
Programmatic Task Network Planning

Felix Mohr and Theodor Lettmann and Eyke Hüllermeier and Marcel Wever

{firstname.lastname}@upb.de
Paderborn University
Warburgerstrae 100

33098 Paderborn

Abstract

Many planning problems benefit from extensions of classi-
cal planning formalisms and modeling techniques, or even
require such extensions. Alternatives such as functional
STRIPS or planning modulo theories have therefore been pro-
posed in the past. Somewhat surprisingly, corresponding ex-
tensions are not available for hierarchical planning, despite
their potential usefulness in applications like automated ser-
vice composition. In this paper, we present programmatic
task networks (PTN), a formalism that extends classical HTN
planning in three ways. First, we allow both operations and
methods to have outputs instead of only inputs. Second, for-
mulas may contain interpreted terms, in particular interpreted
predicates, which are evaluated by a theory realized in an ex-
ternal library. Third, PTN planning allows for a second type
of tasks, called oracle tasks, which are not resolved by the
planner itself but by external libraries. For the purpose of il-
lustration and evaluation, the approach is applied to a real-
world use case in the field of automated service composition.

Introduction

It has been known for a long time that defining a planning
problem often means to strategically organize the search
space instead of only describing what is possible. In the ini-
tial version of PDDL, this was called the “advise” facet of
the definition as opposed to the “physics”, which are neu-
tral and only describe what is possible in a domain. And
as anticipated, new paradigms such as functional STRIPS
(Geffner 2000), numerical planning (Hoffmann 2003), and,
more recently, planning modulo theories (Gregory et al.
2012) and planning with the creation of constants (Weber
2009) emerged and significantly improved the language ex-
pressivity, the solver efficiency or even both.

Unfortunately, these extensions have not (or only
marginally) been transferred to hierarchical planning. One
of the main areas of application of hierarchical planning is
automated software composition, and specifically that plan-
ning domain would strongly benefit from these extensions.
More precisely, we are interested in three extensions:

1. Constant Creation. Planning actions should be allowed to
add new objects to the environment as in (Weber 2009) or
(Mohr 2017).

2. Interpreted Predicates. Preconditions of methods should
be allowed to contain predicates whose truth value can

be evaluated using background theories (and the state);
this is very similar to the PDDL extension proposed in
(Gregory et al. 2012).

3. Oracle Tasks. For some tasks, it is cumbersome to model
its possible refinements by traditional HTN methods, e.g.,
deciding how to partition a set. Oracle tasks are like primi-
tive tasks that are not linked to operators but to an external
function that computes its possible applications itself.

In parts, these features have been already implemented
in the SHOP2 planning system (Nau et al. 2003). SHOP2
allows for so called external calls, which allow to invoke
external routines, which, in a way, can be used to interpret
predicates and resolve oracle tasks. However, the concrete
abilities of SHOP2 in this aspect have not been documented
or discussed in scientific literature, so its formal scope is
somewhat unclear.

In this paper, we realize these three extensions for hier-
archical planning and merge them into a framework we call
programmatic task network (PTN) planning. While the first
two aspects are rather a transfer of existing classical plan-
ning approaches to hierarchical planning, a mechanic like
oracle tasks is, to the best of our knowledge, a novelty of
our approach.

One question we are particularly after is whether these
extensions yield practical advantages. That is, we want to see
whether problems can (i) be expressed in a more compact
way and (ii) be solved more efficiently in terms of runtime.

To this end, we present a case study in the area of au-
tomated machine learning. In fact, the idea of applying hi-
erarchical planning to automated machine learning was our
main motivation to extend classical HTN planning. While
we do not claim that PTN is relevant for most or even all
hierarchical planning domains, the formalism should be rel-
evant also for other problems in the sub-field of automated
service composition. Since the case study is a real-world ex-
ample, a side-contribution of the paper is to demonstrate the
application of AI planning to a real use case.

Motivation and Running Example

Automated Machine Learning

Our extension of HTN is mainly motivated by the idea of
tackling automated machine learning (AutoML) as a plan-
ning problem. AutoML is a recent research direction in

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

31

Figure 1: Task networks allow for composing pipelines in a
flexible way, and for configuring their elements.

machine learning, which aims at (partly) automating the
process of developing a machine learning solution specifi-
cally tailored for a concrete data set (Thornton et al. 2013;
Feurer et al. 2015). Here, a solution is understood as an
“ML pipeline”, that is, the selection, composition, and
parametrization of algorithms for training a predictor on
the data. The latter includes, for example, methods for data
pre- and post-processing, induction of a classifier, etc. The
pipeline takes the data set as an input and produces a pre-
dictor as an output. The quality of a pipeline is measured in
terms of the (estimated) generalization performance of the
predictor, i.e., its predictive accuracy on new data. This qual-
ity may strongly vary between different pipelines.

Our idea is to build an ML pipeline with a hierarchical
task network. The point of departure is a single task such as
classify. This task can be refined recursively by iteratively
prepending preprocessing steps and eventually choosing the
concrete algorithms and their parametrization. For example,
as shown in Figure 1, one could decide to have preprocessing
steps before the classifier (left branch), i.e., the node classify
is replaced by a sequence consisting of two nodes prepro-
cess and classify. The node preprocess could then in turn be
refined into two times preprocessData and once preprocess-
Features. Alternatively, it could be decided that no prepro-
cessing is used (right branch).

Configuring Multi-Class Classifiers

For illustration, we consider a simplified version of the Au-
toML problem, in which we focus on the configuration
of a single element of the pipeline, namely the classifica-
tion algorithm, while ignoring other steps (such a pre- and
post-processing). More specifically, consider the problem of

Figure 2: Classification problem with instances as points
x ∈ R

2 and four classes. The meta-class {A,B} can easily
be separated from {C,D} by a linear classifier (solid line).
Separating D from {A,B,C} is more difficult (dashed line).

training a classifier h : X −→ Y , where X is an instance
space (set of data objects) and Y = {y1, . . . , yK} a set of
K > 2 classes. So-called decomposition techniques reduce
this problem to a set of binary classification problems, i.e.,
the training of a set of simple classifiers that can only distin-
guish between two classes. In so-called nested dichotomies
(NDs), the reduction is achieved by recursively splitting the
set of classes Y into two subsets (Frank and Kramer 2004).

Formally, a nested dichotomy can be represented by a
binary tree, in which every node n is labeled with a set
c(n) ⊆ Y of classes, such that the root is labeled with Y , and
c(n) = c(n1)∪̇c(n2) for every inner node n with successors
n1 and n2. Every inner node is associated with a binary clas-
sifier that seeks to discriminate between the “meta-classes”
c(n1) and c(n2). At prediction time, a new object to be clas-
sified is submitted to the root and, at every inner node, sent
to one of the successors by the binary classifier associated
with that node; the class assigned is then given by the leaf
node reached in the end.

A simple illustration with four classes is given in Fig. 2.
Obviously, the dichotomy ((A,B), (C,D)) would be a good
choice for this problem, since all classification problems in-
volved ({A,B} versus {C,D}, A versus B, C versus D)
can be solved quite accurately with a simple linear classifier.
The dichotomy ((A,D), (B,C)), on the other hand, would
lead to rather poor performance, because the classifier in the
root will make many mistakes ({A,D} cannot easily be sep-
arated from {B,C}). The dichotomy (A, (B, (C,D))) will
produce a mediocre result.

In this paper, we configure nested dichotomies using hier-
archical planning, assuming that the base learner for solv-
ing binary problems is a linear support vector machine. Even
this reduced configuration problem is rather challenging. In
fact, the problem of finding a dichotomy that is optimal for
a given set of data and for a fixed base learner comes down
to searching the space of all dichotomies, and the size of this
space is (2n− 3)!! for n classes (Frank and Kramer 2004).1

1Here, !! is the double factorial, not taking the factorial twice.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

32

Configuring nested dichotomies hierarchically seems nat-
ural: Starting at the root, the splits are configured iteratively
until every leaf node is labeled with exactly one class. In
other words, a “complex” problem such as training a clas-
sifier for classes {A,B,C,D} is (recursively) refined into
simpler problems, such as training a classifier for classes
{A,B} and training a classifier for classes {C,D} (and
appropriately combining the two). Each of these problems
again defines a classification task, which is solved in the
same way (even though other techniques could be applied
in principle).

The Baseline: The Classical HTN Formalization

We now explain how the configuration of such NDs can be
encoded as a classical hierarchical planning problem. The
formalization ensures that each ND is constructed exactly
once. We need three operators, corresponding to primitive
tasks:

1. init(n, x , lc, rc,nc)
Pre: x ∈ n ∧ •(lc) ∧ τ(lc, rc) ∧ τ(lc,nc)
Post:

∧
true → x ∈ rc ∧ bst(x , rc) ∧ sst(x , rc)
∀xn : xn ∈ n ∧ xn 6= x → xn ∈ lc
∀x2, xo : x 6= x2∧x2 ∈ n∧sst(x, n)∧ (xo /∈ n∨xo >
x2) → sst(x2, lc)
∀xs : sst(xs ,n) ∧ xs 6= x → sst(x , lc)
¬ • (lc) ∧ •(nc)

2. shift(y , x , l , r)
Pre: x ∈ l ∧ bst(y , r)
Post: x ∈ r ∧ bst(x, r) ∧ ¬x ∈ l ∧ ¬bst(y, r)

3. close(l , lw , r , rw)
Pre: lw ∈ l ∧ rw ∈ r
Post: ∅

Intuitively, the idea behind these operators is to split up
the labels of a node until every leaf node is labeled with a
single class. A node is refined by creating two child nodes
(via the init operator), where initially all classes except one
(x) of the parent are in the left child. Then, we can use the
shift operator to move single classes from the left to the right
child. The predicates bst and sst are used to memorize the
biggest and smallest elements of nodes, which is necessary
to avoid mirroring NDs, i.e. one separating A,B from C,D
and the other C,D from A,B The close operator can be
used to guarantee the existence of at least one class in each
of the children, which are the “witnesses” lw and rw; this
guarantess soundness of solutions.

The relatively complicated notation of the • and τ predi-
cates is to efficiently simulate the creation of objects. The
idea is that there is a counter for the next newly cre-
ated constant, which is shifted whenever an object is “cre-
ated”; the state of this counter is maintained with •. The
initial state then needs to contain some successor chain
τ(c0 , c1), .., τ(cn−1 , cn) that indicates the order in which
the constants are created. Here, n iconstants may be cre-
ated (the n + 1-th constant cannot be created, because no
successor is known for it). Hence, it is actually possible to
simulate the creation of objects with the only limitation that

some bound n for the number of such objects needs to be set.
Previous approaches for simulating output creation (Klusch,
Gerber, and Schmidt 2005) have used a different, simpler,
encoding, which leads to a blow-up of the search space as
analyzed in our experimental evaluation section.

While one may object that outputs are then only syntac-
tical sugar, we would argue that a native support for out-
puts is quite desirable in both the problem formalization and
the implementation of tools. On the theoretic side, allow-
ing for outputs is naturally a good thing because this consti-
tutes a specific planning problem, which is generally unde-
cidable even without hierarchies (Hoffmann et al. 2009). On
the practical side, planning is precisely about offering syn-
tax (and semantics) to simplify the specification of a special
kind of search problem. There are planning domains, in par-
ticular software configuration, where outputs are first-class
citizens. In HTN planning, simulating the constant creation
not only complicates the description of operations but also
propagates to methods as can be seen below. Hence, outputs
alone may not justify an implementation of an entirely new
planner but motivate the support of outputs as part of the
problem description.

We need two tasks with five methods to complete the
specification. The first task is refine(n), which means that
the classes of node n shall be split up somehow. The sec-
ond task is config(l , r), which means that classes are to be
moved from the left to the right child of some node. There
are three methods for refine(n):

1. finalSplit(n, x , y , l , r , s)
Pre: x ∈ n, y ∈ n, y > x , •(l), τ(l , r), τ(r , s)
TN: init(n, lc, rc, y)

2. isolatingSplit(n, x , l , r , s)
Pre: x ∈ n, •(l), τ(l , r), τ(r , s)
TN: init(n, l , r , y) → refine(l)

3. doubleSplit(n, x , y , l , r , s)
Pre: x ∈ n, y ∈ n, y > x ,¬sst(x ,n), •(l), τ(l , r), τ(r , s)
TN: init(n, l , r , y) → shift(y , x , l , r) → config(l , r)

→ refine(l) → refine(r)

There are two methods for config(l , r), which are

1. shiftElementAndConfigure(l , r , x , y)
Pre: x ∈ l , bst(y , r), x > y
TN: shift(x, y, l, r) → config(l, r)

2. closeSetup(l , lw , r , rw)
Pre: lw ∈ l , rw ∈ r
TN: close(l, lw, r, rw)

The initial task network is then {refine(root)}, where the
initial state s0 defines root and the ordering of classes. That
is, s0 = ϕ(C) ∧

∧
x∈C(x ∈ root), where C is the set of

classes and ϕ maps C to an arbitrary explicit total order of
items of C, e.g., the lexicographical order. The latter one is
important to maintain the bst and sst predicates.

PTN Planning Formalism

Basic Planning Elements

As for any planning formalism, our basis is a logic lan-
guage L and planning operators defined in terms of L. The

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

33

language L has first-order logic capacities, i.e., it defines
an infinite set of variable names, constant names, predicate
names, function names and quantifiers and connectors to
build formulas. A state is a set of ground literals; i.e., it does
not contain unquantified variable symbols. We do not adopt
the closed-world assumption.

Like in planning modulo theories (Gregory et al. 2012),
constants, functions, and a subset of the predicates of L are
taken from a theory. A theory T defines constants, func-
tions, and predicates and how these are to be interpreted.
Predicates not contained in T behave like normal predicates
in classical planning. That is, L consists of the elements of
T together with uninterpreted predicates and constants. In
the formalism, we use T as a formula itself.

An operator is a tuple 〈nameo , Io ,Oo ,Po ,E
+
o
,E−

o
〉

where nameo is a name, Io and Oo are parameter names de-
scribed inputs and outputs, Po is a formula from L constitut-
ing its preconditions and E+

o and E−
o are sets of conditional

statements α → β where α is a formula over L conditioning
the actual effect β, which is a set of literals from L to be
added or removed. Free variables in Po must be in Io and
free variables in E+

o and E−
o must be in Io ∪Oo.

The semantics of the planning domain are as follows. An
action is an operator whose input and output variables have
been replaced by constants; we denote Pa ,E

+
a

, and E−
a as

the respectively replaced preconditions and effects. An ac-
tion a is applicable in a state s under theory T iff s, T |= Pa

and if none of the output parameters of a is contained in s.
Applying action a to state s changes the state in that, for all
α → β ∈ E+

a , β is added to s if s, T |= α; analogously, β is
removed if such a rule is contained in E−

a . A plan for state
s0 is a list of actions 〈a0, .., an〉 where ai is applicable and
applied to si; here, si+1 is obtained by applying ai to si.

To summarize, the main difference in the basic planning
formalism to classical planning is that operators have ex-
plicit outputs and that some predicates are not only evaluated
from the state itself but the state together with some theory.
Having theories available to evaluate expressions, predicates
in the preconditions and effects may also contain terms oth-
ers than simple variables. None of the two aspects is new by
itself since output parameters have been considered in auto-
mated service composition previously (Weber 2009), and in-
terpreted predicates have been considered prior to planning
modulo theories (Gregory et al. 2012) through the notion of
functional STRIPS (Geffner 2000).

Programmatic Task Networks

On top of this basic planning formalism, we now build a hi-
erarchical model (Alford et al. 2016). A task network (HTN)
is a partially ordered set T of tasks. A task t(v0, .., vn) is a
name with a list of parameters, which are variables or con-
stants from L. A task named by an operator is called prim-
itive, otherwise it is complex. A task whose parameters are
constants is ground.

The goal of HTN planning is to derive a plan for a given
initial state and task network. That is, instead of reaching a
goal state from the initial state (as in classical planning), we
iteratively refine a given partial solution (the task network)
until only primitive tasks are left.

While primitive tasks are realized canonically by an op-
eration, complex tasks need to be decomposed by methods.
A method m = 〈namem, tm, Im, Om, Pm, Tm〉 consists of
its name, the (non-primitive) task tm it refines, the input and
output parameters Im and Om, a logic formula Pm ∈ L that
constitutes the method’s precondition, and a task network
Tm that realizes the decomposition. The preconditions may,
just as in the case of operations, contain interpreted predi-
cates and functional symbols from the theory T .

An method instantiation m is a method where inputs and
outputs have been replaced by planning constants. m is ap-
plicable in a state s under theory T iff s, T |= Pm and if
none of the output parameters of m is contained in s.

Leaving apart the different outputs of operations and
methods and the functional elements in formulas, the defi-
nition of a PTN planning problem is analogous to the one
of classical HTN planning. That is, a PTN planning problem
is a tuple 〈O,M, s0, N〉 where O is a set of operations as
above, M is a set of methods, s0 is the initial state, and N
is a task network. The conditions for a plan π = 〈a1, .., an〉
that is applicable in s0 being a solution to a PTN problem
〈O,M, s0, N〉 are inductive based on three cases:

1. N is empty. π is a solution if it is empty

2. N has a primitive task t without predecessor in N . π is
a solution if a1 realizes t and is applicable in s0 and if
〈a2, .., an〉 is a solution to 〈O,M, τ(s0, a1), N \ {t}〉.

3. N has a complex task t without predecessor in N . π is a
solution if there is an instantiation m̂ of a method m ∈ M
that is applicable in s0 yielding a refined network N ′, and
π is a solution to 〈O,M, s0, N

′〉.

Note that these cases are not mutually exclusive unless N is
totally ordered.

The above HTN formalization extends classical HTN
planning by object creation and interpreted predicates.

In PTN, we allow a third type of tasks we call oracle tasks.
An oracle task t is a (primitive or complex) task that is as-
sociated with functions ϕt that generate sets of solutions (in
the spirit of the above definition of a solution) to the sub-
problem 〈O,M, s, {t}〉. A programmatic task network is a
hierarchical task network that may contain oracle tasks.

The notion of oracle tasks is an entirely algorithmic one
and does not affect the semantic of the planning problem.
The idea of oracle tasks is that the planner does not solve
them by himself but outsources the computation of solutions
to its oracle functions. In a sense, oracle tasks play the role
of “complex” primitive tasks. They are primitive, because
they are ground to actions within one planning step, but they
are also complex, because they are not necessarily replaced
by a single action but a sequence. However, with respect to
the definition of a solution, oracle tasks are simply treated
as primitive or complex, so whether a task is oracle does not
affect the set of solutions to it.

Discussion

Prior to proceeding, we would like to discuss two aspect of
PTN. First, what is the relation between using oracle tasks
and interleaving planning and execution? Second, is using
both interpreted predicates and oracles redundant?

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

34

The main difference between using oracle tasks and inter-
leaving planning and execution is that the latter one is usu-
ally done to determine the successor state resulting from a
given action. That is, the action that is going to be executed
is fixed by the planner. Oracle tasks, in contrast, actually out-
source a part of the planning (and decision) logic itself to the
function bound to it.

The relation between interpreted predicates and oracles
is complementary. On one hand, interpreted predicates are
useful to ease the formalization process of a planning prob-
lem. On the other hand, oracle tasks aim at shortcutting some
parts of the planning process and possibly prune alternatives.
Of course, one can also achieve the same pruning effect
using interpreted predicates, and this can sometimes make
sense. However, we simply see the two concepts as used for
different purposes and with different times of coming into
action: Interpreted predicates enrich the formalization lan-
guage, and oracles decrease the runtime of the planner. We
also consider this aspect in our experimental evaluation.

Describing PTN Planning Problems

Unfortunately, there is no standard language to describe hi-
erarchical planning problems as PDDL is for classical plan-
ning. One attempt to create such a language was made with
ANML (Smith, Frank, and Cushing 2008), but it has not
evolved to a standard. All existing HTN planners use their
own format, so there is no commonly agreed point of refer-
ence which can serve as a basis for our extension. In a sense,
the SHOP2 planner has created some kind of implicit pro-
prietary standard (Nau et al. 2003). As a consequence, de-
scribing the way how PTN planning problems are described
would come down to explaining the input syntax for our spe-
cific planner.

Hence, our format is proprietary, and we rather refer the
reader to the technical documentation of the planner, which
formally describes the syntax for describing the planning
problems. In fact, the description language only puts a spe-
cific syntax for the formal items discussed above. The whole
planning problem is defined in just one file with several sec-
tions for types, constants, operations, methods, and oracles
respectively. There is no added value in describing this syn-
tax in detail at this point.

However, we briefly want to discuss the definition of in-
terpreted predicates and oracles since this is something tech-
nically new. As in (Gregory et al. 2012), interpreted terms
are described in an extra file, one for each theory. Predicates
that do not occur in any of these files are supposed to be not
interpreted. Oracles are described by 6-tuples as follows:

[Oracles]

rpnd; refineND(n,lc,rc); n; lc,rc; card(n) > 1; rpnd.sh

cbnd; refineND(n,lc,rc); n; lc,rc; card(n) > 1; cbnd.sh

In this notation—where fields are separated by the ;
symbol—, the first entry defines the name of the oracle, the
second one the task addressed by the oracle followed by the
input and output parameters, the precondition, and the exter-
nal library that will be called to conduct the refinement. Note
that our implementation is in Java and external libraries are
either executable by the used operating system and invoked

in a new process or Java classes implementing a specific in-
terface, which, of course, is more performant.

We require that interpreted predicates are not only asso-
ciated with an evaluation function but also with a ground
truth function. For a given state, the ground truth function
computes all possible groundings to objects of the state for
which it evaluates to true. That is, a predicate cannot only
be evaluated for a fixed ground parameters but they can
even be queried for valid groundings. An example where
this becomes important is the ssubset predicate used in the
following formalization; this predicate simply realizes the
strict subset relation. The planner has not even information
about possible candidates s for which it should evaluate
ssubsets(s, p), but the underlying set theory can inspect the
object p in the state and generate objects representing the
possible subsets.

In practice, it is not necessary to define methods for com-
plex oracle tasks. The planner will not treat oracle tasks it-
self, so there is no reason to formalize the methods that can
be used to refine it for the planner. In any case, the external
libraries are specifically designed for a particular planning
problem and usually only create valid solutions by construc-
tion. Since those libraries usually do not apply a planning
algorithm themselves, a description of the available meth-
ods (or even the whole planning domain) can be omitted un-
less the libraries explicitly require those for whatever reason.
Since PMT does not verify the correctness of the oracles’ an-
swers using the existing methods but simply trusts that they
are correct, the formalization is optional and can be rather
seen as a documentation.

We now explain how the nested dichotomy creation prob-
lem can be formalized as a PTN problem. We only need one
primitive task (and operation) and one complex task (with
two methods). The primitive task and its corresponding op-
eration are responsible for configuring a specific split.

config(p, s; lc, rc)
Pre: ∅
Post: ∀x : x ∈ s → x ∈ lc, ∀x : x ∈ p ∧ x /∈ s → x ∈ rc

The operation has two inputs and two outputs. The first in-
put p is the node that is to be refined and the second one, s,
corresponds to a specification of a subset of the elements of
s that will appear in the left child. The outputs lc and rc are
the data containers for the left and right child node respec-
tively. Note that we do not need any precondition, because
this action will only be used in a plan if other (method) pre-
conditions were checked before. Since those method precon-
ditions are sufficient, there is no need to formalize the actual
preconditions of the action again. This effect of “shifted”
preconditions is not special to our example but is common
in HTN planning.

In addition to this operation, we need one complex task
refine(n) for which we have two methods:

1. doRefine(n, s, lc, rc)
Pre: ssubset(s, p) ∧ !empty(s) ∧min(s) = min(p)
TN: config(n, s, lc, rc) → refine(lc) → refine(rc)

2. closeNode(n)
Pre: card(n) = 1
TN: ∅

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

35

The first method is to conduct an actual refinement of a node
where the second is responsible only to detect that a node
has already been refined to the end and can be closed. Once
again, the comparison of the minimum element is needed to
avoid so called mirrored dichotomies that are actually iden-
tical modulo switching the left and the right child of a node
(see above formalization).

The preconditions of the methods only contain interpreted
terms. All predicates are from a standard set theory as in
(Gregory et al. 2012), so the dichotomy problem doesn’t
require a special theory. Note that, for the case of the first
method, the strict subset condition plus the requirement that
s is not empty implicitly requires that card(p) ≥ 2.

In PTN-Plan, the complex task will be resolved using
an oracle. Consider the precondition predicate ssubset(s, p)
and suppose there are no oracles for the task. When deter-
mining the applicable groundings of the operation, the plan-

ner must branch over all possible subsets s of p, i.e. 2|p| − 1
many candidates. This is usually infeasible even for very
small p, because the planner must consider this exponential
number of candidates not only once but also subsequently
when analyzing possible successor nodes. Hence, PTN-Plan
outsources the task grounding to an oracle task, which only
produces a small number of these candidates. In our evalua-
tion, we consider both cases to illustrate this effect.

A PTN Planner

We adopt a modification of forward decomposition (Ghal-
lab, Nau, and Traverso 2004). In a nutshell, a rest prob-
lem in forward decomposition is a state together with a task
network. Of course, initially, this is the initial state s0 and
the initially given task network N . Forward decomposition
means to take one of the tasks in N that have no predeces-
sors and resolve it either to an operation (if primitive) or to
a new task network (if complex). Our planner, PTN-Plan, is
written in Java. The implementation is available for public 2.

The classical forward decomposition algorithm must be
modified in three ways. We discuss these modifications in
detail in the subsequent sections.

Treating Output Variables

Even though outputs are motivated by operation outputs,
the point where they become relevant in the algorithm
are methods. While the constants are actually created
by some action, methods need to talk over those out-
puts in order to establish a reasonable data flow in the
task network they induce. For example, if we have a
task refineND(nd) where nd is an object repre-
senting a nested dichotomy, we may have a method
configureAndRefineRecursively(nd,lc,rc)

with an induced totally ordered task network
crtAndConfig(nd,lc,rc) -> refineND(lc)

-> refineND(rc), which is supposed to create two
subsequent dichotomies lc and rc and distribute the
elements of nd over them. So in fact, it is already clear at
the method level that lc and rc will be produced elements
and are not available yet.

2URL hidden during review phase

PTN-Plan stores the outputs of a method in opaque data
containers. With respect to the planning formalism, data
containers are nothing special but ordinary planning con-
stants. Intuitively, data containers are what variable names
are in typical imperative programming. That is, the container
object itself is rather a reference to real semantic object than
the object itself. PTN-Plan maintains a counter of newly cre-
ated objects and labels them newVar1, newVar2, ... For
this reason, it is forbidden to use constants with such a name
in the problem description in order to avoid confusion.

In particular in the presence of theories, one may be in-
terested in “complex” objects. In planning modulo theories,
planning constants are not only some names but actually
string representations of more complex objects such as a set.
For example, the string “{a, b, c}” could be a planning
constant with an intended meaning, which is obviously not
known to the planner but only to the theory.

Even though PTN-Plan uses names for output objects in-
stead of serializations according to some theory, more pre-
cise information about the container may become available
later. The concrete value stored of data container, e.g., “{a,
b, c}” will be determined by an action but usually not
the method instance itself. So at the time of determining
the method instance itself, it is not possible to say anything
about the contents of a data container. But this is also not
a problem, because the content description can be easily
added using equality. For example, an operation can have
an effect saying o1 = union(i1,i2) where union is
a term from the set theory and i1,i2, and o1 are inputs
and outputs. Since i1 and i2 are known, the concrete se-
rialization can be computed using the theory libraries as in
(Gregory et al. 2012).

Treating Interpreted Terms

The point where interpreted terms become relevant to PTN-
Plan is when it determines the method instantiations or ac-
tions that are applicable in a state. Both were defined to
be applicable if their preconditions are satisfied in the state
module the underlying theory T .

Since the evaluation of interpreted predicates is poten-
tially costly, PTN-Plan first evaluates the “normal” predi-
cates. This process already implies a binding of most (and
often all) of the variables of a method or operation, and the
interpreted predicate has only to be checked for given pa-
rameters instead of determining for which of a given set of
possible parameters it holds.

Unlike in planning modulo theories (Gregory et al. 2012),
PTN-Plan does not evaluate interpreted terms. That is, PTN-
Plan only distinguishes between predicates and terms but
does not make a difference between primitive terms (con-
stants) and complex ones (possibly nested expressions). In
any case, both are simply string representations encoding
some element of the respective theory and need to be de-
coded by the external library. At this point, we do not see
any reason to have two different representations for the same
constant within the planning calculus. Of course, PTN-Plan
can be extended in this regard if we observe that collapsing
a term to a simpler constant is useful in terms of runtime.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

36

Technically, PTN-Plan supports the evaluation of inter-
preted predicates in two ways. First, PTN-Plan comes with
a Java interface which can be implemented by a Java class
used to evaluate a predicate. This is the most performant so-
lution, because no new process needs to be spawned for the
evaluation. For compatibility with external libraries, how-
ever, PTN-Plan also supports the call of stand-alone exe-
cutable files. In that case, PTN-Plan expects the result of the
evaluation (and nothing else) to be returned on the standard
output stream; clearly, this variant is much slower.

Treating Oracle Tasks

When selecting an oracle task, PTN-Plan calls the respective
oracle library and blocks until a set of solutions for the task
arrives. As for interpreted terms, PTN-Plan supports Java or-
acle classes that implement a specific interface or external
libraries that return the set of solutions (and nothing else) in
a specific format over the output stream.

The oracle library is invoked with the reduced rest prob-
lem as its main parameter. The reduced rest problem is de-
fined by the current state and the oracle task as the only task;
the subsequent tasks are irrelevant.

Once the solutions have arrived, PTN-Plan creates one
successor for each of the sub-solutions. The rest problem
of those successors is the state that results from applying
the respective sub-solution to the previous state, and the task
network is simply the one of the previous rest problem with-
out the resolved oracle task.

A subtle twist that has not been discussed so far is the
fact that the oracle library may want to conduct an informed
search, too. That is, PTN-Plan adopts a best-first search and
uses some domain-specific source of information to com-
pute the f-values of the nodes, and that source of information
should be also available to the oracle libraries. However, this
is no problem, because the common source of information
can be stored as a resource, e.g., a file name, in a constant
of the planning state. The oracle can then inspect that con-
stant and acquire the desired information. In particular, no
additional channel of communication is required.

A Brief Analysis of PTN-Plan

Correctness and Completeness

Assuming the correctness of solutions returned by oracles,
the correctness of PTN-Plan is straight forward. The overall
correctness of a solution π for the problem 〈O,M, s0, N〉
follows from induction over the solution length n. PTN-Plan
only returns an empty solution (n = 0) if N = ∅, which is
correct. For n > 0, the first action a1 of the solution is either
inserted individually as the result of resolving a primitive
task, or it is part of a sub-solution 〈a1, .., ak〉 generated by
an oracle for a (complex) oracle task. The first case only
occurs if PTN-Plan chose a primitive task t ∈ N realized by
a1 and t is not preceeded by any other task in N ; PTN-Plan
only chooses a1 if it is applicable. The second case only
occurs if N has an oracle task not preceeded by any other
task in N ; the sub-solution 〈a1, ..ak〉 was then created by an
oracle and is correct by assumption. In any case, the length

of the solution to the rest problem is smaller than n; so the
correctness of PTN-Plan follows from induction.

PTN-Plan is complete for problems without oracles or for
oracles that create all solutions that exist for a single oracle
task. This follows again by induction over the length of so-
lution π = 〈a1, .., an〉 for a problem 〈O,M, s0, N〉. Three
cases are possible. First, there is a primitive non-oracle task
t ∈ N realized by a1 without predecessor in N ; PTN-Plan
considers a1 as a possible refinement. Second, there is an or-
acle task t ∈ N without predecessor to which 〈a1, .., al〉 is a
solution. Then, by assuming that oracles create all solutions,
PTN-Plan obtains 〈a1, .., al〉 from some oracle. Third, there
is a complex non-oracle task t ∈ N without predecessor in
N . There is a refinement N ′ of N obtainable by the applica-
tion of applicable method instantiations m1, ..,mk such that
π is still a solution and that has no complex non-oracle task
without predecessor in N ′. But PTN-Plan considers these
method instantiations in that order such that eventually one
of the first two cases applies. In any case, PTN-Plan will
eventually arive at a sub-solution 〈a1, .., al〉 and a problem
for which a solution 〈al+1, .., an〉 exists and which is found
by the induction hypothesis.

However, since it is precisely the purpose of oracles to
prune parts of the search space that seem irrelevant to them,
PTN-Plan is not complete in general. That is, there are so-
lutions that are not contained in the search graph of PTN-
Plan. By the above analysis on completeness, this is the case
if and only if the set of solutions created by the union of
oracles defined for a task is a strict subset of the actual so-
lution set. Consequently, oracle tasks can be used to trade
completeness for search efficiency.

Heuristic Search

PTN-Plan adopts a best-first-epsilon algorithm to conduct
the search over the graph induced by the planning problem.
In our domains, A* is typically not applicable, because the
criterion that is subject to optimization is not the plan length
but some other qualitative property of the solutions that of-
ten does not decompose in an additive way over the edges of
the search graph. For example, we cannot estimate the pre-
diction accuracy of a nested dichotomy in an additive way
over the search path.

As most hierarchical planners, PTN-Plan is not equipped
with a built-in heuristic. We are aware of two planners with a
built-in heuristic we are aware of. One is PANDA (Bercher
and others 2015), and the other is Hierarchical Goal Net-
work Planning (HGN) (Shivashankar et al. 2012; 2013;
Shivashankar, Alford, and Aha 2017), which uses landmarks
to compute a heuristic for the hierarchical planning problem.
On the code level, PTN-Plan has an interface for the node
evaluation function, which can be used to setup a problem-
specific f -function. In principle, this f could also be addi-
tive, so the idea of PANDA could be used in PTN-Plan in
principle if the actual cost measure is additive.

Experimental Evaluation

To assess the role of the different extensions to the over-
all performance, we compare not only HTN with PTN-Plan

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

37

Dataset # PTN HTN + IP HTN + C HTN PTN HTN + IP HTN +C HTN

car 4 0,72 3,11 • 4,47 • 4,38 • 22,00 75,78 • 113,20 • 98,94 •
page-blocks 5 5,50 23,00 • 39,50 • 30,67 • 52,00 326,50 • 743,00 • 522,00 •
analcat 6 2,32 9,94 • 22,89 • 22,47 • 68,91 307,29 • 561,33 • 539,42 •
segment 7 6,74 79,84 • 46,12 • 47,47 • 89,52 1.327,05 • 891,29 • 891,29 •
zoo 7 1,79 1,65 3,22 • 2,92 • 72,07 146,35 • 106,67 • 87,38 •
autoUni 8 6,26 69,25 • 28,21 • 26,73 • 91,83 817,60 • 205,53 • 194,27 •
cnae9 9 277,18 - - - 111,82 - - -
mfeat-fourier 10 25,24 - 117,18 • 123,87 • 121,56 - 335,91 • 338,43 •
optdigits 10 36,82 - 167,68 • 165,85 • 95,18 - 173,32 • 178,25 •
pendigits 10 16,33 - 93,92 • 92,88 • 102,92 - 346,92 • 347,33 •
yeast 10 8,83 137,50 • 21,00 • 20,67 • 153,67 1.361,50 • 295,80 • 265,00 •
vowel 11 3,44 - 31,50 • 22,14 • 111,11 - 994,83 • 361,71 •
audiology 24 11,78 - 118,69 • 116,21 • 235,50 - 849,85 • 740,05 •
letter 26 41,32 - - - 219,40 - - -
kropt 28 141,55 - - - 405,00 - - -

Table 1: Comparison of PTN-Plan with other extensions of HTN planning. The column entitled with # shows the number of
classes for the respective dataset. The left main column reports the average runtime to the first solution in seconds. The second
main column reports the number of nodes generated. A hyphen means that no solution was found in the timeout.

but also with other variants. More precisely, we consider the
version of HTN but with constant creation or efficient cre-
ation simulation (HTN + CC) and the version of HTN with
both constant creation and interpreted predicates (HTN +
IP). That is, PTN and HTN + IP use the above formalization
that adopts interpreted predicates; PTN outsources the refine
task to an oracle (described below). HTN and HTN + CC
use the initial formalization without interpreted predicates.
In the case of plain HTN, the generation of objects is sim-
ulated naively and without the encoding shown in the first
formalization; a formalization like this was used in (Klusch,
Gerber, and Schmidt 2005).

The BF-ε search is informed by a simple f-function that
completes the partial dichotomies using a technique called
RPND (Leathart, Pfahringer, and Frank 2016) and then com-
putes the performance of that dichotomy. Note that this f is
not optimistic but rarely overestimates the optimal cost by
large margin. The ε is considered as an absolute value (in-
stead of a relative one) of 1% accuracy tolerance. The same
technique is used by the oracles to generate a moderate num-
ber of possible refinements.

Our evaluation is based on a couple of datasets of different
numbers of classes. This is because the search graph struc-
ture and size highly depends on the number of classes. In the
general HTN encoding, the search graph size grows in a fac-
torial order with the number of classes. Note that even if we
use oracles and their massive pruning, the search space still
grows quite rapidly simply because more decisions must be
made in total; in fact, even the run time of a hill climber
increases as least linearly. The datasets are from a well-
known repository called UCI (Asuncion and Newman 2007)
and are used frequently to evaluate the performance of algo-
rithms that create nested dichotomies (Leathart, Pfahringer,
and Frank 2016). All the datasets are available at http:
//openml.org.

Planning for AutoML pipelines is afflicted much more by
random effects than planning in other domains due to intrin-

sic randomized aspects. The main sources of randomness are
the splits made on the given data set. That is, to check the
quality of a solution, the data set is initially split into two
parts, the so called training set, which is used to guide the
search, and test set, which is used to evaluate the quality of a
solution (by comparing the dichotomy’s prediction for each
of these instances with the true class). In our experiments,
this split is always 70%/30%. The choice of this split has
paramount effects on the evaluation of the candidates, so it
is necessary to consider not only one such split but several
ones in order to get a more stable estimate. Also, the evalua-
tion during search makes such splits which is why the eval-
uation of nodes is always subject to a certain degree of ran-
domness. Since the search itself is not aware of the random
nature of these values, it is important to obtain a relatively
stable estimate for the mean, which is then the ultimate goal
of optimization.

As a consequence, we report the mean values over 25 ex-
periments for each data set. Table 1 shows the results of
our computations. The computations were executed on 16
Linux machines in parallel, each of which with a resource
limitation of 16 cores (Intel Xeon E5-2670, 2.6Ghz) and
16GB memory. Each experiment was conducted on a asso-
ciated with a timeout of 5 minutes. We do not report the
solution quality since this is not an important measure for
the comparison of the search space exploration. However,
we briefly summarize that PTN-Plan never produced signif-
icantly worse solutions than any of the other algorithms.

PTN-Plan clearly dominates each of the other algorithm
variants in both runtime and node generation. Significant im-
provements (5%-threshold in t-test) are indicated by •. For
three of the problems, it is the only algorithm that identifies
the solution within the given time bound. PTN-Plan gener-
ates only half the number of nodes as standard HTN on all
dataset and sometimes 10 times less (page-blocks).

The improvement of PTN-Plan over HTN + IP motivates
the use of oracle tasks in this context. Interpreted predicates

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

38

allow for a very simple problem specification but yield an
exponential number of successors for the refinement nodes,
which frequently produces memory overflows. In PTN, only
a small subset of those nodes is actually created, which
makes it much more scalable.

These results, though rather preliminary, strongly moti-
vate the usage of oracles in hierarchical planning. It is not at
all clear that general purpose heuristics, despite all their ad-
vantages, can achieve the same performance as obtained us-
ing oracles (with very domain-specific heuristic knowledge).
For the time-being, no such heuristics are in sight.

Conclusion

We have introduced an extension to classical HTN planning
called PTN (Programmatic Task Networks) that connects the
planner with external libraries in the form of logic theories
and oracles. The theories are used to evaluate function terms
and predicates that may occur in the preconditions of op-
erations and methods. Oracles are used by the planner to
outsource the generation of sub-solutions for specific tasks.
We have conducted an experimental evaluation in the area
of automated machine learning (AutoML), which was also
our motivation to use (and extend) hierarchical planning.
While the concrete problem of creating a nested dichotomy
can also be solved easily without planning, HTN is a great
framework to describe the construction mechanism of more
general machine learning pipelines; PTN of HTN paves the
way for a more efficient construction of those pipelines.

Open issues are on both theoretical and practical sides.
Theoretically, it would be interesting to learn more about
the possibility to transfer general heuristics from classical
planning or HTN planning to PTN. On the practical side,
PTN-Plan is still very preliminary and only supports totally
ordered networks, so there is also a great deal of engineering
research ahead.

Acknowledgements This work was partially supported
by the German Research Foundation (DFG) within the Col-
laborative Research Center “On-The-Fly Computing” (SFB
901).

References

Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and
Aha, D. W. 2016. Hierarchical planning: Relating task and
goal decomposition with task sharing. In Proc. IJCAI, 3022–
3029.

Asuncion, A., and Newman, D. 2007. UCI machine learning
repository.

Bercher, P., et al. 2015. Hybrid planning theoretical founda-
tions and practical applications.

Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.;
Blum, M.; and Hutter, F. 2015. Efficient and robust auto-
mated machine learning. In Advances in Neural Information
Processing Systems, 2962–2970.

Frank, E., and Kramer, S. 2004. Ensembles of nested di-
chotomies for multi-class problems. In Machine Learn-
ing, Proceedings of the Twenty-first International Confer-
ence (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004.

Geffner, H. 2000. Functional strips: a more flexible language
for planning and problem solving. In Logic-Based Artificial
Intelligence. Springer. 187–209.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.

Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning modulo theories: Extending the planning paradigm. In
Proceedings of the Twenty-Second International Conference
on Automated Planning and Scheduling, ICAPS 2012, Ati-
baia, São Paulo, Brazil, June 25-19, 2012.

Hoffmann, J.; Bertoli, P.; Helmert, M.; and Pistore, M.
2009. Message-based web service composition, integrity
constraints, and planning under uncertainty: A new connec-
tion. Journal of Artificial Intelligence Research 35:49–117.

Hoffmann, J. 2003. The metric-ff planning system: Translat-
ing“ignoring delete lists”to numeric state variables. Journal
of Artificial Intelligence Research 20:291–341.

Klusch, M.; Gerber, A.; and Schmidt, M. 2005. Semantic
web service composition planning with owls-xplan. In Pro-
ceedings of the 1st Int. AAAI Fall Symposium on Agents and
the Semantic Web, 55–62.

Leathart, T.; Pfahringer, B.; and Frank, E. 2016. Building
ensembles of adaptive nested dichotomies with random-pair
selection. In Proceedings of the European Conference on
Machine Learning and Knowledge Discovery in Databases,
179–194.

Mohr, F. 2017. Towards automated service composition un-
der quality constraints. Ph.D. Dissertation, Paderborn Uni-
versity.

Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: an HTN planning
system. J. Artif. Intell. Res. (JAIR) 20:379–404.

Shivashankar, V.; Alford, R.; and Aha, D. W. 2017. Incor-
porating domain-independent planning heuristics in hierar-
chical planning. In AAAI, 3658–3664.

Shivashankar, V.; Kuter, U.; Nau, D. S.; and Alford, R.
2012. A hierarchical goal-based formalism and algorithm
for single-agent planning. In Proc. AAMAS, 981–988.

Shivashankar, V.; Alford, R.; Kuter, U.; and Nau, D. S.
2013. The godel planning system: A more perfect union
of domain-independent and hierarchical planning. In IJCAI,
2380–2386.

Smith, D. E.; Frank, J.; and Cushing, W. 2008. The anml
language. In Proc. KEPS.

Thornton, C.; Hutter, F.; Hoos, H. H.; and Leyton-Brown,
K. 2013. Auto-WEKA: combined selection and hyperpa-
rameter optimization of classification algorithms. In The
19th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD 2013, Chicago, IL,
USA, 847–855.

Weber, I. M. 2009. Semantic Methods for Execution-level
Business Process Modeling: Modeling Support Through
Process Verification and Service Composition. Springer.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

39

