direction for future work is to test these
algorithms in other kinds of simulations. For instance, one
could run tests in a time-based simulation, as opposed to
an event-based simulation. It would be interesting to see
how DREA, or an adapted version of our algorithms, would
perform in this context. Finally, physics-based or real-world
simulations would yield results more directly relatable to
practical situations. This would create a stronger basis for
justifying the value of SI and AR, and defining the trade-off
between success rate and communication.
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Abstract

Integrating planning and execution which treats either com-
ponent as a black box may lead to disparate representations of
the domain or information currently known. Consistency and
bidirectional information flow are then hard to ensure. How-
ever, the separation of these concerns is still useful from an
integration point of view.
In this paper, we discuss the integration of planning systems
using the Planning Domain Definition Language (PDDL)
with an executive based on the CLIPS rule-based production
system. In particular, we describe how we achieved one com-
mon and unified domain model used by both systems and
some additions we add for the execution model. We also
show how the execution model enables effective execution
monitoring and selective replanning.

1 Introduction
Agents and robots that perform in dynamic environments
need to reason about their course of action to achieve their
goals. On the task-level, this requires a system combining
planning and execution.1 Planning is the process of deter-
mining actions (and their ordering – total or partial – and
necessary intermediate conditions). The outcome of this
process is then passed on to execution, which interprets this
plan and invokes and monitors actions that effect the neces-
sary change to achieve specific goals.

There are a wide variety of systems integrating both, plan-
ning and execution. Often, these systems are in some way
biased about which component constitutes the top-most au-
thority, i.e., the part of the system which takes or gener-
ates goals and controls the reasoning and execution process.
Sometimes, a planner is the top-level system and execution
is mere action dispatching downstream, with errors trigger-
ing another planning run. The other view can be that the
executive uses the planner as a black box which is called at
suitable times.

In this paper, we propose a formulation for the integra-
tion of planning systems using the Planning Domain Defi-
nition Language (PDDL) an executive based on the CLIPS
rule-based production system as part of an on-going effort

1Many systems, for example in experimental robotics, often
forgo a lookahead planning system and rather perform simple ac-
tion selection or pursue fixed plans or scripts.

towards a CLIPS Executive (CX). While taking the stand-
point of having the executive as top-most controller, we use a
common domain model including available operators, pred-
icates, and known facts. We focus on the STRIPS fragment
of PDDL with types. We describe a CLIPS representation
of an execution model that is directly derived from the exact
same PDDL domain file used by the planning system. It fea-
tures some extensions made for plan execution, for example
to describe sensed predicates. Effects on such predicates can
be observed and should therefore not be applied directly; in-
stead, the executive should wait for the effect to occur. This
can be useful to model processes that are triggered by the
agent but that do not cause an immediate effect, or for ex-
ogenous actions which are not under the control of the agent
itself. However, since most PDDL models do not account for
these kinds of actions explicitly,2 the planning model must
assume these actions to have deterministic and immediate
effects. During execution, we merely observe sensed pred-
icates and use deviations as input for execution monitoring.
The planner model contains the subset of information known
about the environment suitable for consumption by a plan-
ner. An automatically synchronized world model, a superset
of the planner model, contains all information relevant to the
CX.

In the following, we discuss some related work in Sec-
tion 2 and provide an architecture overview in Section 3.
Our PDDL representation in CLIPS is presented in Sec-
tion 4, the PDDL planner integration in Section 5. We detail
plan execution and monitoring in Section 6, before we con-
clude.

2 Related Work and Background
Numerous systems have been proposed in the past that han-
dle task execution for autonomous systems. A task describes
a concrete and executable specification that aims to achieve
or maintain some goal through the execution of such as a
plan, a policy, or a program. Often a task makes use of prim-
itive actions as a means to effect change in the environment.3

2PDDL+ (Fox and Long 2006) supports events to model exter-
nally triggered changes. However, we do not intend to account for
these effects at planning time, where this can be tedious and costly,
but at execution time where we can cope with contingencies easier.

3Some formalisms simply see an action as a basic task.
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Planning and execution systems greatly vary in terms of the
language or programming interface used for task and action
specification.

2.1 Executives
In the following, we focus on execution systems and how
they integrate (with) planning systems.

PLEXIL The Plan Execution Interchange Language
(PLEXIL) (Verma et al. 2006) is a representation language
for plans in automation. The PLEXIL Executive is an imple-
mentation to interpret and execute PLEXIL plans. A plan is
decomposed into a set of typed nodes which serve a spe-
cific function, such as making an assignment or issuing a
command to the controlled system. PLEXIL supports con-
currency, program flow primitives (conditionals, loops), and
explicit sensing of external information. The executive deals
with plan execution only. It does not invoke or control a
planning process. However, a prototype has been developed
to externally combine a planner with PLEXIL (Muñoz, R-
Moreno, and Castaño 2010).

ROSPlan ROSPlan (Cashmore et al. 2015) is a frame-
work for task planning that describes a number of exchange-
able components and a set of message types to interconnect
these. Such components are, e.g., planner integration (prob-
lem generation, invocation, result parsing), and fact base
storage. The execution system is rather basic and hence
called plan dispatcher. After a plan has been generated, the
dispatcher publishes messages for each actions (one-by-one)
which must be interpreted and achieved through external
programs. Even though ROSPlan’s default planner POPF
produces temporal plans with concurrency, the current in-
ternal representation only yields sequential execution.4 The
dispatcher does not evaluate preconditions of actions during
execution and hence may invoke actions which cannot be ac-
complished. Effects of actions are not automatically applied
to the fact base, but the external action provider must do this.

CLIPS Agent The rule-based production system CLIPS
provides the basis for an incremental task-level reasoning
system (Niemueller, Lakemeyer, and Ferrein 2013). It does
not provide an explicit task specification language. Rather,
the behavior is defined in a knowledge-based reactive fash-
ion, where situation classifiers directly decide on the next
action to perform whenever the agent is currently idle. Ac-
tions are modeled as external functions and monitoring is
performed through rules observing updates to the fact base.
The system does not perform any planner integration.

CLIPS SMT A later revision of the aforementioned sys-
tem was extended to integrate with an SMT-based planning
system (Niemueller et al. 2017), that featured optimization
through on-line constraint adaptation. It featured an explicit
multi-actor plan representation that served as an interface
to separate the planner from the execution. Once a plan
is generated, macro operations from the plan are replaced

4Yet unreleased code in the development branch of ROS-
Plan (https://github.com/KCL-Planning/ROSPlan)
seems to improve this. However, we could not verify this in time.

by the respective sequence of actions. Then, action selec-
tion does not occur based on a situation classification as
with the CLIPS Agent, but rather based on the expanded
plan. A shortcoming of the actor-based plan representa-
tion is the need for synchronization constructs to model that
some plans may not progress until certain points have been
reached in other plans.
OpenPRS The Procedural Reasoning System (PRS) is
a high-level control and supervision framework to repre-
sent and execute plans and procedures in dynamic envi-
ronments (Ingrand et al. 1996).5 PRS has three main ele-
ments: a database containing facts representing the belief
about the world, a library of plans (or procedures) that de-
scribe a particular sequence or policy to achieve a certain
(sub-)goal, and a task graph which is a dynamic set of tasks
currently executing (Niemueller et al. 2016). Tasks are spec-
ified in terms of small programs (supporting loops, condi-
tionals, and recursion), called OPs. OPs have logic formulas
as activation conditions, that, if matched, invoke an OPs.
A specialty is that multiple OPs can be executed in paral-
lel. However, this can make proper plan design non-trivial
since conditions such as race conditions must be handled.
OpenPRS does not directly support planner integration, but
typically OPs (partial plans) are written (or graphically de-
signed) manually.
ActorSim ActorSim (Roberts et al. 2016) is an implemen-
tation of Goal-Task-Networks (GTN). Goals are considered
as a top-level construct that have a specific life cycle. Once
a goal is selected, it is expanded, which may invoke an ex-
ternal planner. However, ActorSim itself does not provide
a ready-to-use integration for planning systems. Expansion
generates a task, which is then executed through invoking
actions on the controlled system.
ASP-TBP A recent approach utilizes an extension of the
CLIPS Agent as an executive for time-bounded planning us-
ing Answer Set Programming (ASP) (Schaepers et al. 2018).
It generates plans with a time-limited lookahead (typically
up to 3 minutes) that already contains actor assignments for
each sub-task. The planner runs virtually continuously con-
current to execution. Whenever a new and better (according
to some metric) plan is found that is compatible with the
current execution state, the new plan is published through a
globally shared database. A simplified executive on the ex-
ecuting agents then retrieves new tasks from this database
when it becomes idle. The plan does contain expected task
durations allowing for reporting delays.
Kirk/RMPL The Reactive Model-based Programming
Language (RMPL) (Williams et al. 2003) provides the
means to describe rich control programs including loops
and conditionals. It also supports preemption of programs
by specifying necessary conditions during the execution of
some (partial) program. Furthermore, it supports concur-
rency and non-deterministic choice. RMPL is amenable
reactive planning. Kirk is an RMPL-based planner/execu-
tive (Kim, Williams, and Abramson 2001) that transform an
RMPL specification in a temporal plan network for inter-

5OpenPRS is the most widely available PRS version.
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leaved planning and execution. There are no openly avail-
able implementations for RMPL or Kirk, which we therefore
could not evaluate first-hand.
GOLOG GOLOG (Levesque et al. 1997) is a high-level
programming language based on the Situation Calcu-
lus (McCarthy 1963; Reiter 2001). Similar to RMPL,
GOLOG allows loops and conditionals, and also supports
non-deterministic choice. GOLOG has been extended
for interleaved concurrency (De Giacomo, Lespérance,
and Levesque 2000), on-line execution (De Giacomo,
Lespérance, and Levesque 2000), and execution monitoring
(De Giacomo, Reiter, and Soutchanski 1998). GOLOG can
also use PDDL for planning (Claßen et al. 2012) with an
achieve operator that delegates search to a PDDL plan-
ner, and continual planning (Hofmann et al. 2016), which
interleaves planning with plan execution, plans for acquir-
ing missing knowledge, and monitors the environment for
unexpected events and exogenous actions.

2.2 CLIPS Rule-Based Production System
CLIPS (Wygant 1989) is a rule-based production system
using forward chaining inference based on the Rete algo-
rithm (Forgy 1982) consisting of three building blocks (Gi-
arratano 2007): a fact base or working memory, the knowl-
edge base, and an inference engine. Facts are basic forms
representing pieces of information in the fact base. They
usually adhere to structured types. The knowledge base
comprises heuristic knowledge in the form of rules, and pro-
cedural knowledge in the form of functions. Rules are a core
part of the production system. They are composed of an an-
tecedent and consequent. The antecedent is a set of condi-
tions, typically patterns which are a set of restrictions that
determine which facts satisfy the condition. If all conditions
are satisfied based on the existence, non-existence, or con-
tent of facts in the fact base the rule is activated and added
to the agenda. The consequent is a series of actions which
are executed for the currently selected rule on the agenda, for
example to modify the fact base. Functions carry procedural
knowledge and may have side effects. They can also be im-
plemented in C++. In our framework, we use them to utilize
the underlying robot software, for instance to communicate
with the reactive behavior layer described below. CLIPS’
inference engine combines working memory and knowledge
base performing fact updates, rule activation, and agenda ex-
ecution until stability is reached and no more rules are acti-
vated. Modifications of the fact base are evaluated if they
activate (or deactivate) rules from the knowledge base. Ac-
tivated rules are put onto the agenda. As there might be
multiple active rules at a time, a conflict resolution strategy
is required to decide which rule’s actions to execute first. In
our case, we order rules by their salience, a numeric value
where higher value means higher priority. If rules with the
same salience are active at a time, they are executed in the
order of their activation (Niemueller et al. 2016).

3 System Architecture and Models
The CLIPS Executive is integrated using the Fawkes robot
software framework. It consists of several components,

such as the CLIPS run-time environment, a PDDL-to-CLIPS
parser, a planner integration component, and a reactive be-
havior component.

Fawkes (Niemueller et al. 2010) is a component-based
software framework with a blackboard communication ar-
chitecture. It provides the basic building blocks for the
integrated system. The CLIPS environment and the plan-
ner component communicate through a robot memory based
on the MongoDB-driven robot database (Niemueller, Lake-
meyer, and Srinivasa 2012). The basic behaviors are pro-
vided through the Lua-based Behavior Engine (Niemueller,
Ferrein, and Lakemeyer 2009). It provides a development
and execution environment for skills modeled as hybrid state
machines and accessible through execution functions. Skills
can be structured hierarchically to enable building more
complex actions (which are still reactive and can only per-
form local choices).

3.1 Models
In the following, a number of different models with varying
scopes are necessary for the description of the PDDL inte-
gration. We briefly introduce each of these models.
Domain Model D The domain model is akin to a PDDL
domain and contains descriptions of operators (action tem-
plates), predicates, and object types. One of the most im-
portant aspects is that both, the planner and the CX, use the
same domain model.
Planner Model P The planner model contains the facts and
object instances the planner can represent and reason about.
In the case of PDDL, this is the set of initial facts and ob-
jects that will be stored in the problem file. For this paper,
we assume a symbolic model making the closed world as-
sumption.
Execution Model E The execution model is a superset of
(and thus extended) domain model. It may contain enriched
operator descriptions (for example mentioning effects only
relevant during execution) and designate sensed predicates
(cf. Sections 4 and 6).
World Model W The world model contains all relevant
information known about the internal and external environ-
ment. It is a superset of P; in addition to the facts needed
by the planner, it contains facts that are irrelevant for plan-
ning but used during execution, e.g., precise positions and
information about other robots. It features a richer represen-
tation supporting lists, numbers, symbols, and strings. Facts
in the world model are identified by a unique key. The world
model is the only interface to ingest information into the ex-
ecutive (aside from action feedback).

In short, E extends D with additional operators and op-
erator properties, while W extends P by additional facts
needed for execution. In other words, P is the restriction
of W to facts and objects required for planning. Models P
and W are synchronized automatically, that is, any update
in W is reflected in P, and vice versa. The planner does not
modify P directly, rather, it uses it to formulate the planning
problem. Both D and E are generated from the PDDL do-
main description, and additional properties in E are asserted
by the domain designer.
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1 (at ?r -robot ?m -location ?side -side)
2 (at R-1 C-BS INPUT)

Listing 1: PDDL predicate declaration and instance.

1 (deftemplate domain-predicate
2 (slot name (type SYMBOL)
3 (default ?NONE))
4 (slot sensed (type SYMBOL)
5 (allowed-values FALSE TRUE))
6 (multislot param-names (type SYMBOL))
7 (multislot param-types (type SYMBOL))
8 )
9

10 (domain-predicate
11 (name at) (sensed FALSE)
12 (param-names r m side)
13 (param-types robot location side)
14 )

Listing 2: CLIPS template and instance for predicates.

4 PDDL Domain Representation in CLIPS
Planning and execution are based on a common domain
model. The CX execution model is derived directly from this
domain model and is specified as a PDDL domain. A dedi-
cated parser reads the domain file and asserts the necessary
structures in CLIPS. In the following, we give an overview
of these structures.

Predicates Predicates carry information about the world.
PDDL uses a symbolic representation. An example repre-
senting a robot’s position is shown in Listing 1 (l. 1). This is
translated into a CLIPS fact using the template in Listing 2
(ll. 1–8). The name, which may not be empty, as indicated
by the special ?NONE default value, is simply the head of the
PDDL predicate. The multislot param-names is the list of
parameter names defined in the PDDL predicate. The mul-
tislot param-types is the list of the respective parameter
types. An example for the representation of the PDDL at
predicate is shown in lines 10–14.

The slot sensed is an extension for the execution model
E. If set to TRUE, it indicates that this is a predicate under
exogenous control, i.e., it is not directly influenced by the
agent but rather update from an external entity. Therefore,
the value of a sensed predicate is not changed when applying
the effects of an action (cf. Sensed Effects in Section 6).

1 (deftemplate domain-fact
2 (slot name (type SYMBOL)
3 (default ?NONE))
4 (multislot param-values)
5 )
6
7 (domain-fact (name at)
8 (param-values R-1 C-BS INPUT)
9 )

Listing 3: CLIPS template and instance for facts.

1 (deftemplate domain-precondition
2 (slot name (type SYMBOL)
3 (default-dynamic (gensym*)))
4 (slot part-of (type SYMBOL))
5 (slot type (type SYMBOL)
6 (allowed-values conjunction negation))
7 (slot grounded (type SYMBOL)
8 (allowed-values FALSE TRUE))
9 (slot grounded-with (type INTEGER))

10 (slot is-satisfied (type SYMBOL)
11 (allowed-values FALSE TRUE))
12 )
13 (deftemplate domain-atomic-precondition
14 (slot name (type SYMBOL)
15 (default-dynamic (gensym*)))
16 (slot part-of (type SYMBOL))
17 (slot predicate (type SYMBOL))
18 (multislot param-names (type SYMBOL))
19 (multislot param-constants)
20 (multislot param-values)
21 (slot grounded (type SYMBOL)
22 (allowed-values FALSE TRUE))
23 (slot grounded-with (type INTEGER))
24 (slot is-satisfied (type SYMBOL)
25 (allowed-values FALSE TRUE))
26 )

Listing 4: CLIPS templates for operator preconditions.

A ground instance of a predicate (e.g., an initial fact) is
represented as domain-fact (Listing 3, ll. 1–5). An in-
stance stating that robot R-1 is at the INPUT side of the ma-
chine C-BS is shown in lines 7–9 (akin to Listing 1, line 2).

Actions An action is represented by a number of tem-
plates, one for the operator name and parameters, and sev-
eral for the action’s precondition and its effects. As CLIPS
does not support nested templates, the precondition of an ac-
tion is split into several facts. A domain-precondition is
a non-atomic precondition, i.e., a conjunction or a negation,
with sub-conditions. A domain-atomic-precondition

is an atomic precondition and always refers to a spe-
cific predicate. The PDDL precondition is decomposed
into a tree of preconditions. The root is always non-
atomic, typically a conjunction. Atomic preconditions can
only be a child of compound preconditions. Leaves which
are atomic preconditions represent the respective predi-
cate requirement. Conjunctive leaves are considered to
be TRUE, negation leaves evaluate to FALSE. Addition-
ally, a domain-precondition can also be part of an-
other domain-precondition, which allows nested pre-
conditions. The templates of the preconditions are shown
in Listing 4. A domain-precondition has a name,
which is automatically set to a unique name if no name
is given. The name is used to specify the precondi-
tion as a parent condition of another precondition, which
is specified with the slot part-of. A non-atomic pre-
condition can be of type conjunction or negation.
A domain-atomic-precondition always refers to a
predicate and has parameter names and constants, where
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1 (deftemplate domain-effect
2 (slot name (type SYMBOL)
3 (default-dynamic (gensym*)))
4 (slot part-of (type SYMBOL))
5 (slot predicate (type SYMBOL))
6 (multislot param-names)
7 (multislot param-values)
8 (multislot param-constants)
9 (slot type (type SYMBOL)

10 (allowed-values POSITIVE NEGATIVE))
11 )

Listing 5: The template definition for an action effect.

1 (:action enter-field
2 :parameters (
3 ?r - robot ?team-color - team-color)
4 :precondition (and
5 (location-free START INPUT)
6 (robot-waiting ?r))
7 :effect (and (entered-field ?r)
8 (at ?r START INPUT)
9 (not (location-free START INPUT))

10 (not (robot-waiting ?r)) (can-hold ?r))
11 )

Listing 6: The PDDL operator enter-field.

the names must be a subset of the parameter names of the
operator.

An action’s effect is assumed to be a set of literals similar
to STRIPS effects. The definition of the template is shown
in Listing 5. Similar to preconditions, the effect name is au-
tomatically set to a unique name if no name is given. An
effect must always be part of an operator and refer to a pred-
icate. Similar to an atomic precondition, it has parameter
names, values, and constants. An effect can be positive or
negative.

The translation of the enter-field PDDL opera-
tor (Listing 6) is shown in Listing 7. The precon-
dition of the PDDL action is represented by a con-
junctive domain-precondition and two template facts
of type domain-atomic-precondition. Similarly,
the effect of the action is split into five instances of
domain-effect, one for each atomic effect. The precon-
dition enter-field11 on the predicate location-free

shows how constants are translated: The multislot
param-names contains the two placeholder names c, indi-
cating constant values. The multislot param-constants is
set to (START INPUT). Note that the parameter name is not
used but is only a placeholder so the number of parameters
of the precondition matches the number of parameters of the
predicate. If a parameter is not a constant, then the respec-
tive value in param-constants is set to nil, as shown in
the effect gen65 on the predicate at.

5 Planner Integration
The handling of the planning system is implemented as a
separate planner component. It handles PDDL problem
generation, invokes a planner, and parses the output to re-

1 (domain-operator (name enter-field)

2 (param-names r team-color)

3 (param-types robot team-color))

4 (domain-precondition (part-of enter-field)

5 (name enter-field1) (type conjunction))

6 (domain-atomic-precondition (part-of enter-field1)

7 (name enter-field11) (predicate location-free)

8 (param-names c c) (param-constants START INPUT))

9 (domain-atomic-precondition (part-of enter-field1)

10 (name enter-field12) (predicate robot-waiting)

11 (param-names r) (param-constants nil))
12 (domain-effect (name gen64) (part-of enter-field)

13 (predicate entered-field) (param-names r))

14 (domain-effect (name gen65) (part-of enter-field)

15 (predicate at) (param-names r c c)

16 (param-constants nil START INPUT))

17 (domain-effect (name gen66) (part-of enter-field)

18 (predicate location-free) (param-names c c)

19 (param-constants START INPUT)

20 (type NEGATIVE))

21 (domain-effect (name gen67) (part-of enter-field)

22 (predicate robot-waiting) (param-names r)

23 (type NEGATIVE))

24 (domain-effect (name gen68) (part-of enter-field)

25 (predicate can-hold) (param-names r))

Listing 7: The operator enter-field in CLIPS
(default values are omitted).

trieve the plan. It therefore provides an abstraction of the
underlying PDDL planner. The component currently sup-
ports FF (Hoffmann and Nebel 2001) and FASTDOWN-
WARD (Helmert 2006), among others. As these planners
produce sequential plans, we focus on sequential planning.
However, the framework can be easily extended to par-
tially ordered plans by a modified action selection (see Sec-
tion 6.1).

Planner Invocation The executive continuously synchro-
nizes the world model with a robot memory based on Mon-
goDB (Niemueller, Lakemeyer, and Srinivasa 2012). The
planner model (as part of the world model) is therefore avail-
able in the database. To initiate a planning process, the ex-
ecutive stores the goal to the robot memory and invokes the
planner. The planner retrieves model and goal and dynam-
ically generates the PDDL problem from using a (domain-
specific) template. This way, the planner always plans with
the same initial state as the CLIPS agent currently operates
with. The PDDL domain is static and is the same domain
that is parsed by the CLIPS agent. The CLIPS function (
pddl-call ?goal) initiates this process.

The planner stores the generated plan in the robot mem-
ory, from which the executive retrieves it. It then asserts a
plan fact along with a number of plan-action facts.

Action Grounding We differentiate operator definitions
and instances thereof, i.e., grounded actions. A grounded
action is defined by the template plan-action, as shown
in Listing 8. A plan-action has a unique numeric id,
which is used to impose an ordering of the actions in a plan.
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1 (deftemplate plan-action
2 (slot id (type INTEGER))
3 (slot action-name (type SYMBOL))
4 (multislot param-names)
5 (multislot param-values)
6 (slot status (type SYMBOL)
7 (allowed-values FORMULATED PENDING
8 WAITING RUNNING EXECUTION-SUCCEEDED
9 SENSED-EFFECTS-WAIT

10 SENSED-EFFECTS-HOLD EFFECTS-APPLIED
11 FINAL EXECUTION-FAILED FAILED))
12 (slot executable (type SYMBOL)
13 (allowed-values FALSE TRUE))
14 )

Listing 8: The template definition for an action.

1 (defrule domain-check-atomic-precondition
2 ?precond <-
3 (domain-atomic-precondition
4 (is-satisfied FALSE)
5 (grounded TRUE)
6 (predicate ?pred)
7 (param-values $?params))
8 (domain-fact (name ?pred)
9 (param-values $?params))

10 =>
11 (modify ?precond (is-satisfied TRUE))
12 )

Listing 9: The rule to check whether an atomic
precondition is satisfied.

The slot action-name refers to a domain-operator,
param-names and param-values denote the parameters
of the action. The possible states are detailed in Section 6.

Given a plan-action fact, we need to ground the ac-
tion’s precondition to check whether the action is exe-
cutable. In order to do so, an atomic precondition is
grounded by matching the parameter names in the precon-
dition with the parameter names of the grounded action and
copying their values from the action to the precondition. A
non-atomic precondition is grounded by grounding all its
sub-conditions.

After grounding the action’s precondition and all the sub-
conditions recursively, we can check whether an action is ex-
ecutable. Starting with the atomic preconditions, we check
whether a corresponding domain-fact with the same pred-
icate name and the same parameter values exists. If so, the
atomic precondition is satisfied. The CLIPS rule doing this
check is shown in Listing 9. We then proceed with the parent
preconditions: If the parent is a negation, then it is satisfied
if and only if its child is not satisfied. If it is a conjunc-
tion, then all the children must be satisfied. We continue
bottom-up until the root precondition is reached. If the root
is satisfied, then the action is executable.

6 Plan Execution and Monitoring
Based on the grounded plan, the executive starts evaluation
of the plan. Note that after each action execution, the re-
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EFFECTS-APPLIED

FINAL

EXECUTION-FAILED

FAILED

Select

Executable

BE starts execution

Skill failed

Retry

Skill succeeded

wait-sensed

Sensed effects occurred

Apply effects

!wait-sensed

Expected effects
not observed

exogenous

Figure 1: The possible states of a plan-action and the
transitions between those states.

maining plan actions are grounded again, based on the then
available information in the planner model. In the following,
we describe the execution procedure in more detail.

6.1 Plan Execution
Each action in the plan is assigned a state machine as shown
in Figure 1. Initially, all actions of the plan are set in
the FORMULATED state. The action selection is responsible
for selecting the action to execute, changing its state from
FORMULATED to SELECTED. The current version of the sys-
tem supports sequential plans. When no action is being ex-
ecuted, the next action is determined by the action which is
executable, and for which there is no other pending action
with a lower id (cf. Section 5). If no pending action is exe-
cutable, the agent waits until an exogenous event causes an
update to the planner model rendering an action executable
(also cf. Section 6.2).

Any action in the current plan is checked whether it is ex-
ecutable by checking whether its precondition is satisfied.
If a pending action is executable, the action is marked as
WAITING. There are two sub-systems which can process
such actions. The first is directly inside the executive, and is
used in particular for communication acts. The second inter-
acts with the physical world through the Lua-based Behavior
Engine (BE) (cf. Section 3). The CX is initially configured
with a domain-specific set of mappings from operators to
skill execution strings that the BE can interpret.

Once the BE starts executing a skill, the state of the action
changes to RUNNING. The executive then awaits for the skill
to finish. Depending on the outcome of the skill execution,
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the state of the action is set to either EXECUTION-FAILED
or EXECUTION-SUCCEEDED. An action may be retried

(cf. Section 6.2), otherwise it is FAILED. If the execution
was successful, then the next state depends on whether the
executed action has any sensed effects, i.e., effects involving
sensed predicate (see below). Eventually, the action transi-
tions to SENSED-EFFECTS-HOLD, asserts all other effects in
one transaction, and transitions to EFFECTS-APPLIED. This
enables additional steps such as retracting all precondition
groundings and where execution monitoring may perform
an analysis of the outcome. Then, the action transitions to
FINAL.

Sensed Effects Some predicates may be configured to be
sensed predicates, i.e., predicates which are set by exoge-
nous action not under the control of the agent. This is a
deliberate extension in the execution model, as it covers
an important aspect often found in real-world domains, es-
pecially in robotics. During planning, such a predicate is
treated as any other predicate. Actions, for which its effects
involve sensed predicates, can be configured in two ways.
They may either wait for those effects (sensed-wait slot
is set to TRUE) or simply ignore the effects altogether. If the
action waits for the effects in the SENSED-EFFECTS-WAIT
state, the executive monitors updates to the planner model.
Once all expected sensed effects are observed, the action
transitions to the SENSED-EFFECTS-HOLD mode. If this
never happens (i.e., an expected effect never occurs), execu-
tion monitoring will eventually let the action fail (see Sec-
tion 6.2). If no sensed effect exists or if the action is con-
figured not to wait for sensed effects, then the action state
is directly set to SENSED-EFFECTS-HOLD. After that, the
non-sensed effects of the action are applied by grounding
the operator effects with the action’s arguments, and then
asserting and retracting domain-fact facts.

Note that if an action is configured to not wait on sensed
effects, then the semantics of the action execution and the
PDDL domain model may differ. In particular, an effect that
is specified in the PDDL domain does not necessarily hold
after executing the action if it is a sensed effect and the ac-
tion does not wait on the sensed effect. However, this is use-
ful for actions that have a delayed effect, e.g., an instruction
message to a machine that eventually finishes processing the
instruction and switches to a state READY. While this effect
needs to be modeled in the domain to allow reasoning about
the agent’s actions, we do not want to wait for the machine
to finish processing. Instead, the agent should continue with
the plan until one of the action’s requires the machine to be
in the state READY, in which case the agent will wait until
the precondition is satisfied.

An execution trace of a plan including action grounding,
precondition check, and effect application, is shown in Fig-
ure 2 in the Appendix.

6.2 Execution Monitoring
Execution monitoring (XM) is the process of observing the
system while performing an action. It is an important aspect
of robust execution systems. The CLIPS Executive is partic-

ularly well-suited for this task since all information is avail-
able in the fact base common to all parts of the program. The
explicit modeling of plans and action execution states pro-
vide the execution monitoring with integration hooks. For
example, if an action enters the EXECUTION-FAILED state,
based on additional information the XM may or may not in-
dicate to retry an action. By default, it tries three times. It
can also easily impose temporal monitoring, for example if
the agent is stuck for a certain period in time without the
next action to be executable, the XM can determine the plan
to have failed and trigger re-planning.

7 Conclusion
In this paper, we introduce a PDDL plan executive based
on the CLIPS rule-based production system. The executive
is capable of executing a PDDL plan by invoking a plan-
ner, translating the plan into its internal plan representation,
checking each action’s executability, executing an action by
means of a Behavior Engine, and applying effects based on
the execution model. We provided a detailed description
of the domain and plan representation used by the execu-
tive and described four different models for the integration
of a PDDL planner. The domain model describes the op-
erators, predicates, and object types of the PDDL domain.
The execution model extends the domain model by addi-
tional aspects of action execution such as delayed effects,
exogenous actions, and sensed predicates. The world model
contains all relevant information known about the environ-
ment, while the planner model is a subset of the world model
only concerned with the facts and objects necessary for plan-
ning. During execution, the domain model allows to verify
that the current plan continues to be executable by check-
ing the actions’ preconditions, while continuously updating
the world model based on sensing. If an action fails or an
unexpected event occurs, the CX provides monitoring capa-
bilities to recover, which is aided by the explicit modeling
of plans, actions, and action execution states.
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Appendix

1 ==> f-1199 (domain-fact (name location-free) (param-values START INPUT))

2 ==> f-1286 (domain-fact (name robot-waiting) (param-values R-1))

3 ==> f-17314 (plan-action (id 2) (action-name enter-field) (param-names r team-color) (param-values R-1 CYAN))

4 FIRE 221 domain-ground-action-precondition: *,f-17314,f-553,*
5 ==> f-17315 (domain-precondition (part-of enter-field) (grounded-with 2) (name enter-field1) (type conjunction))

6 FIRE 222 domain-ground-atomic-precondition: *,f-17314,f-17315,f-555,*
7 ==> f-17316 (domain-atomic-precondition (part-of enter-field1) (grounded-with 2) (name enter-field12) (predicate

robot-waiting) (param-names r) (param-values R-1))

8 FIRE 223 domain-check-if-atomic-precondition-is-satisfied: f-17316,f-1286

9 <== f-17316 (domain-atomic-precondition (name enter-field12) (is-satisfied FALSE))

10 ==> f-17317 (domain-atomic-precondition (name enter-field12) (is-satisfied TRUE))

11 FIRE 224 domain-ground-atomic-precondition: *,f-17314,f-17317,f-554,*
12 ==> f-17318 (domain-atomic-precondition (part-of enter-field1) (grounded-with 2) (name enter-field11) (predicate

location-free) (param-names c c) (param-values START INPUT) (param-constants START INPUT) (is-satisfied FALSE))

13 FIRE 225 domain-check-if-atomic-precondition-is-satisfied: f-17318,f-1199

14 <== f-17318 (domain-atomic-precondition (name enter-field11) (is-satisfied FALSE))

15 ==> f-17319 (domain-atomic-precondition (name enter-field11) (is-satisfied TRUE))

16 FIRE 226 domain-check-if-conjunctive-precondition-is-satisfied: f-17315,*,*
17 <== f-17315 (domain-precondition (name enter-field1) (type conjunction) (is-satisfied FALSE))

18 ==> f-17320 (domain-precondition (name enter-field1) (type conjunction) (is-satisfied TRUE))

19 FIRE 227 domain-check-if-action-is-executable: f-17314,f-17320

20 <== f-17314 (plan-action (id 2) (action-name enter-field) (status FORMULATED) (executable FALSE))

21 ==> f-17321 (plan-action (id 2) (action-name enter-field) (status FORMULATED) (executable TRUE))

22 FIRE 357 action-selection-select: f-17321,f-17075,f-17102,*,*
23 <== f-17321 (plan-action (id 2) (action-name enter-field) (status FORMULATED) (executable TRUE))

24 ==> f-17678 (plan-action (id 2) (action-name enter-field) (status PENDING) (executable TRUE))

25 FIRE 358 skill-action-start: f-17678,f-295,*,f-1419

26 Calling skill ’drive_into_field{team="CYAN"}’

27 <== f-17678 (plan-action (id 2) (action-name enter-field) (status PENDING) (executable TRUE))

28 ==> f-17680 (plan-action (id 2) (action-name enter-field) (status WAITING) (executable TRUE))

29 ClipsExecutiveThread wants me to execute ’drive_into_field{team="CYAN"}’

30 GOTO: executing goto{place = C-ins-out}

31 Skill enter-field is S_RUNNING, was: S_IDLE

32 Action enter-field is running

33 <== f-17680 (plan-action (id 2) (action-name enter-field) (status WAITING) (executable TRUE))

34 ==> f-17685 (plan-action (id 2) (action-name enter-field) (status RUNNING) (executable TRUE))

35 Skill enter-field is S_FINAL, was: S_RUNNING

36 FIRE 3 skill-action-final: f-17681,f-17685,f-17859

37 Execution of enter-field completed successfully

38 <== f-17685 (plan-action (id 2) (action-name enter-field) (status RUNNING) (executable TRUE))

39 ==> f-17860 (plan-action (id 2) (action-name enter-field) (status EXECUTION-SUCCEEDED) (executable TRUE))

40 FIRE 4 domain-effects-check-for-sensed: f-17860,f-552

41 <== f-17860 (plan-action (id 2) (action-name enter-field) (status EXECUTION-SUCCEEDED) (executable TRUE))

42 ==> f-17861 (plan-action (id 2) (action-name enter-field) (status SENSED-EFFECTS-HOLD) (executable TRUE))

43 FIRE 5 domain-effects-apply: f-17861,f-552

44 ==> f-17862 (domain-fact (name entered-field) (param-values R-1))

45 ==> f-17863 (domain-fact (name at) (param-values R-1 START INPUT))

46 <== f-1199 (domain-fact (name location-free) (param-values START INPUT))

47 <== f-1286 (domain-fact (name robot-waiting) (param-values R-1))

48 ==> f-17864 (domain-fact (name can-hold) (param-values R-1))

49 <== f-17861 (plan-action (id 2) (action-name enter-field) (status SENSED-EFFECTS-HOLD) (executable TRUE))

50 ==> f-17865 (plan-action (id 2) (action-name enter-field) (status EFFECTS-APPLIED) (executable TRUE))

51 <== f-17865 (plan-action (id 2) (action-name enter-field) (status EFFECTS-APPLIED) (executable TRUE))

52 ==> f-17915 (plan-action (id 2) (action-name enter-field) (status FINAL) (executable TRUE))

Figure 2: An abbreviated execution trace for executing a plan that contains the action enter-field. The initial world model
is shown in lines 1-2. In lines 4-21, the precondition is grounded and checked and the action is marked as executable. In
lines 22-39, the action is executed with the Behavior Engine. In lines 40-51, the effects of the action are applied. At the end,
the action is marked as FINAL.
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Abstract

This work describes a planning architecture for a het-
erogeneous fleet of marine assets as well as a method
for detecting and tracking ocean fronts using multi-
ple autonomous underwater vehicles. Multiple vehicles
— equally-spaced along the expected frontal boundary
— complete near parallel transects orthogonal to the
front. Lateral gradients are used to determine the loca-
tion of the front crossing from each individual vehicle
transect by detecting a change in the observed water
property. Adaptive control of the vehicles ensure they
remain perpendicular to the estimated frontal bound-
ary as it evolves over time. This method was demon-
strated in several experiment periods totaling weeks, in
and around Monterey Bay, California in May and June
of 2017. We discuss the challenges associated with the
implementation of the planning system. We show the
capability of this method for repeated sampling across
a dynamic two-dimensional ocean front using a fleet
of three types of platforms: short-range Iver AUVs,
Tethys-Class Long-Range AUVs, and Seagliders. This
method extends to tracking gradients of different prop-
erties using a variety of vehicles.

Introduction
Space-based remote sensing can provide extensive infor-
mation about ocean dynamics. However, remote sens-
ing information is generally limited to measuring the
ocean surface. To probe the ocean interior efficiently
requires marine vehicles such as autonomous underwa-
ter vehicles (AUVs), gliders, profiling buoys, surface
vehicles, and ships sampling in situ. Unfortunately,
building, deploying and operating these in situ ma-
rine robotic explorers is expensive. As a result, any
actual study involves a limited number of marine ve-
hicles, especially when compared to the vast expanse
of the ocean. Determining where to deploy and operate
marine assets is a challenging problem given the 4D spa-
tiotemporal variations in oceanographic phenomena.

The use of autonomous marine vehicles will increase
as the size of ocean observing systems expand in order
to study the impact of the oceans on Earth’s climate
and ecosystems. The day-to-day operations of these

systems will become increasingly difficult if human in-
tervention is required. In order to enable large observ-
ing systems to operate, techniques for autonomous con-
trol of assets based on science goals and data sources
such as in situ measurements, remote-sensing, and
model-derived data need to be developed. Such ob-
serving systems will incorporate a wide variety of ve-
hicles with differing capabilities. Planning and execu-
tion systems that leverage existing infrastructure help
to reduce the cost associated with the development and
maintenance of an observing system as well as maintain
flexibility with regards to the planning approach and
vehicle availability. The Keck Institute for Space Stud-
ies (KISS) Satellites to Seafloor project works towards
this goal of fully autonomous sampling [Thompson et
al., 2017]. Previous ocean observing systems have re-
lied on substantial human intervention or non-adaptive
sampling strategies, including the Autonomous Ocean
Sampling Networks (AOSN) [Curtin and Bellingham,
2009; Curtin et al., 1993; Haley et al., 2009; Leonard et
al., 2007; Ramp et al., 2009] and the Adaptive Sampling
and Prediction (ASAP) [Leonard et al., 2010] projects.

Our project targets automatic generation of coordi-
nated mission plans for teams of assets to follow science
derived observation policies (e.g. the use of multiple
vehicles to perform transects orthogonal to an ocean
front). This paper describes a planning and execution
system for a heterogeneous fleet of marine assets. To
highlight this system, an approach was developed using
multiple vehicles to make a linear estimation of an ocean
front’s geometry and to continuously direct a team of
marine robotic vehicles to perform orthogonal transects
with the midpoint of the transect roughly centered on
the target front. We describe both the general approach
to front-crossing detection, front-geometry estimation,
and multi-asset control, the architecture of the plan-
ning and execution system for a deployment using three
types of vehicles: short-range Iver Autonomous Under-
water Vehicles, Long-Range Tethys Autonomous Un-
derwater vehicles, and long-range Seaglider buoyancy
driven gliders in Monterey Bay in late spring 2017, the
results from the deployment, and the challenges associ-
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ated with this system. This deployment was the result
of a team effort between the KISS project members and
the MBARI Spring 2017 CANON participants [Mon-
terey Bay Aquarium Research Institute, 2017]. The
method and systems presented here represent signifi-
cant steps towards the fully-autonomous adaptive sam-
pling framework as envisioned in Thompson et al.
[2017].

Front-Crossing Detection
Lateral Gradient Front-Crossing Detection

The KISS team developed an algorithm to identify a
subsurface oceanic front based on lateral gradients of a
given hydrographic property. This could be tempera-
ture, buoyancy or density (if salinity data is available),
or any available biogeochemical property such as dis-
solved oxygen or chlorophyll.

When in situ data is received in near real time, the
algorithm grids the data, smooths it by applying a sim-
ple linear weighted average of immediate neighboring
measured data points, and calculates the lateral gra-
dients (Figure 1). The algorithm uses temporal gra-
dients, and assumes that time can be linearly related
to distance. The algorithm then calculates the lateral
gradients along the transect within the layer of inter-
est (defined beforehand by the user) as well as the mean
value, and the standard deviation. The user also defines
beforehand the number of standard deviations used to
declare a front-crossing detection. All points above this
threshold are considered potential front crossings (Fig-
ure 2). To qualify for a frontal crossing, it is required
that the threshold is crossed twice (once entering and
once leaving the high gradient region). The width of
the front is used to choose the front crossing of interest
if more than one is present. The front location, width,
and time of crossing is then output for later use in ve-
hicle tasking. An example is shown in Figure 1 and
Figure 2. Time, as apposed to distance, is plotted on
the x-axis as that is what the algorithm uses. Using real
time data from May 4, 2017 (Figure 1d) the algorithm
detects five narrow subsurface fronts from 10 to 15 m
deep (Figure 2a), and selects the widest front (Figure
2d).

Autonomous Control of Underwater
Vehicles for Front Tracking

A technique was developed to control a group of vehi-
cles to repeatedly sample across a dynamic ocean front
as it evolves over time. The planner must be able to
modify the vehicle transects in order to adapt to the
changing ocean conditions. The control algorithm is
outlined in Algorithm 1 and shown in Figure 3. The
statements in which the planning system interacts with
the execution system (i.e. the vehicles) are highlighted.
When first deployed, an initial estimated front location
and orientation is manually provided based on available
data from other assets. The vehicles are equally spaced
along this estimated front. Each vehicle is commanded

Figure 1: Lateral gradient front-crossing detector. For
this example we use data obtained on May 4, 2017 from
Iver 136 (segment 000). Real-time in situ temperature
data (shown in scatter plot in panel a) is gridded (panel
b) and smoothed (panel c). Then, lateral gradients are
calculated (panel d). When used in real time, the algo-
rithm uses temporal gradients, and assumes that time
can be linearly related to distance.

on an initial transect orthogonal to the estimated front.
When the vehicle surfaces to plan, Algorithm 1 is ex-
ecuted. The vehicle location and the scientific data
from the current transect are retrieved from the ex-
ecution system as vehicle location and transect data
respectively. The vehicles location along the transect is
calculated as locationp by projecting the vehicles cur-
rent location onto the commanded transect. If the ve-
hicle has traveled a minimum distance along the com-
manded transect, specified by transect distmin, then
the front-crossing detection algorithm is run on the data
from this transect. The resulting front-crossing is de-
fined as new front crossing. If the vehicle is a spec-
ified distance past this new front detection, then the
front is re-estimated using linear regression on front
detections from all vehicles, otherwise the transect is
continued. When re-estimating, only certain front de-
tections from each vehicle are considered, specified by
valid front detections. We used two methods when
selecting the subset of detections used in the linear re-
gression: a time based approach where detections from
the last N hours were considered and a latest detec-
tion approach where only the last detection from each
vehicle was considered. These two approaches are de-
fined in the procedure get estimation crossings. The
new transectp is calculated such that it is orthogonal
to estimated front. The vehicle is then commanded
on this new transect. In order to prevent the vehicle
from leaving the study area, transect distmax is de-
fined. If a transect has reached this length the front is
re-estimated, a transect orthogonal to this is defined,

Copyright c© 2018, all rights reserved
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Figure 2: (Continues from Figure 1) The algorithm cal-
culates the mean value of the lateral gradients over the
layer of interest. In this example, we use data from
10m to 15m. The algorithm calculates the mean value
(bold red line in panel a) and the n-standard deviation
(in this case, n=1.2; red broken lines in panel a). All
points above the n-value standard deviation are consid-
ered potential fronts (red circles in panel b). A boolean
is used to isolate the front crossings (panel c). The
width of the front is used to choose the front crossing
when more than one front is present. The crossing cho-
sen by the algorithm is marked with a red arrow.

and the vehicle is commanded on this new transect.

Pilot Experiment

Experiment Site

The pilot experiment occurred in Monterey Bay, Cal-
ifornia (36.80◦N, 121.90◦W) from May to June 2017.
The circulation in Monterey Bay is characterized by
a persistent coastal upwelling, in response to preva-
lent northerly winds, which generates highly-productive
cold coastal regions [Hickey, 1979; Lynn and Simpson,
1987]. In May 2017, an intensive upwelling plume
spread southeastward across the mouth of Monterey
Bay. A fleet of AUVs were deployed to detect and track
the fronts between the upwelling plume and the strati-
fied inner bay water. Over the shelf, KISS IVERs were
set to detect lateral gradients of temperature from 10m
to 15m. Over the slope, temperature in the upwelling
water column was remarkably homogeneous in the ver-
tical dimension. Over the slope, MBARI LRAUVs were
also set to detect lateral gradients of temperatures from
10m to 15m.

Glider retasking took place in June 2017, offshore
Point Sur, where the California Undercurrent (CU) be-
comes unstable [Molemaker, McWilliams, and Dewar,
2015]. Looking for the surface signature of the CU, one
Seaglider was set to detect lateral gradients of temper-
ature from 5m to 15m. The operations regions for each
vehicle are shown in Figure 4.
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Figure 3: Iver transects on May 11 with temperature
averaged from 10 meters to 15 meters plotted. Front
crossings are shown as blue dots and estimated fronts
are shown as blue lines. Each vehicle starting location is
labeled with the vehicle name and the date. The second
transect for each vehicle is orthogonal to the estimated
front from the front crossings on the first transect.

Instruments

This work was demonstrated across three types of un-
derwater vehicles: the OceanServer Iver AUV, the
Kongsberg Underwater Technology, Inc. Seaglider and
the MBARI Tethys-class LRAUV (shown in Figure 5).
The method is extensible to other platforms and in-
deed other domains where the vehicles are able to at
least intermittently transmit collected data and receive
new instructions mid-deployment.

Iver AUVs The highest speed observing platforms
used for this field experiment consisted of two Iver2
(Ocean Server Technology Inc.) autonomous underwa-
ter vehicles (AUVs) [Crowell, 2006]. Both of the ve-
hicles were equipped with a hull-mounted Neil Brown
conductivity/temperature sensor (Ocean Sensors Inc.)
which served as the primary scientific payload for this
work. Additionally, one of these vehicles, Iver-106, was
an Ecomapper variant equipped with a SonTek Doppler
velocity log (DVL), an Ocean-Server compass for atti-
tude estimation, a WHOI micro-modem 2 and a depth
sensor. The other Iver2 vehicle, Iver-136, was similarly
equipped with the WHOI micro-modem 2, compass and
depth sensor as well as a dual upward, downward facing
600 kHz RDI phased array DVL, a Microstrain 3DM-
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System Architecture

Algorithm 1 Linear Front Delineation and Tracking
procedure vehicle retasking . Run this procedure when a vehicle
surfaces to plan

vehicle location← Get vehicle location

transect data← Get vehicle data

locationp ← project (transect, vehicle location)

if dist
(
transect start, locationp

)
>= transect distmin then

new crossing ← detect crossings (transect data)
if new crossing was detected then

crossings← crossings
⋃
{new crossing}

valid crossings← get estimation crossings(crossings)
estimated front← linear regression (valid crossings)
locationf ← project (transect, new front crossing)

if dist
(
locationp, locationf

)
> εpast front km then

Calculate transectp s.t. transectp ⊥ estimated front

Command vehicle on transectp

else

Continue on current transect

else if dist
(
transect start, locationp

)
<= transect distmax then

valid crossings← get estimation crossings(crossings)
estimated front← linear regression (valid crossings)
Calculate transectp s.t. transectp ⊥ estimated front

Command vehicle on transectp

procedure get estimation crossings(crossings) . First of two options
for this procedure

return Latest front crossing for each vehicle.

procedure get estimation crossings(crossings) . Second of two options
for this procedure

return {crossing ∈ crossings | crossing.time > current time −
εtime}

GX3-25 and an APS-1540 fluxgate magnetometer. The
Iver2 AUVs have an approximate maximum horizontal
velocity of 2 m s−1 and were operated at a speed of
1.5 m s−1 for these trials. These vehicles are shown on
board the R/V Shana Rae in Figure 5 during operations
in August 2016.

Long-Range AUVs Also used in this experiment
were two Tethys-Class Long-Range AUVs (Monterey
Bay Aquarium Research Institute) [Bellingham et al.,
2010; Hobson et al., 2012] (Figure 5). Each vehicle was
equipped with a Neil Brown conductivity, temperature,
depth (CTD) sensor and a Sea-Bird ECO fluorometer
and backscattering sensor. The LRAUVs have an ap-
proximate maximum horizontal velocity of 1 m s−1 and
an endurance of 1,000+ km. The vehicle is capable of
sampling to a maximum depth of 200 m in a saw–tooth
pattern (i.e. yo-yo). An iridium modem is used for
sending commands to the vehicle as well as download-
ing a subset of the data to the shore. When cellular
signal is available, a cellular modem is used to send the
full dataset.

Underwater Gliders We used two Seagliders
(Kongsberg Underwater Technology, Inc.) [Eriksen et
al., 2001] equipped with Seabird SBE3 temperature sen-
sor and SBE4 conductivity sensor, pressure sensor, and
Aanderaa 4330F oxygen optode (Figure 5). Sampling
occurred approximately every 5 s (0.5 m vertical res-
olution at typical vertical speeds of 0.1 m s−1). The
gliders use a buoyancy engine for propulsion, having
an approximate horizontal velocity of 0.25 m s−1 and
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Figure 4: Map of the 2017 pilot experiment region near
Monterey Bay, California. The operation regions of the
Iver AUVs, Seagliders, and Tethys-class LRAUVs are
shown.

endurance up to 4,600 km. For this experiment, we
were tasking the gliders to maximum depths of 600 m
(although they are capable of profiling to a maximum
depth of 1000 m) in a saw–tooth pattern.

System Architecture

Existing systems are leveraged to deploy a general plan-
ning method to a variety of vehicles in a short time
frame. The system architecture for all vehicles used in
this experiment is shown in Figure 6. The Seaglider
and LRAUV both operate remotely using the Iridium
network. On each surfacing, GPS, engineering, and sci-
entific data transmits to a shore-based control worksta-
tion. This workstation can then issue commands to the
vehicle. For this experiment, the planning software ran
on a separate shore-based workstation capable of com-
municating with the workstation controlling the vehi-
cles. In this way it was possible for the planner to
receive all the necessary data and send commands to
the vehicles in near real-time.

While the Seaglider and LRAUV are nominally able
to transmit data and receive new instructions during
operations, the Iver AUVs required some modifications
to enable these behaviors. Four communication modal-
ities are available to the Iver: Iridium short burst data
(SBD), Wi-Fi, 900 MHz RF, and acoustic modem. Sci-
entific data such as position, conductivity, temperature,
and timestamps can be received and new commands can
be sent over any of these four available communication
links. Possible commands include stopping a mission,

Copyright c© 2018, all rights reserved 53



Figure 5: Top: OceanServer Technology, Inc. Iver2
AUVs onboard the R/V Shana Rae, Bottom Left: Mon-
terey Bay Aquarium Research Institute’s Tethys-Class
Long-Range AUV., Bottom Right: Kongsberg Under-
water Technology, Inc. Seaglider onboard the R/V
Paragon

starting a mission already loaded on the vehicle, park-
ing the vehicle and inserting segments of waypoints into
the already running mission. Initially, it was planned
to use the segment insertion to facilitate the retask-
ing of the vehicles. While these commands were suc-
cessfully received and interpreted by the vehicle, some
unexplained behaviors while using this command pre-
cluded its ongoing use. As a temporary work around for
the 2017 field trials in Monterey we used the outputs
of the planning software to manually program a new
mission which was then loaded onto the AUV over the
RF link. Due to the short range of the Iver AUVs, a
surface vessel remains deployed near the vehicles at all
times. This surface vessel also houses the control and
planning workstations for the vehicle. The Iridium link
was active during this experiment, but was not used for
planning purposes.

Figure 6: System diagram outlining the communication
pathways from the vehicles to the controlling worksta-
tions and the planning workstations. The existing in-
frastructure is outlined with a red dotted line.

Results
An abridged version of the results are presented here.
The full results can be found in Branch et al. [2018].

Iver AUV Results
Two Iver AUVs were operated on three days, 4 May,
9 May, and 11 May 2017. They are limited to single
day deployments due to the short range of the vehicles.
Some operational constraints required modifications to
the outlined front tracking control method. The range
limitation associated with acoustic and RF communica-
tion and the desire to have the ability for quick vehicle
recovery required the two Iver AUVs to remain in close
proximity to each other. The front tracking algorithm
as presented does not guarantee any vehicle synchro-
nization with regards to position. To solve this issue,
the vehicles pause at any point in which a new transect
could start and waits for every other vehicle to reach
their respective decision points. Once all vehicles have
paused, the front-crossing detection algorithms are ex-
ecuted for each vehicle. If at least one vehicle has de-
tected a front crossing, a new linear front estimation is
generated and all vehicles are commanded orthogonal
to it. If no front crossings are detected then all vehicles
continue on the current transect.

In this experiment the minimum transect distance
was set at 3 km past the current estimated front. The
minimum distance required for a vehicle to go past the
front-crossing detection on a given transect was set to
0 km, this results in the vehicle turning around at the
first decision point after a front crossing is detected.
The first decision point can be significantly past the de-
tected front crossing due the minimum transect length.
Ideally this would be set to a longer distance to in-
sure that the vehicle has crossed the entire front be-
fore calculating a new transect, however due to soft-
ware constraints for this phase of the deployment this
was not possible. Front-geometry estimation was per-
formed with the latest front crossing from each vehicle.
The lateral gradient front-crossing detection algorithm
was used with the Iver AUVs. Figure 7 shows the re-
sults of the Iver experiment on 9 and 11 May, 2017.
Two transects were completed per vehicle per day. The
starting locations for each vehicle on each day are la-
beled. Temperature averaged from 10 meters to 15 me-
ters is plotted. All front crossing and front-geometry
estimations used during the deployment are shown as
blue dots and blue lines respectively. A number of dif-
ferent depth intervals for front-crossing detection were
used during the deployment in order to examine the
sensitivity of the algorithm. For reference, the front
crossings and front-geometry estimations for 10 meter
to 15 meter depth range are also plotted in green.

LRAUV Results
The LRAUV experiment took place on 07 May, 2017.
Two vehicles, Opah and Tethys, were under the control
of the planner and utilized the lateral gradient front-
crossing detection method. The minimum transect dis-
tance was set at 4.5 km past the current estimated front.
The minimum distance required for a vehicle to go past
the front-crossing detection on a given transect was set
to 0 km, this results in the vehicle turning around at
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Underwater Glider Results

Figure 7: Map view of the temperature averaged from
10 to 15 meters for the Iver transects on 09 and 11
May, 2017. Front crossings and front-geometry estima-
tions used during the experiment are indicated with a
blue dot and blue line respectively. Front crossings and
front-geometry estimations using data from 10 meters
to 15 meters during the experiment are indicated with a
green dot and green line respectively. The start location
for each vehicle for each day is labeled.

the first decision point after a front crossing is detected.
Once again, the minimum distance past a front crossing
would ideally be larger. Front-geometry estimation was
performed with the latest front crossings from each ve-
hicle. Figure 8 shows the results from the phase 2 of the
LRAUV experiment. The temperature averaged from
10m to 15m, the interval used for front-crossing detec-
tion, is plotted. The algorithm during this period of the
deployment ran incorrectly, resulting in erroneous front
crossings. The algorithm was re-run correctly in post-
processing. Both the front crossings used during the
deployment and the correct front crossings are plotted
in Figure 8. Opah was able to complete two transect
while Tethys only completed one transect due to hard-
ware issues.

Underwater Glider Results

The underwater glider operated off the coast of Point
Sur, California from 7 June to 21 June, 2017. From 7
June to 15 June the glider was in a region of strong sur-
face currents, preventing any significant forward move-
ment. The glider transect was relocated and success-
fully operated from 15 June to 21 June, 2017. During
the glider portion of the experiment, only one vehicle
was available. Using the method presented here, it is
not possible to estimate the orientation of a linear front
with a single vehicle. As such, a fixed transect orien-
tation is used in this experiment. The minimum tran-
sect distance and the minimum distance to travel past
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Figure 8: Map view of the temperature averaged from
10 to 15 meters for the LRAUV Phase 2 experiment.
The front crossings and front-geometry estimations
used in the deployment are plotted as blue dots and
blue lines respectively. The correctly calculated front
crossing and front-geometry estimations are plotted as
red dots and red lines respectively.

a front were set to a fixed 5 km, independent of the
current location of the estimated front. In normal op-
eration these distances would be increased. Due to the
short time frame of the experiment these were reduced
in order to complete more transects.

A map view of the 6 glider transects plotting the
averaged temperature over 10 meters to 15 meters, the
interval used for front-crossing detection, can be seen
in Figure 9. The front crossings and front estimations
are marked with a blue dot and a blue line respectively.
The 16 km maximum extent transect is shown in black.

Planning and Execution Challenges

Communication Paradigms The LRAUV and the
Seaglider both utilize the Iridium network to enable
the off-board planning system to control the vehicle.
A centralized off-board planner simplifies vehicle coor-
dination and allows for the use of a variety of vehicles
while avoiding unique on-board implementations. This
comes at the cost of reduced real time capabilities as
vehicles are unable to transmit data and receive new
plans during a dive. The default schedule of surfacing
activities of the LRAUV and Seaglider also impacts the
real time capabilities of the system. Immediately after
the data is received from the vehicle, the Iridium con-
nection is closed and the vehicle dives. This induces
a one dive delay when using the data from the vehicle
for planning purposes. The surfacing schedule can be
modified in order to remove this, at the cost of increased
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Figure 9: Map view plot of the temperature averaged
from 10 to 15 meters for all the glider transects from
15 to 21 June, 2017 off Point Sur, California. Front
crossings are indicated with blue dots.

surfacing times.
The Ivers use a similar off-board planning system,

however it is ship-based as apposed to shore-based. The
range limitations associated with acoustic, RF, and Wi-
Fi communication impose additional constraints. It is
ideal for the vehicles to be in close proximity so the
ship remains in contact with all vehicles simultaneously.
Our specific planning approach was modified in order
to accommodate this. The real time capabilities could
also be improved by utilizing the acoustic communica-
tion channel for scientific data and vehicle commanding.
Note that the Iridium network is a possible communi-
cation modality for the Iver, but was not used during
this deployment so the nearby ship could maintain full
control of the vehicles.

Data Decimation The bandwidth of the communi-
cation channels available is not always large enough to
support the transfer of the complete dataset acquired
by the vehicle. When this is the case, a subset of the
data must be selected for transmission and use by the
off-board planner. The Seaglider is capable of sending
the full dataset at each surfacing, however the other two
vehicles are not. The Iver AUVs selects data at a fixed
temporal resolution. The Tethys-Class LRAUV selects
data based on the change from the previously transmit-
ted data point. If a given data point differs by a spec-
ified amount from the previously selected data point
then the given data point is also selected for transmis-
sion. During the experiment, we recognized that the
decimated dataset from the LRAUV contained large
gaps, resulting in suboptimal gridded data. An appro-
priate data decimation scheme needs to be employed
for a given planning method.

Vehicle Safety Vehicle safety concerns must be ad-
dressed when implementing a planning system. A
concern present with all vehicles is contact with the
seafloor. The three vehicles used in the experiment have
the capability of autonomously avoiding the seafloor

using a sonar based device. However, to increase ve-
hicle endurance, these devices were disabled on the
LRAUVs and Seagliders. Instead, an additional layer
was added to the planner in order to avoid seafloor col-
lisions. The Seaglider dive depth was altered based on
the bathymetry along the expected dive path, while the
LRAUV’s planned transects were modified to avoid ar-
eas with bathymetery less than a specified depth.

A related concern is the lateral position of the ve-
hicles. Each vehicle must remain in the target region.
Due to the short experiment periods and limited tran-
sect length for the LRAUVs and Ivers, this was not a
concern. The Seaglider deployment used boundaries to
limit the transect and prevent the vehicle from mov-
ing onto the continental shelf. It is also desirable for
Ivers to remain in close proximity so the surface ship
with the control workstations can be in range of all ve-
hicles simultaneously and quick recoveries are possible.
The planning approach was modified to satisfy this con-
straint.

Related Work

Adaptive sampling and control of multiple autonomous
underwater vehicles has been extensively studied, in-
cluding foundational work with the Autonomous Ocean
Sampling Network [Curtin and Bellingham, 2009;
Curtin et al., 1993; Haley et al., 2009; Leonard et al.,
2007; Ramp et al., 2009]. Much of this work focuses
on spatially adapting the control strategy in order to
optimally sample a fixed region. The Adaptive Sam-
pling and Prediction project [Leonard et al., 2010] used
adaptive control in order to coordinate 6 gliders to fly
in loops at fixed spacing. Our method instead performs
repeated focused sampling across a single front as it
evolves over time.

Other work focused on control strategies that adapt
to the current conditions, however not using multi-
vehicle coordination. Troesch et al. [2016] uses an
ocean model in order to improve the station keeping
ability of vertically profiling floats. Eriksen et al. [2001]
describes the capabilities of a Seaglider to compensate
for drift from currents using depth averaged currents
over multiple dives. Those important works focus on
adaptive control of vehicles based on current conditions
to improve sampling. We instead look at other hydro-
graphic properties in order to optimize sampling of a
specific feature.

A number of near real-time feature tracking methods
exist for applications such as thermoclines [Cruz and
Matos, 2010; Sun et al., 2016; Zhang et al., 2010] and
oil spills [Zhang et al., 2011]. These approaches focus
on tracking a one-dimensional feature using a single ve-
hicle, while we utilize multiple vehicles to track a two-
dimensional feature. Flexas et al. [2018] uses an ocean
model and autonomous planning to optimize sampling
of submesoscale structures. Our approach focuses on
frontal tracking using trailing in-situ vehicle data as
apposed to an ocean model.
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Other work has investigated two-dimensional feature
tracking. Zhang et al. [2013, 2016] utilize the VTHI
front detection method on a single vehicle to detect and
track an upwelling front on a zig-zag track with a fixed
turn angle. Cruz and Matos [2014] tracks any gradient
boundary using a single vehicle following a dynamic zig-
zag pattern and a lateral gradient detection algorithm
to estimate the gradient boundary using an arc whose
curvature is defined by the last three front-crossing lo-
cations. A similar method can also be applied to track-
ing the center of a phytoplankton bloom patch [Godin
et al., 2011]. Machine learning, in the form of policy
learning, has also been applied to the problem of track-
ing the edge of a harmful algal bloom [Magazzeni et
al., 2014]. Other work focuses on tracking algal blooms
by flying formations relative to the bloom as tracked
by a drifter [Das et al., 2012]. Petillo, Schmidt, and
Balasuriya [2012] uses a simulated network of AUVs in
order to estimate the boundary of a simulated plume.
These all differ from our approach in that we are using
multiple vehicles in order to estimate the position and
orientation of an ocean front using a method of gridded
front detections as well as a linear front model.

Future Work

On-Board Planning

On-board planning can eliminate the constraints im-
posed by off-board planning. The first option is for all
vehicle planning to be performed on-board with all in-
formation required for coordination relayed through a
centralized off-board server. In the case of our planning
method, this would involve sending the front detection
locations to a centralized server and sending the front
location and orientation to each vehicle from the cen-
tralized server. This allows for shorter surfacing win-
dows, use of the full dataset, and real time use of the sci-
entific data. However, less processing power is available
for the planning and execution software. An updated
front detection method could be required depending on
the constraints of on-board processing.

The second option removes the use of a centralized
shore-based server for vehicle coordination, instead opt-
ing for a peer-to-peer based architecture. This requires
a method of inter-vehicle communication such as an
acoustic modem, limiting the distance vehicles can be
from one another. By performing all planning and exe-
cution operations on-board the vehicle, surfacing times
can be drastically reduced or the vehicles can operate in
areas where surfacing is not always possible, such as an
ice-covered environment. Real-time planning and coor-
dination is also possible with this method by removing
the need for vehicles to surface for communication. The
most appropriate paradigm for planning and execution
depends the requirements of the planning method itself.

Front Detection

Throughout this experiment, multiple points of im-
provement were identified in regards to lateral gradient

front detection. Front detection could be improved by
gridding data based on distance traveled as opposed to
time. This is particularly important for slower mov-
ing vehicles such as underwater gliders. The gridding
process itself could also be improved by using objective
mapping. In this experiment temperature was used,
other ocean properties such as, buoyancy could also be
used. The lateral gradient front detection method con-
sists of many parameters, a more in-depth analysis of
the effects of these parameters would be beneficial. Our
front-crossing detection technique could be extended in
order to select a crossing based on a set of criteria such
as front direction (i.e. cold-to-warm versus warm-to-
cold), gradient strength, and front size. By using these
different properties a specific front can be targeted.

Conclusion

This work presents a planning and execution system for
a heterogeneous fleet of underwater vehicles and demon-
strates it with a method of adaptive control using mul-
tiple autonomous underwater vehicles in order to track
an ocean front evolving over time. This method utilizes
an off-board planner for near real-time front detection,
ocean front estimation using a linear model, and vehicle
retasking. We build upon the prior efforts of the AOSN
deployments and takes a further step towards a fully-
autonomous adaptive sampling framework [Thompson
et al., 2017].

The experiment was conducted in May and June,
2017 in and around Monterey Bay, California. Three
types vehicles were used, two Tethys-Class Long-
Range AUVs, two short-range Iver AUVs, and one au-
tonomous underwater glider, a Seaglider. During this
experiment we demonstrated the performance of the
lateral gradient front detection method on data from
all three vehicles and the capability of the autonomous
control method for front tracking. We showed that this
method is both suitable for a multi-vehicle approach
with a dynamic front position and orientation and a
single-vehicle approach utilizing a fixed front orienta-
tion. The multi-vehicle approach allows for improved
synopticity over a zig-zag method when sampling a
front. While the use of off-board planning algorithms
provides more processing power and allows for flexible
implementation for different platforms.
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Abstract

This paper describes an integrated architecture for represent-
ing, reasoning with, and interactively learning domain knowl-
edge in the context of human-robot collaboration. Specifi-
cally, Answer Set Prolog, a declarative language, is used to
represent and reason with incomplete commonsense knowl-
edge about the domain. Non-monotonic logical reasoning
identifies knowledge gaps and guides the interactive learn-
ing of relations that represent actions, and of axioms that en-
code affordances and action preconditions and effects. Learn-
ing uses probabilistic models of uncertainty, and observations
from active exploration, reactive action execution, and human
(verbal) descriptions. The learned actions and axioms are
used for subsequent reasoning. The architecture is evaluated
on a simulated robot assisting humans in an indoor domain.

1 Introduction
Consider one or more robots1 assisting humans in an office
or a home, e.g., delivering desired objects or guiding peo-
ple to particular locations. Information about such domains
often includes commonsense knowledge, especially default
knowledge that holds in all but a few exceptional circum-
stances, e.g., “books are usually in the library, but cook-
books may be in the kitchen”. Domain knowledge may also
include some understanding of action preconditions and ef-
fects, and action capabilities, i.e., affordances. Human par-
ticipants will, however, lack the time and expertise to pro-
vide comprehensive domain information or elaborate feed-
back. Robots will thus need to reason with incomplete do-
main knowledge and revise this knowledge over time. The
architecture described in this paper is a step towards address-
ing these open problems; it is based on the following tenets:

• Knowledge elements encode symbolical content about
object constants, relations representing domain attributes
and actions at different levels of abstraction, and axioms
composed of these relations.

• Knowledge elements are revised non-monotonically by
reasoning with knowledge and observed outcomes of ac-
tions that may be immediate or delayed.

• Affordances are defined jointly over the attributes of
agents and objects in the context of particular actions.

1We use “robot”, “agent”, and “learner” interchangeably.

• Reasoning, learning and interaction are coupled; values of
state-action pairs are revised using observations obtained
from active exploration and reactive action execution.

The combination of these tenets is novel, and we implement
them using the complementary strengths of declarative pro-
gramming, probabilistic reasoning, and relational learning
through induction and reinforcement. In this paper, we fo-
cus on the interplay between reasoning and learning, and ab-
stract away some aspects of our overall architecture, e.g., we
flatten some levels of the representation and do not describe
probabilistic modeling of perceptual uncertainty. Instead,
we describe the following key capabilities:
• Incomplete domain knowledge described in an action lan-

guage is translated into a relational representation in An-
swer Set Prolog (ASP) for inference, planning and diag-
nostics. ASP-based reasoning also automatically limits
interactive learning to the relevant part of the domain.

• Previously unknown actions’ names, preconditions, ef-
fects, and objects over which they operate, along with as-
sociated affordances, are learned using decision-tree in-
duction and relational reinforcement learning based on
observations of active exploration, reactive action execu-
tion, and verbal cues from humans.

We evaluate these capabilities in the context of a simulated
robot delivering objects to particular people or locations in
an indoor domain. We first describe the proposed architec-
ture and algorithm (Section 2), followed by some results of
experimental evaluation (Section 3). Then, Section 4 re-
views related work, followed by a description of conclusions
and future work in Section 5.

2 Proposed Architecture
Figure 1 depicts key components of the overall architec-
ture. Incomplete domain knowledge is encoded in an ac-
tion language to construct tightly-coupled relational repre-
sentations at two resolutions. For any given goal, reason-
ing with commonsense knowledge at the coarse resolution
provides a sequence of abstract actions. Each abstract ac-
tion is implemented as a sequence of concrete actions by
a partially observable Markov decision process (POMDP)
that reasons probabilistically over the relevant part of the
fine-resolution representation, with action outcomes and ob-
servations updating the coarse-resolution history. As stated
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Figure 1: Architecture combines complementary strengths of
declarative programming, probabilistic reasoning, and interactive
learning for reasoning with and learning domain knowledge.

earlier, we abstract away the reasoning at different resolu-
tions and the probabilistic modeling of perceptual uncer-
tainty, and focus on the interplay between representation,
reasoning, and learning. The relational representation is thus
translated into an ASP program for planning and diagnos-
tics. ASP-based reasoning also guides the interactive learn-
ing of actions, affordances, and the preconditions and effects
of actions. This learning uses observations obtained through
active exploration, reactive execution, and human (verbal)
descriptions—the learned knowledge is used for subsequent
reasoning. We use the following domain to illustrate our ar-
chitecture’s capabilities.
Example 1. [Robot Assistant (RA) Domain] A simulated
robot/learner finds, labels, and delivers objects to people
or places (office, kitchen, library, workshop) in a building.
Each place may have one or more instances of objects such
as desk, book, cup and computer. Each human has a
particular role (e.g., engineer,manager, salesperson).
Objects are characterized by weight (heavy, light),
surface (brittle, hard), status (intact, damaged),
and labeled (true, false). The robot’s arm has a type
(electromagnetic, pneumatic). The actions available
to the robot include pickup, putdown, move, label, and
serve, but it may not know about some actions or axioms
(i.e., rules) governing domain dynamics such as:
• A pneumatic arm cannot be used to serve a brittle object.
• Serving an object to a salesperson causes it to be labeled.
• An object with a brittle surface cannot be labeled unless

the robot has an electromagnetic arm.
There may be other robots that (are assumed, for simplic-
ity, to) have identical capabilities and cannot communicate
with the learner. Humans and the learner can observe these
robots. Humans can verbally describe other robots’ activi-
ties, e.g., “Robot labeled the hard, hefty item” to help the
learner acquire knowledge of previously unknown actions
and axioms. Although this domain may appear simplistic, it
becomes complex as the number of ground instances of ob-
jects and their attributes increases, e.g., there were≈ 18, 000
combinations of ground static attributes and ≈ 11 million
combinations of ground fluent terms in an instantiation.

2.1 Knowledge Representation and Reasoning
We first describe the action language encoding of domain
dynamics, and its translation to CR-Prolog programs for
knowledge representation and reasoning.

Action Language Action languages are formal models
of parts of natural language used for describing transition
diagrams of dynamic systems. We use action language
ALd (Gelfond and Inclezan 2013) to describe the transi-
tion diagrams at different resolutions. ALd has a sorted sig-
nature with statics, fluents and actions. Statics are domain
attributes whose truth values cannot be changed by actions,
whereas fluents are domain attributes whose truth values can
be changed by actions. Fluents can be basic or defined. Ba-
sic fluents obey the laws of inertia and can be changed by
actions. Defined fluents do not obey the laws of inertia and
are not changed directly by actions—their values depend on
other fluents. Actions are defined as a set of elementary op-
erations. A domain attribute p or its negation ¬p is a literal.
ALd allows three types of statements:

a causes lb if p0, . . . , pm (Causal law)
l if p0, . . . , pm (State constraint)
impossible a0, . . . , ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal, lb is a basic literal, and
p0, . . . , pm are domain literals.

Domain Representation: Signature and Axioms The
domain representation consists of system description D,
which is a collection of statements of ALd, and history H.
D has a sorted signature Σ and axioms that describe the
transition diagram τ. Σ defines the basic sorts, and domain
attributes and actions. Basic sorts of the RA domain include
place, robot, role, book, weight, status etc, which
are arranged hierarchically, and sort step for temporal
reasoning. Σ includes ground instances of sorts, e.g.,
{office,workshop, kitchen, library} of sort place.
Domain attributes and actions are described in terms of
the sorts of their arguments. The RA domain has fluents
such as loc(entity, place), the location of the robot and
objects, with the locations of humans and other robots (if
any) modeled as defined fluents whose values are obtained
from external sensors; and in hand(robot, object),
which denotes whether a particular object is in the robot’s
hand. Static attributes include arm type(robot, type),
obj status(object, status) etc, and actions include
move(robot, place), pickup(robot, object), and
serve(robot, object, person). The representation also
includes a relation holds(fluent, step) that implies a
particular fluent is true at a particular timestep.

Axioms of the RA domain include causal laws, state con-
straints and executability conditions such as:

move(rob1, L) causes loc(rob1, L)
serve(rob1, O, P) causes in hand(P,O)
loc(O, L) if loc(rob1, L), in hand(rob1, O)
impossible pickup(rob1, O) if loc(rob1, L1),

loc(O, L2), L1 6= L2
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The history H of a dynamic domain is usually a record of
fluents observed to be true or false at a particular time step,
i.e., obs(fluent, boolean, step), and the occurrence of an
action at a particular time step, i.e., occurs(action, step).
This notion was expanded to represent defaults describing
the values of fluents in the initial state (Sridharan et al.
2017), e.g., “books are usually in the library and if not there,
they are normally in the office” is encoded as:

initial default loc(X, library) if book(X)
initial default loc(X, office) if book(X),

¬loc(X, library)

We can also encode exceptions to these defaults, e.g., “cook-
books are in the kitchen”.

Domain Representation: Affordances We define affor-
dances, i.e., action capabilities, as relations between at-
tributes of robot(s) and object(s) in the context of particu-
lar actions. Negative (i.e., forbidding or dis-) affordances
describe unsuitable combinations of objects, robots, and
actions. Positive affordances describe permissible uses of
objects in actions by agents, including exceptions to exe-
cutability conditions that prevent the use of the correspond-
ing action during planning. In ALd, we represent affor-
dances in a distributed manner, as follows:

impossible A if aff forbids(ID,A)
aff forbids(idi, A) if . . .

impossible A if . . . , not aff permits(ID,A)
aff permits(idj, A) if . . .

The first two statements say that action A cannot occur if it
is not afforded, and specify the conditions (i.e., attributes of
robot and object) under which the action is not afforded. The
last two statements say that an action A that is not consid-
ered during planning due to an executability condition may
have a positive affordance as an exception, and define the
positive affordance. Each action can have multiple affor-
dances indexed by the ids. This representation of knowledge
improves generalization, and can simplify inference.

ASP-based inference The domain representation is trans-
lated into a program Π(D,H) in CR-Prolog2, a variant of
ASP that incorporates consistency restoring (CR) rules (Bal-
duccini and Gelfond 2003). ASP is based on stable model
semantics, and supports default negation and epistemic dis-
junction, e.g., unlike “¬a” that states a is believed to be
false, “not a” only implies a is not believed to be true,
and unlike “p ∨ ¬p” in propositional logic, “p or ¬p” is
not tautologous. ASP can represent recursive definitions and
constructs that are difficult to express in classical logic for-
malisms, and it supports non-monotonic logical reasoning,
i.e., the ability to revise previously held conclusions based
on new evidence. The program Π includes the signature and
axioms of D, inertia axioms, reality checks, and observa-
tions, actions, and defaults from H. Every default also has
a CR rule that allows the robot to assume the default’s con-
clusion is false under exceptional circumstances, to restore

2We use the terms “ASP” and “CR-Prolog” interchangeably.

consistency. Each answer set of an ASP program represents
the set of beliefs of an agent associated with the program.
Algorithms for computing the entailment, and for planning
and diagnostics, reduce these tasks to computing answer sets
of CR-Prolog programs.

Reasoning with incomplete or incorrect knowledge may
overlook valid plans, find suboptimal plans, or provide plans
whose execution has unintended outcomes. For instance,
the robot in the RA domain is asked to deliver textbook
book1 to the office. It uses default knowledge to compute
the plan move(rob1, library), pickup(rob1, book1),
move(rob1, office), putdown(rob1, book1). This does
not succeed because (unknown to the robot) its electromag-
netic arm cannot pick up the heavy book. We next describe
the interactive learning of such unknown knowledge.

2.2 Interactive Learning
Obtaining labeled samples to learn previously unknown ac-
tions, and axioms is difficult in complex domains, and hu-
mans may have limited time and expertise. Also, the effects
of actions may be observed immediately or after a delay. We
thus enable the robot to interactively acquire labeled exam-
ples. To speed up learning and to simulate learning without
running many trials on a robot, we introduce two schemes:
(i) active learning from verbal cues provided by humans;
(ii) relational reinforcement learning based on observations
from active exploration or reactive action execution. We de-
scribe these schemes below.

Learning from Human Interaction To acquire domain
knowledge from the verbal cues provided by humans de-
scribing the observed behaviors of other robots, the learner
makes the following assumptions:
• Other robots have the same capabilities as the learner;
• Learner can generate logic statements corresponding to

attributes of robot(s) or object(s) in the observed action;
• Humans correctly describe one activity at a time.
These assumptions are reasonable for many robotics do-
mains, and simplify interaction with humans.

The learner solicits human input when available and re-
ceives a transcribed verbal description of an action and ob-
servations of the action’s consequences, e.g., the learner
may receive “The robot is labeling the fairly big textbook.”
and labeled(book1). We use the Stanford log-linear part-
of-speech (POS) tagger (Toutanova et al. 2003). We em-
ploy a left, second-order sequence information model to de-
termine each word’s POS tag and append it to the word.
In our example, the output is a string such as “The DT
robot NN is VBZ labeling VBG the DT fairly RB big JJ
textbook NN”, where “VB” represents a verb, “NN” is a
noun etc. The learner transforms this string to <word,
POS> pairs, and transforms the sentence’s verb into first-
person present-tense using rules from a lemma list (Someya
1998) and WordNet (Miller 1995), e.g., < is, VBZ > <
labeling, VBG > becomes the verb “label”. The learner
also marks each noun phrase as a sequence of zero or more
adjectival terms followed by a noun, discarding other inter-
leaved words. Our example sentence’s noun phrases are

62



robot and big textbook. Nouns signify object sorts and
adjectival terms signify values of static attributes. To de-
termine terms’ referents, WordNet relations such as linked
synsets are used to find a synonym that is also a do-
main symbol, e.g., “big” and “heavy” share a WordNet
synset, heavy is an attribute value, and book(book1) and
obj weight(book1, heavy) are domain attributes. The
matched domain symbols combine to refer to particular ob-
jects. We require static attributes’ values to be disjoint sets,
and each noun phrase to signify an existing object—these
are true by design in our domain.

The robot constructs a literal for the action from the verb
and the object referents, e.g., label(rob1, book1). The ar-
guments’ lowest-level sorts are assumed to be the valid argu-
ments, e.g., label(#robot, #book). If this candidate action
does not match any known action literal, the robot lifts the
literal, its arguments and the observed action consequences.
This forms the basis for constructing candidate causal laws
and generalizing over time. For instance:

label(rob1, book1) causes labeled(book1)
is lifted to:

label(R, B) causes labeled(B)
If, on the other hand, the new literal matches an existing one,
the first common ancestor of each argument’s sort is found.
For instance, if the learner knows label(#robot, #cup)
and finds that label(#robot, #book) has matching conse-
quences, it will generalize to label(#robot, #object). This
method for learning from interaction with humans adapts
existing natural language processing methods to work with
our representation. It helps the learner acquire a previously
unknown action’s name, and the sorts of objects the action
operates on. However, this knowledge is not sufficient be-
cause the learner may still not know axioms that govern the
domain dynamics related to this action. This missing knowl-
edge is acquired using the second learning scheme below.

Relational Reinforcement Learning The second learn-
ing scheme enables axiom discovery by active exploration
of the transition corresponding to a particular action, or by
exploration in response to unexpected and unexplained tran-
sitions. To explore a particular transition, the resultant state
is set as the goal of a reinforcement learning (RL) problem,
i.e., the objective is to find state-action pairs most likely to
lead to this (and other similar) states. The underlying MDP
is defined by a set of states (S), set of actions (A), state tran-
sition function Tf : S×A×S ′ → [0, 1], and reward function
Rf : S×A× S ′ → <. Similar to classical RL formulations,
Tf and Rf are unknown to the agent. Each state has ground
atoms formed of the domain attributes (i.e., fluent terms and
statics), and a boolean literal describing whether the most
recent action had the expected outcome. Each action is a
ground action of the system description. Tf and Rf are con-
structed from statistics collected in an initial training phase;
Tf is a probabilistic model of the uncertainty in state transi-
tions, while Rf provides instantaneous rewards for executing
particular actions in particular states. The RL formulation
is constructed automatically from the system description—
(Sridharan et al. 2017) describes a method for translating an

ASP-based system description to a representation for prob-
abilistic sequential decision making.

The values of state-action pairs are estimated in a series
of episodes, until convergence, using the Q-learning algo-
rithm (Sutton and Barto 1998). In each episode, the agent
executes a sequence of actions chosen using an ε-greedy al-
gorithm and eligibility traces. The combinations of states
and actions invalidated by existing axioms are not explored.
Each episode terminates when a time limit is exceeded or
the target action succeeds. The physical configuration of
objects is then reset to its state from the beginning of the
episode, and a new episode begins. Such a formulation can
become computationally intractable for complex domains.
A key advantage of our architecture is that ASP-based rea-
soning can be used to automatically restrict the object con-
stants, domain attributes and axioms relevant to the desired
transition, i.e., to those that influence or are influenced by
the transition, significantly reducing the search space. This
notion of relevance is based on the following desiderata re-
garding the relations that may appear in a discovered axiom:

• For any static attribute that may exist in the body of
the discovered axiom, we wish to explore all possi-
ble elements in the range of the attribute, e.g., for ac-
tion serve(rob1, cup1, person1), all possible weights
of cup1 and roles of person1 are explored.

• For any fluent that may appear in the body of the axiom,
we wish to explore only those elements in the range of the
fluent that occur in the state before or after the state transi-
tion. Any other element cannot, by design, be influenced
by this transition anyway.

ASP-based reasoning is used to encode these requirements
and automatically construct the system description D(T),
the part of D relevant to the transition T . To do so, we
first define the object constants relevant to the transition of
interest. These definitions are adapted from the definitions
introduced in (Sridharan et al. 2017).

Definition 1. [Relevant object constants]
Let atg be the target action that when executed in state σ1
resulted in the unexpected transition T = 〈σ1, atg, σ2〉. Let
relCon(T) be the set of object constants of Σ ofD identified
using the following rules:

1. Object constants from atg are in relCon(T);
2. If f(x1, . . . , xn, y) is a literal formed of a domain at-

tribute, and the literal belongs to σ1 or σ2, but not both,
then x1, . . . , xn, y are in relCon(T);

3. If the body B of an axiom of atg contains an occurrence
of f(x1, . . . , xn, Y), a term whose domain is ground,
and f(x1, . . . , xn, y) ∈ σ1, then x1, . . . , xn, y are in
relCon(T).

Constants from relCon(T) are said to be relevant to T , e.g.,
for action atg = serve(rob1, cup1, person1) in the RA
domain, with loc(rob1, office), loc(cup1, office), and
loc(person1, office) in σ1, the relevant object constants
include rob1, cup1, person1, and office.

Definition 2. [Relevant system description]
The system description relevant to the desired transition T =
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Figure 2: Illustrative example of a Binary Decision Tree (BDT)
with nodes representing tests of domain literals. The BDT is con-
structed incrementally over time.

〈σ1, atg, σ2〉, i.e., D(T), is defined by signature Σ(T) and
axioms. Σ(T) is constructed to comprise the following:

1. Basic sorts of Σ that produce a non-empty intersection
with relCon(T).

2. All object constants of basic sorts of Σ(T) that form the
range of a static attribute.

3. The object constants of basic sorts of Σ(T) that form the
range of a fluent, or the domain of a fluent or a static, and
are in relCon(T).

4. Domain attributes restricted to basic sorts of Σ(T).

Axioms of D(T) are those of D restricted to Σ(T). For
atg = serve(rob1, cup1, person1) in our current exam-
ple, D(T) does not include other robots, cups or people in
the domain. It can be shown that for each transition in the
transition diagram of the system description D, there is a
transition in the transition diagram of D(T). States of D(T),
i.e., literals formed of fluents and statics in the answer sets
of the ASP program, are states in the RL formulation, and
actions are ground actions of D(T). Furthermore, it is pos-
sible to pre-compute or reuse some of the information used
to construct D(T) for any given T .

Once the D(T) relevant to the target transition has been
identified, the RL formulation is constructed as before to
compute the values of state-action combinations. The ex-
tent to which computing D(T) reduces the search space de-
pends on the relationships between the domain attributes and
axioms. For instance, although there are several thousand
static attribute combinations and more than a million ob-
ject configurations in our instantiation of the RA domain,
computing D(T) often reduces the space of attribute com-
binations to as few as 12 for the serve action. However, in
other domains with complex relationships between objects,
exploration may need to be further limited to a fraction of
this restricted state space. Furthermore, Q-learning does not
generalize to relationally equivalent states.

Inspired by the RRL-TG algorithm (Driessens and Ramon
2003), we facilitate generalization to relationally equivalent
states by constructing a binary decision tree (BDT) whose

nodes represent tests of domain literals—Figure 2 shows an
example BDT. Unlike the destructive branching of RRL-TG,
we model the partial description of a state-action pair as a
path to a leaf where we store the remaining state informa-
tion. When Q-value variance is reduced by adding a test at
a leaf, the BDT is expanded and used to compute policies
in subsequent RL episodes. To learn generic versions of ax-
ioms, the robot explores different values of static attributes
and fluent literals. ASP-based reasoning automatically se-
lects relevant combinations to make exploration tractable,
and uses sampling if the search space is too large. Unlike
traditional RRL methods, the learned Q-values now repre-
sent values across different MDPs.

After learned values converge, axioms are constructed
from the BDT. A partial description (path to leaf) is selected
if it is associated with the high accrued value, and all sub-
sets of its literals become candidate axioms. Since each can-
didate axiom could correspond to different branches of the
BDT, the learner randomly draws a number of samples with-
out replacement, considers additional literals stored at the
leaves, and alters candidates that match the sample. Can-
didates with sufficient support are validated, i.e., tested un-
der conditions that are simulated to match the transition that
triggered learning. Candidates that do not pass these tests
are removed from further consideration. For instance, if a
learned executability condition is correct, executing the ac-
tion when literals in the body are true should not provide
the expected outcome. Note that these tests are guaranteed
to not eliminate any valid axioms although they may not re-
move all false positive candidates. The final candidates are
lifted by replacing ground terms with variables, and added
to the ASP program as axioms for subsequent reasoning. We
refer to this RRL approach as “Q-RRL”.

Control Loop Algorithm 1 describes the overall control
loop for reasoning and learning in our architecture. The
baseline behavior (lines 5-17) is to plan and execute actions
to achieve the given goal as long as a consistent model of
history is can be computed (lines 7-9). If such a model can-
not be constructed, it is attributed to an unexplained, un-
expected transition, and the robot triggers Q-RRL (lines 9-
12) to discover the corresponding unknown axioms (lines
20-21). If there is no active goal to be achieved, the robot
triggers active learning (lines 13-16) using Q-RRL (lines 25-
27) or verbal descriptions obtained from a human participant
(lines 23-25) to learn previously unknown actions or axioms.
When in the learning mode, the robot can be interrupted if
needed (lines 18-19), e.g., to pursue a new goal.

3 Experimental Setup and Results
In this section, we describe the results of experimentally
evaluating the following hypotheses:

• H1: Active learning of actions from verbal descriptions
provides a foundation for further learning;

• H2: Q-RRL provides a mechanism for discovering ax-
ioms related to an action;

• H3: Learned knowledge improves plan quality.
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Algorithm 1: Overall control loop.
Input: Π(D,H); goal description; initial state σ1.
Output: Control signals for robot to execute.

/* Start with planning */
1 planMode = true, learnType = 0

2 while true do
3 Add observations to history.
4 ComputeAnswerSets(Π(D,H))
5 if planMode then
6 if existsGoal then

/* Goal exists, consistent
model, execute plan */

7 if explainedObs then
8 ExecutePlanStep()
9 else

/* Q-RRL */
10 planMode = false
11 learnType = 1
12 end
13 else

/* Active learning */
14 planMode = false
15 learnType = 2
16 end
17 else

/* Interrupt learning if needed
*/

18 if interrupt then
19 planMode = true

/* Continue learning */
20 else if learnType == 1 then
21 ContinueRRL()
22 else if learnType == 2 then
23 if verbalCue then
24 ContinueActiveLearn()
25 else
26 ContinueActiveRRL()
27 end
28 end
29 end

These hypotheses were evaluated in the RA domain (Exam-
ple 1) in the context of two actions (serve and label). We
considered the following target axioms to be discovered by
the robot, for the action serve:

(1) Serving an object to a salesperson causes it to be labelled
(causal law);

(2) A damaged object cannot be served to a person who is not
an engineer (executability condition);

(3) A robot with a pneumatic arm cannot serve a brittle object
(negative affordance); and

(4) A damaged object cannot be served to a person who is not
an engineer, unless it is labeled (positive affordance).

and for the action label:

(5) An object with a brittle surface cannot be labeled by a
robot (executability condition);

(6) A damaged object cannot be labeled by a robot with a
pneumatic arm (negative affordance);

(7) Labelling a light object with a pneumatic arm causes it to
be damaged (causal law); and

(8) An object with a brittle surface cannot be labelled by a
robot, unless the object is heavy and the robot has an elec-
tromagnetic arm (positive affordance).

We provide execution traces in support of hypothesis H1;
hypotheses H2 and H3 are evaluated quantitatively.

3.1 Experimental Setup
The initial setup included experimentally setting the values
of some parameters in Q-RRL by trading off accurate esti-
mation of policies against processing time, e.g., learning rate
and exploration preference were fixed at 0.1. Candidate ax-
ioms were constrained to have no more than two positive lit-
erals and two negative literals formed of domain attributes—
this limit can be increased as needed in other domains at the
expense of a corresponding increase in computational com-
plexity. Up to 10 validation tests were conducted to evaluate
candidate axioms.

In the experimental trials reported below, the robot
learned the representation for each action and associated
causal law from verbal descriptions. The robot then used
Q-RRL to learn one causal law, one executability condition,
one positive affordance and one negative affordance for each
of the two actions (serve, label). Axioms for each action
can be discovered concurrently. Unless stated otherwise,
each value of the performance measures reported below was
averaged over 1000 repetitions (e.g., for each axiom). We
used precision and recall as the performance measures. Ax-
ioms were required to exactly match the ground truth to be
counted as true positives; under-specifications (e.g., some
missing literals) and most over-specifications (e.g., unnec-
essary literals) were considered false positives. Plan quality
was measured as the ability to compute a minimal plan to
achieve the desired goal.

3.2 Execution Trace
The following execution trace supports H1 by illustrating
learning of actions and the objects those actions operate on,
using verbal cues from human participants.
Execution Example 1. [Learning from human input]
Suppose the robot in the RA domain (Example 1) does not
know that it can label and serve objects, and does not know
the related axioms. For each of the actions, we gave the
agent five descriptive examples of the action being applied,
with descriptions that were grammatically-correct English
statements that upheld our assumptions, but otherwise varied
arbitrarily. First consider the label action:
• The learner receives “A robot is labeling the lightweight

cup”, with the observation labeled(cup1). It parses
the statement, matches it to the domain, lifts it to store
label(#robot, #cup), and infers:

label(R, B) causes labeled(B)
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• Next, the learner receives “Robot labeled one com-
puter”, and labeled(comp1). It learns the signature
label(#robot, #computer) and generalizes over the
learned signatures to obtain label(#robot, #object).

• Further input descriptions are automatically reconciled ei-
ther when specific sorts are subsumed by more general
ones, e.g., when it learns from “The pneumatic robot la-
bels the light breakable cup”, or the parse results in an ex-
act match for the action description, as in “Next the robot
labeled the hard, hefty item”.

Next, in the context of learning the serve action:

• The learner receives “A robot serves a man-
ual to the manager” and the observation
in hand(p1, book1). It produces the action de-
scription serve(#robot, #book, #person) and extracts
the causal law:

serve(R,O, P) causes in hand(P,O)

• Next, the learner is given “The pneumatic robot is serving
the breakable cup to the clerical person over there” and
in hand(p0, cup1). Generalizing over the two exam-
ples results in serve(#robot, #object, #person). The
remaining sentences, “Robot serves ledger to clerical per-
son” and “A robot served a lightweight cup to an expert”,
fit the inferred structures and do not change them.

For both actions, two examples were sufficient to reach the
required level of generality to model the action and an initial
causal law. A key advantage of learning from verbal cues
is that only a small number of examples are needed to learn
the actions and the objects that they operate on. This is espe-
cially useful when actions have irreversible effects. The dis-
advantage is that humans are expected to provide correct de-
scriptions of the behaviors they observe, although the robot
can identify and revise any incorrect information learned and
included in the ASP program.

It is important to appreciate the benefits of the distributed
representation used in the architecture. First, this represen-
tation simplifies inference and information reuse. For in-
stance, if a cup has a graspable handle, this relation also
holds true for other objects with handles. If an affordance
prevents the robot from picking up a heavy object, this infor-
mation may be used to infer that it cannot open a large win-
dow. This relates to research in psychology which indicates
that humans can judge action capabilities of others without
actually observing them perform the target actions (Ramen-
zoni et al. 2010). Second, it becomes possible to respond ef-
ficiently to queries that require consolidation of knowledge
across different attributes of objects or robots, and to develop
composite affordance relations, e.g., a hammer may afford
an “affix objects” action in the context of a specific agent
because the handle affords a pickup action and the hammer
affords a swing action, for the agent. Finally, learning from
verbal descriptions can be used to provide more meaningful
explanations of decisions.

3.3 Quantitative Evaluation
We experimentally evaluated hypotheses H2 and H3.

Action Recall Precision Precision (validated)
label 0.92 0.82 0.96
serve 0.88 0.70 0.95

Table 1: Accuracy when Q-RRL was used to discover multiple
axioms corresponding to two specific actions. High recall and pre-
cision are attained, especially after candidate axioms are validated.

H2: Q-RRL enables reliable discovery of axioms We
explored whether Q-RRL can learn new axioms related to a
known (or newly learned) action. Results averaged over the
four axioms for each action are summarized in Table 1. We
observe that Q-RRL attains high recall and precision, espe-
cially after the candidate axioms are validated. The accu-
racy of discovering the axioms corresponding to the serve
action is a little lower than that for the label action, as it
is more complex, i.e., it has more arguments. There were
very few differences in the values of performance measures
for causal laws, executability conditions and negative af-
fordances. The recall and precision measures were a little
lower for positive affordances since axioms corresponding
to positive affordances are more complex—they add context
to an executability condition to make the corresponding ac-
tion applicable. Note that human input is not essential for
this learning—a robot could learn from experiences accu-
mulated over time.

H3: Learning improves plan quality To evaluate hy-
pothesis H3, we explored the effects of the discovered ax-
ioms on the system’s ability to generate plans that provide
the desired outcome. For each axiom of each target action,
we conducted 1000 paired ASP-based planning trials with
and without the corresponding target axiom in the system
description. The trials used randomized scenarios in which
the target action was required to achieve the goal.

We found that adding the learned executability condi-
tions or negative affordances resulted in 13% (serve) or
23% (label) fewer plans found. Adding the positive affor-
dances resulted in 17% (serve) or 23% (label) more plans.
These results are expected, as executability conditions and
negative affordances preclude actions in some contexts, and
knowledge of positive affordances serves to enable particu-
lar transitions. We performed additional trials which added
or removed all the learnable axioms collectively, resulting
in a difference of 19% (serve) or 58% (label) in the plans
found. Furthermore, we verified that all the plans that were
computed after including the target axioms were correct.

In the paired trials that included or excluded the causal
laws extracted from the verbal cues, there was no measur-
able difference in the number of plans found. This is ex-
pected; a causal law for serve produces outcomes which
impact the applicability of other actions, and similarly for
label. This will be the case for any scenario in which the
plan produced does not repeat the action influenced by the
causal law. Given alternative runs that involve planning for
a random goal, we observed that the presence or absence of
causal laws had an impact on the number of plans found.

Our evaluation also included other findings. For instance,
in our experiments, we found that using the ASP-based in-
ference to guide learning makes the learning significantly
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more efficient. We also observed that RL with the relational
representation significantly speeds up the learning in com-
parison with not using the relational representation. Finally,
we introduced a percentage chance per action to encounter
actuator noise during learning to test the system’s robust-
ness, and found a steady decline in accuracy, e.g., 0.89 re-
call and 0.95 validated precision without noise, 0.69 recall
and 0.53 validated precision at 10% noise, or 0.56 recall and
0.34 validated precision at 20% noise. Most false positives
were merely overly-specific variations of correct axioms.

4 Related Work
Agents often have to represent and reason with incomplete
domain knowledge, and learn from observations. Early work
used a first-order logic representation and incrementally re-
fined the action operators but did not allow for different out-
comes in different contexts (Gil 1994). It is also difficult,
with such approaches, to perform non-monotonic logical
reasoning or merge new, unreliable information with exist-
ing beliefs. Research in logics has provided non-monotonic
logical reasoning formalisms, e.g., ASP has been used in
cognitive robotics (Erdem and Patoglu 2012). Researchers
have combined ASP with inductive learning to monoton-
ically learn causal laws (Otero 2003), and expanded the
theory of actions to revise system descriptions (Balduccini
2007). Architectures have been developed to reason with hi-
erarchical knowledge in first-order logic and process percep-
tual information probabilistically (Laird 2008). Many gen-
eral frameworks have been developed that combine logical
and probabilistic reasoning, e.g., Bayesian logic (Milch et
al. 2006), first-order relational POMDPs (Juba 2016), and
probabilistic extensions to ASP (Lee and Wang 2015). Al-
gorithms based on classical first-order logic are often not
expressive enough, e.g., modeling uncertainty by attaching
probabilities to logic statements is not always meaningful.
Algorithms based on logic programming tend not to support
some of the desired capabilities such as efficient and incre-
mental learning of knowledge, learning from interactions,
and reasoning with large probabilistic components. Existing
algorithms and architectures also do not support generaliza-
tion as described in this paper.

Many formalizations have been proposed for represent-
ing, reasoning with, and learning affordances (Zech et al.
2017). Existing approaches represent affordances as pos-
sible effects of actions or behaviors (Guerin, Kruger, and
Kraft 2013), or as emergent, functional and/or contextual
properties based on attributes of the domain and the ob-
jects (Sarathy and Scheutz 2016). These approaches have
used logics, probabilistic reasoning or a combination of
both. Unlike these approaches, we build on research in psy-
chology to formulate affordances as joint relations over at-
tributes of one or more agents and objects in the context of
specific actions (Langley, Sridharan, and Meadows 2018).

Interactive task learning is a general approach that in-
cludes learning concepts from domain observations and hu-
man demonstrations or instructions (Kirk, Mininger, and
Laird 2016). It has often been posed as an RL problem,
and relational RL (RRL) uses relational representations and
regression for efficient Q-function generalization (Driessens

and Ramon 2003; Tadepalli, Givan, and Driessens 2004).
However, interactive relational learning algorithms typically
limit generalization to a single planning task at a time,
based on different function approximation or learning algo-
rithms (Driessens and Ramon 2003; Bloch and Laird 2017),
and do not support the commonsense reasoning capabili-
ties desired in robotics. One exception was our prior work
that combined ASP with RRL to discover some domain
axioms and conditions under which specific actions can-
not be executed (Sridharan, Meadows, and Gomez 2017;
Sridharan and Meadows 2017). The architecture described
in this paper combines the complementary strengths of
declarative programming and relational learning through in-
duction and reinforcement, for reasoning with and interac-
tively revising incomplete domain knowledge.

5 Conclusions
This paper described an architecture for representing, rea-
soning with, and interactively learning actions’ names, pre-
conditions, effects, and objects over which they operate,
along with associated affordances. Answer Set Prolog was
used to represent and reason with incomplete domain knowl-
edge for planning and diagnostics, and to guide interactive
learning. The learning is achieved using decision-tree induc-
tion and relational reinforcement learning from observations
obtained through active exploration, reactive action execu-
tion, and verbal descriptions from humans. Experimental
results in a simulated domain indicate that our architecture
supports reliable and efficient reasoning, and learning of ac-
tions and axioms corresponding to different types of knowl-
edge. Inclusion of the learned actions and axioms in the sys-
tem description improves the quality of the computed plans.
In the future, we will explore the learning of actions and ax-
ioms in more complex domains and evaluate the architecture
on physical robots, which will require the use of the compo-
nent that reasons about perceptual uncertainty probabilisti-
cally. The long-term objective is to enable robots assisting
humans to represent, reason with, and interactively revise
different descriptions of incomplete domain knowledge.
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Abstract
Planetary rovers exploring the surface of Mars face a chal-
lenging operational environment that requires close coopera-
tion between deliberative planning and behavioral execution
in order to most efficiently leverage the robot’s capabilities
into science value returned to earth. The Self-Reliant Rovers
project envisions future rover missions that require only oc-
casional high-level direction from human controllers to suc-
cessfully conduct detailed in-situ studies of its Martian en-
virons. To achieve this high degree of autonomy, this work
leverages a spectrum of planning and execution techniques
that allow the rover to respond appropriately to both opportu-
nity and adversity it encounters. Small perturbations are ac-
commodated at first by behavioral adaptation, with more and
more extensive disruptions handled in turn by executive ad-
ministration of plan flexibility, heuristic-guided plan repair
strategies, and finally comprehensive replanning from science
campaign goals. The integrated system has been deployed
and tested on a terrestrial rover in an environment and under
scenarios that anticipate those faced by future Mars rovers.
This paper recounts complexities of planning and execution
coordination faced in the rover domain and the practical solu-
tions employed to address them. Particular emphasis is given
to lessons from the field and foibles ripe for remedy by future
advances in planning and execution research.

Introduction
Current planetary rover operations for Mars Science Labora-
tory (Vasavada et al. 2014) exert a significant daily workload
on mission operations staff. Within one work shift, scien-
tists and engineers must interpret downlinked data, reevalu-
ate overarching mission goals, and then synthesize a respon-
sive activity plan and detailed command sequence covering
the next planning period. The nominal single martian day
planning period allows the team to maintain a high level of
productivity via timely manual response to execution even-
tualities, but there is markedly diminished efficiency when
plans must span multiple days (Gaines et al. 2017a) (e.g.
due to off-sync relay passes or institutional holidays.) Future
Mars surface missions are anticipated to have even more fre-
quent and extensive lapses in regular communication due to
turnover in available relay craft (Edwards et al. 2014), and
will thus require more robustly integrated onboard planning

c©2018. California Institute of Technology. Government sponsor-
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and execution to sustain productivity absent prompt human
feedback. Even with regular communication, the productiv-
ity of current rover missions has benefited greatly from on-
board collaboration of imaging activity execution with auto-
mated data analysis and goal selection (Francis et al. 2017).

The Self-Reliant Rovers architecture seeks to further ex-
tend onboard planning and executive capabilities so that fu-
ture rover missions can continue productive scientific in-
quiry without constant micromanagement by human con-
trollers. The SRR architecture was borne out of thorough
study of current rover operations and the potential efficien-
cies attainable by increased onboard autonomy (Gaines et al.
2016). Under the SRR architecture, rover objectives can be
expressed as high-level campaign intents rather than metic-
ulously assembled daily activity plans (Gaines et al. 2017b).
For example, a scientist might request detailed imagery of
any quartz veins detected during a walk about of a boul-
der field, while another may request recurring atmospheric
opacity measurements every day at noon. Engineers might
specify mandatory relay communication passes along with
required battery reserves at the end of the planning period.
The onboard planning and executive functions can leverage
the discretion entailed in such conceptual guidance to re-
spond directly to unpredictable outcomes and continue ex-
ploration during communication gaps.

This paper outlines challenges to effectively integrated
planning and execution within the Mars rover domain, along
with practical techniques employed within and between
SRR components to achieve the envisioned level of rover
mission autonomy. Initial results on a terrestrial rover test
bed are presented, and fertile areas for future enhancements
to the integrated system are described.

Approach
The Self-Reliant Rover system is designed within the con-
text of the Jet Propulsion Laboratory flight software archi-
tecture (Weiss 2013) and incorporates a tiered robotic con-
trol architecture. At the highest level, scientists and engi-
neers use the MSLICE graphical interface (Powell et al.
2009) to construct both general campaign objectives and
detailed constraints that will guide the system’s behavior.
The goals are then transmitted to an onboard optimizing ac-
tivity planner, CASPER (Chien et al. 2000), which assem-
bles and maintains a comprehensive working schedule for
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Figure 1: The Athena rover imaging a science target during
a simulated Mars surface mission.

the rover that fulfills the requests while respecting vehicle
safety limits. Activities are then dispatched from this sched-
ule to a purpose-built reinterpretation of the MEXEC state-
based executive (Verma et al. 2017) that oversees their co-
ordinated execution and reports back on their ongoing sta-
tus. The executive calls upon task-oriented behavior compo-
nents, and those in turn refer to low-level functional compo-
nents, that together accomplish specific robotic tasks such as
locomotion, imagery, and data analysis. Many components
are reused from the CLARAty library of portable robotic
software modules (Volpe et al. 2001). Channelized robot
state and resource updates are published by the cognizant
components, and may be subscribed to by any other inter-
ested component. Component encapsulation and intercom-
munication are provided by the ROS framework (Quigley et
al. 2009).

Planning Updated high-level objectives are provided to
the onboard planner by the ground operations team on an
intermittent schedule, but special onboard system nodes
are also empowered to submit new constraints and goals
to the planner. Using guidance from scientists, the auto-
mated science data analysis component recognizes features
in acquired imagery that may warrant further study, such as
boundaries between geologic deposits. The analysis compo-
nent calculates the location of the new targets in the envi-
ronment using camera model and rover position metadata
that is attached to each image, and constitutes new goals for
follow-up science activities based on a template provided
by the science team. The template allows humans to bound
the self-directed goal behavior by specifying details such
maximum number of follow-ups, total priority/utility to as-
sign, and association to broader science campaigns. The new
goals are submitted to the planner and are integrated into fu-
ture decisions along with the rest of the pending goals and
constraints. Similarly, a vehicle health management compo-
nent monitors ongoing rover performance and may respond
to anomalous trends by imposing tighter safe operation lim-
its or calling for diagnostic activities. The planner remains
the arbiter of when to undertake new activities since it has a

broader picture of the rover’s future plan, including upcom-
ing critical activities such as communication passes.

A key feature of the system is the onboard planner’s
flexibility to either heuristically repair the existing plan
in the face of small perturbations or to regenerate a new
plan forward from the as-executed stem in the case of
more extensive disruptions. Replanning is not especially
prohibitive (<1 minute), thanks to the efficient domain-
specific multi-threaded best-first branch-and-bound anytime
path/plan optimization algorithm employed, but it is still
intensive enough that full replanning cannot be performed
every update cycle. Accordingly, the criteria under which
full replanning is invoked are relatively liberally construed
as those which have reasonable probability of meaningfully
changing the the path among goal locations or the science
and engineering activities conducted along the route. A in-
coming batch of new goals thus always triggers replanning,
as does failure of an activity declared by the executive. Re-
planning is also invoked when updates to rover state or re-
source levels propagate into predicted conflicts in the future
plan, for example due to a late-running motor preheating
task. A more subtle trigger examines the unused resource
and time margins, and calls for replanning if the excess over-
takes some threshold, as might be the case after a series of
better-than-expected executions.

Because they are less likely to result in structural changes
to the plan, minor updates that reach the planner are handled
by rapid plan repair heuristics. Resource and state updates
are posted to the plan at the time they are received, with fast
re-prediction propagating the timeline’s expected future val-
ues and checking for any conflicts with upcoming activities
or constraints. Importantly, timeline updates that do not im-
mediately trigger predicted conflicts are still collected and
posted to the plan to inform future predictions, which may
finally rise to a conflict only after several small discrep-
ancies are recorded. When activities end early, a dynamic
packing heuristic adjusts future action start times as close to
the present as avoids inducing any plan conflicts. Any as-
sociated activities, such as mechanism preheating, are also
moved forward. This results in filling unused blocks of time
following hastened activities, while leaving absolute-timed
activities such as communication passes at their proper time.

Late running actions cannot be accommodated in the
same manner in general; by the time a preceding action is
known to be late, the subsequent activity may have already
been dispatched to the executive. The main loop of the plan-
ner must dispatch activities well enough in advance so that
no start times are missed during its full iteration duration,
which may be extensive in cases where full replanning is
invoked. The current SRR system inherits a fixed duration
commit window that the anytime path solver algorithm is
obliged to respect: activities within the window must not be
modified since they were already dispatched to the execu-
tive, and the solver must return control to the main loop by
the end of the window, regardless of its solution progress.
As an online algorithm, the solver is able to submit the best
plan so far at any break point, and is also able to restart from
its previous partial solution state. Deconflicting dispatched
activities when one runs past its planned end time becomes
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the responsibility of the executive, but is informed by the
planner’s model of the individual activity state and resource
constraints, which are also passed down.

Execution When the designated start time for a dispatched
action arrives, the executive first checks the constraints from
the planner before initiating the activity. If all of the con-
straints are not met (for example, a late running panorama
is still using the rover mast also needed for a targeted im-
age), the subsequent activity start is held back by the ex-
ecutive until either the constraints are satisfied or a delay
threshold is reached. The planner may select different delay
thresholds for each dispatched activity instance in order to
communicate contextual start time flexibility from the plan
constraints. The eventual activity start and end times are re-
ported by the executive to the planner and other interested
components to ensure accurate resource modeling and vehi-
cle health assessment. This approach allows the executive to
locally handle small delays that do not have a large impact
on the plan structure, but in a way that is consistent with the
planner’s expectations of activity preconditions.

The executive contains another layer of precondition
checking for safety purposes: a hard-coded table from the
system engineering team that delineates which activities are
safe to execute concurrently with each other and specific
rover states. For example the drive action might require that
the rover arm is in the stowed state and that no other activ-
ity is using the navigation cameras. Before finally initiating
any new activity that is otherwise cleared for execution, the
executive checks it and any other ongoing activities against
this compatibility table. A failure to pass the safety check
results in rejection of the new activity by the executive and
failure notification being sent to the planner. This is differ-
ent than for planner supplied constraints, which merely de-
lay execution in anticipation of imminent state updates. A
safety check rejection indicates that the planner is direly un-
aware of the current execution conditions, or fails to model
an important system safety rule.

After the executive initiates an activity, it makes calls
to the required lower-level behavioral task components and
then continues monitoring their ongoing progress with a
small state machine. Simple tasks just return a status mes-
sage on their completion, in which case the executive notes
the end time of the activity, clears the state machine, and
forwards the result (success or failure) to the planner. More
sophisticated activities include additional monitoring of be-
havior start up and progress reports, enforcement of rover
state conditions throughout the activity execution (akin to
the precondition safety checks), and activity termination cri-
teria monitoring. In the event a monitored in-condition of the
activity is violated, the behavior is signaled to immediately
abort in order to prevent vehicle damage, and the planner is
notified of the activity’s failure. By default, activities are also
checked against their planned end-time; any overruns past a
chosen threshold trigger the same executive abort response.
This means that the planner model of action durations must
be pessimistically long, though the resultant plan inefficien-
cies are largely recovered during execution by the dynamic
packing and replanning features of the overall system.

operations team ground tools,
relay comms

onboard planner

◦ take new goals, updates
◦ repair, optimize plan
◦ dispatch activities

onboard executive

◦ oversee execution
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Figure 2: Self-Reliant Rover architecture overview. Scien-
tists and engineers provide high level objectives, which are
optimized in-situ by an onboard planner. The resultant ac-
tivities are managed by an executive that understand con-
straints and flexibility in the plan. Individual behaviors in-
voke even lower-level modular functions. The executive
and planner cooperate to respond to unexpected outcomes,
changing resource estimates, and even new goals and con-
straints borne out through execution.

Driving The drive behavior component includes many ad-
ditional features to allow close cooperation between the
planner and executive in meeting the challenges posed by the
rugged Martian terrain. Drive activities serve as connectors
between all of the science activity locations in the plan, but
are highly complex planning endeavors in their own right,
as they continuously vary the rover’s position and resource
use over an extended period. Plausible science or engineer-
ing campaigns requested to recur e.g. every 50 meters of
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drive distance, every 10 meters of elevation change, or ev-
ery 3 hours of elapsed time are all profoundly impacted by
the precise drives in a plan. Further interactions are medi-
ated by the stationary state requirement of some activities
such as fixed communication passes, regenerative sleeping,
and almost all science activities. On top of this, drives repre-
sent the most significant execution uncertainty for planetary
rovers due their highly-coupled interactions with the unex-
plored alien environment.

Overview orbital imagery can only give rough clues about
the surfaces and obstacles that will be encountered along dif-
ferent possible drive routes. Rovers have thus long relied on
onboard stereo vision, obstacle avoidance, and visual odom-
etry embedded in the locomotion services (Goldberg, Mai-
mone, and Matthies 2002), and SRR continues this tradi-
tion. The unpredictable diversions around obstacles can lead
to significant discrepancies with estimated arrival times, as
well as drawing the rover off of its expected path. The pri-
mary impact of driving delays is on the scheduling of sub-
sequent activities, either because they required the rover be
at a specific location or to be stationary, but there are also
downstream effects on rover resource and state predictions
as well. In case of diversions significantly off of the planned
course, it may also become appropriate to adjust the plan to
accomplish other goals along the detour route before resum-
ing the initial drive. In extreme cases, the system may have
to accept the eventuality that a selected target destination is
really unreachable.

The constraint-based task execution strategy discussed
above can accommodate some of the drive dependencies, for
example by providing a location precondition on targeted
science activities. This raises a question about how phys-
ical rover positions correspond to locations specified in a
campaign request, which is answered jointly by the locomo-
tion engine itself and a target association component. When
determining location satisfaction, the associator takes into
account additional details from the campaign such as per-
missible instrument range to intended target, allowed rover
bearings (e.g. for illumination reasons), and instrument field
of view limits. The locomotion engine has been augmented
to accept the arguments when requesting a drive as well,
whether those drives are for immediate execution or for hy-
pothetical evaluation during goal planning. Using the same
locomotion engine at plan and execution time ensures that
the planner benefits from the latest obstacle maps and thus
has a more accurate prediction of the drive behavior.

In addition to unpredictable obstacle environments, drive
actions may be subject to further uncertainty due to the driv-
ing surface. The substrate texture can change abruptly from
hard rock outcrop, to compacted soil, to loose sandy ridges,
each with very different wheel slip characteristics. Further-
more, the slope of the terrain and the rover’s approach aspect
also impact drivability. Certain combinations of terrain fea-
tures even amount to mission-ending wheel trap hazards that
must be fastidiously avoided. Terrain classification and slip
aware navigation components were incorporated into SRR
to address these uncertainties (Rothrock et al. 2016). Sim-
ilar to obstacle avoidance, imagery collected during drives
is used to classify different textured soil types and slope in-

clines around the rover into different cost categories. The
costs are overlaid onto the constantly updating navigation
map used by the locomotion engine so that it can update its
routes to avoid dangers and make the fastest progress to the
goal.

Drive Termination When the locomotor updates its route
during execution, it diverges from the time and distance esti-
mates predicted at plan time. The locomotor posts progress
reports that include revised estimates, which are then used
by the executive to predict the likelihood of success or fail-
ure by the planned end time. Rather than waiting until that
end time to post a failure to reach a target location, the ex-
ecutive is empowered to abort the drive early when revised
estimates exceed the allotted time frame by some margin.
This minimizes wasted driving effort in difficult terrain by
allowing more immediate replanning with new map data. It
also indirectly triggers replanning on large diversions from
the expected route, since such diversions are likely to induce
large changes in duration estimates.

The executive is also able to terminate drive actions early
in order to meet campaign objectives based on rover states
such as distance driven or time of day. This is necessary
since an initially planned drive action may end up driving
further or taking longer than expected, so much so that the
next instance of a recurring campaign activity should be in-
voked. For example, if the planner must accommodate an
image request every 50 meters driven, then an upward revi-
sion from 40 to 60 meters estimated drive distance requires
stopping for an extra intermediate image. To accommodate
this scenario, the planner looks ahead of each drive it dis-
patches to find recurring campaign goals may need to in-
tercede in the drive, and attaches those campaign criteria to
the drive as additional termination conditions. The executive
monitors these termination conditions (e.g. odometer read-
ing of 50 meters, or specific time of day) and aborts the drive
behavior when they are met. Rather than reporting outright
failure of the drive, the executive reports which termination
condition stopped the drive and the actual location different
from intended target location. The planner nevertheless in-
terprets the unexpected stop as an inconsistency in its current
plan, and so invokes replanning, which will likely insert the
relevant campaign activity followed by a completion of the
initial drive. The rover states to which such termination cri-
teria are attached should be carefully selected to avoid ambi-
guities due to partial drives; for example specific odometer
or clock readings should be used rather than distance or time
driven from the start of a drive segment. This allows the cri-
teria to be applied uniformly across drive segments rather
than recomputed relative to each leg.

Results
The SRR system was demonstrated on the JPL Athena rover
within a mission scenario that explores the JPL mini-Mars
Yard robotic testing environment. The primary science ob-
jective was to characterize the rock outcrop materials em-
bedded in the sandy soil using the rover’s mast-mounted
cameras. The simulated mission spans a period of limited
communication with operators, so the rover must operate al-
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Imagery c©2018 Google, Map data c©2018 Google

Figure 3: Overview of simulated mission area. Operator in-
puts include a specific target selection (orange) near starting
area A along with only high-level campaign guidance for
areas B, C, and D. Automated science analysis injects ad-
ditional targets (cyan) during execution. The initial planned
route (blue) is dynamically adjusted (green) to avoid unan-
ticipated terrain hazards (red).

most entirely autonomously in order to remain productive
toward its high-level goals.

Figure 3 shows the overhead layout of the mission area, as
might be available to mission planners from orbital imagery.
The operations team selects several regions of interest (indi-
cated by letters) from this coarse data, but is unable to iden-
tify specific targets or terrain obstacles beyond a few meters
from the rover. They then construct a goal for each target
area that entails driving to a specified vantage point, acquir-
ing a contextual wide-angle image, and then running the au-
tomated science algorithms. The planner will stitches these
goals together in an optimal drive ordering that achieves as
many as possible. The scientists also create campaign goals
for the desired follow-up outcrop observations in each area,
including templates for goals automatically generated by the
onboard science analysis. The planner and automated sci-
ence cooperate to identify the best candidate targets to in-
clude in the plan so as to maximize expected utility score.
In this demonstration scenario, campaigns request follow-
up mast camera imaging of the 2-5 best outcrop specimens
in each category at each location. Several additional rele-
vant campaign types were demonstrated in separate scenar-
ios. For example, the operators can specify ongoing tempo-
ral periodic campaigns such as visual atmospheric opacity
(τ ) measurements every 20±2 minutes. Mandatory down-
link relay communication passes can also be enforced at spe-
cific times in the schedule, representing a exogenous orbiter
overflights.

All of the various goals are provided to the rover at its
morning communication pass at the start of the mission
scenario. Thereupon, the onboard planner generates a plan
to image the specifically requested target near A, and then
travel in turn to B, C, and D to conduct survey observa-
tions (fig.4, top, and fig.3, blue path). The plan adheres to all
rover resource limits (such as battery energy and data vol-
ume), as well as incorporating any required heating (such as
needed for instruments or mobility mechanisms). The actual
path driven by the rover undergoes refinement by the on-
board terrain classification and autonomous navigation so as

Figure 4: Initial generated plan and final as-executed plan
for the simulated mission scenario. Many new targeted sci-
ence goals are suggested at run-time by automated image
analysis and then integrated into the schedule in service of
science campaigns. Drive estimates are also updated during
execution, thus correcting initial approximations.

to best avoid obstacles along the planned route (fig.3, green
path). Diversion delays and expeditious travel cause minor
perturbations to the plan, which are accommodated by the
dynamic packing plan heuristic.

On arriving at B, and later C, the rover acquires the re-
quested contextual images and analyzes them using the on-
board science detectors, which in turn identify flagstone out-
crops for follow-up imaging. The selected targets are then
automatically injected as new goals into the planner cam-
paigns, and a replanning cycle is initiated. The planner’s up-
dated solution includes each of the newly suggested obser-
vations, which are duly collected before proceeding to the
next area.

Upon driving toward D, the rover’s automated terrain
classification identifies a major obstacle, and the navigation
system must divert significantly. The planner incorporates
updated drive estimates from the navigation engine to en-
sure that the plan can accommodate the delay without con-
flict. After planning a safe path around the observed obsta-
cles and eventually reaching D, the system once again identi-
fies flagstone features and conducts the requested follow-up
observation. At this point the simulated mission ends.

As seen in the final plan (fig.4, bottom), the productiv-
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ity benefits of additional onboard rover autonomy are evi-
dent even within the limited scope of this demonstration sce-
nario. Traditional operations would have accomplished just
one initial outcrop observation and a first drive. The com-
bined autonomy of the SRR system produced three survey
panorama images throughout the mission area, toured sev-
eral unexpectedly difficult terrain routes, and accrued fifteen
additional targeted outcrop observations. The scenario suc-
cessfully demonstrated the mission productivity benefits of
integrated planning and execution within the SRR architec-
ture.

Future Work
A consistent decision framework for when each class of plan
modification is warranted would help theoretically ground
the ad hoc assignment of replanning versus repair triggers.
Such a framework would likely consider a balance between
the maximum or estimated utility payoff of invoking replan-
ning versus its opportunity cost, measured both in terms of
computation time as well as operational costs of disrupting
an existing plan that human operators may have a stake in.
Useful clues to the potential payoff are likely available as
an ancillary product of the planner’s branch-and-bound al-
gorithm. New goals with large expected rewards would thus
drive replanning when they became available, while several
smaller adjustments would have to accumulate before war-
ranting a replan.

The current system operates without reserving resources
or time for follow-up science goals anticipated for each au-
tomated science analysis run, instead depending on agile re-
planning to fit in the new goals when they appear. Other
possible approaches where only given cursory evaluation
and deserve further study. One alternate approach is to use
a placeholder activity that represents the budget of time
and resources that are allotted to automatic science goals,
and then decrement that reserve for each actually planned
follow-up. The reserve could be over the entire planning pe-
riod or attached to each separate automated science activity.
Planning for the automated science analysis follow up obser-
vations also faces a classic dilemma of exploitation versus
exploration. Since new nearby goals are injected following
the initial image analysis, there is a tendency for the rover to
get caught up in examining that first location and defer sub-
sequent targets that could have even more valuable follow
ups. Budgeting time and resources for each analysis target
will help reduce the early over-exploitation, but really solv-
ing the problem requires proper incorporation of some ex-
ploration metric into the plan scoring heuristic itself. Such
a metric is counter-intuitive to normal path planning since
it requires driving the entire walkabout distance first to do
initial analysis, and then driving it again to revisit the most
interesting targets.

Tighter collaboration on activity duration adjustment is
possible between the planner and executive. This would re-
duce the need to consistently overestimate activity durations
within the planner model and the associated inefficiencies,
as well as reducing the occurrence of executive delay holds
on subsequent activities committed early. The planner could

evaluate the range of conflict-free durations for each dis-
patched activity and pass along those bounds as a end time
flexibility, rather than enforcing the single predicted end
time as a hard limit on execution. The executive could man-
age the flexibility to extend activities that need just a little
more time for completion without worry of damaging the
plan. Alternately, the executive could pose requests for ac-
tivity extensions to the planner as soon as it received revised
estimates from the behaviors. The planner could then per-
form a hypothetical planning cycle with the extended activ-
ity and report back to the executive whether the extension is
granted.

Additional integration between the locomotion compo-
nents and the planner would also benefit the system. In par-
ticular, the terrain classification and obstacle detection sys-
tems are constantly improving their map of the environ-
ment, but the planner only benefits from those improvements
when full replanning is invoked. Until then, the planner re-
lies on its previously cached drive estimate responses. In-
stead, it may be worthwhile for the locomotion components
to track which estimates the planner is currently using, and
to transmit revisions to those estimates when optimal routes
change by some threshold. The planner also only indirectly
recognizes when the driven route has diverged significantly
from the initial path via changing drive time estimates. This
means that the planner is slow to respond to opportunities
nearby the diverted route, perhaps even missing them com-
pletely. If the planner, executive, and locomotor collaborated
on the actual path geometry (rather than just summary es-
timates), the system would be able to capture such detour
opportunities.

Many integration hurdles could be overcome if the plan-
ner and executive shared access to the same plan. For ex-
ample, the serialization of planner constraints and flexibil-
ity could be avoided, as could the convolutions of advance
dispatch. However, it would require great care to ensure
that ongoing execution updates could successfully interleave
with the planner during active replanning. Even without such
drastic merging, the commit window scheme could be im-
proved to increase planning flexibility and reduce reliance
on executive delay holds. For example, the commit window
could be dynamically sized depending on execution condi-
tions: narrow when only minor changes are being posted, but
wider when full replanning is called for.

There are several interesting issues to tackle regarding
integration of mission planning on Earth and with the on-
board planning and execution. Because of the communica-
tion delays involved, the human planners are always oper-
ating with an old snapshot of what the rover had accom-
plished so far at the time of downlink. The onboard planner
also communicates its then-current plan for the rest of the
period so that human operators have a concept of what goals
might be achieved by the time their new requests would ar-
rive. However, the onboard planner may diverge from that
plan for various reasons, meaning operators must not rely on
any specific future chain of events. A balance may be struck
by assigning probabilities to possible futures and expressing
new goals either independent of unconfirmed actions or ex-
plicitly conditional on them. When the rover receives goals

74



updates during an uplink pass, it must also carefully dispo-
sition each change within the actually executed context but
with reference to the knowledge state of the humans when
they formulated the requests. For example, operators may
call for removal of a goal that was actually already accom-
plished, or they may request a loosely targeted goal whose
precise location has since been more accurately determined
by the rover.

Keeping a consistent vehicle model synchronized among
all the components of SRR is an outstanding challenge.
While a single activity dictionary serves as the original
source for the planner and executive models, regeneration
from the source is only automated for the planner model,
and even then involves some additional manual tweaks.
The locomotion components are fully independent and must
be kept in sync manually, e.g. when the rover speed is
updated. Fully automated generation of each component’s
model from a single spacecraft description would be better.
This would also allow more direct correspondence between
planner-level abstractions with the underlying vehicle states
reported by low-level components.

Conclusion
Effective integration of planning and execution compo-
nents within the Self-Reliant Rover architecture enables the
robotic explorer to operate productively for long periods
with only high-level guidance from human operators. The
rover domain presents many unique demands on such an in-
tegrated system, which have been addressed by a range of
practical techniques, with varying degrees of complication
and success. The system was deployed on the Athena rover
and demonstrated within a simulated Mars mission vignette,
where it realized significant productivity gains over tradi-
tional operations techniques. Despite this achievement, there
are still many open avenues for tighter integration among the
system’s planning and execution components.
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