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SPARK 2018 preface

Preface

This volume contains the papers presented at SPARK 2018: 2018 Scheduling and Planning
Applications woRKshop held on June 24-29, 2018 in Delft. There were 11 submissions. Each
submission was reviewed by at least 3 program committee members. The committee decided
to accept 9 papers. The program also includes 2 invited talks.

Application domains that entail planning and scheduling (P&S) problems present a set of
compelling challenges to the AI planning and scheduling community that from modeling to
technological to institutional issues. New real-world domains and problems are becoming more
and more frequently a↵ordable challenges for AI. The international Scheduling and Planning
Applications woRKshop (SPARK) was established to foster the practical application of advances
made in the AI P&S community. Building on antecedent events, SPARK 2018 is the eleventh
edition of a workshop series designed to provide a stable, long-term forum where researchers and
practitioners can discuss the applications of planning and scheduling techniques to real-world
problems. The series webpage is at http://decsai.ugr.es/˜lcv/SPARK/. We are once more
very pleased to continue the tradition of representing more applied aspects of the planning
and scheduling community and to present a pipeline that will enable increased representation
of applied papers in the main ICAPS conference. We thank the Program Committee for their
commitment in reviewing. We thank the ICAPS 2018 workshop and publication chairs for their
support.

Sara Bernardini, Simon Parkinson, and Kartik Talamadupula
The SPARK 2018 Organizers

June 14, 2018
London

Sara Bernardini

i



SPARK 2018 Program Committee

Program Committee

Laura Barbulescu Carnegie Mellon University
Anthony Barrett NASA
Sara Bernardini Royal Holloway University of London
Mark Boddy Adventium Labs
Lukas Chrpa Czech Technical University in Prague
Gabriella Cortellessa CNR-ISTC, National Research Council of Italy
Minh Do NASA
Simone Fratini European Space Agency - ESA/ESOC
Mark Giuliano Space Telescope Science Institute
Christophe Guettier SAFRAN
Patrik Haslum ANU
Angelo Oddi ISTC-CNR, Italian National Research Council
Simon Parkinson University of Huddersfield
Nicola Policella ESA/ESOC
Cédric Pralet ONERA Toulouse
Riccardo Rasconi ISTC-CNR
Bram Ridder King’s College London
Kartik Talamadupula IBM
Mauro Vallati University of Huddersfield
Tiago Stegun Vaquero NASA Jet Propulsion Laboratory, Caltech
Neil Yorke-Smith Delft University of Technology
Terry Zimmerman University of Washington -Bothell

1



SPARK 2018 Author Index

Author Index

Agrawal, Jagriti 9
Alaboud, Fares K. 1

Baatar, Davaatseren 18
Byon, Amos 70

Chakraborti, Tathagata 27
Chen, Yingwu 45
Chi, Wayne 9
Chien, Steve 9, 70
Coles, Andrew 1

Davies, Christopher 70
Davis, Evan 70
de Weerdt, Mathijs 45

Edwards, Steven 18
Ernst, Andreas 18

Grover, Sachin 27
Guettier, Christophe 53

Hammond, Tim 37
He, Lei 45

Kambhampati, Subbarao 27
Knight, Russell 70

Lewellen, Garrett 70
Liu, Xiaolu 45

Morignot, Philippe 53

Scha↵ner, Michael 62
Shao, Elly 70
Smith-Miles, Kate 18

Trowbridge, Michael 70

Yorke-Smith, Neil 45

1



SPARK 2018 Keyword Index

Keyword Index

Adaptive large neighborhood search 45
approximation algorithm 70
Automated Planning 27

Biomedical/Bioinformatics 1

combinatorial optimization 70
Constraint Programming 18
coverage planning 70

Decision Support 27
Distributed Coordination 62

framing instrument 70

Generalised Precedence Constraints 18
Gradient Descent 9

Human-machine interface 62

imagery satellite 70
Intelligent Tutoring System 27

Minimum/Maximum Time-lags 18
Mission Task 37
Mixed Discrete/Continuous Planning 1
Mixed Integer Programming 18

Naval mission planning 37
NP-complete 70

Plan Explanation 27
Plan Recognition 27
Plan Robustness 9
Plan Validation 27
Planning 1
Planning and Scheduling for Autonomous Systems 53
Priority Setting 9
pushbroom 70

Real-time scheduling 62
Rover 9

Scheduling 9, 18, 37, 45

1



SPARK 2018 Keyword Index

scheduling 70
Scheduling under uncertainty 62
Search Algorithms 53
Squeaky Wheel 9
Student Model 27
System-of-Systems 62

Temporal Planning 1
Time-dependent 45
time-varying Traveling Salesman Problem 70

Uncertain sources of Knowledge 53

Voyage planning 37

2



SPARK 2018 Table of Contents

Table of Contents

Personalised Medication Planning using PDDL+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Fares K. Alaboud and Andrew Coles

Using Squeaky Wheel Optimization to Derive Problem Specific Control Information for
a One Shot Scheduler for a Planetary Rover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Wayne Chi, Jagriti Agrawal and Steve Chien

The Liquid Handling Robot Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Steven Edwards, Davaatseren Baatar, Andreas Ernst and Kate Smith-Miles

Automated Planning for Intelligent Tutoring Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Sachin Grover, Tathagata Chakraborti and Subbarao Kambhampati

Automated Mission Task Scheduling in Marine Voyage Planning. . . . . . . . . . . . . . . . . . . . . . . . . . 37
Tim Hammond

Tabu-Based Large Neighbourhood Search for Time-Dependent Multi-Orbit Agile
Satellite Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Lei He, Mathijs de Weerdt, Neil Yorke-Smith, Xiaolu Liu and Yingwu Chen

Discrete Uncertainty Representation for CSP-based Planning and Scheduling and. . . . . . . . . 53
Philippe Morignot and Christophe Guettier

Extensions of a Simple Temporal Network Coordinating Emergent Knowledge Processes
in a Collaborative System-of-Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Michael Scha↵ner

Area Coverage Planning with 3-axis Steerable, 2D Framing Sensors . . . . . . . . . . . . . . . . . . . . . . . 70
Elly Shao, Amos Byon, Christopher Davies, Evan Davis, Russell Knight, Garrett
Lewellen, Michael Trowbridge and Steve Chien

1



Personalised Medication Planning using PDDL+

Fares K. Alaboud and Andrew Coles
Department of Informatics, King’s College London, UK

email: firstname.lastname@kcl.ac.uk

Abstract
Prescription medication is typically prescribed with a stan-
dardised set of instructions, to be followed regularly, with the
aim being to manage symptoms while remaining within safe
dosage limits. The caveat of such standardisation is that it is
not tailored to the needs of the patient, in terms of their activ-
ities. In this paper, we take the first steps towards modelling
medication pharmacokinetics as a PDDL+ hybrid planning
problem. As pharmacokinetics are inherently non-linear, we
present a planner-independent linearise–validate cycle, where
tasks can be solved by iterative refinement of a linear approxi-
mation of the domain, by validation against the full non-linear
semantics.

1 Introduction
One of the largest problems in healthcare is the incorrect
consumption of medication. It is estimated that half of pa-
tients that are prescribed medication for chronic conditions
do not consume their medication correctly (The Academy of
Medical Sciences 2014). Most medication is prescribed in
a way that expects the patient to follow a standard routine.
This is done in order to help the patient stay compliant and at
the same time to consume the medication in a way that does
not endanger the patient – often, when patients are given a
regular dose, it is to keep things simple. For example, parac-
etamol (acetaminophen) is usually given in doses of 500mg
per pill. The standard dose is two pills to be taken every four
to six hours, with a maximum consumption of eight pills per
day. Higher levels may give more pain relief, but the rate at
which it is metabolised gives a risk of paracetamol toxicity
if these limits are exceed – the spacing between doses, and
daily limit, avoid excess exposure.

To address the challenge of effectively managing patients’
medication usage, one option is to produce personalised
medication plans. Personalised medicine is defined by the
as providing “the right patient with the right drug at the
right dose at the right time” (Sadee and Dai 2005). His-
torically, the scope for this has been limited to where it is
essential (for instance, personalised insulin regimes for di-
abetics) but is recently becoming more viable through the
uptake of technology – at one extreme, with the use of a
drug dosage printer to ‘print’ drugs with accurately specific
doses (Hirshfield et al. 2014).
Copyright c� 2018. All rights reserved.

In this paper we present the possibility of using PDDL+
to personalise medication schedules by modelling the prob-
lem as a hybrid planning domain, determining an effective
schedule for a patient depending on their varying pain relief
needs throughout the day. As the metabolism of medication
is non-linear (negative exponential), and many otherwise-
effective PDDL planners do not support non-linear domains,
we explore the use of an iterative piece-wise linear approx-
imation process to allow a broader range of planners to be
used as a kernel within this process; and hence find solutions
that are valid when considering the full non-linear pharma-
cokinetics. We present an initial evaluation of this approach
using the planner OPTIC (Benton, Coles, and Coles 2012),
as extended to support PDDL+ (Coles and Coles 2014), and
discuss the future direction of the work and limitations of
PDDL+ for modelling desirable objective functions in this
domain.

2 Background
When consumed, medication is metabolised in the body
over time, leading to a decay of the active medication level.
Whilst pharmacokinetics are complex, a reasonable model is
to assume negative-exponential (i.e. first-order) decay, with
drug-dependent half-lives depending on the rate at which the
active ingredients are metabolised (Geenen et al. 2013). Re-
turning to the example of Paracetamol, the half life is up to
3 hours. That means if someone takes 1000mg of paraceta-
mol at 12.00pm, there will be 500mg of the drug left in three
hours (i.e. at 3.00pm). In another three hours (i.e. 6.00pm),
there will be 250mg of the drug left, and so on. The ques-
tion then, returning to the topic of this paper, is how these
pharmacokinetics can be modelled in PDDL.

Medication levels changing over time are an example of
continuous numeric change. The capability for these was
first added to PDDL in PDDL2.1 (Fox and Long 2003), as
part of ‘layer 5’ – durative actions can have continuous nu-
meric effects that occur during their execution. As drug
metabolism is not something that one can choose to occur
in a plan, but is rather something that occurs exogenously in
the world, a better fit is to encode it as a process, expressed in
PDDL+ (Fox and Long 2006). PDDL+ provides a language
for defining hybrid planning problems, where the state tra-
jectory for a solution plan contains the effects of the planned
actions (as in PDDL2.1) but also the consequences of ex-
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ogenous processes and events. The key distinction is that a
process occurs whenever its conditions are true: it stops and
starts, outwith the direct control of the planned actions; and
during its execution, it effects continuous numeric change
upon the world. Analogously, PDDL+ events are instanta-
neous actions that occur whenever their conditions are true:
when they fire, the world is immediately updated according
to their instantaneously effects. By combining these, PDDL+
provides a useful toolkit for expressing hybrid domain mod-
els for a range of problems (Piotrowski et al. 2015). In this
paper, as we will illustrate, we combine these to provide the
necessary exogenous context in which to plan personalise
medication consumption schedules.

3 High-level Problem Description
The decision-making constraints for a given medication can
be defined using a number of constants:
• t1/2, its biological half life. This is the time taken for the

plasma level of the medication to halve.
• B, the typical dose amount consumed.
• G, the amount of time one needs to leave between two

doses.
• m, the maximum number of doses within the planning

horizon (e.g. 24 hours).
Given the half life, and the plasma level of a drug, D,

the rate r at which the plasma concentration of the drug is
decreasing can be calculated as:

r = D · ln 2
t1/2

Taking the integral of this, the level of a drug at a time t
(D(t)) after some reference point (D0) can be written as:

D(t) =
D0

2
t

t1/2

As we are planning the consumption of medication, we
can think of the trajectory of drug levels during a solution
plan as comprising time points at which medication is taken
(when the drug level increases), interspersed with intervals
in which the medication level reduces with rate r. More
formally:
• At time t0, the medication level takes some pre-defined

value D0 (the initial plasma level).
• At subsequent ordered time points [t1..tn�1] an amount

of medication [B1..Bn�1] is taken. For this paper, we
assume these values are either 0 or B – the dose that could
in principle be consumed.

• At time tn, no medication is taken – this represents the
end of a finite horizon over which the plan must succeed.
With this representation, we can define the constraints on

medication consumption. First, if a dose is taken at time ti,
the next dose cannot be taken at a time before ti +G:

8
i2[1..n]

✓
Bi = 0 _

✓
8

j2[i+1..n]
(Bj = 0 _ tj � ti � G)

◆◆

Second, the maximum number of doses within the plan-
ning horizon is m:

|{i · i 2 [1..n� 1] ^Bi 6= 0}|  m

A medication plan can be said to be safe if it satisfies these
two constraints. A separate matter is what therapeutic bene-
fit is provided: taking no medication at all never exceeds the
limits of the prescription, but of course is of no benefit to the
patient. The medication level D(ti) at time ti (i > 0) can be
defined as:

D(ti) =
D(ti�1) +Bi�1

2
ti�ti�1

t1/2

The interaction between planning decisions and plasma
levels arises when considering how a plan may constrain
what are permissible drug levels at different points within
the planning horizon.

In this paper we will focus on pain relief management
with a single painkiller as an exemplar problem, so can dis-
cuss drug levels in terms of desired levels of pain relief (pr).

In the simple case, the schedule of desired pain relief is
static: at defined intervals throughout the day, the pain relief
must be no lower than a minimum threshold. For instance,
suppose a patient goes to work at 9am every morning and
finishes work at 5pm every evening. We could then expect
the minimum pain relief to be higher within this interval than
at other times.

More persuasively, from a planning point of view, the de-
sired pain relief is dynamic, depending on the actions used
in the plan. For instance, during some actions (shopping
for groceries, walking, and so on) a greater level of pain re-
lief may be needed than at other times. A plan then must
have a reasonable causal structure – as would be the case for
planning a user’s day modulo medication requirements – but
additionally, the actions may have preconditions referring to
pain relief that must hold during their execution. To meet
these, in turn, requires the use of actions that correspond to
taking medication. The resulting plan then gives the patients
a personalised schedule of times at which they should take
their medication, along with a plan for the day for their other
activities, to ensure they get the right pain relief at the right
time.

4 Modelling Pharmacokinetics in PDDL+
Having now set out the mathematical model of medication
levels that we will use, we now map this to PDDL+.

First, to model the pharmacokinetics, a process is used.
This runs whenever there is a non-zero amount of medica-
tion in the bloodstream; and decreases the medication level
at rate r. In our example of single-medication pain relief,
the variable pr represents pain relief, and ke represents the
elimination constant for the medication:

ke =
ln 2

t1/2
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The process can then be written as follows:

(:process decay

:parameters ()

:precondition

(> (pr) 0)

:effect

(decrease (pr) (

*

#t (

*

(pr) (ke))))

)

For clarity, the ‘decrease’ line can be read as:

�dpr
dt

= pr · ke

Alongside this process, there is one action that changes
pr : consume. This is a durative action with duration G and
has the following preconditions and effects:
• To start the action, a proposition safe-to-consume (true

initially) must be true; and a variable doses (0 initially)
must be less than m (the maximum number of doses).

• When started, safe-to-consume is deleted; doses is in-
creased by 1; and the pain relief level pr is increased by
B – the dose of medication.

• At the end of the action, safe-to-consume is added
Effectively, safe-to-consume and doses perform the req-

uisite book-keeping to enforce the constraints on maxi-
mum medication consumption. safe-to-consume acts as a
semaphore: no two consume actions can overlap; and the
duration G serves to ensure the minimum specified time be-
tween doses is thereby respected. doses is a simple counter,
to ensure that if a dose is to be taken, the maximum safe
limit for the period over which we are planning cannot be
exceeded.

Having defined the pharmacokinetics, and constrained
medication taking, what is left is to define the minimum pain
relief. For the case of a static minimum pain relief sched-
ule, the minimum pain relief level minpr can be set using
Timed Initial Fluents (Piacentini, Fox, and Long 2015) (TIF)
– these specify the new value for minpr at each time it needs
to change. For instance, taking plan time units to be minutes
counting from midnight:

(= (minpr) 0)

(at 420 (= (minpr) 100))

(at 540 (= (minpr) 200))

(at 1020 (= (minpr) 100))

(at 1320 (= (minpr) 0))

...sets the minimum pain relief to 100 at time 420 (7:00),
to 200 at time 540 (9:00), then back down to 100 and 0 later
in the day.

Having set the schedule, to ensure at all times pr �
minpr , we use a PDDL+ event that fires at the first time
this is not the case:

(:event prfailure

:parameters ()

:precondition (and

(< (pr) (minpr))

(min-check-passed)

)

:effect

(not (min-check-passed))

)

The proposition min-check-passed is true in the initial
state, required as a goal, and not added by any other ac-
tion. Hence, if at any point in the plan the value of pr falls
below minpr , the proposition is deleted, and a dead-end is
reached: it is impossible to re-achieve this goal.

For dynamic pain relief levels, as set by actions, this is
somewhat simpler: if an action requires some level of mini-
mum pain relief during its execution, then this can be added
as an over all condition, for instance:

(over all (>= (pr) 300))

...will ensure that the pain relief level is at least 300 dur-
ing the execution of the action. The ‘TIF plus event’ model
of a static pain relief schedule is unaffected, as this condi-
tion alone ensures that there is enough pain relief during the
execution of the action.

The practical upshot of this PDDL+ encoding is that it
allows a pharmacokinetic model to be specified as a back-
ground context into which a planning model can be speci-
fied.

5 Planning using a Linearise fi Validate
Cycle

In our initial experimentation with our PDDL+ model as
specified thus far, a restricted range of planners were found
that could reason with the negative-exponential numeric
change induced by the process (e.g. UPMURPHI (Penna et
al. 2009) and DINO (Piotrowski et al. 2015)); and some that
could reason with processes, but only if the effects are lin-
ear (e.g. the extension of OPTIC described in (Coles and
Coles 2014)). There is something of a trade-off between
these two classes of planner. UPMURPHI et al. are capa-
ble of handling negative-exponentials and other non-linear
domain features, and have been used in a number of ap-
plications including battery load management (Fox, Long,
and Magazzeni 2012). Conversely, if linear change is suffi-
cient, OPTIC’s heuristic forward-search approach is a good
choice; but, assuming pharmacokinetics are linear is not rea-
sonable1.

Desiring to maintain the benefits of using OPTIC, we
present an iterative approach where a linear approximation
is incrementally refined until the plans found are valid ac-
cording to the non-linear domain model. This is related to
the discretise–validate approach of UPMurphi, but instead
of discretising time (notionally, on the X-axis), we linearise
by segmenting the values of variables (on the Y-axis).

1Zero-order pharmacokinetics are rare; one notable exception
is ethanol, but this has a narrow range of medical applications.
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Figure 1: Initial Linear Approximation

As a starting point, we must devise an initial linear ap-
proximation. For this, we refer to:

• lb, the lower bound on what is an interesting medication
level. This cannot be 0, as mathematically, a negative ex-
ponentially decreasing drug plasma level will only reach
0 as t ! 1. We instead use a nominal value of 1% of a
dose (for paracetamol, a value of 10, i.e 10mg).

• ub, the upper bound on what is an interesting medication
level. This corresponds to taking the maximum number
of doses m in succession, with each dose separated by the
minimum time between doses, G.

• rub,lb , the average medication decay rate over the time
taken for the plasma level to fall from ub to lb:

rub,lb =
ub � lb

�t1/2
ln 2 · ln( lb

ub )

This is depicted in Figure 1. The solid line shows the
negative-exponential change in pain relief, assuming the
pain relief at time 0 is ub. The x-axis ranges from 0 until
the time at which the pain relief level would reach lb. The
dotted line shows a linear approximation spanning this time,
with gradient rub,lb .

A substantial caveat is that the initial linear approximation
substantially over-estimates pain relief. If there is a mini-
mum pain relief threshold (e.g. the dashed line in Figure 1),
then actual pain relief will fall below the threshold far sooner
than would be considered to be the case according to the lin-
ear approximation. But, we do get a simple linear process,
with a constant (linear) effect:

(:process decay_ub_lb

:parameters ()

:precondition

(and (>= (pr) lb) (<= (pr) ub))

:effect

(decrease (pr) (

*

#t r_ub_lb))

)

Solving this linearised problem, then validating the plan
against the non-linear model using VAL (Howey, Long, and
Fox 2004), will identify where the inaccuracies inherent in
the linearisation have caused issues. This is evidenced in
one of two ways:

Algorithm 1: Linearise–Validate Cycle
Data: P , the non-linear planning domain and problem;

bounds = {ub, lb}, the initial bounds
Result: A solution plan, ⇧
Pbase  P , with the decay process removed;1
while true do2

sorted  [bounds , sorted in descending order];3
P 0  Pbase , with a linear process for each4
successive pair in sorted ;
⇧ solve P 0 using planner;5
if ⇧ is a valid solution to P then return ⇧;6
foreach pr 2 VAL’s diagnostic trace for ⇧ using7
model P do

bounds  bounds [ {pr}8

• The event prfailure occurred, deleting
(min-check-passed) – as this is a goal, the
solution plan is invalid.

• A precondition on an action referring to pr was unsatis-
fied at some time – and hence the solution plan is invalid.
In both of these cases, VAL produces a diagnostic trace: a

time-stamped progression through the plan, including what
the value of pr was at each happening in the plan, as eval-
uated against the non-linear domain. With this information,
we can refine the linearisation: instead of having a single-
segment linear process spanning the whole range ub to lb,
we can have several processes each covering one segment of
this range.

Our motivation for refining the linearisation to give the
right value of pr at happenings is based the observation that
error in the linearisation is acceptable, so long it gives the
right value when it matters; i.e. when prfailure would
fire, or a precondition referring to pr would be violated.
Hence, we ensure that on each iteration, the plan found with
the previous linearisation will not be admitted by the new
linearisation. This does not guarantee that a solution to the
non-linear model will be found on the second iteration, but
it does mean the model is iteratively refined to exclude ap-
parently attractive but actually infeasible solutions.

Our approach is shown in Algorithm 1. We begin by run-
ning the planner to find a solution based on the initial ap-
proximation; i.e. starting with the initial values of ub and lb.
Hence, at line 4, when the linearised model P 0 is generated,
we have only one pair of bounds in the list, and generate a
single process covering this range, with an effect with gra-
dient rub,lb . A solution ⇧ to P 0 is then found.

As noted earlier, it is likely that when using the initial
linearisation, ⇧ will not be a solution to P – as P 0 overes-
timates the actual pain relief throughout the day. Hence, to
refine the linearisation, we refer to the happenings in the di-
agnostic trace from VAL, an example of which can be seen
in Figure 2, and keep all calculated values of pr (marked in
boldface); i.e. for the plan ⇧, what values of pr were seen
according to the model P . Each of these is added to the
set of bounds (line 8). With this updated set of bounds, the
loop starts again, generating an updated linear problem P 0,

4



Checking next happening (time 240)

Updating (pr) (1300) by 515.905 assignment

Checking next happening (time 240)

Adding (safe-to-consume)

Checking next happening (time 486.079)

Updating (pr) (515.905) by 200 assignment

EVENT triggered at (time 486.079)

Triggered event (prfailure)

Deleting (min-check-passed)

Checking next happening (time 544.824)

Updating (pr) (200) by 159.509 assignment

...

Checking next happening (time 784.824)

Updating (pr) (1159.51) by 460.152 assignment

Figure 2: Example Stack Trace from VAL

and once again attempting to find a solution plan. For the
updated problem, the bounds are sorted, and a process gen-
erated for each adjacent pair of bounds, each with its own
rub,lb value.

6 Evaluation
As an initial evaluation of our approach, we generated a se-
quence of problems with increasing planning horizon and a
fixed minpr level, thereby necessitating increased number
of doses as problem sizes increases. The planning horizons
tested started at 540 minutes (i.e. 9 hours), and increased by
60 minutes each time.

The reference drug used was paracetamol, with the fol-
lowing initial parameters:
• t1/2 (half life): 180 minutes
• B (dose amount): 1000mg
• G (gap between doses): 240 minutes
• m (max doses): 4 doses
• lb, (lower bound): 10mg
• ub, (upper bound): 3000mg
• minpr: 200mg.

Our linearise–validate cycle was implemented in a
planner-independent way, but the only candidate planner
that yielded solutions was the extension of OPTIC to sup-
port linear PDDL+ (Coles and Coles 2014). A number
of other planners were considered (Cashmore et al. 2016;
Piotrowski et al. 2015; Penna et al. 2009), but publicly avail-
able implementations of planners were unable to solve prob-
lems (non-linear and linear). The results for this configu-
ration are shown in Table 1. All problems were solved in
at most two iterations, with the time for the first iteration
shown in the row tinitial, and for the refined iteration in the
row trefined.

Figure 3: Comparison Between Doses Needed and Planning
Time (in seconds)

For shorter planning horizons, we see some interesting
results.
• For a horizon of 540 minutes, the solution for the initial

linearisation used only a single dose of medication; the
resulting solution did not validate, so the linear model was
refined, and a new plan found.

• For horizons in the range 600–720, the solution for the ini-
tial linearisation recognised the need to take two doses of
medication; and these were taken back-to-back. The re-
sulting plan was incidentally a valid solution for the non-
linear model.

• For a horizon of 780, two doses were needed (as with
600–720) but the timing of the doses is more important:
the second dose needs to be delayed to come somewhat
more than four hours after the first. This was not recog-
nised by the initial linearisation (which over-estimated
pain relief at time 780); but was compensated for in the
refined linearisation by appropriately delaying the second
dose.
For the larger problems, the initial linearisation was never

valid. The planning time for the refined model was strongly
correlated with the number of doses to be taken – this is
shown more clearly in Figure 3, where the planning time
(left Y-axis) tracks the number of doses needed (right Y-
axis).

To gain further insights into the linearisation process, we
looked at the solution plan found for the longest planning
horizon (1260), after the first and second iteration. These
plans were validated against three models:
• The refined linearisation
• The non-linear model (i.e. exponential decay)
• The initial linearisation

Figure 4 shows the calculated value of pr for the plan af-
ter the first iteration, validated against each of these. The
first plan took three doses back-to-back. With reference to
the initial linearisation (the dashed line), this is reasonable –
a fourth dose was not necessary to complete the plan. As can
be seen, the initial approximation is as expected extremely
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Planning Horizon (minutes)
540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260

tinitial 0.05 0.03 0.03 0.04 0.03 0.04 0.03 0.03 0.06 0.06 0.06 0.09 0.09
trefined 0.71 - - - 11.72 164.19 162.99 161.29 160.09 110.05 111.2 654.77 649.86
total 0.76 0.03 0.03 0.04 11.75 164.23 163.04 161.32 160.12 110.11 111.26 654.83 649.95
doses 2 2 2 2 2 3 3 3 3 3 3 4 4

Table 1: Planning times (seconds) for fixed minpr , increasing plan horizon

Figure 4: Pain Relief Levels with Three Models, using the
Initial Approximation Plan

ub 3000.0 515.905 515.901 200.0
lb 515.905 515.901 200.0 10.0
rub,lb 5.43373 1.986648 1.283748 0.2442325

Table 2: Example bounds after one iteration (horizon 1260)

optimistic, with the calculated value of pr significantly ex-
ceeding the actual negative-exponential value (the dotted
line). The refined linearisation (solid line) avoids falling into
the same trap: a three-dose solution would cross the minpr

threshold, so would never be returned as a solution by the
planner.

An analogous graph for the plan after the second itera-
tion, found by the planner using the refined linearisation, is
shown in Figure 5. Crucially, a fourth dose is now taken.
In particular, the planner scheduled doses to be taken at the
earliest possible instance for the first three doses (at time
0, 240 and 480) and waited until the latest possible time to
take the fourth dose; i.e. medication was consumed just be-
fore the minpr threshold was crossed, the point at which the
prfailure event would otherwise have fired.

For reference, with a horizon of 1260, five bounds were
used: the initial bounds of 3000 and 10, and a further three
in between. This yielded four linear processes, whose pa-
rameters are shown in Table 2.

To test whether the planner could scale over a horizon be-
yond 1260 minutes, we created a problem with a horizon of
1500 minutes (25 hours), using a Timed Initial Literal (Hoff-
mann and Edelkamp 2005) to mark the point at which the
day changed (to limit doses consumed per 24 hours). Al-

Figure 5: Pain Relief Levels with Three Models, using the
Refined Approximation Plan

though the planner was able to find a solution, needing five
doses, it took almost two hours – adding the Timed Initial
Literal to switch from one day to the next had a substantial
effect on the size of the search space.

7 Discussion and Future Work
With our our linearise–validate approach, we have shown
we can solve problems in this domain, and have presented an
evaluation to show its efficacy on fixed-minimum-pain-relief
tasks. The evaluation problem as it stands could be seen as a
scheduling problem rather than a planning problem, but our
motivation for doing this within PDDL+ is to allow task and
activity planning to take place in the context of medication
scheduling.

We will now briefly discuss some of our future research
directions.

7.1 Polymedicine
Our evaluation here considered only a single drug; the next
step is to look at polypharmacy. As almost a quarter of the
UK population are on at least three prescriptions (Scholes,
Faulding, and Mindell 2014), this is a substantial area of
interest.

In the case of painkillers, these are often complementary.
If a patient was only on one drug, it may be difficult to give
adequate pain relief due to the constraints of the drug it-
self. For example, paracetamol is an effective painkiller, but
the dosage restrictions mean it is a challenge to use it as a
monotherapy to give sufficient pain relief for a patient’s rou-
tine. Thus, if we take into account multiple painkillers (for
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example paracetamol and ibuprofen), a combined schedule
of the two gives greater potential for pain management (tak-
ing both at the same time), and greater flexibility (taking
them at different times). The modifications to the model to
support this are relatively straightforward: rather than us-
ing a single pr variable, use multiple such variables (one for
each painkiller) and define conditions on pain relief to refer
to a weighted sum of these.

A more challenging case is where there are interactions
between medication. Ideally, two adversely interacting med-
ications would not be taken concomitantly, but it is some-
times unavoidable. To handle pharmacokinetic interactions
(one drug affects the rate of metabolism of another), the drug
decay processes would need to be updated. How to do this
well remains an open challenge.

7.2 Planning to avoid side effects
As discussed earlier, activity-specific drug plasma level re-
quirements can be incorporated into the preconditions of ac-
tions. This provides a mechanism for allocating doses of
medication around a patient’s daily routine.

A further consideration is the side-effects of medication,
as well as their desired effects. These side-effects place var-
ious constraints on how medication should be taken. For
instance, some medication require activities to take place be-
fore or after consumption. For example:
• Ibuprofen cannot be taken on an empty stomach, or it will

cause irritation, so an ideal plan would include meal-times
as well as medication times.

• Codeine causes drowsiness, so patients should avoid tak-
ing it before driving or operating machinery.

• Paracetamol conversely has no such constraints, but the
daily maximum dose is quite limited.
Considering a full plan of action for the day for a patient,

covering a wide range of their daily activities, there is good
scope to improve the management of their medication to re-
duce adverse effects.

7.3 Plan quality metrics
Thus far, our discussion has been on finding plans that meet
hard constraints, in terms of drug plasma levels during times
of the day, or during activities. We could hope to improve
a patient’s quality of life further by finding plans that are of
good quality.

The question then is what the quality metric should be. In
the context of pain relief, whilst a minimum pain relief may
be specified, the patient may for the sake of comfort wish to
avoid their pain relief getting quite down to this minimum.
A good candidate for a plan quality metric is to maximise
the minimum gap between pr and minpr seen during the
plan. With reference to Figure 5, this would have the effect
of delaying the second/third doses to avoid pr going quite so
low before the fourth dose was taken: the same medication
is taken, but the plan is subjectively better.

The caveat here though is that whilst ‘max of min’ or ‘min
of max’ metrics are common in various scheduling prob-
lems (e.g. Job-Shop Scheduling) they are non-standard in

planning, and cannot be elegantly expressed in PDDL+. As
OPTIC is already using a MIP to check that the precondi-
tions on solution plans hold, it already has the framework to
use more powerful plan metrics, by setting these as the MIP
objective function; we will be exploring this in our future
work.

8 Conclusions
In this paper, we presented a PDDL+ model of drug phar-
macokinetics, to provide a context in which to find solution
plans that consider, inter alia, the consumption of medica-
tion. As heuristic forward-search planners do well in terms
of causal reasoning, but often handle only linear dynamics,
we devised a linearise–validate approach for solving these
problems, by iteratively refining a linear approximation of
the domain using the diagnostic trace returned by the plan
validator, VAL.

An initial evaluation, implemented as a wrapper around
the planner OPTIC, demonstrates the feasibility of this ap-
proach. The results are exciting, opening up the opportunity
for future work both in terms of more comprehensive model
development, and more generally improving the range of
quality metrics that can be handled by PDDL-based planners
in hybrid domains.
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Abstract
We describe the application of using Monte Carlo simula-
tion to optimize a schedule for execution and rescheduling
robustness and activity score in the face of execution uncer-
tainties. We apply these techniques to the problem of op-
timizing a schedule for a planetary rover with very limited
onboard computation. We search in the schedule activity pri-
ority space - where the onboard scheduler is (a) a one shot
non-backtracking scheduler in which (b) the activity prior-
ity determines the order in which activities are considered
for placement in the schedule and (c) once an activity is
placed it is never moved or deleted. We show that simulation
driven search outperforms a number of alternative proposed
heuristic static priority assignment schemes. Our approach
can be viewed using simulation feedback to determine prob-
lem specific heuristics much like squeaky wheel optimiza-
tion.

Introduction
Embedded schedulers must often perform within very lim-
ited computational resources. We describe an approach to
automatically deriving problem specific control knowledge
for a one-shot (non-backtracking) scheduler intended for a
planetary rover with very limited computing. In this appli-
cation, the onboard scheduler is intended to make the rover
more robust to run-time variations (e.g., execution dura-
tions) by rescheduling. Because the general structure of the
schedule is known a priori on the ground before uplink, we
use both analysis of the schedule dependencies and simula-
tion feedback to derive problem specific control knowledge
to improve the onboard scheduler performance.

The target onboard scheduler is a one-shot limited search
scheduler. Because the scheduler does not backtrack across
activity placements, the order in which it considers activi-
ties heavily influences generated schedule quality. In our ap-
proach, we search the space of activity priorities which de-
termine the order in which the scheduler considers activity
placement. At each step in the priority search, a Monte Carlo
simulation is conducted to assess the likelihood of an activ-
ity being executed. Using an approach analogous to squeaky
wheel optimization, these runs are automatically analyzed

Copyright c� 2018, California Institute of Technology. Govern-
ment sponsorship acknowledged.

and used to feed back into adjustments to the activity prior-
ities (and hence the order in which they are considered for
inclusion in the schedule for both initial schedule genera-
tion and rescheduling). This search in the activity priority
space continues until all requested activities are included or
a resource bound is exceeded. We call this method Priority
Search and we present empirical results that show that Pri-
ority Search outperforms several static priority assignment
methods (those that do not use Monte Carlo feedback) in-
cluding manual expert derived priority setting.

We study this problem in the context of setting activity
priorities as part of the ground operations process for a one-
shot, non-backtracking scheduler (Rabideau and Benowitz
2017) designed to run onboard NASA’s next planetary rover,
the Mars 2020 (M2020) rover (Jet Propulsion Laboratory
2017a). For our problem, the onboard scheduler is treated
as a predetermined ”black box”.

The remainder of the paper is organized as follows. First
we describe our formulation of the scheduling problem, met-
rics for schedule goodness, and the onboard scheduling al-
gorithm. Second, we describe several static approaches to
priority assignment as well as our priority search approach
that leverages Monte Carlo simulation feedback. Third, we
describe empirical results demonstrating the efficacy of pri-
ority search over static methods, evaluating on sol types, the
best available anticipated operations plans for the M2020
planetary rover mission. Finally, we describe related and fu-
ture work and conclusions.

Problem Definition
For our defined scheduling problem (Rabideau and
Benowitz 2017), the scheduler is given

• a list of activities
A

i

hp,R, e, dv,�, T,Di . . . A
n

hp,R, e, dv,�, T,Di
• where p is the scheduling priority of the activity, and
• R is the set of unit resources R1 . . . Rm

that the activity
will use (up to project limitations - 128 for M2020), and

• e and dv are the rate at which the consumable resources
energy and data volume respectively are consumed by the
activity, and

• � are non-depletable resources used such as sequence en-
gines available or peak power, and

1
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• T is a set of the activity’s optional a) start time win-
dows T

i start

. . . T

i end

and b) preferred schedule time
T

i preferred

, and
• D is a set of the activity’s dependency constraints from
A

j

! A

k

1

All activities are Mandatory Activities. These are activi-
ties, m1 . . .mj

✓ A, that must be scheduled as long as the
given set of inputs are valid. In order for a set of inputs to
be considered valid, there must exist a valid (e.g. constraint
satisfying) schedule - in the context of the scheduler - that
includes all of the mandatory activities. Note that the M2020
Onboard Scheduler is an incomplete algorithm. As a result,
there could be a set of inputs where valid schedule exists
and a complete scheduler would place all mandatory activi-
ties, but the Onboard scheduler would not. Since not all in-
put sets will be valid, it is important for us to modify the
input sets (e.g. changing priorities) to allow all mandatory
activities to be scheduled.

In addition, activities can be grouped into Switch Groups.
A Switch Group is a set of activities where exactly one of the
activities in the set must be scheduled. The activities within
a switch group are called switch cases and vary only by how
many resources (time, energy, and data volume) they con-
sume. Switch groups allow us to schedule a more resource-
consuming activity if it will fit in the schedule. For example,
one of the M2020 instruments takes images to fill mosaics
which can vary in size; for instance we might consider 1x5,
3x5, or 5x5 mosaics. Taking larger mosaics might be prefer-
able, but taking a larger mosaic takes more time, takes more
energy, and produces more data volume. These alternatives
would be modeled by a switch group that might be as fol-
lows:

SwitchGroup =

8
<

:

Mosaic1x5 Duration=100 sec
Mosaic3x5 Duration=200 sec
Mosaic5x5 Duration=400 sec

(1)

In the above example, the scheduling priority order would
be Mosaic1x5 the lowest of the three, then Mosaic3x5, and
Mosaic5x5 the highest. The desire is for the scheduler to
schedule the activity Mosaic5x5 but if it does not fit then try
scheduling Mosaic3x5, and eventually try Mosaic1x5 if the
other two fail to schedule. The challenge for the scheduler
is that getting a preferred switch case is not deemed worth
forcing out another mandatory activity from the schedule.
Because the normal approach to handling such interactions
is to search, this introduces complications into the schedul-
ing algorithms but these are the subject of a different paper.

The charter of the scheduler is to produce a grounded time
schedule that satisfies all of the above constraints.

We also make the following assumptions:
1. There exists a set of activity scheduling priorities that

would allow all mandatory activities to be scheduled by
the scheduler 2.
1
Aj ! Ak means the scheduled end time of Ak must be before

the scheduled start time of Aj .
2Since our algorithm includes an incomplete scheduler, our as-

sumption of a valid set of inputs can only hold true for our particu-
lar scheduler

2. The prior schedule is executed while the scheduler is run-
ning (Chi et al. 2018).

3. Activities do not fail.
4. No preemption (activities are only preempted as a major

failure case for M2020).
5. The onboard scheduler is a ”black box” - the onboard

scheduler algorithm (Algorithm 1) is fixed.
The goal of the scheduler is to schedule all mandatory ac-

tivities and better switch cases 3 while respecting individual
and plan-wide constraints.

The goal of the priority setting algorithm is to derive a set
of priorities that will best allow the scheduler to achieve that
goal. Not only that, but we must derive that set of priorities
in the shortest amount of time possible in order to satisfy
daily mission time constraints.

Scheduler Design

Algorithm 1 Onboard Scheduler
Input:

Ahp,R, e, dv,�, T,Di: List of activities with their individual
constraints
C: Constraints for the whole plan (e.g. available cumulative
resources)
S: Current state of the spacecraft (state of charge, data volume,
activity status)

Output:
U : Resulting schedule

1: Sort(A) . Sorted by highest to lowest priority.
2: for each a 2 A do
3: P  ; . Some activities may require automatically

generated preheats
4: M  ; . Some activities may require automatically

generated maintenances

5: I  
[a.earliest start time, a.latest start time]T

find valid intervals(a.unit resources)T
find valid intervals(a.activity status)T
find valid intervals(a.data volume)

6: if requires preheat(a) then
7: P  generate preheat activities(a)
8: M  generate maintenance activities(a)
9: end if

10: I  I

T
find valid intervals(a.energy, P,M)T

find valid intervals(a.peak power, P,M)
11: awake generate awake activity(a, I)
12: if I 6= ; then
13: schedule activity(a, I)
14: schedule activity(awake, I)
15: for each p 2 P do
16: schedule activity(p, I)
17: end for
18: for each m 2M do
19: schedule activity(m, I)
20: end for
21: end if
22: end for

The Mars 2020 onboard scheduler (Algorithm 1) is a sin-
gle shot, non-backtracking scheduler that schedules (consid-

3See Evaluating a Schedule for more information

2
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ers activities) priority first order and never removes or moves
an activity after it is placed during a single scheduler run. It
does not search except when considering valid intervals for
a single activity placement and when scheduling sleep and
preheats 4 (Rabideau and Benowitz 2017).

Due to the greedy, non-backtracking nature of the onboard
scheduler, the order in which activities are scheduled can
greatly impact the quality of the schedule.

Evaluating a Schedule
In order to evaluate the goodness of a particular priority as-
signment, we have developed a scoring method based on
how many and what type of mandatory and switch group
activities are able to be scheduled successfully by the sched-
uler. The score is such that the value of any single manda-
tory activity being scheduled is much greater than that of any
combination of switch cases (at most one activity from each
switch group can be scheduled). This ensures the following
strict ordering:

V (m 2M)�
nSX

i=1

V (s 2 S

i

) (2)

where V (x) is the value of activity x being scheduled, M
is the set of all mandatory activities, n

S

is the number of
switch groups, S

i

is switch group i, and s is a switch case in
switch group S

i

.

Static Algorithms for Activity Priority
Assignment

We have developed several static algorithms which set the
priorities of activities based on various activity ordering cri-
teria. These algorithms do not consider Monte Carlo simu-
lations of plan execution where activities may end early or
late while determining priorities, unlike our Priority Search
approach. We will later compare these to our Priority Search
approach to gain a better understanding of how well it per-
forms. Activities which must begin at a particular time (e.g.
data downlink) are always given the highest priority and thus
are not affected by the static algorithms described.

The following four methods are used to initialize activity
priorities:
• Equal Priorities. All activities have equal priorities.
• Random Assignment. Each activity is given a random pri-

ority.
• Latest Start Time. The activity priorities are ordered by

the latest time they are allowed to start. The activity with
the earliest such time has the highest priority.

• Human Expert. Each activity is assigned a priority based
on the start time of the activity in a schedule constructed
by a human expert. The activity with the earliest start time
in this schedule has the highest priority.
The following two methods are applied to the priorities

after they have been initialized in one of the four ways de-
scribed above:

4Sleep and preheats are activities automatically generated and
scheduled by the scheduler.

• Dependencies. A ! B means that B must execute suc-
cessfully before A can start. To generate a schedule that
respects this,

A! B ) priority

A

< priority

B

(3)

where higher priority means an activity is considered for
scheduling earlier.

• Tie Breaker. If activities have the same priority assign-
ment the activity with earliest latest allowed start time is
of higher priority. If they also have the same latest allowed
start time then the longer activity has the higher priority. If
all of these attributes are equal then the higher priority ac-
tivity is chosen lexicographically based on each activity’s
unique identifier.

Priority Search
In order to determine a set of priorities which will allow the
scheduler to generate a schedule better than our static heuris-
tics, we attempt to search the priority space in an approach
similar to Squeaky Wheel Optimization (SWO) as described
in Joslin and Clements 1999 (Joslin and Clements 1999).
Squeaky Wheel Optimization usually involves a construc-
tor, an analyzer, and a prioritizer. The constructor generates
a schedule, the analyzer determines problem areas and as-
signs ”blame” to certain elements in the schedule, and the
prioritizer modifies the order in which the elements are con-
sidered. This process repeats until a satisfactory result is
reached or allotted time runs out. However, our scheduling
problem is intrinsically tied to execution and analyzing the
initial schedule generated by itself is not satisfactory. Our
approach (Figure 1) builds upon the usual SWO approach
by incorporating a simulation of execution and Monte Carlo
to build an execution sensitive result. We call our approach
Priority Search as it searches the priority space using Monte
Carlo simulation feedback to find a good set of priorities,
unlike the static algorithms.

Figure 1: Squeaky Wheel accounting for Execution

Constructor
Typically, the constructor generates a schedule as the so-
lution, which is then fed into the analyzer. However, our
scheduling problem must be taken in context with execu-
tion. Activities may finish early or late which affect how
many and which activities can be scheduled. In order to
take this into account, we generate the final schedule of a

3

11



(lightweight) simulation of the entire plan execution. This
is simulated by letting activities finish early or late by a
variable amount based on a probabilistic model of plan ex-
ecution 5. However, the probabilistic model may promote
misleading results if only sampled once. As a result, our
constructor (Algorithm 2) runs a Monte Carlo and simu-
lates multiple plan executions, passing on all of the executed
plans as the solution to the analyzer.

Algorithm 2 Monte Carlo Constructor
Input:

Ahp,R, e, dv,�, T,Di: List of activities with their individual
constraints
C: Constraints for the whole plan (e.g. available cumulative
resources)
N : Number of runs in the Monte Carlo

Output:
S: List of all final schedules after simulating execution

1: i 0
2: while i < N do
3: schedule simulation(A, C)6

4: Si  schedule

5: i i+ 1
6: end while

Priority Analyzer
The analyzer (Algorithm 3) takes the solution and assigns
blame to problem areas. Since our objective is to schedule
all mandatory activities and better switch cases, we blame
all activities that are not scheduled. Since the solution is
multiple schedules, there may be some Monte Carlo runs
where the activities do not succeed or fail to be scheduled.
For simplicity, we chose to blame any activity that was un-
scheduled in any of the schedules, but other approaches may
assign blame according to how many times an activity was
not scheduled.

Algorithm 3 Monte Carlo Analyzer
Input:

Ahpi: List of activities with priorities
S: List of all final schedules after simulating execution

Output:
U : List of all unscheduled activities
score: Score (objective function)

1: for each Si 2 S do
2: U  U

S
{8a 2 A|a /2 Si}

3: score score + get score(Si)
4: end for

Constant Step Prioritizer
A simple way to re-prioritize is to increase the blamed (un-
scheduled) activities’ priorities by a constant step size s.

Typically, activities have varying degrees of flexibility
due to their constraints (resources, dependencies, time, etc.).

5See Empirical Results for how that probabilistic model was
generated.

6The final schedule after simulating execution.

Algorithm 4 Constant Step Reprioritization
Input:

Ahpi: List of activities with priorities
U : List of all unscheduled activities (from analyzer)
step: Constant step size

Output:
A: Best relative ordering of activities found

1: for each a 2 U do
2: incrementRelativePriority(a, step, A)
3: for each d 2 a.dependents do
4: incrementRelativePriority(d, step, A)
5: end for
6: for each sg 2 a.switchGroup do
7: incrementRelativePriority(sg, step, A)
8: end for
9: end for

Higher priority activities can consume resources (unit re-
sources, energy, and data volume) or change state in a way
that prevents lower priority activities from scheduling such
that their constraints are satisfied. Increasing the blamed ac-
tivities’ priorities allows them to schedule earlier (schedul-
ing order) which means they have more ”slack” to satisfy
their constraints. The goal is that the algorithm will slowly
promote less flexible activities to the top so that their con-
straints can be satisfied, and demoted activities are flexible
enough to be scheduled in a more constrained plan.

When increasing the relative priorities of blamed activi-
ties, the existing relative priorities between certain groups
of activities must remain enforced.

First, each switch group must maintain the relative prior-
ities between each activity in the grouping. For each switch
group, the activities (s1, . . . , sn) must be ordered such that
those with higher resource consumption (time, energy, and
data volume) have higher priorities as well.

Second, dependency relationships must be enforced such
that (3) is held true.

Figure 2: Cycle in the Constant Step approach. Red activities
were unable to be scheduled and assigned blamed.

There is one main issue with the Constant Step approach

4
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- it is extremely susceptible to cycles. One common cause
for cycles is that a set of activities needs to be promoted be-
yond a particular activity together, but the constant step size
prevents this from ever occurring. For example, in Figure 2
activity F is unschedulable and assigned blame. Its priority
is increased, but this causes activity E to fail to schedule.
Activity E is then promoted in the next iteration, causing F
to fail to schedule and the process repeats. In reality, both
E and F have to be promoted above D, but because the step
size is constant, they will never achieve that and form a cy-
cle. The situation where activities are unable to be promoted
above an activity blocking it can be extended to any constant
step size less than the maximum step size 7.

Stochastic Step Reprioritization

Algorithm 5 Stochastic Step Reprioritization
Input:

Ahpi: List of activities with priorities
U : List of all unscheduled activities (from analyzer)

Output:
A: Best relative ordering of activities found

1: step random(1, A.length)
2: for each a 2 U do
3: incrementRelativePriority(a, step, A)
4: for each d 2 a.dependents do
5: incrementRelativePriority(d, step, A)
6: end for
7: for each sg 2 a.switchGroup do
8: incrementRelativePriority(sg, step, A)
9: end for

10: end for

Injecting randomness to the step size allows the algorithm
to become robust to cycles. In each iteration of the priority
setting algorithm, a random step distance between 1 and N ,
where N is the number of activities in the plan, is assigned
to all of the blamed activities. This lets the scheduler always
have the possibility of being promoted above a resource con-
straining activity, while still allowing smaller step size pri-
ority permutations.

The main issue that lies with a random approach is that
empirically 8 it finds the global maximum score slower than
desired. This is further exacerbated by the fact that each it-
eration of our SWO cycle takes a non-negligible amount of
time (a few seconds) due to the need to run a lightweight
simulation and Monte Carlo.

Max Step Reprioritization
Stochastic Step Reprioritization (empirically) produced re-
sults slower than desired. Max Step Reprioritization seeks to
solve both of those issues by always promoting blamed ac-
tivities to have the highest scheduling priorities. The earlier
an activity is considered for scheduling, the more flexibil-
ity that activity has to be scheduled. Therefore, if an activity

7See section Max Step Reprioritization
8More information can be found in Empirical Evaluation.

Algorithm 6 Max Step Reprioritization
Input:

Ahpi: List of activities with priorities
U : List of all unscheduled activities (from analyzer)

Output:
A: Best relative ordering of activities found

1: for each a 2 U do
2: step A.length

3: incrementRelativePriority(a, step, A)
4: for each d 2 a.dependents do
5: incrementRelativePriority(d, step, A)
6: end for
7: for each sg 2 a.switchGroup do
8: incrementRelativePriority(sg, step, A)
9: end for

10: end for

is first to be considered for scheduling, but still cannot be
successfully scheduled, there is no other scheduling priority
that would allow the activity to be scheduled. Knowing this,
by promoting blamed activities to have the highest schedul-
ing priorities we can attempt to avoid iterations that fail to
schedule the same blamed activities, thereby speeding up the
overall algorithm.

Since the blamed activities will have the highest schedul-
ing priorities, cycles such as those seen in Figure 2 can be
avoided. However, Max Step Reprioritization doesn’t pre-
vent cycles entirely and they still pose an issue when en-
countered.

Empirical Evaluation
In order to evaluate how well our Priority Search algorithm
is able to generate a priority assignment which results in
an optimal schedule, we have applied the algorithm to var-
ious sets of inputs comprised of activities with their con-
straints and priorities and compared against various static
algorithms. The inputs are derived from sol types. Sol types
are currently the best available data on expected Mars 2020
rover operations (Jet Propulsion Laboratory 2017a). In order
to construct a schedule and simulate plan execution, we use
the M2020 surrogate scheduler - an implementation of the
same algorithm as the M2020 onboard scheduler (Rabideau
and Benowitz 2017), but implemented for a Linux work-
station environment. As such, it is expected to produce the
same schedules as the operational scheduler but runs much
faster in a workstation environment. The surrogate scheduler
is expected to assist in validating the flight scheduler imple-
mentation and also in ground operations for the mission (Chi
et al. 2018).

Each input file contains approximately 40 activities. We
use a probabilistic execution model based on operations data
from the Mars Science Laboratory Mission (Jet Propulsion
Laboratory 2017b; Gaines et al. 2016a; 2016b) in order to
simulate activities completing early by a reasonable amount.
In our model to determine activity execution durations, each
of the actual execution durations provided in MSL data is
first divided by the corresponding predicted execution dura-
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tion. Then, we use a linear regression on the scaled values to
obtain a mean and standard deviation presuming the ratio of
predicted to actual execution times is normally distributed.
The value representing the actual execution duration on the
regression line for the given conservative duration is used as
the mean. A scaled prediction of the actual duration is gen-
erated from a a normal distribution using the derived mean
and standard deviation. Finally, this value is scaled back by
multiplying by the given conservative duration. Note that we
do not explicitly change other activity resources such as en-
ergy and data volume since they are generally modeled as
rates and changing activity durations implicitly changes en-
ergy and data volume as well.

Using each of the sol types, we create variants by adding
two switch groups to a set of inputs. Each switch group con-
tains three switch cases where the switch cases differ in du-
ration in a manner similar to the one described in (1). Each
of the two switch groups are as follows:

SwitchGroup =

8
<

:

Activity

original

Duration=x sec
Activity2x Duration=2x sec
Activity4x Duration=4x sec

(4)
Due to the inequality in (2), a successfully scheduled

mandatory activity is of much higher value than a success-
fully scheduled longer switch case. Therefore, the manda-
tory activity score is weighted at a much larger value then
the switch group score. Each mandatory activity that is suc-
cessfully scheduled is given one point which contributes to
the mandatory score. If a switch case with a duration that is
2 times that of the original activity is able to be scheduled,
then it contributes 1/5 to the switch group score. If a switch
case that is 4 times the original duration is able to be sched-
uled, then it contributes 2/5 to the switch group. Since there
are two switch groups in each variant, the maximum switch
group score for a variant is 2 ⇤ (2/5) = 4/5. In the follow-
ing empirical results, we average the mandatory and switch
groups scores over all Monte Carlo runs of execution.

Also, in each of our variants we set the preferred sched-
ule time of each activity to the earliest time the activity is
allowed to start.

We first compare the different approaches to implement-
ing Priority Search to understand which performs better.

The highest score so far is a combination of the manda-
tory score and the switch group score where the mandatory
score is weighted at a much higher value than the switch
group score. In Figure 3 we plot how the mandatory and
switch case components of the highest score achieved up to
the current time change over time using both the Stochas-
tic method and the Max Step method. We do not consider
the Constant Step method since it is so highly susceptible to
cycles. For both methods, as the score for mandatory activi-
ties increases, the score for switch groups largely decreases
until the highest mandatory score is reached. This is a rea-
sonable outcome because as more mandatory activities are
scheduled, the schedule likely becomes more constricted,
thus making it more difficult to schedule longer switch cases.
Since the mandatory score contributes much more to the to-
tal score than the switch group score and the mandatory sore

(a) Mandatory score component of highest score so far vs Time av-
eraged across sol type variants using both priority search methods.

(b) Switch group score component of highest score so far vs Time
averaged across sol type variants using both priority search meth-
ods.
.

Figure 3: Plot of the highest score so far separated by manda-
tory score (3a) and switch group score (3b) over time using
the Stochastic Step method and the Max Step method aver-
aged over 9 sol types, each with 10 variants each containing
2 switch groups. Each iteration of Priority Search was run
with 10 Monte Carlo runs and with 30 iterations of Priority
Search alloted for each run of the algorithm.

is increasing in both figures, the total highest score so far is
always increasing over time, as it should be.

Figure 3a shows that Stochastic Step reaches its highest
mandatory score that is ever achieved over the time span
of approximately 920 seconds (30 iterations of the priority
search algorithm) in 207.58 seconds. The highest mandatory
score achieved at this time and onwards is 38.047. The high-
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est mandatory score using the Max Step method is reached at
120.59 seconds and has a value of 38.044. Figure 3b shows
that the highest switch group score after the point at which
the highest mandatory score is reached is 1.67 at 568.16 sec-
onds using the Stochastic method and 1.48 at 150.87 seconds
using the Max Step method. Therefore, we conclude that us-
ing the stochastic method results in a marginally higher total
highest score but it takes less time to reach the highest score
using the Max Step method.

(a) Difference from perfect mandatory score averaged across
sol type variants for various scheduling methods.

(b) Difference from perfect switch group score averaged
across sol type variants for various scheduling methods.

Figure 4: The difference from a perfect mandatory score of
38.11 and perfect switch group score of 1.0 using various
scheduling methods is averaged over 9 sol types where 15
variants are derived from each sol type and each variant con-
tains 2 switch cases. Each iteration of the Priority Search
algorithm is run with 50 Monte Carlo runs of execution

Figure 4 shows the results of comparisons between Prior-
ity Search and other static priority setting algorithms. Since
the scheduling of mandatory activities and switch groups
are not weighted equally, we have constructed two separate
plots to show the results for each. Both methods of Priority
Search, in red, result in fewer unscheduled mandatory activ-
ities and consequently a lower difference from the perfect
mandatory score. This implies they set the priorities such
that more mandatory activities are able to be scheduled over
multiple Monte Carlo runs compared to how the static al-
gorithms set the activity priorities. As shown in 4b, they re-
sult in a higher number of unscheduled switch cases, likely
because if more mandatory activities were scheduled it be-
comes more difficult to schedule longer switch cases. Due
to the strict inequality described in (2), even though fewer
longer switch cases are scheduled, the total scheduling score
is still higher when using Priority Search. Thus, we conclude
that both Priority Search methods outperform the static algo-
rithms. Among the static algorithms, running the Dependen-
cies algorithm with Tie Breaker on equal priorities performs
the best as it results in the highest mandatory score while
running Tie Breaker after setting the priorities based on the
latest start time performs the worst.

Related Work

Our Priority Search approach is inspired by Squeaky Wheel
Optimization (SWO). Typically, SWO uses a constructor
and analyzer, and prioritizer for the next iteration of sched-
ule generation (Joslin and Clements 1999). Priority Search
differs in that the intent is not to generate a good schedule
but rather to set priorities that perform well in execution and
rescheduling. Therefore the Priority Search constructor must
use the scheduler through multiple runs of execution (where
each run of execution incurs multiple scheduler invocations)
to assess priority assignment performance.

Generating schedules that are robust to execution run time
variations (Leon, Wu, and Storer 1994) is a mature area of
work. However, the topic usually revolves around develop-
ing a scheduler that can generate robust schedules. In our
case, the scheduler is a) a fixed ”black box” that we have no
control over and b) robust to execution run time variations
mainly through rescheduling (Chi et al. 2018). As a result,
rather than developing a scheduler itself, we’re developing
a methodology that is able to generate a set of priorities for
a fixed scheduler that enables it to be robust to rescheduling
due to runtime variations.

Other approaches (Drummond, Bresina, and Swanson
1994; Washington, Golden, and Bresina 2000) use branch-
ing to increase robustness - these differ from our work that
adjusts priorities and allows rescheduling.

A number of other spacecraft (Muscettola et al. 1998;
Pell et al. 1997; Chien et al. 2005; 2016) and rover (Woods
et al. 2009; Gregory et al. 2002) autonomy systems have in-
cluded planning, but these differ in that we are deriving con-
trol information specific to scheduling for a limited context
- e.g. one rover sol. temporal schedule.
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Discussion and Future Work
While we have focused on the impact of activity priority
on the scheduler (and hence rescheduling during execution),
there is often an execution system that may also have some
flexibility to add robustness to the overall system (Chi et al.
2018). For the empirical evaluation described above, we ran
without such an execution system. In the future, we could
consider the execution system in the schedule and Monte
Carlo analysis and potentially derive information usable by
the execution system (e.g. allow an activity to run late but
only until time T). This paper describes initial work to de-
termine priorities for scheduler activity consideration order-
ing to optimize scheduler execution results for an embedded
scheduler. However, this work is still preliminary with many
other ideas to be explored as described below.

First, more sophisticated critique/blame assignment meth-
ods should be explored. Currently, priorities of activities
that are not executed are modified, but more sophisticated
analysis of scheduler runs could provide greater insight into
how the priorities should be modified. Prior work in Process
Chronologies (Biefeld and Cooper 1991) has been used to
focus scheduling tactics by finding regions where time con-
straints or high demand for some resource results in conflict.
By evaluating which periods of time or what resources are
over-subscribed using Capacity/Over-Subscription Analy-
sis, we can pinpoint which activities are more tightly con-
strained and increase their priorities. Prior work in Over-
subscribed Scheduling Problems (Kramer and Smith 2006)
show that scheduling according to maximum-availability
(least subscribed) allows a suitable schedule to be generated.
Similar analysis could be used to determine which activities
to assign blame to and by how much to promote the blamed
activities. We can also consider precedence constraints when
deciding by how much to promote activity priorities. For ev-
ery blamed activity, there is likely a scheduled activity that
is using resources needed by the blamed activity. Precedence
constraints could help discern which activity is using those
resources. The blamed activity could then be promoted only
as much as is necessary in order to be scheduled before the
offending activity.

We can also implement several methods to help us explore
different search spaces. Priority Search only adjusts priori-
ties to improve execution and rescheduling performance. We
could also add new activity precedence constraints (e.g. A
must end before B starts) or enforce partitions in the sched-
ule (e.g. all of these activities must be scheduled to end prior
to 11 am). These types of constraints could drive the sched-
uler towards subsets of the schedule search space. Random-
ized restart can allow our priority search algorithm to better
explore the global space rather than searching locally. An-
other alternative would be to keep a list of promising sched-
ule priority assignments and backtrack to those randomly,
allowing us to better explore the search space.

We can also make improvements to our Monte Carlo
method and use the resulting simulations for further analysis
of the scheduler. In order to build a model of run time vari-
ations that is not overly skewed, we use Monte Carlo to re-
peatedly sample a variety of execution run time results. Stan-
dard Monte Carlo simulations tend to focus most runs on

the nominal cases, but a more effective methodology sam-
ples edge cases but weighs the cases by their likelihood to
increase coverage of the variability in the space (in this case
variable activity execution times). The Monte Carlo of exe-
cution run time variations can provide valuable information
for why activities fail to schedule, what input plans are best
suited for the current scheduler design, and how the current
input could end up executing. We are working on visualiz-
ing this information to better inform those working with the
scheduler.

Currently, we only test with mandatory activities. In the
future, we will extend our approach to include optional ac-
tivities, which will add further complexity to the algorithm
and analysis. Optional activities are lower priority activities
what are nice to have scheduled, but not necessary. They
are generally only able to be scheduled if mandatory activi-
ties end early or consume less resources than expected. We
also plan to use an activity’s actual scheduled preferred time
while testing.

Cycles pose an issue to both Constant Step Reprioritiza-
tion and Max Step Reprioritization. Better cycle detection
would allow us to not only overcome the issues presented,
but also provide additional information on how to permute
the priority set for the next iteration. For example, cycle de-
tection could allow us to not only detect the cycle in Figure
2, but know that both E and F should be incremented to-
gether.

While we have established a few methods to improve the
prioritizer and decide on the next permutation of activity
priorities, we have utilized the same objective function to
determine the success of our algorithm. However, our ob-
jective function is simple and coarse; oftentimes, the same
score will appear repeatedly in multiple consecutive. As a
result, the algorithm often travels swaths of plateaus be-
fore sharply improving. This choppiness is suboptimal for
Squeaky Wheel Optimization and gradient descent problems
in general. Some potential additions to the objective function
could be how much energy is leftover in the plan or how
close an activity is to their preferred scheduling time. Eval-
uating a more precise objective function can reduce choppi-
ness and better steer the algorithm towards a more optimal
solution.

Conclusion
We have presented a study of methods to assign activity pri-
orities to control a limited, embedded scheduler to optimize
rescheduling for a specific problem. We first define a set of
static methods that assign activity priorities based on heuris-
tics and schedule dependencies. We then describe how these
priorities can be further adjusted based on feedback from
simulated execution and rescheduling using Monte Carlo
methods to perform Priority Search. We present an empirical
evaluation of several static and priority search methods using
best available planetary rover operations data. This empiri-
cal evaluation shows that Priority Search outperforms static
methods including human expert derived priorities. Finally
we describe a number of promising areas for future improve-
ments to our algorithms.
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Abstract
This paper introduces a simplified version of a problem that
arises in scheduling an automated laboratory system, referred
to as the Liquid Handling Robot Scheduling Problem. The
laboratory system aims to process a number of jobs in parallel
using a single robot. To process the jobs, the robot must trans-
fer chemicals from a set of vials to the jobs in a pre-specified
order using a single pipette with finite capacity. To ensure
the proper chemical reactions occur, minimum and maximum
time-lags exist between the dispensing of consecutive chem-
icals on the same sample. Robot travel times must also be
considered. The objective is to process all the samples in the
least amount of time, i.e., minimise makespan. The problem
is modelled as a mathematical programming (MIP) and con-
straint programming (CP) problem. By assuming only one
unit of chemical can be transferred at a time, the problem
can be simplified into a special case of the single machine
scheduling problem with time lags, for which two heuristics,
the job insertion heuristic and the serial schedule generation
schedule, are adapted from scheduling literature. The MIP
model is able to prove optimality for a number of small in-
stances. The CP model is not able to prove optimality for even
small instances, yet manages to find good feasible solutions
for many of the large instances. As the size of the problem in-
creases, the exact methods are no longer able to find feasible
solutions, and are outperformed by the heuristics.

Introduction
This paper considers a simplified version of a problem that
arises in laboratory automation, which will be referred to as
the Liquid Handling Robot Scheduling Problem (LHRSP).
The problem considers a single robot that is responsible for
processing a set of jobs. In reality these jobs represent ex-
periments that are processed through the sequential applica-
tion of chemicals. When processing a single experiment the
robot remains idle for the majority of the time, waiting for
the correct chemical reactions to occur. Thus to make better
use of the robot the system is capable of processing many
experiments in parallel.

The robot has a single pipette with finite volume that it
uses to transfer chemicals to the set of jobs J . To transfer a
given chemical from a vial to job j 2 J the robot must (1)
move to the vials, (2) aspirate chemical up into the pipette
tip, (3) travel to job j, (4) dispense the chemical onto the

Copyright c� 2018All rights reserved.

sample. A simple schematic of the problem is given in Fig-
ure 1. The robot takes p" time units to aspirate, and p# to
dispense. The time taken for the robot to move from loca-
tion j to j0 is denoted p!j,j0 , where j, j0 2 J [ {0} and 0 is a
dummy job that represents the vial locations.

Figure 1: Schematic of the problem set-up. Vials are at loca-
tion 0, jobs are at locations corresponding to the job’s index.
The robot can move between the vials and the jobs.

Job j 2 J has Nj required operations, each of which cor-
responds to the dispensing of a certain chemical. To com-
plete a job, chemicals are required in a given order. Each
job can be represented by a directed graph, as shown in Fig-
ure 2, where arcs represent the precedence relation between
consecutive operations and nodes are color-coded to show
the chemical required for the operation. Let C represent the
set of the chemicals. Let ci,j 2 C be the chemical required
by operation i from job j. Note that one type of chemical
might be required multiple times in the same job.

Figure 2: An example of a precedence graph that outlines
the order in which the chemicals must be considered for a
single job j 2 J . Colours are used to indicate the chemical
that is required by the operation.

To ensure that the correct chemical reactions occur there
exist minimum and maximum time-lags between start times
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of consecutive operations from the same job. Let Oj :=

{1, 2, ..., Nj} be all the operations of job j 2 J . The time-
lags are defined for all operations of job j 2 J , except for the
very last operation, i.e., {Oj \ {Nj}}. Hence once an opera-
tion, i 2 Oj \ {Nj} of job j 2 J , has started there is a min-
imum amount of time units, `min

i,j , before operation (i + 1)

is allowed to start. Likewise once operation i 2 Oj \ {Nj}
has started there is a maximum amount of time, `max

i,j , within
which operation (i + 1) must start. These time-lags are ex-
pressed as

`max
i,j � Si+1,j � Si,j � `min

i,j , (i 2 Oj \ {Nj}, j 2 J)

where Si,j is the start time of operation i 2 Oj from job
j 2 J ,

The robot is allowed to aspirate multiple units of a single
type of chemical at a time. This means the robot can, for ex-
ample, (1) aspirate two units of a certain chemical, (2) move
to a given job, (3) dispense one unit of the chemical at that
job, (4) move to another job requiring the same chemical,
(5) dispense the other unit of chemical at that job. For chem-
ical c 2 C the robot can aspirate up to Lc units at a time.
The time taken to aspirate multiple units of chemical is neg-
ligible and the processing time of each aspirate regardless of
the quantity is p". Only one type of chemical can be in the
pipette at a time. Given the robot can aspirate multiple units
of a chemical at a time, it can effectively reduce the number
of times that it must aspirate the chemicals.

In practice there are typically more jobs than the system
can accommodate at once. Hence the objective is to pro-
cess all the jobs in the least amount of time, i.e., minimise
makespan.

Related Problems
The LHRSP has a number of closely related problems
studied in the literature. Firstly, to prove the complex-
ity of the problem we consider the minimal-makespan
single machine scheduling problem with unit processing
times and minimum time-lags (1p-SMSPmin), denoted by
PS1|chains(lij); pi = 1|Cmax using the project schedul-
ing classification scheme (Brucker et al. 1999). The 1p-
SMSPmin is known to be NP-Hard (Yu, Hoogeveen, and
Lenstra 2004).
Theorem 1. The LHRSP is NP-Hard

Proof. We reduce 1p-SMSPmin to the LHRSP. Let I be an
instance of 1p-SMSPmin. For each chain in I construct a
job j 2 J , where each activity in the chain corresponds to
an activity i 2 Oj . Let `min

i,j = li,j and `max
i,j = M , where

M is some sufficiently large number and li,j is the minimum
time-lags specified in I . Now let p# = 1, p" = 0, p!j,j0 = 0,
for all j, j0 2 J . For completeness let |C| = 1, ci,j = c and
Lc = |

S
j2J Oj |.

If it is assumed that only one unit of chemical can be
transferred at a time, i.e., c 2 C is Lc = 1, the LHRSP
can be simplified into a special case of the single machine
scheduling problem with time lags (SMSP-TL), which is
denoted PS1|chains, temp|Cmax. The aspirate, travel and

dispense times are incorporated into the processing time of
the activity. Hence all activities i 2 Oj from job j have the
same processing time, defined by pj := p"+p!0,j+p!j,0+p#.
The time-lags are still valid as all operations in the same job
have the same processing time, now pj as opposed to sim-
ply the dispense time p#, and time-lags only exist between
operations of the same job.

The SMSP-TL is closely related to the well-studied job
shop scheduling problem with time-lags (JSP-TL), denoted
by Jm|temp|Cmax (Brucker, Hilbig, and Hurink 1999). As
pointed out in (Caumond, Lacomme, and Tchernev 2008),
when considering maximum time-lags building non-trivial
feasible solutions is not straight forward, however schedul-
ing all operations of a job after all operations of another job
leads to feasible schedules. These types of schedules are re-
ferred to as canonical schedules. It is possible to generate
similar feasible solutions to the LHRSP, albeit very poor
ones, by completing all operations of one job, then all op-
erations of the next job, and so on.

To find better initial solutions than the canoncial sched-
ules for the JSP-TL, (Caumond, Lacomme, and Tchernev
2008) proposed a list-based heuristic combined with a
method for repairing solutions. Following this, (Artigues,
Huguet, and Lopez 2011) proposed a job insertion heuris-
tic (JIH), which exploits the fact that precedences only ex-
ist between consecutive operations of the same job. In the
experimental study in (Artigues, Huguet, and Lopez 2011),
the JIH is shown to produce better solutions than the list-
based heuristic from (Caumond, Lacomme, and Tchernev
2008). Moreover the state-of-the-art approach to the JSP-
TL, (González et al. 2015), also utilizes the JIH to obtain
initial feasible solutions to their scatter-search approach. In
this paper we adapt the JIH to the LHRSP.

Both the SMSP-TL and JSP-TL are special cases of the
well-studied resource-constrained project scheduling prob-
lem with generalised precedence constraints (RCPSP-max),
denoted by P |temp|Cmax. Constraint programming (CP)
approaches, such as (Schutt et al. 2013) and (Vilim, La-
borie, and Shaw 2015), have been particularly effective for
this RCPSP-max. Furthermore for the RCPSP-max there are
a number of effective schedule generation schemes such as
serial schedule generation scheme (SSGS) with unschedul-
ing step, also referred to as the direct method proposed by
(Franck, Neumann, and Schwindt 2001). This method has
been modified for many practical applications, such as the
generalised surgery scheduling problem (Riise, Mannino,
and Burke 2016). In this paper we adapt the SSGS to the
LHRSP.

The LHRSP also closely relates to a number of scheduling
problems where material handling is considered. In particu-
lar, the problem has a strong resemblance to hoist scheduling
problems (HSP)s, which have been motivated by electroplat-
ing lines. There are many variants of the HSP considered in
the literature, see (Manier and Bloch 2003) for a very de-
tailed classification. In general one or more hoists move dif-
ferent carriers, which can be thought of as different jobs,
between chemical baths, within which the jobs must remain
between a minimum and maximum allowable time. Superfi-
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cially, the LHRSP resembles a type of HSP where instead of
transferring jobs between different chemical baths, the hoist
transfers different chemicals to the jobs.

From the perspective of scheduling, the LHRSP has a
number of additional challenges that make it difficult to
model as a type of HSP. In HSPs, a hoist carries a single job
at a time. Furthermore once a job has been lifted from one
chemical bath, the hoist must travel and lower the job into
the next chemical bath immediately. This is known as the
no-wait requirement and is enforced to ensure the jobs are
not damaged by oxidation during transfer. A result of this
is that the transport tasks have a known, fixed duration, and
the scheduling of the time the jobs are in the baths can be
accounted for in the scheduling of the transfer tasks. In con-
trast, the LHRSP can transfer a number of units of chemi-
cals simultaneously. This introduces a number of fundamen-
tal complexities, such as not knowing how many times the
robot must aspirate prior to scheduling.

Finally, as will be discussed in our mixed integer pro-
gramming (MIP) model, the problem can be seen as a trav-
elling salesman problem (TSP) with minimum and maxi-
mum time-lags with additional side constraints. To the best
of our knowledge, no papers have studied this pure TSP with
minimum and maximum time-lags between deliveries, how-
ever similar problems such as the vehicle routing problem
with temporal dependencies have been studied by (Dohn,
Rasmussen, and Larsen 2011). Practical applications that
consider vehicle routing with timelags include homecare
crew routing problem (Rasmussen et al. 2012) and the con-
crete delivery prolem (Kinable, Wauters, and Vanden Berghe
2014), for which both CP and MIP models have been effec-
tive.

Mathematical models
This section introduces a MIP model and a CP model for
the LHRSP. A key modelling choice in the LHRSP is mod-
elling how the robot aspirates chemical. As was previously
mentioned, it is not clear a priori how many times the robot
must aspirate the chemicals. The MIP and CP models dif-
fer greatly on how they model aspiration. The MIP model
incorporates the time required for aspiration into the robot
travel times. Whereas the CP model enumerates the maxi-
mum number of aspirations that might be required and mod-
els them all explicitly as additional variables. As will be
seen, both modelling choices introduce additional side con-
straints.

Let O =

S
j2J Oj be the set of all operations. To distin-

guish between dispenses of different chemicals, let all the
activities requiring c 2 C be defined as Oc

= {(i, j) 2
O|ci,j = c}.

Mathematical Programming model
In the mathematical programming approach, the problem
is modelled as a routing problem by the use of a directed,
weighted multi-graph G(V,A). Each operation (i, j) 2 O is
assigned a vertex in the graph, v(i, j) , as well as a dummy
start and dummy end node, denoted by 0 and � := |O| + 1

respectively. Hence V := {0}[ {v(i, j)|i, j 2 O}[ {�}. In

Figure 3: An example of how the multigraph is constructed
from imposing two networks. The top-left graph shows the
precedence graph of two jobs with three operations each,
where the colour of the nodes indicates which of the two
chemicals are required. The top-right graph shows the multi-
graph that is used in the routing problem, which comes from
superimposing the slow routes (bottom-left) and fast routes
(bottom-right)

a multi-graph, there may be multiple arcs from one node to
another, referred to as different routes. Hence we use triplet
notation to represent arcs, where (v, v0, r) 2 A represents an
arc from node v to v0 along route r and has weight wv,v0,r.
The arc set is the union of two disjoint subsets A = A1[A2,
each of which contain at most a single arc from one node to
another. Hence there is at most two routes from one node to
another in the multi-graph G.

Arc set A1 can be thought of as the slow routes. An arc
(v, v0, 1) 2 A1 has a weight that represents the minimum
amount of time required between the start of v 2 V and start
of v0 2 V if the robot aspirate chemicals in between. More
explicitly the arc set and equivalent weights can be defined
as
• An arc from the dummy start to the node corresponding

to the first operation of all jobs, i.e., (0, v(1, j), 1) 2 A1,
with arc weight w0,v(1,j),1 = p" + p!0,j , for all j 2 J . The
arc weight comes from the robot aspirating chemical and
then travelling to the correct location.

• An arc between operations from different jobs or consecu-
tive operations of the same job, i.e., (v(i, j), v(i0, j0), 1) 2
A1 for all (i, j), (i0, j0) 2 O given that j 6= j0 or
(i0, j0) = (i + 1, j) with weight wv(i,j),v(i0,j0),1 = p# +

p!j,0 + p" + p!0,j0 . The arc weight comes from the robot
dispensing chemical at job j, moving to the vials, aspirat-
ing the next appropriate chemical, and then travelling to
job j0.

• An arc from the last operation of all jobs to the dummy
end, i.e., (v(Nj , j), �, 1) 2 A1 for all j 2 J with arc
weight wv(Nj ,j),�,1 = p#. The arc weight is simply the
time required to dispense the chemical.
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Arc set A2 can be thought of as the fast routes. An arc
(v, v0) 2 A2 has a weight that represents the minimum
amount of time required between the start of v and v0 if
the robot travels directly between the two without aspirating
new reagent in between. Since the robot can not carry differ-
ent chemicals at the same time, arcs can only exist in A2 if
both the predecessor and successor require the same chem-
ical. More explicitly, A2 and the associated weights can be
defined as

• An arc between operations that require the same colour
from different jobs or consecutive operations of the same
jobs, i.e., (v(i, j), v(i0, j0), 2) for all (i, j), (i0, j0) 2 Oc

given that j 6= j0 or (i0, j0) = (i + 1, j) with weight
p#+p!j,j0 . The arc weight comes from the robot dispensing
chemical at job j and then travelling directly from job j
to j0.

A small example illustrating how the multigraph is con-
structed is shown in Figure 3. The example considers an in-
stance with two jobs, each of which contain three operations,
and two colours. The precedence graph is also shown, where
evidently nodes {1, 2, 3} belong to one job and {4, 5, 6} be-
long to the other. Furthermore nodes 0 and 7 are the dummy
start and end nodes respectively.

In order to tighten the mathematical model, for each ver-
tex v 2 V an earliest start time ESv and latest start time
LSv are defined. The ESv can be calculated by the longest
path between 0 and v in the precedence graph. Whereas LSv

can be set to M minus the length of the longest path between
v and �, where M is a sufficiently large number that we gen-
erally obtain from from a heuristic, discussed in the Heuris-
tics / Upper Bounds section. Finally for ease of notation let
V c := {v(i, j)|(i, j) 2 Oc} be the set of nodes associated
with operations requiring chemical c 2 C.

The entire mathematical model can now be formulated as,

Min. S� (1)
X

(v0,v,r)2��(v)

xv0,v,r = 1, (v 2 V ) (2)

X

(v,v0,r)2�+(v)

xv,v0,r = 1 (v 2 V ) (3)

X

((v,v0,r)2A2:
v2P^v02P )

xv,v0,r  Lc � 1, (4)

(c 2 C,P ✓ V c
: |P | = Lc + 1)

`min
i,j  Sv(i+1,j) � Sv(i,j)  `max

i,j , (5)
(i 2 Oj \ {Nj}, j 2 J)

Sv �Mv,v0
(1� xv,v0,r)  (6)

Sv0 �
P

r02{1,2}:
(v,v0,r0)2A

wv,v0,r0xv,v0,r0 ,

(v, v0, r) 2 A|v 6= �)

X

(v,v0,r)2A

wv,v0,rxv,v0,r  S� (7)

X

v2Vc

X

(v,v0,r)2�+(v):
r=2

xv,v0,r � ↵̄c, (c 2 C) (8)

xv,v0,r 2 {0, 1} ((v, v0, r) 2 A) (9)
ESv  Sv  LSv (v 2 V ) (10)

Binary variables xv,v0,r denote whether the robot moved
from v to v0 along route r. Continuous variable Sv records
the time that the robot arrives at node v. In addition, S�

records the makespan of the schedule.
The objective is to minimise the makespan, or equiva-

lently, the start time of the dummy variable, specified in
(1). Constraints (2) and (3) enforce that the in-degree and
out-degree of each node is exactly one, respectively, where
��(v) and �+(v) represent the incoming and outgoing arcs
from node v 2 V respectively.. Constraint (4) is a subpath
elimination constraint, which ensures that the robot does not
dispense more chemical than it can carry. Given the expo-
nential number of the subpath elimination constraints, these
are added lazily into the model at each integer solution. At
each integer solution we can determine the sets of nodes
between which the robot travels only using the fast routes,
P := {P 1, P 2, ...}. Given the structure of the multigraph,
each of these sets of nodes, P p 2 P are associated with a
specific colour, c(P p) 2 C. If the size of this set of nodes
exceeds the possible limit, |P p| > Lc(Pp), we add lazy con-
straints for each subset P ✓ Pp of the sets of nodes accord-
ing to (4).

Constraints (5) enforce the minimum and maximum time-
lags between adjacent operations from the same job. Con-
straints (6) are linking constraints that relate the arrival time
of a node to the arrival time of the node that the robot di-
rectly travels from, here Mv,v0

:= LSv � ESv0 is a suf-
ficiently large number. Moreover, these linking constraints
remove the need for sub-tour elimination constraints that
are required by similar MIP formulations for related routing
problems. It should be noted that in constraints (6) if there
exists two arcs between the considered nodes then we sum
the weights of both arcs to tighten fractional solutions. Con-
straints (7) and (8) are tightening constraints. Constraint (7)
enforce that the makespan is at least larger than the weight of
all the arcs completed. Whereas constraints (8) ensure that
the number of slow routes exiting nodes requiring chemical
c 2 C is at least equal to the minimum number of aspirates,
↵c, which can be calculated by ↵c =

l
|Oc|
Lc

m
. Finally con-

straints (9) state that the xv,v0,k are binary and constraints
(10) are continuous within the range of the earliest and lat-
est start times.

Constraint Programming model
Constraint Programming offers an alternative means to
model the LHRSP. In the discussion that follows we use
constraints present in IBM’s CP Optimizer. Our model uti-
lizes interval variables (Laborie and Rogerie 2008) (Laborie
2009). An interval variable represents an interval of time.
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More formally an interval variable ↵ is a variable where do-
main dom(↵) is a subset of [s, e)|s, e 2 Z, s  e]. An inter-
val variable is fixed if its domain is reduced to singleton, i.e.,
↵ denotes a fixed interval variable. We require all interval
variables to be scheduled however not all interval variables
will be accounted for in the objective function.

Each interval variable ↵ has a start time startOf(↵) ,
an end time endOf(↵), and a duration dur(↵). As short-
hand notation, an interval variable ↵ is defined as a tuple:
↵ = [ES,LC, dur], specifying the earliest start time, latest
completion time and duration respectively. If the duration is
not specified then it is not fixed. The constraints used in this
model are summarised in Table 1.

The CP model, Algorithm 1, considers both the aspirates
and dispenses explicitly as interval variables, lines 1 and 3
respectively. At most |O| aspirates are required and hence
all are considered as interval variables by the model. How-
ever as the makespan is taken as the completion of the last
dispense operation, only the dispense variables are consid-
ered in the objective function, as is seen in line 7. The min-
imum and maximum time-lags between dispense intervals
are enforced by appropriate constraints on lines 11 and 12
respectively. To ensure that the robot can only complete one
aspirate or dispense interval at a time, while also taking into
account travel times between them, a noOverlapSequence is
added in line 24.

In order to take into account the logic concerning the dif-
ferent chemicals as well as the finite pipette capacity, two
additional types of interval variables and two state functions
are introduced. The carry variables, line 4, are used to rep-
resent the time between aspirates when the robot is mov-
ing and dispensing chemical at different jobs. An alternating
sequence is enforced on the aspirate and carry variables in
lines 18 and 21. Each dispense variable has an associated
cover variables, line 2, which must start before the start, and
end after the end, of the dispense variable, constrained in
lines 13 and 14 respectively.

A state function f is a decision variable whose value is a
set of non-overlapping intervals, where each interval is asso-
ciated with a non-negative integer value that represents the
start of the function over the interval. The colour state, line
5, accounts for what chemical the pipette is currently car-
rying. Hence the colour state is c when chemical c 2 C
is being carried and 0 when no chemical is being carried.
Whereas the pipette state, line 6, accounts for whether any
chemical is currently being carried at all. The pipette state is
1 when a chemical is being carried and 0 otherwise.

Each cover variable is both left and right aligned to a
pipette state of 1 and to a colour state associated with the
chemical required by the enclosed dispense variable, speci-
fied by lines 16 and 15 respectively. Additionally, the carry
variables are left and right aligned to a pipette state of 1,
line 19. These constaints acting in unison enforce that only
dispense variables requiring the same reagent can occur be-
tween successive aspirations.

Finally to account for the finite capacity of the pipette,
a cumulative function is associated with each colour. Each
carry variable produces Lc units of each chemical c 2 C
for the duration of the interval and each cover variable con-

sumes a unit of the required chemical for the duration of its
interval. The cumulative resource is then constrained to al-
ways be non-negative, line 23.

Algorithm 1 CP Model
Variable definitions:

1: d varsi,j = {0, inf, p#} 8i 2 Oj , j 2 J
2: cover varsi,j = {0, inf, -} 8i 2 Oj , j 2 J
3: a varsi = {0, inf, p"} 8i 2 {1, ..., |O|}
4: carry varsi = {0, inf, -} 8i 2 {1, ..., |O|}

Expressions:
5: colour state = state function()
6: pipette state = state function()

Objective:
7: Minimise max(i,j)2V (endOf(d varsi,j))

Constraints:
8: for j 2 J do
9: for i 2 Oj do

10: if i 6= Nj then
11: startBefStart(d varsi,j , d varsi+1,j , `min

i,j )
12: startBefStart(d varsi+1,j , d varsi,j , -`max

i,j )
13: startBefStart(cover varsi,j , d varsi,j)
14: endBeforeEnd(d varsi,j , cover varsi,j)
15: alwaysEqual(colour state, cover varsi,j , ci,j)
16: alwaysEqual(pipette state, cover varsi,j , 1)
17: for i 2 {1, ..., |O|} do
18: endBefStart(a varsi, carry varsi)
19: alwaysEqual(pipette state, carry varsi, 1)
20: if i 6= n then
21: endBefStart(carry varsi, a varsi+1)
22: for c 2 C do
23:

P
i2{1,...|O|} pulse(carry varsi, Lc) �P

i,j2Oc pulse(cover varsi,j , 1) � 0

24: noOverlapSeq(S
i,j2O

(d varsi,j , j) [
S

i2{1,...,|V |}
(a varsi, 0)],

S
j,j02J[{0}

p!j,j0)

Example CP Solution
The CP model is best understood through a small example.
Here we will consider the same problem considered in Fig-
ure 3. We assume the capacity of the pipette for both colours
is 2. A Gantt chart of an optimal solution is shown in Figure
4. The Gantt chart consists of four sections. The top section
displays the schedule of the robot, consisting of the aspi-
rate intervals, labelled with the letter ”A”, and the dispense
intervals, labelled (i, j) for all (i, j) 2 O. The dispense op-
erations are coloured to represent the chemical required. The
second top section display the carry intervals, labelled ”C”.
It can be clearly seen that the schedule alternates between as-
pirate intervals and carry intervals. The second bottom sec-
tion displays the cover intervals with the appropriate colour,
labelled (i, j) for all (i, j) 2 O. The bottom section displays
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Table 1: Description of functions used in the CP Model
Constraint Description
startBefStart(↵,�, z) A precedence constraint of the form

startOf(↵) + z  startOf(�)
endBefEnd(↵,�, z) A precedence constraints of the

form endOf(↵) + z  endOf(�)
alwaysEqual(f, ↵, v) Interval variable ↵ must start at the

beginning and end at the end of
some interval where state function
f is maintained in state v

pulse(↵, h) The amount of resource avail-
able between startOf(↵) and
endOf(↵) is increased by h units

noOverlapSeq(B,
dist)

B is a set of tuples of the form
[↵, t] where ↵ is an interval vari-
able of type t. Furthermore dist is
a 2-dimensional matrix that speci-
fies the sequence-dependent set-up
between each type of interval vari-
able.

both the colour state and the pipette state. All cover and carry
intervals are aligned to the colour and pipette states within
which they are scheduled. The cover intervals are only exe-
cuted in the appropriate colour state. Each dispense interval
occurs within the associated cover interval.

Heuristics / Upper Bounds
In this section we outline how a number of heuristics in the
literature can be adapted to the LHRSP. Firstly, the canonical
schedules provide an upper bound, determined by

UB =

X

j2J

(p" + p!0,j + p# + p!j,0 (11)

+

X

Oj\{Nj}

max(`min
i,j , p" + p# + p!0,j + p!j,0))

A better upper bound can be determined by transform-
ing the problem into a special case of the SMSP-TL, as dis-
cussed in Related Problems, and then modifying the SSGS
and JIH heuristics from the literature. There are a number of
similarities between the two heuristics. Both heuristics insert
jobs one at a time into the schedule. Let L be the ordered set,
in which the jobs are considered. Furthermore both heuris-
tic contain a back-tracking process to account for failures
incurred due to the maximal time-lags.

Serial Schedule Generation Scheme (SSGS)
The algorithm for the modified SSGS is shown in Algo-
rithm 2. The algorithm exploits the much simplified struc-
ture of the SMSP-TL compared with the RCPSP-max, i.e.,
each operation has at most one predecessor / successor, and
that there is only single resource with a unit capacity. The al-
gorithm considers all operations of one job before the next.

In order to schedule an operation, the algorithm finds the
earliest time, after the associated earliest start time, such that
the resource is available. If this time is below the associated

latest start time, then the operation is scheduled at the time,
the resource profile is updated as well as the earliest start
and latest start times of the next operation. However if the
candidate time is above the associated latest start time, then
the direct predecessor’s maximum time-lag is violated and
an unscheduling step is performed, seen in line 8. The un-
scheduling step works by updating the earliest start time of
the operation’s direct predecessor to ensure that the maxi-
mum time-lag would not be violated. The algorithm contin-
ues until a feasible solution is found.

Algorithm 2 Serial Schedule Generation Scheme (SSGS)
1: Initial resource profile r(.), ESi,j  0, LSi,j  UB
2: for each job j 2 L do
3: i 1

4: while i  Nj do
5: t⇤ := min{t � ESi,j |r(⌧) = 08⌧ 2 [t, t+ pj [}
6: if t⇤ > LSi,j then
7: u := u+ 1

8: ESi�1,j := Si�1,j + t⇤ � LSi,j

9: r(⌧) := 08⌧ 2 [Si�1,j , Si�1,j + pj [
10: i := i� 1

11: else
12: Si,j  t⇤

13: r(⌧) 18⌧ 2 [t⇤, t⇤ + pj � 1]

14: ESi+1,j  Si,j +max{pj , `min
i,j }

15: LSi+1,j  Si,j + `max
i,j

16: i i+ 1

Job Insertion Heuristic
The algorithm of the modified JIH is given in Algorithm 3.
Like the SSGS, the JIH considers jobs in a given order. The
main point of difference between the two heuristics is that
the JIH keeps track of the intervals into which an opera-
tion can be inserted as opposed to enumerating the entire
resource profile across a given time horizon.

In order to schedule an operation, the algorithm iterates
over all the intervals starting from the interval into which it’s
predecessor was inserted. Operation (i, j) can be inserted
into an interval, I := [I, I], if and only if the following con-
ditions hold,

I � I � pj (12)

I � pj � ESi�1,j � max(pj , `
min
i�1,j) (13)

I � LSi�1,j  `max
i�1,j (14)

If it is possible for an operation to be inserted into an in-
terval, then the earliest and latest start times of the operation
are updated using the following expressions,

ESi,j = max(I, ESi�1,j +max(`min
i�1,j , pj)) (15)

LSi,j = min(I, LSi�1,j + `max
i�1,j) (16)

If conditions (12) and (13) are valid but not (14), then
the maximal time-lags have been violated and thus it will
not be possible to insert the operation into any of the inter-
vals, shown in line 10. The algorithm then performs back
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Figure 4: Gantt charts from CP Solver output

tracking and returns to scheduling the previous operations
but starting from the interval after it previously was inserted
into. Once all the operations of a job are inserted, the start
times of the operations are fixed, and the set of intervals are
updated. Only intervals for which I � I � minj2J pj are
considered in the list of possible intervals.

Algorithm 3 Job Insertion Heuristic (JIH)
1: for each job j 2 L do
2: i 1; inserted false; q  1

3: while not inserted do
4: for each possible interval starting from q do
5: if Conditions (12)-(14) are verified then
6: compute ESi,j and LSi,j according to
7: expressions (15)-(16)
8: inserted true; break;
9: else if Conditions (12),(13) are verified then

10: break;
11: if inserted = false then
12: i i� 1; q  qi + 1

13: else
14: qi  q; i i+ 1; inserted false
15: Fix start times for job j and update intervals for job

j + 1

Computational Study
Data
Unfortunately due to the confidential nature of the problem
domain, it is not possible to share any real-world data. To
test the different approaches we have generated a data set
of 18 instances where parameters are chosen from intervals
that replicate the structure of the real world problem.

All jobs in an instance have the same number of oper-
ations denoted by m, i.e., |Oj | = m for all j 2 J . The
size of an instance is represented by a tuple, (n,m, |C|),
which describes the number of jobs, number of operations
per job and the number of colours respectively. For all in-
stances the processing times are as follows, p!j,j0 = |j0 � j|
for all j, j0 2 J [ {0}, p# = 10, p" = 20. The carry limit
Lc of each chemical c 2 C is taken as a random integer be-
tween 2 and 5. The minimum time-lags, `min

i,j are always
divisible by 5 and are selected at random from the inter-
val [p#, n ⇤ (p# + p" + 2n)], to allow the minimum time-
lags to increase as the number of jobs increases. To ensure

feasibility, the minimum time-lag is used when constructing
the corresponding maximum time-lag, by introducing factor
✏i,j = max(`min

i,j , p# + 2n + p"), which is the maximum
of the minimum time-lag and the minimum amount of time
the robot requires to complete consecutive operations for the
furthest job if the operations require different chemicals. The
maximum time-lags, `max

i,j are always divisible by 5 and are
selected at random between `max

i,j 2 [✏i,j , n✏i,j ]. This allows
the maximum time-lags to increase when more jobs are con-
sidered.

A preprocessing step can be performed to determine the
minimum amount of time between consecutive operations,
(i, j) and (i + 1, j) from the same job, j 2 J \ {Nj}. If
consecutive operations from the same job require different
chemicals then the robot must travel back to the vials to as-
pirate more chemical between these two operations. On the
other hand, if the consecutive operations from the same job
require the same chemical, then the robot still must dispense
the first unit of chemical before it can dispense the second.
More explicitly, for all (i, j) 2 O, define the preprocessed
minimum time-lag as follows,

`
min

i,j :=

⇢
max(`min

i,j , p# + p" + p!0,j + p!j,0) if ci,j 6= ci+1,j

max(`min
i,j , p#) otherwise

Results
Experiments have been tested under the Windows 10 (64-
bit) operating system with 8GB RAM and Intel R� CoreTM

i7-3537U, 2.5GHz processor. The MIP model was imple-
mented in Gurobi 7.0.2 and the CP model was implemented
in IBM ILOG CPLEX Optimization Studio V12.8.0 CP Op-
timizer. The MIP and CP approaches are given 4 threads and
10 minutes wall-time. The two heuristics, SSGS and JIH,
were implemented in Python 2.7 and each run 100 times
per instance where the order in which jobs were considered
were shuffled randomly. The best solution obtained by the
two heuristics is used as the upper bound in the MIP model.
No upper bound is given to the CP model as we are par-
ticularly interested in understanding the effectiveness of the
heuristics used by CP Optimizer to find feasible solutions.

The results to the computational study are summarised in
Table 2. As the lower bounds obtained by the linear relax-
ation of the MIP model and the initial propagation of the root
node of the CP model were equivalent for all instances, these
values are given in a single column, lb-init.. The columns,
lb, represent the best lower bound determined by the MIP
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Table 2: Computational results

Inst. Size lb-init. ub-canon. SSGS JIH MIP CP
ub t(s) ub t(s) lb lazy ub t(s) lb ub

1 (3-5-2) 292 951 711 0.001 704 0.001 361 7 361 3.69 301 361
2 (3-5-3) 366 1232 748 0.001 647 0.002 477 - 477 3.12 - 477
3 (3-5-5) 396 1120 839 0.002 650 0.001 588 - 588 8.62 - 588
4 (5-5-2) 692 3061 1074 0.004 1024 0.003 - 54 716 - - 716
5 (5-5-3) 664 2689 1134 0.004 1079 0.001 - 12 749 - - 707
6 (5-5-5) 624 2455 996 0.003 1055 0.001 - 9 649 - - 644
7 (5-10-2) 1134 5737 2410 0.009 2353 0.008 - - - - 1144 1341
8 (5-10-3) 1045 4901 2480 0.013 2340 0.003 - - - - - 1267
9 (5-10-5) 1178 5009 2304 0.013 2147 0.004 - - - - - 1475
10 (10-10-2) 2833 25919 5166 0.058 5253 0.001 - - - - - 3077
11 (10-10-3) 2664 23421 5251 0.051 5161 0.001 - - - - - 3076
12 (10-10-5) 2973 25337 5258 0.055 5089 0.001 - - - - - 3346
13 (15-20-2) 10349 130271 18760 0.789 17493 0.005 - - - - - 11404
14 (15-20-3) 10707 133603 18848 0.868 18206 0.005 - - - - - 13836
15 (15-20-5) 11234 143173 19403 1.041 18879 0.004 - - - - - 17081
16 (20-30-2) 23324 420718 43075 5.239 42746 0.111 - - - - - -
17 (20-30-3) 25087 425266 43099 5.826 40757 0.012 - - - - - -
18 (20-30-5) 23048 420748 42571 5.578 41813 0.013 - - - - - 49639

and CP models and, for clarity, are left blank if the algo-
rithm does not improve the lower bounds. The ub-canon.
represents the upper bound as given by the canonical solu-
tion. The columns ub represent the best objective value de-
termined by each of the four approaches. For the SSGS and
JIH, the columns, t(s), represent the average wall time of the
heuristic across the 100 iterations. For the MIP model, t(s),
represents the wall time that the algorithm requires to prove
optimality. This column is left empty if the algorithm does
not prove optimality. The CP model was not able to prove
optimality for any of the instances and hence no t(s) is pro-
vided for that algorithm. Finally lazy represents the number
of lazy-constraints that were added in the MIP approach.

Discussion
The CP solutions are in general the best compared to the
other three approaches. The MIP model is competitive for
the smaller instances, and is even able to prove optimality for
instances (1-3). However as the size of the instances scales
up the MIP model cannot find feasible solutions. The perfor-
mance of the CP model is highlighted by instance 10, where
the solution of 3077 corresponds to a gap of 8.19% with re-
spect to the initial lower bound of 2833. This contrasts to
best solution obtained by the heuristics of 5166, which cor-
responds to a gap of 81.6%. However as the size of the prob-
lem increases the CP model fails to find feasible solutions.

For all instances the heuristics are able to provide a sig-
nificant improvement on the upper bound determined by the
canonical schedules. This is particularly true for the larger
instances, for example consider instance 18, compared to
the canonical schedule value of 420748, the best SSGS solu-
tion of 42571 and the best JIH solution of 41813 correspond
to a 89.8% and 90.1% reduction respectively. Furthermore
both of these heuristics are noticeably fast. This is particu-

larly true for the JIH, of which the largest average run time
across all the instances is only 0.111 seconds. For all except
two instances (6 and 10) the best solution obtain by the JIH
outperformed that of the SSGS. Also in general the JIH is
typically faster than the SSGS. This becomes noticeable for
the largest set of instances, where the SSGS takes approxi-
mately 5 seconds whereas the JIH takes significantly less.

Interestingly, the best solution obtained by both SSGS and
JIH outperforms the solution obtained by the CP model for
instance 18. For this instance, the CP model required 428.75
seconds to just find the initial feasible solution of 62, 719,
which it was then able to improve to 49, 639 with the remain-
ing time. This suggests that perhaps the CP model would
benefit from having the heuristic solutions seeded as an ini-
tial feasible solution.

Conclusion and future research
The LHRSP demonstrates the benefits that can be made by
modelling the full problem, as opposed to making simplify-
ing assumptions. By giving the CP and MIP models freedom
to transfer multiple units of chemical at a time, better solu-
tions are found for small instances. On the other hand, as
the size of the problem grows, these approaches fail to find
feasible solutions. In contrast, the heuristic methods are able
to produce fast, feasible solutions to the simplified problem
for all instances. Future research includes incorporating ad-
ditional real-world complexities, such as additional types of
resources, the manual mixing of chemicals by the pipette to
produce new chemicals, job placement, and pipette clean-
ing. Finally modelling the problem as a temporal planning
problem and evaluating the effectiveness of current tempo-
ral planners could provide an effective alternative to the pro-
posed MIP and CP models.
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Abstract

In this paper, we build on the latest in automated planning
techniques to develop a generalized framework for course-
independent design of Intelligent Tutoring Systems (ITSs).
This is meant to provide targeted and personalized assis-
tance to students, in order to meet the demands of the in-
creasing class size, as well as help instructors who can use
higher level specifications to design courses without having
to worry about building the course-specific tutoring assis-
tance. Thus the aim of this paper is to demonstrate what auto-
mated planning can bring to the table for the design of course-
independent ITS features. We will illustrate these capabilities
in Dragoon, an ITS deployed at Arizona State University.

1 Introduction
While the last decade has seen massive advances in tech-
nologies aimed at creation and dissemination of knowledge
across a variety of platforms, concerns remain as to how ef-
fectively this knowledge is absorbed at the user (student)
end. This is especially true for both massive open online
courses (MOOCs) and also for (rapidly growing sizes of)
physical classrooms where targeted attention towards indi-
vidual students is often hard to provide. The state-of-the-
art in student and instructor support technology has tra-
ditionally struggled to catch up with the demands of the
rapidly evolving landscape of education in the 21st century.
In this paper, we address this by proposing a framework
for the design of generic course-independent student and in-
structor support capabilities using techniques in the field of
human-aware planning, and demonstrate those features in
Dragoon, a celebrated intelligent tutoring system.

1.1 Learning 2.0
The world of learning is indeed changing fast - information
can now be provided across a variety of platforms to large
groups of people who can access on demand knowledge and
participate in the learning process as a community. This is
the Learning 2.0 paradigm (Seely Brown and Adler 2008),
and requires a rethink of the affordances (McLoughlin and
Lee 2007) expected from current learning tools.

Learning on Demand Learning on demand refers to
the increasing popularity of individual student-centric and
topic-driven learning achieved on the web – i.e. students

*Authors marked with ∗ contributed equally.

pick a particular topic they want to learn about and actively
consume content just based on that, instead of participat-
ing in an entire class or following through an entire curricu-
lum. For example, consider that you want to learn about re-
gression – you could log on to Coursera, complete the rele-
vant tutorials and assignments on regression, and leave the
course. This requires a rethink of traditional curriculum gen-
eration and course recommendation approaches that would
traditionally compute end to end curricula for an entire class.
It follows that such new approaches must be able to leverage
detailed student models to provide effective support.

Social Learning One of the many advantages of social
platforms for learning is peer feedback and community par-
ticipation – i.e. social learning (Burke 2011). This involves
two critical aspects – knowledge advancement as a commu-
nity (Scardamalia and Bereiter 2006) and information pro-
cessing (Webb 2013) on the part of the individual student
as a member of that community. In a sense, this can even
be seen as a proxy towards providing individual classroom
attention from the instructor. However, forming study part-
ners remains an arduous task, especially in large classrooms
such as in online learning communities where students usu-
ally do not know most of their classmates (or their skill sets).
It is also fraught with the usual pitfalls associated with group
work including individual students hogging all the group ac-
tivity or slackers not contributing to the group activity at
all (Mesch 1991). Without principled drivers for building
in-class communities that can promote learning, effective
collaborations are hard to achieve. As such, forming use-
ful teams for collaborative study can become a problem by
itself rather than a facilitator for learning to the extent that
students can end up spending too much effort in forming
and maintaining teams or just prefer to study by themselves,
thus leaving the potential benefits of a social learning envi-
ronment largely untapped. Recent work has shown that peer
recommendations can have positive impact (Labarthe et al.
2016) on student engagement but has remained ambiguous
(Bouchet et al. 2017) as to the best way to go about it.

1.2 A Brief History of ITS and AI
ITSs are aimed to provide personalized support to students
and bring in expert (human) tutors in the loop wherever nec-
essary, thus reducing the burden on the instructor as well as
improving the learning experience of the student. In fact, it
has been shown that when designed correctly, an ITS can
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be as effective as a human teacher (VanLehn 2011). A thor-
ough description of the different components of ITSs can
be found in (Vanlehn 2006). Existing applications of such
systems range from solving numerical problems like Andes
(Gertner and VanLehn 2000) which can help in teaching ba-
sic laws of physics (Schulze et al. 2000), Dragoon (VanLehn
et al. 2017), Q&A type problems as in Autotutor (Graesser
et al. 2005) or for an SQL tutor (Mitrovic 2003). ITSs, of
course, go beyond individual information processing stage
and find uses in knowledge building as a community (Mag-
nisalis, Demetriadis, and Karakostas 2011) as well, thereby
embracing the principles of the Learning 2.0 paradigm.

Student Assessment Models One of the most important
capabilities an ITS needs to have is to be able to estimate
the (mental) model or capabilities of the student. This has
been explored in the context of the (1) item response theory
(IRT) (Hambleton, Swaminathan, and Rogers 1991) which
treats learning and testing as separate processes and the (2)
Bayesian knowledge tracing (BKT) theory (Corbett and An-
derson 1994) which considers a more dynamic model of the
student state. The latter becomes more relevant in the con-
text of ITSs that can provide more dynamic feedback and
hints as discussed next. Indeed this is an issue where AI tech-
niques have been deployed before for dynamic modeling of
the evolution of the student model in terms of knowledge
components, concentration / focus levels, etc. (Murray, Van-
Lehn, and Mostow 2004). This includes different techniques
such as decision theoretic approaches (i.e. Markov Decision
Processes or MDPs) (Murray, VanLehn, and Mostow 2004;
Murray and VanLehn 2006), and reinforcement learning
(Chi, VanLehn, and Litman 2010; Mandel et al. 2014;
Mandel 2017). This paper assumes for the most part1 that
these techniques are available and builds on top of that as-
sumption, i.e. being able to estimate the student model is
necessary for ITS techniques and we want to demonstrate,
from the perspective of automated planning how this can be
exploited to provide a better learning experience to a student.

Feedbacks and Hints Once the ITS has estimated a model
of the student, it can provide targeted feedback to improve
the learning process. Existing work in this area (Barnes and
Stamper 2010; Stamper et al. 2013; Rivers and Koedinger
2013; 2017) has largely focused on ITSs operating as recom-
mender systems. This paper is largely situated in this space
but aimed at providing much more sophisticated feedback
in both the inner and outer loops (Vanlehn 2006) of an ITS
which requires longer-term sequential reasoning.

1.3 What can planning bring to the table?
Automated planning, as a field, has been around ever since
the inception of AI, and is considered a necessary ability of
any autonomous system – the ability to reason about and de-
cide on a course of action (CoA) or plan given the current
state of the world. Many of the challenges faced in the design

1In fact, the “model reconciliation” technique discussed later
can handle uncertain models (Sreedharan, Chakraborti, and Kamb-
hampati 2018) and can even be modified to function as an estimator
for the student model but this is outside the scope of the paper.

of an ITS bears parallels to the planning agenda – making a
curriculum, solving a given problem, or in general dealing
with the combinatorics of orchestrating a class can be po-
tentially seen through the lens of planning, i.e. computing
a sequence of steps given a set of constraints. This was the
starting point of our investigation in this direction.

However, when operating with humans in the loop, tradi-
tional planning techniques are not sufficient (Kambhampati
and Talamadupula 2015). A “human-aware” planner must
be able to take into account the (mental) model (Chakraborti
et al. 2017a) of the user. Recent work (Sengupta et al. 2017)
has looked at how planning techniques can evolve in the con-
text of decision support to guide the planning process of a
human decision-maker. This includes support for plan vali-
dation, critiquing, recommendation, explanations, and so on.
Much of the discussion here derives inspiration from recent
advances in the planning community along these directions.

Contributions Thus, to answer the question what auto-
mated planning can do for the ITS scene, we build on the
following two features of planning techniques –

• Domain independence – Planning techniques have been
particularly geared towards domain-independent solu-
tions – i.e. algorithms that can work across a variety of
domains provided in higher-level specification. This is es-
pecially useful in the contexts of ITSs which have tradi-
tionally been restricted to class or course specific solu-
tions that do not generalize; and

• Model-based reasoning – Personalized support for stu-
dents require higher level and sequential reasoning about
the course and student models, planning techniques re-
main ideally suited for this.

In this paper, we expound on the above two themes to –

- Provide targeted feedback when students are stuck on
problems by leveraging the student model; (Section 3.2)

- Compute on demand curriculum based on class materials
requested by the student; (Section 3.3)

- We will show how this technique can be used to teach
concepts to a student to attain different levels of exper-
tise as desired by the student; and

- We will show how student models may be composed to
form joint plans of study.

- Generate class curriculum in the spirit of social learning
by including fellow classmates in a student’s curriculum
while also guaranteeing desired properties of the curricu-
lum – e.g. that students not only learn but also apply all
the concepts at least once. (Section 3.4)

We do not, of course, set out to model the full scope of
challenges2 in building and end-to-end ITS. However, we
recognize that much of the existing work on deploying ITS

2For example, the current discussion only focuses on the learn-
ing and interaction phase and does not include post-hoc reflec-
tion / evaluations as explored in (Katz, O’Donnell, and Kay 2000;
Katz, Allbritton, and Connelly 2003; Connelly and Katz 2009)

28



systems, if not in conceptualizing them, has focused on spe-
cific learning platforms or courses without any coherent ap-
proach or general principles of design and implementation
of the roles usually attributed to ITSs. The aim of this paper
is thus to introduce techniques from the planning commu-
nity that can formalize some of these concepts and provide
a generalized framework for building such systems from the
ground up. This has useful implications for both the plan-
ning as well as the educational technologies communities –
i.e. the former can provide solutions to existing problems
in ITSs (as we demonstrate in this paper) while feedback
form the learning community can provide useful feedback
towards the refinement of said techniques, including defin-
ing new areas of research of mutual interest. The biggest
advantage of such an approach, as mentioned above, is that
the techniques are domain-independent, i.e. they are defined
at the procedural level and can be grounded with the de-
scription of a particular course as specified by the instruc-
tor. Of course, the problem of knowledge representation is
(for a specific course and assignments in it) remain a chal-
lenge, but the ITS features themselves generalize given the
proposed planning framework.

2 Background
In the following, we will introduce concepts from the plan-
ning literature that will be used in the rest of the paper.

A Classical Planning Problem (CPP) (Russell and
Norvig 2003) is the tuple M = �D,I,G� with domainD = �F,A� - where F is a set of fluents that define a state
s ⊆ F , and A is a set of actions - and initial and goal statesI,G ⊆ F . Action a ∈ A is a tuple �ca,pre(a), eff±(a)�
where ca is the cost, and pre(a), eff±(a) ⊆ F are the pre-
conditions and add/delete effects, i.e. �M(s, a) � � if s ��
pre(a); else �M(s, a) � s ∪ eff+(a) � eff−(a) where �M(⋅)
is the transition function. The cumulative transition function
is �M(s, �a1, a2, . . . , an�) = �M(�M(s, a1), �a2, . . . , an�).
A CPP is represented using the Planning Domain Definition
Language or PDDL (McDermott et al. 1998).

A Plan Generator Module (PGM) (Helmert 2006) com-
putes a solution to a CPPM as sequence of actions or a (sat-
isficing) plan ⇡ = �a1, a2, . . . , an� such that �M(I,⇡) � G.
The cost of ⇡ is C(⇡,M) = ∑a∈⇡ ca if �M(I,⇡) � G; ∞
otherwise. The cheapest plan ⇡∗ = argmin⇡ C(⇡,M) is the
optimal plan with cost C∗M.

A Plan Validation Module (PVM) (Howey, Long, and
Fox 2004) outputs, given plan ⇡ and planning problemM,
True iff �M(I,⇡) � G; False otherwise.

A Plan Recognition Module (PRM) (Ramı́rez and
Geffner 2010) outputs, given a partial plan ⇡̂ and a plan-
ning problem M, a plan ⇡ that maximizes the probability
that ⇡̂ is a sub-plan of ⇡ –

⇡ ← argmin⇡ P([⇡̂]k≤�⇡�k=0 )
Note that the above approach does not directly compute this.
Instead, we use the compilation approach from (Ramı́rez and
Geffner 2009) to compute the optimal plan that satisfies a
set of observations given a goal as the output of the PRM.

A Landmark Generation Module (LGM) (Hoffmann,
Porteous, and Sebastia 2004) outputs, given a planning prob-
lem M, a set of state (or action) landmarks L containing
states (or actions) that must be passed through (or executed)
in any satisficing solution ofM. Thus –

- An action landmark a ∈ A requires that a ∈ ⇡∀⇡ ∶ �M(I,⇡) � G.
- A state landmark s ⊆ F is such that ∀⇡ ∶ �M(I,⇡) � G,
∃[⇡̂]k≤�⇡�k=0 ∶ �M(I, ⇡̂) � s. (Zhu and Givan 2003)

A Human-Aware Planning Problem (HAP) is given by
the tuple  = �M,MH� where MH = �DH ,IH ,GH�
is the human’s understanding of the planning problem M
(Chakraborti et al. 2017a).

An Explicable Planning Module (EPM) computes a plan
⇡ such that it is a satisficing solution toM and is as close as
possible to the expected plan in the human’s model (Zhang
et al. 2017; 2016; Kulkarni et al. 2016) –

C(⇡,M) ≈ C∗MH

A Plan Explanation Module (PEM) outputs, given a
HAP  = �M,MH� and the optimal solution ⇡∗ toM, the
shortest explanation (Chakraborti et al. 2017b) in the form
of a model update to the human mental modelMH so that
the same plan is now also optimal in the human’s updated
mental model �MH of the problem –

C(⇡∗, �MH) = C∗�MH

The PEM can, in fact, trade off (Chakraborti, Sreedharan,
and Kambhampati 2018) the relative cost of explicability
(i.e. deviation from optimality in the planner’s model) to the
cost (i.e. length) of explanations during the plan generation
process itself by computing a plan ⇡ and an explanation or
model update E such that ⇡ is a solution to M and is the
optimal solution to �M modulated by a hyperparameter ↵ –

⇡ ← argmin⇡ �E � + ↵ × � C(⇡,M) −C∗M �
With higher ↵, PEM computes plans that require more ex-
planation, while with lower ↵, it generates more explicable
plans. We refer to this variant as PEM(↵).
Internally, PEM performs what is referred to as a model
space search to come up with these explanations. This is
done using unit edit functions � that progressively try out
one or more updates to the model MH from the set of
possible updates in M�MH until the optimality condi-
tions as described above are satisfied. This is known as the
process of model reconciliation (Chakraborti et al. 2017b;
Chakraborti, Sreedharan, and Kambhampati 2018).

3 ITS as Planning
We will now cast the design of a generic ITS in terms of the
planning modules discussed in the previous section.

3.1 Class Configuration
A class configuration is defined as the tuple –

C = �{KCi},{Ti},{Ai},{Si}�
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- Knowledge Components or Concepts: {KC} is a set of
knowledge components or concepts KCi. In ITS litera-
ture, the process of knowledge acquisition by a student
has been decomposed into smaller components referred
to as KCs (Koedinger, Corbett, and Perfetti 2010). KCs
can be anything from a production rule (Mayer 1981), to
a facet, misconception, fact or even a skill (Bloom, of Col-
lege, and Examiners 1964). The aim of the social learning
process is to make a student acquire different KCs based
on their and their classmates already existing ones.

- Tutorial: The class also constitutes of a set {Ti} of tuto-
rials Ti ⊆ {KCi} that consist of a set of KCs on which
they provide information on. These directly modify the
student’s knowledge state by providing information on
specific topics or on how certain problems or (parts of)
assignments may be solved. These form an integral part
of a curriculum for the class.

- Activities / Assignments: The class also has a set {Ai} of
activities or assignments Ai = �M,� where M is the
model of the assignment and  ⊆ {KCi} consists of a set
of KCs that are required to solve it. These engage the stu-
dent in actions that derive from knowledge introduced in
the class (learning by doing). These form the core content
of the class. Technically, these can also be used as sens-
ing actions for the ITS in determining the knowledge state
of the student. Thus, an assignment may be used both as a
way of estimating the student model as well as a technique
for imparting knowledge to the student.

- Finally, the class has a set {Si} of students Si. The
student knowledge state or model is defined as Si =�{AS

i },1,2� where AS
i is the student’s understanding

(similar to the definition of a HAP) of the assignment
model Ai and 1,2 ⊆ {KCi} consists of a set of KCs
that they have learned and applied respectively.

Given a class configuration C, a curriculum is given by a
sequence c(C) = �c1, c2, . . . , cn�; ci ∈ {Ti}∪ {Ai}∪ {Si} of
tutorials, assignments and partnerships with other students.

3.2 Tips and Hints
A solution to an assignment in a general sense can be seen as
a sequence of steps, a.k.a. a plan. Thus, we posit that a large
variety of assignments can in fact be modeled in terms of the
planning problem. The model Ai(M) of an assignment Ai

(as mentioned before) is thus the model of a planning prob-
lem CPP. As explored in (Sengupta et al. 2017) in the context
of decision support using automated planners, this opens up
the slew of planning techniques (described in Section 2) that
can be readily adopted to provide targeted (problem specific
but domain independent) feedback to the students.

Solution Validation For a partial attempt (represented as
a partial plan ⇡̂) on an assignment Ai, the Plan Validation
Module (PVM) indicates conditions that were unsatisfied,
which can be used to provide targeted feedback. For exam-
ple, the PVM can be used by the instructor to auto-grade
solutions proposed by a student, since this is a domain in-
dependent way of checking if the plan is a valid solution of
the given assignment (represented as a CPP Ai(M)). This is

also useful for the student as well who can receive immedi-
ate feedback on whether they are successful (and why, if not)
without having to wait for the instructor. This is one of the
features that most ITSs already possess. However, they are
usually system level implementations that do not generalize
across assignments.

Solution Completion For a partial attempt (represented as
a partial plan ⇡̂) on an assignment Ai, the Plan Recognition
Module (PRM) produces a completion that can be sampled
from to provide hints that guide the student towards the full
solution. The PRM thus allows the ITS to anticipate what ac-
tions the student needs to take given what they have already
done in order to achieve their goal. Notice that the partial
plan is generated by the student (from the model AS

i ) even
though the completion is done using Ai. This can thus help
the student in cases of cognitive overload, but not if they lack
the knowledge to solve the problem, i.e. AS

i �= Ai. We will
discuss ways to deal with the latter case in Sections 3.3.

The PRM module can be also used to provide proactive sup-
port by recognizing that the students is going astray and
providing pop-ups to guide them towards the right solution.
Proactive support and has been shown (Zhang et al. 2015;
Sengupta et al. 2017; Chakraborti et al. 2017c) to be desir-
able of an artificial agent in collaborative settings. Interest-
ingly, one could also imagine using the PRM to detect gam-
ing of the tutoring system (Muldner et al. 2010) by defining
it as a possible goal that a student might be trying to achieve,
and based on the observations identify whether a student is
working diligently or trying to game the system.

Problem Summarization Finally, the Landmark Genera-
tion Module (LGM) takes in the Classical Planning Problem
(CPP) representation Ai(M) for a specific assignment Ai

and produces a set of steps (action landmarks) or situations
(state landmarks) that the student must go through in order
to solve the assignment. This can be very useful in providing
a concise summary of “TODOs” required of the student to
arrive at the solution, or by considering the domain variables
that the student has already set to true, measure the progress
of a student and thereby help the instructor in classroom or-
chestration (Dillenbourg et al. 2011).

We shall illustrate each of these use cases in Section 5.1.

3.3 On-demand Curriculum Generation
A typical feature of online learning, as we discussed in
Section 1, is that students increasingly select a subset of
class materials to follow and leave once they are done (e.g.
MOOCs are known to have notoriously low completion rates
(Amy Ahearn 2017)). As a result, students end up follow-
ing individual and different curricula asynchronously. From
the students’ perspective an obvious problem with this is
that they might not have the required knowledge to com-
plete the materials they want. In the following, we thus ad-
dress the problem of on-demand curriculum generation. In
this paradigm, the student selects a particular assignment Ai

to complete and the ITS performs argumentation with the
assignment model Ai(M) and the students model of the
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assignment AS
i (M) to identify deficiencies in the student

model that need to be addressed using relevant tutorials.
In order to achieve this, the ITS spawns an instance of

the Plan Explanation Module (PEM) with the HAP  =�Ai(M),AS
i (M)� – here the instructor model is the ground

truth and the student model needs to be reconciled. The
model edit functions � are the tutorials in the class. The
output of the PEM is thus the optimal set of tutorials (this
forms the recommended curriculum) that guarantees that the
same solution (plan) is optimal in both the student model as
well as the instructor model (even though they are not equal).
This is especially useful since the instructor model is going
to contain information pertaining to the entire class, while
the student does not need to know all these details in or-
der to solve a specific assignment. The PEM is thus able to
leverage the student and instructor models of an assignment
to provide the exact set of tutorials that the student requires.
We will provide illustrations of this process in Section 5.2.
Notice that, the ITS can either use its estimate of AS

i or en-
gage in active information gathering by asking the student
questions to determine parts of the student model it is un-
certain about (Sreedharan, Chakraborti, and Kambhampati
2018), in order to meet the specific needs of the student.

Teaching as an ↵ trade-off Notice that the formulation
of the assignments as planning problems allow us to spawn
CCPs with the student models (indicating how the student
can solve the problem) or the instructor model (indicating
how the instructor will solve the same problem) or anywhere
in between (as computed by PEM(↵)). The student solu-
tion (equivalent to an explicable plan) is likely to be sub-
optimal, or in most cases, not feasible in the ground truth
or instructor model. An instantiation of PEM(↵) with the
HAP  = �Ai(M),AS

i (M)� thus allows us to modulate
the level of expertise with which a student wants to solve an
assignment. For low values of ↵, the ITS will recommend
the smallest possible curriculum that will just enable the stu-
dent to solve the assignment (albeit suboptimally) while for
progressively higher values of ↵ it will start recommending
more and more advanced curriculum to the point it matches
the output of PEM, i.e. the optimal complete curriculum.
From the perspective of the instructor as well, the ↵ hyperpa-
rameter can be gradually increase from a low value to gen-
erate study materials for individual students as the course
progresses. Thus the teaching process itself can be viewed
through the lens of the model reconciliation process as one
of modulation of the value of ↵ in the PEM(↵). We shall
demonstrate this in Section 5.2.

Remark To the best of our knowledge, algorithms for the
on-demand curriculum generation process driven by a spe-
cific class activity, and the argumentation process over the
curriculum with the desired expertise level of student, have
not been explored before in the ITS literature. This tech-
nique can be useful from the perspective of both the instruc-
tor and the student – e.g. the former can stagger the course
content to meet the student’s expertise level, while the lat-
ter can chose to learn at different levels of expertise (thus
possibly reducing the high dropout rates that plague the on-
demand learning communities).

Composition of Student Models Finally, we note that we
can extend the model edit functions in the PEM from just
the tutorials in the class to the other student models as well.
Thus the model updates during the model reconciliation pro-
cess can be affected by either the KCs provided by tutorial or
a composition of one or more student models. The output of
PEM will now provide an optimal recommendation of tuto-
rials and potential study partners based on the skill sets (i.e.
models) of the individual students.

3.4 The Jigsaw Problem
The Jigsaw Problem is the process of creating smaller
groups in a class for cooperative learning (Aronson 1997).
It has shown to have positive effect on students learning
the course material together, and then engaging in discus-
sions. This leads to a more active and deeper learning in
class (Aronson 2011). Aronson, points out ten fixed steps
to achieve this where the groups are created based on the
ethnicity, race, gender and ability. However, it is intractable
for a teacher to reason about all the student models and cre-
ate study groups. Casting the class-level curriculum gener-
ation problem as a planning problem allows us to generate
curricula for the entire class while enabling the instructor to
specify desired properties of the curricula that needs to be
maintained. These properties may be –
- Maximum size of study groups;
- Specific assignments of students;
- No repetition (or conversely, continuation) of study part-

ners; and so on . . .
- In this paper, we specifically focus on the following prop-

erty – every student not only learns but applies all con-
cepts in the class at least once. This is especially impor-
tant in the social learning paradigm, to ensure that stu-
dents have mastered all concepts and not depended on
other students to finish a shared curriculum.

In order to achieve this, we define a planning problem with
the start state compiled from the class configuration C and
a goal state that model a class configuration where ∀Si ∶
Si(2) = {KCi} – i.e. every student has applied all the con-
cepts in class. The operators are generated from the set of
tutorials and assignments – the tutorial operator has its as-
sociated KCs as effects of being learned; while assignment
operators has KCs as preconditions (that need to be learned)
and effects (of those KCs having been applied).

This formulation3 thus not only ensures that all the stu-
dents have mastered all the concepts in the class materials
but also that the length of the curriculum is reduced (from�{Si}� times the length of the curriculum for individual stu-
dents) due to the collaborations across students who can
bring in complementary skill sets and transfer knowledge.
We provide an illustration of this in Section 5.3.

3Note that this problem may be solved by horizon-limited plan-
ning, which is known to be NP-complete, the horizon being equal
to �{Si}� times the length of the curriculum for individual students,
which is the worst case curriculum length when no groups could be
found. Thus, the jigsaw problem does not need the full expressive-
ness of CPP which is known to be PSPACE-complete.
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Figure 1: Illustration of the different stages of a “plan” being executed by a student in Dragoon – (1) the empty interface at
the start of the problem (initial state); (2) the first node being completed; (2) the second node being created; and finally (3) the
problem being completed with the feedback on the graph.

4 Introducing Dragoon
We will illustrate the above capabilities in Dragoon an
ITS developed at Arizona State University to teach dynamic
system modeling (VanLehn 2013) in the physical classroom
setting – over the course of almost half a decade of deploy-
ment, the system has served 13 courses with approximate
class sizes of 30, with more than a 1000 sessions per class.
It is an ideal testbed for studying the nuances of tutoring
systems currently deployed in classes in the space of math-
ematics, algebra and any other generic step-based tutoring
systems. Figure 1 provides a snapshot of the interface.

In dynamic system modeling, a system is a part of the en-
vironment and dynamic system is the part of the environment
that changes with time. Usually, first (or higher) order dif-
ferential equations (differentiated with respect to time) rep-
resent dynamic systems mathematically. For simplicity of
solving differential equations, time is discretized to calcu-
late the values of different quantities. A Model refers to a
representation of the system in a formal language.
Dragoon’s formal language is based on Stella’s stock

and flow network (Doerr 1996). It consists of three dif-
ferent types of quantities – (1) accumulator (quantity
that changes); (2) function (quantity that may or may not
change); and (3) parameter (quantity that remains con-
stant). These quantities are called nodes. To create a node a
student needs to define its properties – i.e. description, type,
value, units and equation. They are connected to each other
by equations called relations. Students are taught template
structure for interaction between nodes, which show partic-
ular rate of change in values called schemas – e.g. linear
schema represents linear change in values while exponential
schemas represent exponential changes. Students practice on
Dragoon through tutorial and assignment workbooks. A
detailed description of Dragoon is available at (Wetzel et
al. 2017; VanLehn et al. 2016; 2017).

4.1 The Isle Royale Workbook
We use the Isle Royale Workbook (https://goo.gl/
ECrNnt) to illustrate the proposed techniques. It teaches
students population dynamics of moose and wolf population
and learn interactions in a predator prey environment. There
are six problems in the workbook (time step is a year) –

• Isle-1 – Linear growth model of moose population, that is
constant growth of two moose.

• Isle-2 – Exponential growth model of moose population.
The problem defines a constant growth rate which is mul-
tiplied by the population in the previous time-step to cal-
culate the net growth.

• Isle-3 – Exponential growth and death model of moose
population. This problem adds the a constant death rate
and the change in moose population is defined as the dif-
ference number of moose born and died.

• Isle-4 – Exponential growth and death model of moose
population with a fixed carrying capacity of the environ-
ment which effects the moose death rate.

• Isle-5 – Exponential growth and death model of Wolf
Population. This model is similar to Isle 3 problem.

• Isle-6 – Exponential growth and death model of moose
and wolf population with constant effect of wolf (preda-
tor) population on death rate of moose (prey) and constant
effect of moose population on birth rate of wolf.

Epidemic schema is sometimes confused with exponential
schema. Thus, we use one extra problem modeling flu epi-
demic in college which spreads through meetings between
students. The number of students in the meeting and the
chance that a student is affected is assumed to be constant.

The Zener Diode Problem Most problems in Dragoon
are solved with a single or unique set of steps. The only
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thing that changes is the sequence in which nodes are cre-
ated. However, there are a few problems which can be solved
in multiple ways, where a student can change the equa-
tions in the nodes to solve the problem in lesser number of
nodes. One such problem is to model a Zener diode using
Dragoon – if a student has a more advanced understanding
of circuit theory, then they can easily solve the problem in
fewer steps (i.e. using fewer nodes). We will thus use this
problem to demonstrate the usefulness of PEM(↵).

5 ITS as Planning in Action
We will now illustrate how the techniques introduced in Sec-
tion 3 manifests themselves on Dragoon. The first step is
to construct the instructor modelMI – examples can be ac-
cessed at – https://goo.gl/cyVthK.

We used nested object types to represent different objects
in Dragoon, i.e. node, schema (KCs) and properties. Accu-
mulator, parameter and function were of type node. Linear,
exponential, extended exponential, carrying capacity and
epidemic were types of schema. Description, value, type,
equation and units are type of properties. These object types
were used to define the state variables which characterize the
properties that were part of a node, nodes that were part of
schema, and schemas that were part of the problem. The op-
erators in the domain represent the actions that are available
student in the Dragoon environment. For example, a stu-
dent fills each property to complete a node and it can be done
in a fixed order. So the operator definitions were also related
to initializing a node, filling every property of the node, com-
pleting a node and completing a schema. Students need an
understanding of the schema to fill the type and equation of
the node. Thus actions for those steps have a precondition of
has schema to create the node. Finally, the initial state con-
sists of all the nodes and schemas that are part of the assign-
ment as well as the knowledge state of the student, that is
whether they understand the schemas required to solve the
problem. The goal state required that the student complete
all the schemas that are present in a given problem.

5.1 Tips and Hints (c.f. Section 3.2)
Plan Validation Figure 2, shows the 20-step solution for
Isle-2, and Figure 1 shows some of these actions in the
Dragoon environment. Figure 2 presents the incomplete
attempt of the student being flagged as unsuccessful by the
PVM, and shows the error generated after executing the in-
complete plan in the Dragoon interface.

Plan Recognition Figure 3 shows the correct identifica-
tion by the PRM among two possible solutions of the Isle-3
assignment using the “exponential growth” schema or the
“exponential decay” schema from partial observations of
the actions of the student in Dragoon.

Landmarks Figure 4 shows the 35 state landmarks pro-
duced by the LGM for the Isle-3 assignment.

5.2 On-demand Curriculum Generation
(c.f. Section 3.3)

We use the same domain that we used in tips and hints. We
are testing the case where a student wants to solve the Isle-4

problem. Figure 5 shows the output of PEM when a stu-
dent expresses a desire to complete the Isle-4 assignment
and requests a curriculum for it. The explanation presents
the model differences in the initial state that prevents the
student from completing the assignment at this time and sug-
gests tutorials to introduce these concepts. The explanation
is of size 3, and references the missing knowledge concepts
that are needed for solving the problem in the 40 steps.

Figure 6 shows how PEM(↵) can be used to modulate the
expertise levels of the recommended curriculum. The com-
plete curriculum is of size 3 after which the problem can
be solved in 17 steps. But, with lower value of ↵, the prob-
lem can be solved with a longer 20 step plan. As explained
earlier, even though the student needs two knowledge con-
cepts to solve the problem (zener voltage regulator and kvl
schema), but to solve the optimal plan a student needs to be
an expert and improve the equations in one of the nodes and
create a better model for Zener Diode problem.

5.3 Jigsaw Problem (c.f. Section 3.4)
Here, we took an instance of a Dragoon class with 7 con-
cepts and 9 assignments. A single student curriculum comes
out as 12 steps long, with 7 tutorials and 5 assignments.
However, with the introduction of groups of two students,
this reduces to a combined curriculum of 23 steps where
every student applies every concept at least once. For ev-
ery new student, plan size increases by 11 steps, showing
that one of the assignment can be done in the group. This is
shown in Figure 7, which plots the curriculum length with
increasing class sizes. In this particular class configuration,
only one of the assignments could be done in a group.

Now we study the effect of varying class configurations
by the making assignments that randomly teach up to 4 con-
cepts. The number of concepts were fixed to 10 and there
were 20 assignments that would teach these concepts. Fig-
ure 8 shows the curriculum length for 50 different randomly
generated four student class configurations. We observe a
decrease of 3 to 7 steps in every class.

Conclusion and Work in Progress
In this paper, we demonstrated how an ITS framework can
be built using the state-of-the-art in human-aware planning
techniques for the design of course independent support fea-
tures. The last section illustrated these properties in a real
tutoring system Dragoon. Currently, we are working on in-
tegrating these features into Dragoon in order to perform
ablation studies of the system with one or more of the sup-
port components deployed in a real class. We hope to report
on those results in future iterations of the paper.
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Figure 2: Response of PVM to the correct and incorrect or
incomplete attempts in the Isle-3 problem.

Figure 3: The output of the PRM in the Isle-3 problem which
can be solved in two separate ways. Here the student seemed
to have decided to work on the exponential decay schema.

Figure 4: The 35 state landmarks generated by the LGM for
the Isle-3 problem.

Figure 5: On-demand curriculum generated by the PEM.
This is the smallest change to the student model required
to solve the Isle-4 problem.

Figure 6: Different plans and associated model updates gen-
erated by the PEM(↵) based on the ↵-hyperparameter. For
a high value of ↵ the curriculum is of size 3 after which the
problem can be solved in 17 steps. With a lower value of ↵,
the problem can be solved with a longer 20 step plan.
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Figure 7: Group versus individual curriculum lengths with
increasing class size.

Figure 8: Group versus individual curriculum lengths in dif-
ferent class configurations.
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Abstract 
This paper is about how to support, with software, the plan-
ning of marine voyages that also have to accomplish a series 
of mission tasks (MTs).  Tactical naval missions provide the 
prime example of such voyages, but civilian applications are 
by no means excluded.  Specifically, the paper considers 
how to schedule MTs automatically, both in time and in 
space, along a proposed route for the ship, so as to obey all 
the pertinent MT constraints.  These constraints can restrict 
both where and when each MT is done.  It proposes a 
greedy heuristic, Prioritizing by Maximum Procrastination 
(PMP), for selecting an order in which to do the mission 
tasks.  PMP maximizes the packing density of MTs.  It pro-
poses another heuristic, scheduleTasks, to assign a time and 
place to each MT, given a particular order for them.  Used 
together, these could facilitate the investigation of alternate 
routes for a voyage and enhance plan agility in response to 
unforeseen events and setbacks. 

 Introduction   
When planning naval missions at the tactical level, officers 
of the Royal Canadian Navy (RCN) typically consider 
three different courses of action (COAs) for accomplishing 
the mission goals.  Each COA characterizes a different 
approach to achieving these aims (Bryant 2000, DND 
2008, Bélanger 2006), so each could involve a different 
route for the RCN ships involved.  This paper suggests a 
way that software could help RCN planners prepare multi-
ple tactical COAs quickly. 

A tactical naval mission usually involves a voyage to be 
undertaken by the planners’ own ship, so a tactical COA 
should include a proposed track for that vessel.  In addi-
tion, a tactical mission will usually call on the ship to ac-
complish various key tasks. 

Naval ships engage in a broad range of activities whilst 
at sea.   For instance, they launch their organic assets, fire 
their weapons and counter those of adversaries.  Many of 
these activities require the ship to sail at a particular speed 
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or with a particular orientation to the wind or waves (e.g., 
helicopter launch).  Many require the ship to be in a partic-
ular location or at a particular range from other vessels 
(e.g., refueling at sea).  Many are compromised by extreme 
weather conditions, even to the point of becoming imprac-
tical (e.g., small boat launch).  An activity subject to these 
types of constraints is here called a mission task (MT).   

At the core of a tactical naval COA, one can expect to 
see a track annotated with markers indicating the locations 
and times for all the key MTs (Hammond 2017).  This pa-
per is about facilitating the construction of that core part, 
on the assumption that the route (p) to be taken is already 
selected by the planners.  The focus is on scheduling the 
MTs automatically, considering their constraints and de-
pendencies.  Given a maximum speed for the ship (vmax), a 
list (T) of MTs, a route (p, from arc lengths pstart to pend) for 
the ship to take, a timespan for the mission (mstart to mend) 
and a field of meteorological and oceanographic forecasts 
(W) spread over the mission area and timespan, the aim is 
to schedule all the tasks and transits between them in such 
a way as not to violate the MT constraints or exceed vmax.  

While scheduling techniques are increasingly applied to 
marine voyage planning problems (see review in Christian-
sen et al. 2013) the current focus on MTs is novel.   There 
are civilian applications, as operations like fishing, dredg-
ing, cable laying, or towing could all be called MTs.  Thus, 
the problem considered is not solely a naval one. 

Mission Tasks and Their Dependencies 
From the scheduling perspective, the most important thing 
about a particular mission task (t) is its duration (td), meas-
ured in hours.  In addition, MTs allow for an effective pro-
gress speed (ts), in knots.  The product of ts and td would 
determine the distance covered along p during the task.  It 
is assumed here that MTs must be accomplished sequen-
tially; they cannot be done concurrently, often because 
they require things of the ship itself.  Moreover, MTs can-
not be interrupted for some period and resumed later.  Af-
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ter speed and duration, the most important MT characteris-
tics are constraints.  These come in several different types.  
Precedence Constraints 
In projects of all sorts, there are typically constraints to the 
order in which tasks can be completed.  The most common 
and useful form these constraints take is defined by a fin-
ish-to-start relationship between two tasks (Hammond 
2017).  This relationship implies that one task must be 
completed before the other can start.  When MT b must 
start after the end of MT a, this is indicated here as a < b.    
Fixed Start Times 
Tactical missions often include a few MTs that are already 
scheduled by higher command.  Other MTs must not be 
scheduled in such a way as to conflict with these orders.       
Spatial Constraints 
A spatial MT constraint is always associated with a partic-
ular area, or set of areas, within which the MT must be 
accomplished. For example, to fire the ship’s guns at a 
target on land, the ship must be within artillery range of it.  
While such constraint areas are most naturally defined as 
two-dimensional regions on the surface of the ocean, for 
scheduling purposes it is helpful to project them onto the 
route p.  Doing so allows these constraints to be represent-
ed as a list of arc length intervals over which p is within 
the relevant areas.  The algorithms presented below expect 
spatial constraints to be represented with such intervals, 
which are here called ‘arc length constraints’.   
Meteorological and Oceanographic Constraints 
The fact that environmental conditions change with time 
poses a challenge to voyage planning.  On the one hand, 
one cannot determine which forecasted conditions (in W) 
will be encountered along p until one has a schedule for the 
trip.  On the other hand, one cannot properly schedule that 
trip without knowing what conditions will be encountered.  
One way to address this conundrum is to start by assuming 
that the projected conditions at the start of the mission, 
namely at time mstart, will remain unchanged.   

Assuming fixed conditions allows any environmental 
constraints that limit where a particular MT (a) can be 
done to be converted into a set of arc length intervals on p, 
during which a can be accomplished.  These arc length 
intervals can then be used, along with other relevant con-
straints, to schedule the tasks and the traversal of p.   

Thereupon, the assumption of constant conditions can be 
relaxed, since the track just computed can be used to revise 
the conditions (from W) that will be encountered along p, 
yielding a new set of constraint intervals.  These new in-
tervals are then used to revise the schedule, and so on.  
Iterating back and forth in this manner, until the changes in 
the track schedule are acceptably small, will yield a sched-
ule that accounts for changing environmental conditions.  
By employing such an iterative process, environmental 
constraints can be treated as arc length constraints.  

Approach to the Problem 
This paper assumes that RCN planners want to conserve 
fuel, in order to stay in the key mission space longer.  Pro-
vided that the mission is not full of slack time (in which 
case it should be shortened or have more MTs added), a 
good way to conserve fuel is to minimize the maximum 
steaming speed between MTs (vtop), as fuel consumption 
per unit distance is generally proportional to the second 
power of sailing speed (Christiansen et al. 2013).  Note 
that, unlike vtop, the average steaming speed (vreq) is fixed: 
𝑣𝑟𝑒𝑞 =  (𝑝𝑒𝑛𝑑 − 𝑝𝑠𝑡𝑎𝑟𝑡 − ∑ 𝑡𝑠𝑡𝑑𝑇 ) (𝑚𝑒𝑛𝑑 − 𝑚𝑠𝑡𝑎𝑟𝑡 − ∑ 𝑡𝑑𝑇 )⁄   
Thus, the scheduling objective is to keep vtop as close to vreq 
as possible, while still accomplishing all the MTs. 
 The scheduling problem is divided into two parts: decid-
ing on an order in which to do the MTs and then schedul-
ing them in that order, both in time and in position along 
the route p. Both parts employ a shift operation to handle 
arc length constraints, so this will be introduced first. 
The shift Operation 
This section describes the shift operation with reference to 
Fig. 1, which has two panels separated by a horizontal line.  
These panels depict the distance covered along p during a 
particular task (ts × td) with a red segment and arc length 
constraints to that task with blue ones.  The side labelled 
Start shows the situation before the shift, while the side 
labelled Finish gives the result.   In each panel, the extent 
of the desired shift is indicated with a black segment, with 
vertical endpoints.  This extent defines the minimum dis-
tance that the red interval will be shifted.  

The idea of the shift operation is that the red segment is 
confined to lie above the blue ones.   In the top panel, after 
sliding the red segment to the right by the specified extent 
amount, the shifted segment still lies above the blue ones, 
so that is the result.  In the bottom panel, however, the ini-
tial shift would not place the red segment above the blue 
intervals. Thus, the red segment keeps sliding further to the 
right, until a blue interval long enough to accommodate it 
is found.  If no suitable spot is available, shift returns null.  
Note that a shift to the left can be specified by a negative 
value for the extent, and this works as if in mirror image.   

 

 

 

 

 

Fig. 1.  This figure depicts the results of the shift operation in two 
cases (top and bottom).  In each, the location of the red segment 

before the shift is indicated at left and after at right.   
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Choosing an MT Sequence 
This section suggests an approach to choosing an order in 
which to perform the mission tasks.  A bad order can not 
only induce unnecessary haste in transit, it can jeopardize 
the crew’s ability to accomplish some of the mission tasks.  
This risk is reduced by maximizing the MT packing densi-
ty, as doing so leaves as much route space and mission 
time available to remaining tasks as possible.   
 The approach follows a technique for dealing with prec-
edence constraints suggested by Lawler (Lawler 1973).  
That technique builds the schedule back to front (from last 
MT to first), considering just the set of MTs that no others 
depend on (MT b depends on MT a, if a < b).   Looking 
just over that set, the procedure chooses the MT that can be 
‘slid back furthest’, both towards the end of p and towards 
the end time of the mission, and schedules that task (tmax) 
to be done last.  Then it clips off p (by setting an arc length 
limit (pend)) at the (slid) start location of tmax and advances 
the mission end time (mend) to the start time of tmax.  There-
upon it simply repeats the process, considering at each step 
only the MTs that no other unscheduled MTs depend on.  
Repetitions continue until the MT to be done first is clear 
by elimination. 

It remains to clarify just how ‘slid back furthest’ is 
measured, as there are a few details to this.  Sliding mis-
sion tasks back like this seems a bit like procrastination. 
From this perspective, the strategy selects to do last the 
MT that permits the most procrastination, hence the name: 
Prioritizing by Maximum Procrastination (PMP). 

The next few paragraphs add some precision to the con-
cept of sliding MTs back, both in time and along p.   In 
these paragraphs MTs are divided into two categories: 
those with starting time constraints and those without.  
Naturally, an MT (t) with constrained start time cannot be 
slid in time at all, but it can still be slid towards the end of 
p.  Just how far depends on whether or not it is also spatial-
ly constrained.   

If t does have arc length constraints, then the shift opera-
tor is used to determine how far this MT can be slid to-
wards the end of p.  The slight twist in this process is that 
the red interval (of Fig. 1), with length given by the prod-
uct of t’s duration and speed, is slid in from the right (using 
a negative shift extent).  Also, the arc length constraints are 
limited (by intersection) to the interval from pstart to pend.  If 
the shift result is null, it is not possible to schedule the MTs 
in question.  Note that the route will be clipped at the left 
endpoint of the shift result.   

If t has a fixed start time but no arc length constraints, 
then how far it can be slid towards the end of p is deter-
mined by how far the ship can get when travelling from the 
start of p at vmax until the start time of t (naturally, it is also 
limited by the end of p).   This calculation must account for 

the time spent doing the other as-yet unscheduled MTs and 
for the distance covered during them.  

MTs without a fixed start time come in two types: with 
spatial constraints and without them.  For the former type, 
the shift operator is used, once again, to find how far they 
can be slid towards the end of p.  This works by sliding 
each task interval in from the right, just as above (also limit 
the arc length constraints to the interval from pstart to pend).  
Denote the right limit of the shift result for MT t by ptend.  
To find how long t can be delayed, compute the time it 
takes to get from ptend to pend at vmax.  Subtract that time 
from the current mission end time mend, yielding the end 
time tend for t.  Then, of course, the start time tstart is given 
by tend - td.  For the latter type (with no spatial constraints), 
note that these can be slid all the way to the end of p and 
all the way to the end time too.    

Once it has been determined how far each MT can be 
slid, in both space and time, each is assigned a score.    For 
MT t, this score depends on its right spatial endpoint ptend 
and on its right temporal endpoint tend after the slide.  It is 
given by the product of (ptend – pstart)/(pend – pstart) and  
(tend – mstart )/(mend – mstart).  This score gets larger, the 
closer the task gets to the end of p, but it is always below 1.       

Normally, PMP will choose as tmax the MT with highest 
score, but there are two exceptions.   The first exception 
clarifies that tied scores are broken by looking at the dura-
tion and length of each tied MT t.  For MT t, the tiebreak-
ing score is given by 1-(1-td/(mend – mstart))(1-(td× ts)/(pend – 
pstart)), where again higher scores are treated as better.  
Managing MTs and their scores is facilitated by placing 
them in a priority queue data structure (ScoreQ), in which 
higher scores go first and the tiebreaking rule is consid-
ered.  The second exception is a bit more complex. 

A given MT (t), can only be chosen as tmax, if all the oth-
er as yet unscheduled MTs can be ‘slid clear’ of its start 
time and start position.  An unallocated MT cannot be ‘slid 
clear’ of t, if either its earliest possible finish time is not 
before the latest start time (tstart) of t, or its first potential 
finish arc length position along p still is not less than the 
slid start arc length position (ptstart) of t.  Thus ‘slid back’ 
and ‘slid clear’ have analogous meanings.   Whenever an 
unscheduled MT is found that cannot be slid clear of t, 
PMP will move on to next MT in ScoreQ.  If necessary, 
PMP will continue moving down the ScoreQ until an MT 
is found to meet the ‘slid clear’ condition.  If none can be 
found, PMP will declare the mission to be impossible. 

It can be shown that the runtime for PMP is O(n2log(n)). 

PMP with a Backtrack Stack 
With minor modification, PMP can recover from order 

decisions that are subsequently found to fail, by recording 
key state variables on a backtrack stack object after every 
choice of tmax.  The key objects to record are copies of the 
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ScoreQ, of which MTs are already scheduled, of which 
remain, and of pstart, pend, mend, and mstart.  Recording a copy 
of the terminal MTs, which are the unallocated ones with 
no dependents, is also helpful.  Whenever a given ordering 
choice is found to fail, popping these objects off the back 
track stack allows the algorithm to revise a previous deci-
sion and then resume scheduling from there, following the 
PMP heuristic.  If necessary, such back tracking could run 
through all the possible MT orders, in order to find a feasi-
ble schedule.  The worst case run time is O(n!), but sched-
uling failure is avoided.  This method is denoted here by 
PMPwBTS. 

Scheduling Tasks in a Specific Order 
This section describes a recursive procedure  
(scheduleTasks) for tackling the simplified scheduling 
problem, where the order in which the MTs are to be com-
pleted has already been decided.  When successful, the 
procedure returns a schedule for the mission in which the 
ship will not exceed vmax (the maximum ship speed, in 
knots) on any of the legs of the journey. Note that MT con-
straints can force the ship to go faster than vreq (the average 
steaming speed).  The key idea is that repeated calls to 
scheduleTasks, with values of vmax  set progressively closer 
to vreq by one knot (so long as there is continued success), 
provide a simple mechanism for determining how low the 
maximum speed vtop can get, to the nearest knot. 

The arguments of scheduleTasks are as follows: vmax, an 
ordered sub list (T2) of T (as would be given by the output 
of PMP), a sub route of p (defined as an arc length interval 
from pa to pb (in nautical miles)), a timespan (ma to mb (in 
hours after mstart)) contained within the original mission 
duration, and an integer named adjustLevels (which limits 
schedule adjustments).   

Now scheduleTasks calls itself, so it must provide an es-
cape from endless recursion. This exit is provided by emp-
ty task list situation.  If the MT list T2 is empty, sched-
uleTasks, checks whether the transit of pa to pb can be ac-
complished in the timespan from ma to mb without exceed-
ing vmax.  If so, it returns a schedule for the transit; if not, it 
returns an “insufficient time” error message.     

When things go wrong, the scheduleTasks procedure in-
dicates errors of two types: “insufficient time” and “insuf-
ficient space”.  The former type indicates that there is not 
enough time to accomplish all the desired activities, while 
the latter indicates that the arc length constraint to some 
task is not met.   

When the MT list T2 is not empty, the scheduleTasks 
procedure will try to schedule the very first mission task (t) 
in the list T2.  It will do so using the scheduleFirstTask 
subroutine, described in more detail below.  Note that it 
may prove impossible to schedule t, in which case  

scheduleTasks will terminate, passing on the error message 
from its subroutine.  If scheduleFirstTask is successful, it 
will propose a schedule with the following parameters: let 
tstart to tend be the proposed time interval for MT t, and let 
ptstart to ptend be the corresponding arc length interval pro-
posed for t on the route p.  The key idea is that sched-
uleTasks will now call itself recursively twice, once for the 
transit before t and once for events after.   

This paragraph provides more detail about the two re-
cursive calls in scheduleTasks.  The first of these is made 
with the following arguments: vmax, an empty MT list, an 
arc length interval from pa to ptstart, a time interval from ma 
to tstart, followed by the integer adjustLevels, which is not 
altered. The second recursive call has the following argu-
ments: vmax, the remaining tasks after t (T2 - t), the remain-
ing route (ptend to pb), the remaining time interval (tend to 
mb).  The integer adjustLevels is also passed on unaltered.  
If both calls return without error, then the routine will re-
turn the amalgamated schedules for before, during and 
after t. If there are errors, the routine does not give up, pro-
vided that adjustLevels > 0. 

If either recursive call returns with an error message, 
then scheduleTasks will look at the value of adjustLevels.  
If this value is 0, the procedure gives up, returning an error 
message.  If adjustLevels > 0, however, it will attempt to 
reschedule t, according to the particular error messages 
returned.  This is accomplished with a subroutine called  
adjustTaskSchedule, which will reset tstart, tend, ptstart and 
ptend, as described in more detail below. If t can be re-
scheduled, the two recursive calls to scheduleTasks are 
repeated, as above, only with the newly revised values for 
tstart, tend, ptstart and ptend and with the adjustLevels value 
reduced by one.  Thus, nested schedule adjustments are 
limited to the number recursion levels specified by ad-
justLevels.  Attempted schedule adjustments continue until 
either no further adjustments are possible (a situation indi-
cated by the return value of adjustTaskSchedule) or the two 
recursive calls both return without error.  In the former 
case, scheduleTasks will return an amalgamated error mes-
sage, in the latter an amalgamated schedule.  

The scheduleFirstTask and adjustTaskSchedule subrou-
tines will shortly be described in detail.  Their description 
will complete the specification of scheduleTasks.  Both 
subroutines rely on the shift operation to deal with spatial 
constraints. 

Scheduling the First Mission Task 
This section describes the scheduleFirstTask subroutine, 
which takes the following arguments: vmax, T2, pa, pb, ma 
and mb, all defined as above.  Like scheduleTasks, it can 
return “insufficient time” and “insufficient space” errors.  
In addition, the subroutine sets four flags associated with t; 
these are called canDelay, canAdvance, canPull, and can-
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Push. These flags constrain any future adjustments to the 
schedule for t that might be needed. The first, canDelay, 
indicates that, if need be, t could be delayed in time.  The 
second indicates that t could occur earlier.  The remaining 
two indicate whether t could be pulled forward or pushed 
back (respectively) along the route p.   

To start off, scheduleFirstTask checks whether there is 
enough time to accomplish all the MTs in T2 as well as 
make the transit from pa to pb. This is done by computing 
the travel speed required (vreq), after allowing for all the 
time spent on the MTs and for any progress along p made 
during them.  If vreq > vmax, scheduleFirstTask will return 
an “insufficient time” error message.    Otherwise, it will 
extract the very first task (t) from T2.  The primary objec-
tive is to set the schedule variables for t, namely tstart, tend, 
ptstart and ptend, all defined as above.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  This figure shows how the first MT is scheduled, in both 
time and space, in four cases given by its constraints. It also indi-

cates how the adjustment flags are set in each case.  

The schedule proposed for t and the settings for the 
canDelay, canAdvance, canPull, and canPush flags depend 
on the particular constraints of t, as illustrated in Fig. 2. 

Rescheduling a Mission Task 
Rescheduling MTs is the role of the adjustTaskSchedule 
subroutine, which also indicates, in its Boolean return val-
ue, whether or not adjustments were possible. Naturally, 
this subroutine needs to know which task t it is adjusting.  
It needs the latest schedule for t, which is defined by tstart, 
tend, ptstart and ptend.  It needs the interval endpoints pa, pb, 
ma and mb.  In addition, it needs to know the error messag-
es from the two latest recursive calls to scheduleTasks.  

The idea is to use these messages and the flags (canDelay, 
canAdvance, canPull, and canPush) to guide the resched-
uling effort.   

The procedure also has some configuration parameters.  
Just how much the timing of t would be advanced or de-
layed in time is governed by a setting called tby.  Just how 
much the position of t along p would be pushed or pulled is 
governed by another setting called by.  Both settings are 
positive real numbers.  The smaller these settings get, the 
greater the chance of finding a suitable scheduling result, at 
the cost of increased run time.  Parameters by and tby can 
be regarded as the resolution of the resulting schedule.  For 
example, if tby is 0.5, schedule adjustments smaller than 30 
minutes will not be considered. 

Temporal adjustments to the schedule for t are made by 
adding tby to tstart, in the case of a delay, and by subtracting 
tby from tstart, in the case of an advance.  Then tend is given 
by tstart + td.  It is important to check that these new times 
are still in the interval from ma to mb.  If not,  
adjustTaskSchedule will abort, indicating that no adjust-
ments are possible.  If the new schedule for t is still within 
ma to mb, then the routine returns with it, reporting success. 

Spatial adjustments to the task schedule are accom-
plished using the shift operator.   The starting interval (red 
in Fig. 1) in these shift calls is always ptstart to ptend.  If t has 
spatial constraint intervals, then the intersection of these 
with the arc length interval from pa to pb is used to con-
strain the shift (see the blue intervals in Fig. 1).  If t has no 
spatial constraint, then the shift constraint is the entire in-
terval from pa to pb. The extent of the shift is +by, when 
pushing the task back along p, and –by, when pulling the 
task forward. Note that shift results can be null, in which 
case adjustTaskSchedule will abort, indicating no adjust-
ments are possible.  If there is a valid shift interval result, 
denote its left endpoint by pfirst. Set ptstart to pfirst and ptend to 
pfirst+ td× ts and return with this new schedule, indicating 
success. 

Whenever a schedule adjustment is made, whether spa-
tial or temporal, the flag for the opposite adjustment is al-
ways set to false.  For instance, if the task is delayed in 
time, then canAdvance is set to false.  Conversely, if the 
task is advanced in time, then canDelay is set to false.  
This is to prevent adjustTaskSchedule from reversing its 
previous changes. 

It remains to specify in what situations t will pushed, 
pulled, advanced or delayed, as well as when no further 
adjustments are possible.  These situations are illustrated in 
Fig. 3.  That figure shows MT duration in red and distance 
covered during the MT in dark blue. 
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Fig. 3.  At bottom left (BL), this figure shows how the possible 
error messages before and after a particular MT guide schedule 
adjustments. The legend at top right (TR) provides the error sym-

bols.  The requested adjustments (after the hollow arrow) are 
made, unless this is prevented by conditions at TL or BR.     

Runtime 
This section discusses the runtime of scheduleTasks as a 
function of n, the number of MTs.  Much depends on the 
need to call adjustTaskSchedule.  In the ideal case, when 
no adjustment is needed at all, scheduleTasks will run in 
O(n2).  More generally, the finer the spatial and temporal 
resolution of the schedule (see by and tby), the more calls 
to adjustTaskSchedule will tend to be made.  As a result, 
the worst case run time is O(n2(is+it)adjustLevels), where is is 
inversely proportional to by and it to tby.  Note that  
scheduleTasks avoids run times that are exponential in n by 
limiting nested schedule adjustments.   These may not oc-
cur on more recursion levels than given by adjustLevels.     

Test Case Results 
This section gives a few test case results, to suggest what 
can be expected from applying the heuristics. In all exam-
ples, the maximum ship speed vmax is 30 knots.  In the first 
three test cases, the voyage lasts 24 hours and the route p 
has length 300 NM. Also, adjustLevels is set to 5. 

Scenario 1 
Suppose there are just two MTs.  The first, A1, has dura-
tion 7.5 hours and allows progress on p at 10 knots.   It has 
the following arc length constraints in NM: [[10.0, 80.0], 
[90.0, 180.0], [195.0, 285.0]].   The second, A2, lasts one 
hour, allows progress on p at 5 knots, but has to start exact-
ly 10.51 hours into the mission.  If the tasks are done in the 
order [A1, A2], scheduleTasks can produce a schedule, 
provided the configuration parameters are set suitably. 

If the temporal resolution (tby) is not below about 0.02, 
scheduleTasks will suggest the mission above is impossi-
ble.  Setting tby to 0.01 and by to 3, however, reveals that 
this suggestion is exaggerated.  It also reveals the source of 
trouble: the ship is forced to go very fast, as indicated in 
Table 1. 

 Table 1.  Scenario 1 schedule with MT order [A1, A2]. 

Mission Schedule 

Task Time window 
(h) 

Arc length interval 
(NM) 

Speed 
(KTS) 

Sail leg 0 [0.0, 3.0] [0.0, 90.0] 29.99 

A1 [3.0, 10.5] [90.0, 165.0] 10.0 

Sail leg 1 [10.5, 10.51] [165.0, 165.09] 10.4 

A2 [10.51, 11.51] [165.09, 170.09] 5.0 

Sail leg 2 [11.51, 24.0] [170.09, 300.0] 10.4 

 
Here, PMP would suggest doing A1 after A2, because 

A1 can be slid well past the fixed end time of A2.  Running 
scheduleTasks with this suggested MT order results in the 
less hectic cruise indicated in Table 2.  These tables illus-
trate how a poor choice of MT order can induce unneces-
sary haste in transit, and thus waste fuel. 

Table 2.  Scenario 1 schedule using the suggested MT order. 

Mission Schedule 

Task Time window 
(h) 

Arc length interval 
(NM) 

Speed 
KTS 

Sail leg 0 [0.0, 10.51] [0.0, 149.17] 14.19 

A2 [10.51, 11.51] [149.17, 154.17] 5.0 

Sail leg 1 [11.51, 14.39] [154.17, 195.0] 14.19 

A1 [14.39, 21.89] [195.0, 270.0] 10.0 

Sail leg 2 [21.89, 24.0] [270.0, 300.0] 14.19 

Scenario 2 
This mission has three MTs: B1, B2, and B3.  All three last 
5 hours.  B3 allows progress on p at 5 knots, but the other 
two allow 10 knots. All have the same arc length con-
straints: [[30.0, 60.0], [80.0, 180.0]].  scheduleTasks claims 
that doing these MTs in the order [B1, B2, B3] is impossi-
ble.  In this case, no amount of fiddling with settings will 
change the result because it’s true.  Here, PMP would sug-
gest reverse order [B3, B2, B1], after invoking its score 
tiebreaker rules.  Using that order, tby = 0.5 and by = 1.0, 
scheduleTasks yields the schedule in Table 3. 

 

 

 

 

42



Table 3.  Scenario 2 schedule using suggested MT order. 

Mission Schedule 

Task Time window 
(h) 

Arc length interval 
(NM) 

Speed 
(KTS) 

Sail leg 0 [0.0, 1.54] [0.0, 30.0] 19.44 

B3 [1.54, 6.54] [30.0, 55.0] 5.0 

Sail leg 1 [6.54, 7.83] [55.0, 80.0] 19.44 

B2 [7.83, 12.83] [80.0, 130.0] 10.0 

B1 [12.83, 17.83] [130.0, 180.0] 10.0 

Sail leg 2 [17.83, 24.0] [180.0, 300.0] 19.44 

Scenario 3 
This scenario illustrates the value of PMP’s ‘slid clear’ 
provision.  Let MT C1 have duration 5 hours, permit pro-
gress at 5 knots, and have arc length constraint [[240.0, 
270.0]].  Let MT C2 have duration 10 hours, and permit 
progress at 5 knots, with no other constraints.  C2, being 
unconstrained, can be slid back further along p than C1. 
Thus, considering the score alone would suggest the order 
[C1, C2], an order than cannot be made to work.  The 
problem is that C1 cannot be ‘slid clear’ of the latest start 
position of C2.  Thus, PMP would suggest the order [C2, 
C1], which is readily seen to work. 

Scenario 4 
For this scenario and the two simulation experiments that 
follow, the voyage was lengthened to 72 hours and the 
route to 900 NM. 
 PMP can fail, even though a valid schedule exists.  Con-
sider three MTs called F1, F2 and F3.  Let F1 last 2 hours 
at speed 5 knots, start 31.8 hours in and be confined to the 
interval [150, 179.4].  Let F2 last 2.5 hours at a speed of 1 
knot and be confined to [[230, 240], [270, 504]].  Let F3 
last 3.5 hours at speed 3 knots and start 35 hours in.  PMP 
will pick F3 to go last, which fails.  In fact, the only way to 
accomplish this mission is in the order [F1, F3, F2]. 

Simulation Experiment 1 
In the first experiment, several tactical missions were 
simulated, each with ten MTs.  These MTs had randomly 
generated parameters and constraints.  Each had a random 
duration in the interval from [0.5, 4.5] hours, and a random 
speed in the interval from [1.0, 6.0] knots.  Each had a 50% 
chance of having a spatial constraint formed by the inter-
section of a random interval with [[30, 120], [150, 240], 
[270, 600], [660, 890]].  That random interval had mini-
mum in [0, 300] and maximum in [300, 900].  Each had a 
5% chance of having a fixed start time, selected at random 
in the [12, 60] hour interval.  Each also had a 90% chance 

of having a precedence constraint, selected randomly from 
among the previously-generated MTs in the same mission.  

Tactical missions were simulated until 100 missions 
were found to have a feasible schedule.  Such a schedule 
was identified by trying scheduleTasks (with adjustLevels 
=5, tby = 0.25 and by = 0.5) on all the possible MT orders, 
until one was found to work.  The MT order that produced 
the lowest value of vtop was denoted by ExhaustiveSearch. 

PMP, PMPwBTS and a brute force approach called 
First2Work (which tries different task orders until one is 
found to produce a schedule) were all compared to the re-
sults of ExhaustiveSearch.  The first three of these methods 
used scheduleTasks, with adjustLevels =5, tby = 0.5 and by 
= 1.0.  Note that the last two values were double those used 
by ExhaustiveSearch. 

On these simulated data, PMP had a success rate in find-
ing a schedule of 97%, while the other methods were al-
ways successful.  The average run time was 0.2 ms for 
PMP, 129.8 ms for PMPwBTS, and 953.3 ms for 
First2Work.  The average top speed (vtop) for PMP (when 
successful) was 17.6 KTS and PMPwBTS produced identi-
cal results in those situations.  Comparable results for 
First2Work were 18.3 KTS and 17.2 KTS for Exhaus-
tiveSearch.  Overall, PMPwBTS kept the top speed down 
to 17.9 KTS, whereas First2Work had 18.5 KTS, as com-
pared to 17.5 KTS from ExhaustiveSearch.  The smaller 
values of by and tby used in ExhaustiveSearch, as com-
pared to PMPwBTS or First2Work, never prevented 
scheduleTasks from finding a valid schedule. 

Simulation Experiment 2 
The second experiment increased the number of simulated 
MTs in each mission to 40.  In addition, the duration of 
each MT was fixed at 0.5 h and the speed during it was 
fixed at 10 KTS.  The probability of having a fixed start 
time was also reduced to 2.5%.  Otherwise the MT con-
straints were simulated as in the previous experiment.   

Simulations were produced until there were 50 for which 
a valid schedule could be found by PMP and sched-
uleTasks, the latter with adjustLevels =10, tby = 0.5 and by 
= 1.0.  The experiment looked at using different values of 
for adjustLevels, in the interval from 1 to 5, to see if lower-
ing these values would change the schedule results.   

In 4 cases out of 50, lowering adjustLevels to 1 prevent-
ed a schedule from being found.  In a further six, that level 
changed the resulting schedule, leading to a higher vtop.    In 
two cases, a value of 2 for adjustLevels similarly changed 
the schedule, increasing vtop.  In no case did a value above 
2 change the schedule result, compared to that from  
adjustLevels =10. 
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Conclusion 
This paper described two heuristics for addressing a  
scheduling problem that arises in marine voyage planning.  
The situation to which they are applicable involves MTs.  
These can be regarded as tasks that interrupt the trip.  The 
original inspiration for the problem was tactical naval 
planning, but other applications are possible.  

Prioritizing by Maximum Procrastination (PMP)  
suggests an order in which the MTs should be done, given 
their temporal, precedence and arc length constraints.  It 
handles the precedence constraints by building the sched-
ule back to front.  It works by repeatedly choosing to do 
last the as-yet-unscheduled MT that permits the most pro-
crastination.  It runs in O(n2log(n)), where n is the number 
of MTs.  As a modified greedy algorithm, it is not guaran-
teed to produce a workable order, even when one exists 
(see Scenario 4).  The results of simulation experiment 1, 
however, suggest that PMP is fairly robust (at least with 10 
MTs), since it successfully produced a schedule in 97% of 
simulated missions.  PMPwBTS can fill in where basic 
PMP fails, but at the cost of O(n!) worst case run time 
(nothing close to this worst case arose in the experiment).   

Using PMPwBTS yielded improved run time and lower 
values for maximum speed (vtop) than First2Work (which 
used a brute-force search over all possible MT orders, 
stopping at the first to yield success).  PMP’s advantage 
indicated that procrastination has more benefits than is 
commonly realized.  Still, broad reliance on these benefits 
should await comparison of PMP with tools based on 
mixed integer or constraint programming (for example 
Laborie and Messaoudi 2017). 

scheduleTasks determines a time and place to do each 
MT, given an order in which to do them.  Its output looks 
like the tables above.  As illustrated in Scenario 1, it is 
possible for scheduleTasks to fail to find a workable 
schedule, though one exists, because by or tby are not set 
low enough.  Though such situations could arise in theory, 
in practice, the results of Simulation Experiment 1 suggest 
that by could be increased from 0.5 to 1.0 and tby from 
0.25 to 0.5 with no effect on results.  Results may thus be 
robust to small changes in these parameters. 

The value of the adjustLevels parameter could also have 
an effect on the results of scheduleTasks.  This parameter 
limits the number of recursion levels at which schedule 
adjustments are permitted.  Simulation experiment 2 
showed that schedule results are insensitive to values 
above 2, even with 40 MTs.  Thus, using a value of 3 
should be adequate in practice.  This is important because 
the worst case run time of scheduleTasks is 
O(n2(is+it)adjustLevels).        

Both heuristics assumed that meteorological constraints 
could be translated into constraints on arc length.  This 
translation relies on an iterative procedure that has not 

been demonstrated in practice.  Indeed, neither of the heu-
ristics has been tested on real missions, so this work is at a 
preliminary stage.  Still, on the example problems, the re-
sults suggest a potential for automating tasks that are cur-
rently done manually. 

The two suggested heuristics open the door to optimiza-
tion of the route p for various goals, total fuel consumption 
being but one possibility.  One could optimize the route, 
while simultaneously ensuring all the MTs can be accom-
plished.  Existing route suggestion algorithms for ships do 
not consider MTs (Hammond 2017), so the ideas suggested 
here raise new possibilities.   

In the voyage planning context, the greatest value of au-
tomated scheduling may be revealed when plans do not go 
as expected.  Setbacks, delays and unforeseen events are 
almost inevitable, especially in a military conflict.  It will 
be essential to revise the plan, and how fast this can be 
done can be important in responding effectively.  It is like-
ly that the new plan will still need to achieve most, if not 
all, of the same MTs.  To the extent that MTs and their 
dependencies remain relevant, automated scheduling has 
the potential to facilitate and speed up plan revision. 
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Abstract
Agile Earth observation satellite (AEOS) scheduling is com-
plex, due to long visible time windows and time-dependent
transitions between observations. We introduce a generic ap-
proach suited for scheduling problems characterised by time-
dependency and/or sequence-dependency. Our approach is a
novel hybridization of adaptive large neighbourhood search
(ALNS) and tabu search. We further introduce partial se-
quence dominance and insertion position ordering operators
to the ALNS. Extensive computational results on a real-world
multi-orbit AEOS observation scheduling benchmark show
that the hybrid ALNS robustly outperforms an improved
mixed integer programming model and two recent state-of-
the-art metaheuristic methods. The proposed method increas-
es solution quality by more than 10% and reduces calculation
time by more than 70% on average.

Introduction
Agile Earth observation satellites (AEOSs) are a new gen-
eration of orbital imaging platforms, possessing three de-
grees of freedom (roll, pitch, yaw), which enables them to
observe targets on the Earth’s surface before/after an upright
pass and next to/along the path (Maillard 2015). This agility
greatly enhances the observing abilities of AEOSs.

Scheduling the operation of AEOSs is complex due to
long visible time windows (VTWs), and time-dependent
transitions. During the VTW the target is visible for the
satellite. AEOS VTWs are much longer than the neces-
sary imaging time; target imaging can start anywhere with-
in its VTW. During the transition time, the satellite adjust-
s its observing angle between two adjacent observations.
This transition time is not only sequence-dependent, but also
time-dependent because it depends on the observing angles,
which differ for different observation start times. In addition,
the observation start time also influences the image quality.
The best image quality can be acquired when the satellite is
at the nadir, i.e., the middle of the VTW. AEOS scheduling is
an NP-hard combinatorial optimization problem (Lemaı̂tre
et al. 2002).

Research on the offline AEOS scheduling problem can be
divided into the Maximum Shot Orbit Sequencing Problem
(MSOP) and the Maximum Shot Sequencing Problem (M-
SP) (Lemaı̂tre et al. 2002). MSOP aims to select the images

Copyright c� 2018. All rights reserved.

with maximum total priority from a single orbit of one satel-
lite and determine the observing sequence and the observing
times without violating constraints. MSP is more complex
and realistic. In addition to selecting the image-taking tasks,
we must also decide which VTWs are chosen out of sever-
al consecutive orbits. These two decisions are dynamically
coupled rather than procedurally separated.

Due to the complexity of the MSP, there exist few exact
algorithms. Bianchessi et al. (2007) propose a column gener-
ation method to solve a linear programming (LP) relaxation
of the problem. Wang et al. (2011) propose a mixed inte-
ger programming (MIP) model, where the continuous obser-
vation angle is discretized as only three angles. As a result
of this approximation, the solution space is reduced and the
transition time can be pre-computed. Both methods can only
be used in small-size instances. Besides exact algorithms, a
variety of metaheuristics and heuristics have been applied to
MSP, including tabu search (Lin et al. 2005; Bianchessi et
al. 2007), simulated annealing (Dilkina and Havens 2005;
Li, Xu, and Wang 2007), genetic algorithms (Wolfe and
Sorensen 2000; Li, Xu, and Wang 2007), hybrid differen-
tial evolutionary algorithms (Li et al. 2017) and priority-
based constructive algorithms (Wolfe and Sorensen 2000;
Wang et al. 2011; Xu et al. 2016). However, all the above
works neglect the transition time, fix it as a constant value,
or simplify it as a sequence-dependent time.

The only works on MSP with time-dependent transition
time to date are by Geng et al. (2016) and Liu et al. (2017).
Geng et al. (2016) propose a genetic algorithm and only
briefly treat the time-dependency. They also ignore the con-
straints of image quality, onboard memory and onboard en-
ergy. Liu et al. (2017) first define a mathematical model that
is non-linear due to the time-dependent constraints. Then, in
order to use LP, the authors linearize and simplify the M-
SP into two separate subproblems: all feasible VTW com-
binations are enumerated, then, for each combination, LP is
used to obtain the optimal schedule. The transition time is
fixed as a constant, a major approximation, but even so the
approach could not solve instances involving more than 12
tasks. Therefore, the authors propose a metaheuristic based
on adaptive large neighbourhood search (ALNS) combined
with a fast task insertion heuristic. The angles in VTWs are
pre-computed and cached. The ALNS method performs well
for small-size instances, while when the problem instance
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grows in size, the solution quality deteriorates and the com-
putation time grows.

In this paper, we investigate the time-dependent multi-
orbit AEOS observation scheduling problem. The major
contributions of this paper are summarized as follows:

1. For the first time, a complete MIP model is defined. Com-
pared with the two-stage mixed integer linear program-
ming (MILP) model in Liu et al. (2017), our model avoids
enumerating all VTW combinations. The time-dependent
onboard energy constraints are also considered. The new
MIP model scales better and is more realistic.

2. An improved ALNS is hybridized with tabu search. Our
novel hybrid approach provides results with higher quali-
ty and robustness and consumes less time compared with
state of the art. The tabu mechanism helps the ALNS to
avoid searching recently visited solutions.

3. A partial sequence dominance heuristic is proposed,
which can help to collect and use the in-process infor-
mation that is neglected in standard ALNS. It greatly im-
proves the performance of ALNS, especially when the
problem instance grows in size.

4. A position ordering heuristic is included in the task in-
sertion algorithm. This strategy explores more insertion
positions following an ascending order of possible transi-
tion times to save time and energy resources and increase
the possibility of successful insertion.

Problem Description
The time-dependent multi-orbit AEOS observation schedul-
ing problem aims to select a number of tasks from sever-
al consecutive orbits and determine the observing sequence
and the observing times without violating technical con-
straints. We define a task t

i

as one image or target to observe
from the users’ task list T . Each task corresponds to a small
area on the Earth’s surface that can be observed in one pass.

We account for but simplify the onboard memory and en-
ergy constraints. We assume that the memory and energy
used during each orbit cannot exceed an upper bound to sim-
ulate these orbit-renewable resources.

We firstly introduce notation and provides an angle-fitting
method to represent the time-dependent transition time in
the MIP model. Then we define the MIP model itself.

Time-dependent transition time
According to Liu et al. (2017), the image quality q

i

of task
t
i

must be higher than its required minimum image quality
c
i

. The image quality is a function of u
ij

, the observation
start time in the jth VTW w

ij

of t
i

, and can be calculated
according to the following equation:

q
i

= 10� 9
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where v

ij

is the observation end time of t
i

in w
ij

, d
i

is the
observation duration, v

ij

= u
ij

+d
i

, l
ij

is the length of w
ij

,
and w⇤

ij

is the nadir time of w
ij

.

In Liu et al. (2017), the quality of an image was treated as
a constraint, requiring the image quality to be higher than a
user-specified minimum value. In our paper, we use Eq. (1)
to prune parts of the VTWs to reduce the solution space and
increase the accuracy of angle fitting, which enables us to
build our MIP model.

According to (1) and q
i

� c
i

, the feasible interval of ob-
servation start time is within the original VTW, represented
by b⇤

ij

and e⇤
ij

:
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The exact VTWs and the observing angle sequences for
tasks are computed before solving the actual scheduling
problem. This pre-processing phase takes the satellite’s po-
sition, the task’s position as well as the Earth’s rotation and
produces VTWs and time-dependent functions of the roll,
pitch and yaw angles for every VTW. Although these func-
tions are non-linear, the change of angles can be approxi-
mated quite well with a linear function between b⇤

ij

and e⇤
ij

(e.g., on average over 200 tasks, the duration of a VTW is
over 300s, while the transition time error is less than 0.5s).

Mixed integer programming model
Objective function The importance of one task t

i

is eval-
uated by its priority g

i

2 [1, 10]. The objective we consider
is to maximize the total priority of all the scheduled tasks:

Maximize
X|T |

i=1

X|Wi|

j=1
x
ij

g
i

(4)

where W
i

is the VTW set of t
i

and x
ij

is a binary decision
variable equal to 1 if and only if w

ij

is chosen to observe t
i

.
Another key decision variable is u

ij

, determining the obser-
vation start time for t

i

in w
ij

.

Constraints Constraints (5) are the uniqueness con-
straints, meaning that each task is observed once at most.

X|Wi|

j=1
x
ij

 1 8t
i

2 T (5)

Constraints (6) are the manoeuvring constraints: they en-
sure that there is sufficient time between the end time v

ij

and the start time u
kl

for the transition time ⌧
wijwkl be-

tween tasks t
i

and t
k

. These constraints are only enforced
for VTWs that are closer to each other than the maximum
possible transition time ⌧

max

, and if w
ij

and w
kl

are select-
ed to observe t

i

and t
k

respectively, and t
i

is the immediate
predecessor of t

k

, which is encoded by ⇢
wijwkl = 1 and

Constraints (7)–(9).
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In Constraints (7) and (8), ws and we are two dummy
nodes representing the first and the last VTW on the satellite.
These constraints express that if a VTW is selected, there is
a unique selected VTW preceding it, and a unique selected
VTW following it.

Constraints (10) ensure that the observation for each task
lasts for the required duration.

v
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2 T (10)

Constraints (11)–(15) are used to calculate the transition
time between two observations. In Constraints (11), ✓

wijwkl

is the total transition angle and a1–a4 are four different tran-
sition angular velocities for different transition angles. In
(12), �t

ij

,⇡t

ij

, t

ij

are observation roll, pitch and yaw angles
at t, which are calculated by (13)–(15). The parameters a�

ij

,
a⇡
ij

, a 
ij

, b�
ij

, b⇡
ij

and b 
ij

are the parameters of the functions of
angles and time of the chosen VTW w

ij

, which are comput-
ed in the pre-processing phase of section ‘Time-dependent
transition time’.
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Constraints (16) and (17) are the memory and energy con-

straints, respectively, where ↵M and ↵E are two estimated
values which measure the percentage of total memory M
and energy E available on an orbit, rm

ij

is a binary parame-
ter showing whether w

ij

is on the mth orbit o
m

of the orbit
set O, and mo, po, ps, pa are the consumed memory for ob-
servation per second, the consumed energy for observation
per second, the consumed energy per observation and the
consumed energy for angle transition per degree respective-
ly. The energy constraints are also time-dependent because
the energy for satellite transition depends on the total angles
the satellite rotates. In Constraints (18), ✓⇤

wijwkl
is an aux-

iliary variable to calculate the rotation energy. The value of
✓⇤
wijwkl

is a piecewise linear function influenced by the value
of ⇢

wijwkl .
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Constraints (19)–(21) restrict the domains of the vari-
ables. Note that in Constraints (20), the start and end time of
the VTW have been cut according to the quality constraints
in (2) and (3), so there are no additional quality constraints.
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To the best of our knowledge, this is the first MIP mod-

el proposed for the complete time-dependent multi-orbit
AEOS observation scheduling problem. The angle fitting s-
trategy enables the modelling of the time-dependency. Com-
pared with the two-stage MILP model in Liu et al. (2017),
we avoid enumerating all the VTW combinations and we
consider energy constraints, which are also time-dependent.

This problem is NP-hard, and we observe that the run-
time of the MIP solver does not scale well with larger prob-
lem size. Therefore, in the next section, we propose a meta-
heuristic approach.

Hybrid ALNS Algorithm
ALNS (Pisinger and Ropke 2007; Liu et al. 2017) provides a
flexible framework in which several different operators can
be defined according to the problem characteristics. ALNS
can be adopted to provide solutions for instances with dif-
ferent characteristics. However, we observe two main draw-
backs of ALNS. First, the search efficiency of ALNS can
founder due to re-visiting recent solutions. Second, ALNS
accepts a new solution depending on the quality of the w-
hole solution sequence. However, during the search process,
solutions with some good parts are rejected due to the low
quality of the whole sequence – thus neglecting potentially
valuable in-process information.

Our ALNS approach is based on the work of Liu et
al. (2017). In the following subsections, we first introduce
the standard ALNS framework. Then we introduce three
new main features of our ALNS approach: tabu search hy-
bridization (TS), partial sequence dominance (PSD), and
insertion positions ordering (IPO). The resulting algorith-
m, called ALNS/TPI, is shown as Algorithm 1. In the fifth
subsection we introduce a new definition of conflict degree
(CD) which increases the calculation speed.

ALNS framework
ALNS is less sensitive to the initial solution than general lo-
cal search (Demir, Bektaş, and Laporte 2012), therefore we
use a simple greedy search to construct an initial solution.
We sort the tasks by an ascending order of start times of
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Algorithm 1 Overview of ALNS/TPI
1: Generate an initial solution S by greedy search;
2: repeat
3: Choose destroy, repair operators Di, Ri based on weights;
4: S0  Ri(Di(S));
5: Update tabu attributes of new inserted tasks;
6: Produce compound solution Sc from S and S0;
7: if f(Sc) > f(S0

) then
8: S0  Sc;
9: if SA accepts S0 then

10: S  S0;
11: if f(S) > f(S⇤

) then
12: S⇤  S;
13: if S⇤ has not improved for many iterations then
14: S  S⇤;
15: Update the weights of operators;
16: until Terminal condition is met;
17: return S⇤.

their VTWs and we attempt to insert each task under all the
constraints stated above.

ALNS updates solutions through destroying and repair-
ing. In the destroying process, some tasks are removed from
the current solution by removal operators. The unscheduled
and removed tasks are then inserted into the destroyed so-
lution in the repairing process by insertion operators. There
are six removal and three insertion operators: removal by
random, min priority (tasks with lower priority are removed
first), max opportunity (tasks with more VTWs are removed
first), max conflict (tasks with higher conflict degree are re-
moved first), cluster 1 (tasks in the orbits with fewest tasks
are removed first) and cluster 2 (tasks in the orbits with the
lowest priority are removed first); insertion by max priority,
min opportunity and min conflict.

At each iteration, a pair of removal and insertion opera-
tors is selected according to their weights. The weights are
updated adaptively according to the performance of opera-
tors in the previous iterations. A simulated annealing (SA)
criterion is used to control the acceptance of new solutions.

Tabu search
Žulj, Kramer, and Schneider (2018) propose a method hy-
bridizing ALNS with TS, and apply it to the order-batching
problem. Their method combines the diversification capa-
bilities of ALNS and the intensification capabilities of TS.
It uses ALNS to search for better solutions and, if a cer-
tain number of ALNS iterations have passed, TS is used.
Thus ALNS and TS are alternated in a two-stage manner.
But since ALNS and TS are used in separate stages, this hy-
bridization does not change the short-term cycling nature of
ALNS.

In contrast, we propose a tight integration of ALNS with
TS. We declare a removal tabu attribute for each task. When-
ever one task is inserted into the current solution, the re-
moval of this task is forbidden for

p
|T |/2 iterations. We

use this strategy to prevent the algorithm re-visiting recen-
t evaluated solutions. We compare the two ALNS–TS hy-
bridizations in the experiments below.

Figure 1: An example of partial sequence dominance

Partial sequence dominance
Due to the time-dependency and sequence-dependency, the
quality of a solution is influenced significantly by its partial
sequences. Inspired by genetic algorithms, we propose the
PSD heuristic. When a new solution is produced, we com-
pare a small part of it with the corresponding part of the
current solution. In this paper we use the orbit as the smal-
l part. Figure 1 shows one example. In standard ALNS, the
new solution is given up. However, Orbit 1 and Orbit 2 of the
new solution are better than the current solution. So accord-
ing to PSD, we keep Orbit 1 and Orbit 2 of the new solution
and Orbit 3 of the current solution, and we get the compound
solution, which is better than the current solution.

This paper studies a multi-orbit scheduling problem,
which means one task might have multiple VTWs on differ-
ent orbits. Therefore the compound solution might violate
the uniqueness constraints (5). When a compound solution
is produced, the feasibility is checked and the tasks that vi-
olate Constraints (5) are removed. If the repaired compound
solution is better than the new solution, it is accepted. We
note that for a MSOP problem, this check can be omitted.

Insertion positions ordering
In Liu et al. (2017), two strategies to select the observation
start time are used: the earliest start time insertion and the
middle start time insertion. According to their experiments,
the middle start time insertion strategy works better. How-
ever, both of them waste too many insertion opportunities.

We propose an insertion position ordering (IPO) strategy
to insert tasks. For every candidate task, we calculate all pos-
sible insertion positions. Due to the time-dependency and
sequence-dependency, the difference of transition times in d-
ifferent insertion positions can be large. To increase the pos-
sibility of successful insertion without increasing the com-
putation time too much, we calculate the possible transition
time for each position and insert the task into the position-
s following an ascending order of possible transition times.
The rationale is that time is a valuable resource, especially
when we consider energy constraints, and it is better to use
time for observation instead of transitioning.

Note because we cannot know the observation start time
until we insert the task into the solution sequence, we cannot
know the exact transition time. Therefore, we use the angles
at the middle of the VTWs to compute an approximate tran-
sition time. This value is used to rank the possible positions.
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Conflict degree
In Liu et al. (2017), the heuristic conflict degree (CD) is
defined as ‘the time that one VTW is overlapped with oth-
er scheduled tasks’. Since the solution is changed in every
ALNS iteration, CD must be updated in each iteration. In
order to reduce the computation time, we instead define CD
as ‘the time that one VTW is overlapped with any other
VTWs’. This calculation can be done in the pre-processing
phase. We show the quality of solutions is barely affected
and the computation time is significantly decreased.

Empirical Results
The aim of the experiments is to assess the effectiveness
of the proposed ALNS/TPI hybrid algorithm. Experiments
were conducted using Intel Core i5 3.20GHz CPU running
Windows 7 with 8GB memory. A time limit of 3600s is used.
IBM ILOG CPLEX version 12.8 is used for MIP solving.
The results for metaheuristics are the average of 20 runs.

The generation of the problem instances follows the con-
figuration from Liu et al. (2017) except for the required min-
imum quality. In previous work, the required minimum qual-
ity c

i

is set at 0 and this makes the quality constraints use-
less. Therefore in this paper we set it as a uniform random
integer in [5, 10] (hence, solution quality for the same-size
instance in our experiments is lower than the one in Liu et
al. (2017)).

The tasks are generated according to a uniform random
distribution over two geographical regions: China and the
whole world. For the Chinese area distribution mode, fifteen
instances are designed and the number of tasks contained in
these instances changes from 50 to 400, with an increment
step of 25. For the worldwide distribution mode, twelve in-
stances are designed and the number of tasks contained in
these instances changes from 50 to 600, with an increment
step of 50. Other parameters of the problem instances are:
M = 2400, E = 2400, mo = 1, po = 1, ps = 2, pa = 1,
↵M = 0.6, ↵E = 0.8, a1 = 1.5, a2 = 2, a3 = 2.5, a4 = 3.

Comparison of different algorithms First, we compare
the proposed ALNS/TPI with our improved MIP model and
the metaheuristics in Liu et al. (2017) (‘old ALNS’), and
the coarse ALNS–TS hybrid of Žulj, Kramer, and Schnei-
der (2018) (‘ALNS/TS’). The parameters of the ALNS al-
gorithms are as in Liu et al. (2017): the total iteration time
is 5000 and the simulated annealing parameter is 0.9975. In
ALNS/TS, TS is run for 200 iterations after every 1000 it-
erations of ALNS. In each TS iteration, 10 neighbourhoods
by our removal and insertion operators are examined to find
the best local move. The whole process is run four times, for
12000 neighbourhood moves in total. Recently visited solu-
tions are inserted in a tabu list for

p
|T |/2 iterations. Here,

we implemented two versions of the modified (Žulj, Kramer,
and Schneider 2018) algorithm. The first one is ALNS/TS
for MSP without any further improvements. The second,
called ALNS/TS/PI, has all the improvement features except
the tight TS hybridization.

We compare the solution quality and the CPU time. The
solution quality is the percentage of the total priority of

scheduled tasks (i.e., the objective value) divided by the to-
tal priority of all the tasks in T . Figure 2 shows the com-
parison of the five different algorithms: our ALNS/TPI, old
ALNS, ALNS/TS, ALNS/TS/PI, and our improved MIP. In
Figure 2 left (for Chinese area) and middle (for worldwide),
black solid lines show the solution quality (left axis) and
the blue dash lines show the CPU time (right axis, log s-
cale), showing that the CPU time of the ALNS/TPI increas-
es slowly with the increasing number of tasks. The solution
quality is significantly higher than that of the old ALNS and
ALNS/TS. ALNS/TS/PI uses more time to produce solu-
tions with worse quality, which proves that our integrated
hybridization of ALNS and TS is better than the two-stage
hybridization in Žulj, Kramer, and Schneider (2018) for this
MSP problem. Furthermore, the implementation of our hy-
bridization is easier than ALNS/TS because we only need to
add tabu attributes of tasks to ALNS, while in ALNS/TS, a
new TS search process is included. MIP can find optimal so-
lutions for small-size instances but performs badly when the
instance size gets large. For the three small instances with
optimal solutions by MIP, ALNS/TPI also finds the same op-
timal solution. Among all the methods, old ALNS perform-
s worst, consuming a long time to produce solutions with
the lowest quality. Finally, Figure 2 right shows the anytime
quality of different algorithms for instance 600 W with 600
tasks distributed worldwide. The MIP method fails to give a
solution within the time limit for this large instance.

Second, in order to compare the improved MIP model
with the two-stage MILP model in Liu et al. (2017), we fix
the transition time of our model as 20s and remove the ener-
gy constraints (‘MIP(20s)’).

Figure 3 (top) shows the number of instances solved with-
in 600s by different methods. The proposed ALNS/TPI, as
well as ALNS/TS and ALNS/TS/PI can solve all the prob-
lem instances. The old ALNS, however, fails to solve three
worldwide instances. MIP(20s) and the improved MIP can
only solve small-size instances. If we set the time limit as
3600s (in Figure 3 (bottom)), the old ALNS and MIP(20s)
can solve all the instances. The improved MIP can solve
eight more instances. Unfortunately, the two-stage MILP
model in Liu et al. (2017) fails to solve all the problem in-
stances because of memory overflow. It cannot enumerate all
the combinations of VTWs even for our smallest instance:
the model can only solve problem with at most 12 tasks.

Comparison of different features of ALNS/TPI Last, in
order to understand which features of ALNS/TPI contribute
to its superior performance, we perform a factor analysis of
features. The results are shown in Tables 1 and 2 (we also in-
clude the results of ALNS/TS, ALNS/TS/PI and old ALNS).
We compare ALNS without PSD (ALNS/TI), ALNS with-
out TS (ALNS/PI), ALNS without IPO (ALNS/TP) and
ALNS with frequent CD update (ALNS/TPI/CD). All the re-
sults are compared with ALNS/TPI, so for other algorithms,
we calculate the percentage of increase in quality (IQ, higher
is better) and increase in time (IT, lower is better).

All the features contribute more to the solution quality for
area distribution. Among all these features, IPO contributes
most to the solution quality. However, IPO also increases
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Figure 2: Comparison of algorithms on area distribution (left) and worldwide (middle), anytime quality of different algorithms
(right)

Table 1: Results of different ALNSs for area distribution
Instance ALNS/TPI ALNS/TI ALNS/PI ALNS/TP ALNS/TPI/CD ALNS/TS ALNS/TS/PI Old ALNS

Quality/% Time/s IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/%
50 A 84.94 3.86 0.00 -7.12 -2.55 -0.43 -3.78 -33.23 -0.35 12.38 -4.26 84.91 -0.35 84.02 -7.01 54.34
75 A 79.24 7.47 -0.04 -6.19 -1.94 -1.95 -3.18 -44.29 -0.28 18.43 -5.12 61.14 -0.41 74.65 -6.38 53.94
100 A 70.44 11.42 -0.60 0.48 -3.24 -11.83 -5.14 -73.69 -0.56 27.69 -6.25 32.60 -2.04 66.18 -5.55 54.75
125 A 63.75 11.87 -0.07 8.30 -2.68 -11.66 -4.87 -56.93 0.14 27.07 -4.61 40.50 -1.92 57.04 -5.23 63.63
150 A 56.95 13.04 -1.42 5.87 -2.97 -6.76 -6.60 -55.78 -0.18 32.89 -7.34 42.23 -3.64 56.94 -10.29 72.23
175 A 53.57 15.05 -1.34 3.73 -2.62 -15.34 -4.62 -51.04 0.24 39.20 -9.81 39.04 -2.44 57.37 -15.55 77.68
200 A 49.70 16.59 -2.82 3.12 -4.41 -16.37 -6.46 -44.88 0.26 41.49 -15.94 37.34 -4.76 58.92 -23.49 82.54
225 A 45.73 17.93 -3.30 2.05 -3.45 -15.52 -5.57 -47.45 0.62 40.86 -18.44 39.51 -3.32 67.09 -20.38 85.19
250 A 45.39 19.49 -5.00 2.06 -4.76 -17.63 -9.13 -40.99 -0.23 45.70 -25.70 41.16 -5.89 67.58 -31.16 87.13
275 A 42.07 20.67 -3.36 3.78 -3.07 -11.25 -6.98 -35.90 0.36 52.38 -30.48 43.85 -4.57 69.73 -30.51 87.30
300 A 39.75 22.57 -2.69 0.71 -3.43 -14.01 -8.30 -37.89 0.86 54.34 -31.99 42.35 -5.32 67.76 -35.44 88.80
325 A 38.26 23.76 -2.62 1.98 -3.38 -11.75 -9.10 -32.95 1.42 61.09 -34.99 41.96 -5.67 70.65 -29.40 89.85
350 A 35.85 25.26 -2.32 0.73 -2.89 -9.79 -7.64 -28.85 1.48 65.26 -43.97 47.32 -5.25 71.27 -30.05 90.62
375 A 34.26 26.73 -3.45 -1.92 -2.67 -11.99 -6.95 -33.75 1.70 68.27 -43.32 51.84 -5.23 70.46 -23.84 91.68
400 A 32.15 27.13 -2.08 -1.20 -1.78 -3.14 -6.30 -28.61 1.82 68.84 -50.69 55.16 -4.82 68.40 -21.95 93.04
Avg. 51.47 17.52 -2.07 1.09 -3.06 -10.63 -6.31 -43.08 0.49 43.73 -22.19 46.73 -3.71 67.20 -19.75 78.18

Figure 3: Number of instances solved within 600s (top) and
3600 (bottom)

the CPU time more compared with PSD and TS. TS works
better than PSD, especially for the area distribution. This
is because for area distribution, the distribution of tasks is
dense and the CD of tasks is high. It is then more difficult
for the algorithm to find a good solution. TS, which prevents
the algorithm from searching recent solutions again, works
better in this case. PSD works much better when the problem
instance gets larger, which means that PSD performs well
when the solution sequences get long. When the solution
sequences get long, evaluating a solution only by its total
quality gives up too much in-process information of partial
sequences. ALNS/TPI/CD works better than ALNS/TPI for
the area distribution because CD is an important heuristic
influencing the quality for the dense distribution. However,
the CPU time is nearly 3 times that of ALNS/TPI. From the
results of ALNS/TPI/CD for the worldwide distribution, we
can find that the frequent CD updates do not contribute to the
solution quality all the time. The previous definition of CD
focuses too much on the conflict with scheduled tasks while
neglecting the potential conflict with unscheduled tasks.
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Table 2: Results of different ALNSs for worldwide distribution
Instance ALNS/TPI ALNS/TI ALNS/PI ALNS/TP ALNS/TPI/CD ALNS/TS ALNS/TS/PI Old ALNS

Quality/% Time/s IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/% IQ/% IT/%
50 W 100.00 0.02 0.00 72.00 0.00 79.90 -2.17 99.41 0.00 44.74 0.00 38.12 0.00 81.31 -0.28 99.71
100 W 99.78 6.91 0.00 7.29 0.00 11.47 -1.49 10.81 0.00 19.30 -0.10 74.21 0.00 69.36 0.00 69.00
150 W 99.70 12.92 0.00 10.18 -0.20 14.16 -2.26 17.19 0.00 51.45 -0.47 72.48 0.00 68.92 -0.57 68.41
200 W 98.19 28.46 0.00 -5.55 -0.19 -0.14 -2.30 -2.69 0.09 45.27 -1.10 67.99 -0.04 63.56 -1.27 63.05
250 W 97.08 42.88 0.00 -5.13 -0.60 2.31 -2.38 -3.99 -0.05 45.47 -1.93 64.99 -0.35 64.56 -2.30 64.21
300 W 95.58 61.99 0.00 -3.49 -0.56 -8.02 -3.29 -8.56 -0.15 43.46 -2.67 58.59 -0.46 60.33 -2.56 64.50
350 W 94.91 79.99 0.00 -2.78 -1.11 -22.33 -4.36 -14.59 -0.19 48.61 -3.58 54.47 -1.09 54.06 -5.30 68.60
400 W 93.14 100.12 -0.06 -1.24 -0.99 -24.80 -4.90 -21.52 -0.20 51.80 -4.77 54.65 -1.17 50.43 -8.11 73.21
450 W 91.73 121.16 -0.23 -1.78 -0.98 -14.79 -5.48 -25.84 -0.24 56.07 -5.26 54.66 -1.17 56.20 -10.47 74.27
500 W 90.22 134.52 -0.54 1.55 -0.69 -5.23 -5.32 -28.04 -0.06 61.52 -5.93 54.19 -0.92 60.93 -12.50 78.54
550 W 88.84 142.44 -0.64 5.92 -0.84 -2.87 -4.79 -20.21 -0.11 66.28 -6.13 55.35 -1.15 63.52 -16.96 81.12
600 W 87.41 153.27 -0.85 6.66 -0.60 0.37 -5.38 -20.74 -0.17 69.63 -6.59 54.60 -1.22 65.77 -20.82 83.96
Avg. 94.71 73.72 -0.19 6.97 -0.56 2.50 -3.68 -1.56 -0.09 50.30 -3.21 58.69 -0.63 63.25 -6.76 74.05

Application in Real World
In this section, we discuss the difference between our simu-
lations and the potential application of our work in the real
world.

First, although the instances in our test instances are ran-
domly generated, they are very similar to real-world ones.
We do not have access to (often classified) instances of task
locations. However, in our instances, except for task loca-
tions, all parameters are real: satellite’s, orbits’, Earth’s pa-
rameters. The calculation of VTWs and transition time is
based on the real geographical locations. There is little dif-
ference between our and classified instances, since in reality
tasks are raised by the users and can be anywhere on the
Earth surface. Further, tasks can be dense in a small area:
we use the Chinese area distribution to simulate this. The
number of tasks can be different on different days: we use
different numbers of tasks to simulate this.

The satellite used in the simulation is called AS-01, which
is the first AEOS of China. The scheduler of AS-01 was de-
veloped by the group of Liu et al. (2017), which uses several
simple heuristic operators of the old ALNS to construct the
observation schedule. The satellite has now been in orbit for
more than two years and the scheduler has worked well un-
til now. However, since the current scheduler is simple and
greedy, the solutions generated by it are generally of low-
er quality than the ones generated by the old ALNS. But
since our hybrid ALNS is much more efficient than the old
ALNS, we believe it could improve on current operational
procedures.

Another difference between our model and real-life satel-
lites is the constraints of specific satellites. For example, for
some satellites, the observation time in an orbit is bounded
not only by memory and energy, but also by the maximum
continuous working time of sensors and the maximum work-
ing temperature. If this information is known, it can be added
as additional constraints to the proposed models.

Conclusions
We studied time-dependent multi-orbit agile Earth obser-
vation satellite scheduling, which is a complex real-world
scheduling problem. We developed the first realistic mixed

integer programming (MIP) model, and a novel hybridiza-
tion of adaptive large neighbourhood search (ALNS) and
tabu search (TS). As expected, MIP can find optimal solu-
tions only for small-size instances. Extensive empirical re-
sults demonstrated that, compared with two state-of-the-art
metaheuristic approaches, our proposed ALNS hybrid pro-
duces solutions with higher quality in less time. Factor anal-
ysis finds the novel insertion position ordering contributes
most to the performance, but also consumes the most time.
The partial sequence dominance heuristic performs better
when the problem instance grows in size. The TS heuristic
performs better when the conflict degree is high.

Our work proves that ALNS and TS hybridization is an
efficient method for this satellite scheduling problem. Our
next step is to evaluate the heuristics in this work on oth-
er similar problems. We believe these strategies can signifi-
cantly improve other algorithms for problems characterized
by time- and/or sequence-dependency.
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Abstract

Intelligent and Autonomous Unmanned Ground Vehicles
(AUGV), both for civil security and warfare domains, are
subject of growing interest from the Intelligent Transporta-
tion Systems community and from the Planning & Schedul-
ing (P&S) one. This paper presents an approach to cope with
discrete uncertainty representations of P&S problems. The
model enables statement of coordination constraints within
multiple agents. This representation is based on a discrete
confidence interval, denoting bounds around an exact (cer-
tain) value provided at planning time. Search algorithms are
also proposed, solving P&S problems of realistic size. An im-
plementation, inside the CSP-based P&S system known as
ORTAC, demonstrates that the computation time, due to this
additional uncertainty representation, is not significantly de-
graded.

Introduction
Since their introduction in the early 90s, intelligent and au-
tonomous vehicles aim at progressively replacing manually-
driven vehicles by computer-driven automated ones, in order
to prevent traffic accidents and injuries/fatalities. In general,
Intelligent Transportation Systems (ITS) cooperate to han-
dle free space and more generally road access.

But in many applications such as search and rescue, nat-
ural disaster response, or defense and security missions,
several vehicles, manned or unmanned, have to collabo-
rate to achieve a common goal. For those applications, Au-
tonomous Unmanned Ground Vehicles (AUGV) are of a par-
ticular interest for several dangerous or fastidious missions.

AUGV involve several software modules such as simul-
taneous localization and mapping (SLAM), perception, data
fusion, path planning and then control of the robotic plat-
form. Each functionality has to deal with some form of tem-
poral and spatial uncertainty while representing the envi-
ronment. In our work, we consider multiple agents (with
manned or unmanned vehicles) which traverse a topological
map and which must eventually coordinate their respective
actions via a control/command (C2) system. While manned
coordination with voice communications can be very effi-
cient within a trained team of first responders, interacting

Copyright c� 2018, Association for the Advancement of Artificial
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with AUGV can be a challenge, especially considering tem-
poral uncertainty.

The paper focuses on the Planning and Scheduling (P&S)
software modules and, more specifically, on the temporal
uncertainty resulting from the environment or from the var-
ious processing stages. These modules will be integrated in
C2 systems that coordinate the different vehicles and enable
interactions between human and AUGV. The P&S environ-
ment is named ORTAC, standing for Optimal Resource and
Technical Action Control, and has been developped for both
defense and civil security domains, even if other applications
are investigated.

The problem also involves technical actions (e.g., ob-
servations, measurements, communications) to perform on
some waypoints and must consider specific metrics such as
security, travelling distances and durations. That is, given a
graph where vertices are locations and edges are routes, the
P&S problem is to find for all agents a sequence of vertices
(or route segments) with pass-by dates on waypoints, opti-
mizing a mission cost. Once the plan defined and commu-
nicated, AUGVs must automatically manage their own tra-
jectory and follow their navigation waypoints using control
algorithms and time sequence. Drivers of manned platform
follow a path of timed waypoints provided by a C2 interface.

A classical candidate approach for this problem is, for ex-
ample, the A* algorithm (Hart, Nilsson, and Raphael 1968)
considered as a best-first search in a space of paths. Even if
A* can handle several metrics, including timing, it assumes
that there exists only one agent which traverses edges and
vertices to reach a final location. Our approach considers
constraint programming, that has been identified since the
70s (Montanari 1974) (Laurière 1978) as a powerful tool to
represent and solve combinatorial problems, or Constraint
Satisfaction Problems (CSP). Its real-world applications are
numerous, refer to (Simonin et al. 2015) to only mention a
spectacular one.

In both C2 systems and ITS, path planning for multiple
agents in a topological map can be modeled and solved us-
ing constraint programming (Guettier 2007). A CSP is com-
posed of a set of variables, their domains and algebraic con-
straints (together compsing a model), which are based on
abstracting some problem. However, due to many sources
of uncertainty, the passing date of an agent on a given ver-
tex/location in the topological map might not be precisely
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known at planning time: Some form of uncertainty has to
be considered, in order to represent a lack of knowledge at
planning time.

In this paper, we propose a new representation of uncer-
tainty, based on confidence intervals, within a CSP model
representing path planning in a topological map for mul-
tiple agents with coordination. The paper is organized as
follows: The first section describes the system environment
and the application; The second section presents the basic
CSP model, representing path planning for multiple agents
in a topological map, and then a new uncertainty model; The
third section provides the implemented search strategies, and
experimental results are reported in a fourth section; The last
section relates our work to existing approaches, sums up our
contribution and gives hints for further work.

Application domain
For each agent, the P&S module must find navigation plans
and estimate passing dates, while satisfying coordination
constraints with other agents. Each mission plan is com-
posed of a set of totally ordered waypoints, for which a pass-
ing date must also be estimated. Agents plans and sched-
ules must meet an objective and obey to terrain constraints.
Global coordination between agents can be inforced by sat-
isfying logical synchronisations on waypoints. In addition,
the global mission plan should optimize a primary cost func-
tion, for instance mission duration, safety, security or ob-
servability. Without loss of generality, only mission duration
is considered in this paper, that is, minimizing the maximal
mission completion date for all agents.

Example
In Figure 1, both rescue AUGV and manned vehicules must
perform a maximal exploration of villages (red circle) in a
flooded area, looking for refugees and estimating damages.
However vehicles must progress in a synchronized way for
several operational reasons:
• Observations must be synchronized to avoid missing

refugees;
• Operators in manned vehicles would want to see AUGV

time to time in order to be able to switch to a teleoperation
mode if needed;

• Communications between vehicles have to be maintained
during mission progression.
In this scenario, search and rescue vehicles will start from

location 1, and gather in the vicinity of node 20. All nodes
circled in red have to be visited, where refugees and casu-
alties are likely to be found. However, there are strong un-
certainties concerning the time of traversal: On one hand,
the manned vehicule need to master the AUGV execution
in spite of uncertainty; On the other hand, the AUGV must
adapt to the manned vehicule pace.

Architecture
Figure (2) presents a simplified C2 system architecture for
an AUGV, with autonomous (robotic) capabilities. Building-
up the situation awareness is based on various sensory data,

Figure 1: Search and rescue mission. Topological map for
a manned vehicle and a AUGV throughout a flooded area
between the Seine and the Vanne rivers in the area of Troyes,
France. These specific vehicules, developped by SAFRAN
E&D, can be either piloted or turned instantaneously into an
AUGV.

local map and SLAM processing. These subsystems gen-
erate multiple sources of temporal and spatial uncertainty:
drift, errors and bias. Moreover, time of traversal for some
parts of the terrain is difficult to predict and is uncertain
while planning the mission (in the example, moving in shal-
low water). Vehicular communications enable exchanges of
mission plan as well as situation awareness (platform state
such as position, velocity, time and list of observed objects).
The vehicule can optionally interact with an operator or the
pilot, but interactions definition are out of the scope of this
paper. In addition to the vehicular P&S, we need a temporal
uncertainy resolver module for several reasons:

• provide to the command staff go/no go decisions on
whether the mission will continue;

• dynamically adapt the mission or trigger a replanning
event;

• provide timing worst / nominal cases to the pilot or to the
local operator;

• provide delays and arrival date estimates to other manned
vehicules or AUGVs;

• adapt the execution controler to cope with potential delays
and to maintain coordination with other vehicles.

A larger description of the tool is described in (Guet-
tier 2007) and has been widely experimented. Example of
detailed C2 system integration is described in (Guettier et
al. 2011), while some fielded experiments are reported in
(Guettier et al. 2009) (Guettier et al. 2015). The search al-
gorithm baseline for a single agent is presented in (Guettier
and Lucas 2016).
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Figure 2: C2 system for optionally piloted vehicule (which
can be piloted, remotely piloted, remotely operated or fully
autonomous), with main components including P&S, com-
munication, interactions and situation awareness. In spite of
many sophisticated filtering techniques used to improve ac-
curacy (location, observations) and reduce uncertainty, situ-
ation awareness is till an active area of research.

Model-based P&S with Uncertainty
In this section, we present a CSP-based P&S system and
describe an extension to represent uncertainty.

The ORTAC P&S System
The system known as ORTAC is a model for a constraint sat-
isfaction problem to compute paths of several agents using a
directed graph, where vertices represent locations and edges
represent routes (referred to as a topological map). With
the given applications, graphs are defined during mission
preparation, by terrain analysis and situation assessment. A
path of an agent starts at a fixed initial vertex (starting loca-
tion) and ends at a fixed final vertex (ending location), and
is composed of a sequence of routes (i.e., chain of edges).
The graph is maintained on-line during mission execution,
by using fusion of sensory data (e.g., LIDAR, optronics).
The P&S system also models duration and waypoint timing
sequences, according to selected paths. Both manned and
AUGV systems respond to an operator’s (or mission com-
mander’s) demand by finding a route from a starting point to
a destination, while visiting some mandatory waypoints.

In our approach, solving the P&S problem is achieved
using Constraint Programming (CP) techniques, under a
model-based development approach. CP is a competitive
approach to solve such problems, providing completeness
and optimality guarantees. With CP, a declarative formula-
tion of the constraints to satisfy is provided which is decou-
pled from the search algorithms, so that both of them can be
worked out independently. Both CSP formulation and search

Figure 3: Operational vehicular C2 system integrating the
ORTAC planner and displaying solutions. Agents paths are
displayed in different colours to reach the central target.
Plans are georeferenced on both satellite views and maps.
The C2 systems is interfaced with inertial measurement
units in order to provide locations with minimal uncertainty,
even in GPS denied environments.

algorithms are implemented with the CLP(FD) domain of
SICStus Prolog library (Carlsson 2015). It uses the state-of-
the-art in discrete constrained optimisation techniques and
Arc Consistency-5 (such as AC-5) for constraint propaga-
tion, managed by CLP(FD) predicates, as well as global con-
straints implementation.

Since more than one agent can be represented in OR-
TAC, the model also represents coordination among agents
at given vertices of their respective paths. This is performed
by expressing constraints relating two different agents on
two different vertices: For instance, an agent must pass at
a location before another agent passes at another location.
Forced inclusion/exclusion of vertices/edges in a path of an
agent can also be represented by additional constraints.

For each agent, the basic model relies on a graph where
edges and nodes represent respectively ground mobility and
accessible waypoints:
• a {0, 1} variable T

v

on each vertex v, representing the fact
that this vertex is included into agent path, i.e., the agent
transits via vertex v;

• a {0, 1} variable '
v,v

0 on each edge v, v0 representing the
fact that the edge also belongs to the path, i.e., the agent
transits from vertex v to vertex v0;

• a flow constraint stating that an agent arriving at a vertex
departs from it (with specific cases for the start and end
vertices).

Constraint-based model for P&S More formally, a graph
is a pair (V, U) where V is a set of vertices (or nodes) and U
is a set of edges. Variables '

u

2 {0, 1} represent a possible
path from start 2 V to end 2 V , where an edge u 2 U
belongs to the navigation plan iff '

u

= 1 (and 0 otherwise).
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The resulting navigation plan � can be represented as � =
{u| u 2 U, '

u

= 1}.
Path consistency from an initial position to a final one is

enforced by flow conservation equations, where !+(v) ⇢ U
(resp., !�(v) ⇢ U ) represents the outgoing (resp., incom-
ing) edges from (resp., to) vertex v 2 V .

X

u 2 !

+(start)

'

u

= 1,
X

u 2 !

�(end)

'

u

= 1, (1)

T

v

=
X

u 2 !

+(v)

'

u

=
X

u 2 !

�(v)

'

u

 1 (2)

Since flow variables '
u

are {0, 1}, equation (2) ensures
path connectivity and uniqueness, while equation (1) im-
poses limit conditions for starting and ending the path. This
constraint produces a linear chain of pass-by waypoints in a
graph — waypoints are vertices of a topological map which
are present in a path of a navigation plan �.

These waypoints v are labeled by passing time D
v

de-
pending on variables V(v,v0) denoting the average velocity
on edge (v, v0) — this variable is within realistic ranges, de-
pending on the physical minimum and maximum speeds of
the robotic AUGV. The value kv, v0k is the constant distance
between two vertices v and v0. Variable d(v,v0) represents the
duration of traversal of an edge (v, v0), therefore the last 3
variables are related by equation (3) — the remaining vari-
able r

v

0
,v

is ignored, since it represents non-integer values
of variables V(v,v0) and d(v,v0).

Given equation (3), passing times on waypoints are prop-
agated via equation (4), which cumulates edge traversal du-
ration along waypoints.

kv, v0k = V(v,v0).d(v,v0) + r

v,v

0 (3)

D

v

=
X

(v0
,v) 2 !

�(v)

'(v0
,v)(d(v0

,v) +D

v

0) (4)

Resource consumption, security and observability can
also be modelled by constraints.

Representing Uncertainty
Regarding agents transiting on a topological map, uncer-
tainty can be temporal (uncertainty on the time at which
an agent arrives to a vertex) or spatial (an agent can be
located with latitude/longitude coordinates, not necessarily
those of any vertex). This paper focuses on temporal uncer-
tainty among locations, planned by agents.

For this, confidence intervals, a well-known representa-
tion of temporal uncertainty over the previous (certainty)
variables, are introduced: A confidence interval of a finite-
domain variable X in the above CSP model is an inter-
val over integers [Xmin;Xmax], represented by two finite-
domain variables Xmin and Xmax associated to X . A real-

ization of X is an instanciation of X which conforms to its
confidence interval.

For example, a realization of the above duration variables
d(v,v0) on edges is an instanciation of all variables d(v,v0)
along the path, which conform to their confidence intervals
[dmin

(v,v0); d
max

(v,v0)].

Velocity Model for Uncertainty Uncertainty is repre-
sented in the previous velocity model (recall equation (3) in
the previous paragraph) by turning both the velocity and the
duration variables into confidence intervals [V min

(v,v0);V
max

(v,v0)]

(refer to equation (5)) and [dmin

(v,v0); d
max

(v,v0)] (refer to equation
(10)), and smilarly relating their lower bounds (refer to equa-
tion (6)) and upper bounds (refer to equation (7)) — as for
the previous certainty model, the rounding variables r

v,v

0

are ignored, since they correspond to non-integer values of
confidence intervales on velocities, distances and durations.

A constant relative confidence interval
[�V min

(v,v0);�V max

(v,v0)], where �V min

(v,v0) is a negative integer
and �V max

(v,v0) is a positive integer, limits the possible expan-
sion of the confidence interval for velocity [V max

(v,v0);V
max

(v,v0)]
(refer to equations (8) and (9)).

V

min

(v,v0)  V(v,v0)  V

max

(v,v0) (5)
��
v, v

0�� = V

min

(v,v0).d
min

(v,v0) + r

min

v,v

0 (6)
��
v, v

0�� = V

max

(v,v0).d
max

(v,v0) + r

max

v,v

0 (7)
V(v,v0) +�V

max

(v,v0)  V

max

(v,v0) (8)

V(v,v0) +�V

min

(v,v0) � V

min

(v,v0) (9)

d

min

(v,v0)  d(v,v0)  d

max

(v,v0) (10)

The ORTAC model also represents the duration S
v

of an
action performed by an agent at a waypoint v, in addition
to its passing time D

v

— agents not only passes at way-
points but perform durative actions there. Since duration and
velocity on an edge are uncertain, representing uncertainty
also involves turning variable D

v

into a confidence interval
[Dmin

v

;Dmax

v

] on each vertex v. The realization of variable
D

v

in its confidence interval is represented by equation (11).
Representing uncertainty on vertices relates the arrival

time D
v

at waypoint v to the time of arrival D
succ(v) at the

next waypoint succ(v) of the same path, using the confi-
dence interval bounds (12 and 13) — uncertainty over con-
fidence interval never decreases along path following, hence
the direction of the two inequalities.

D

min

v

 D

v

 D

max

v

(11)
D

min

succ(c)) � D

min

v

+ d

min

(v,succ(v)) + S

v

(12)
D

max

v

+ d

max

(v,succ(v)) + S

v

 D

max

succ(v) (13)

Uncertain Coordination among Agents The ORTAC
model can represent not only one agent traversing a topo-
logical map, but several agents: this is performed by itera-
tively defining the finite-domain variables representing each
agent behavior and constraint postings, all indexed by each
agent — a loop over variable definitions and constraint post-
ings, indexed by agent (that is, two different missions on the
same scenario and the same agents, but with different coor-
dinations, imply slightly different CSP models). As such, it
seems natural to represent coordination among these agents,
using additional constraints. For example, in a disaster re-
covery scenario involving a damaged village (as in Figure
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1), one or more agents look for refugees in the surrounding
outside while another agent searches for casualties inside.

For this, ORTAC represents temporal coordination con-
straints between two agents on two vertices, for which the
semantics is informally defined as follows (refer to (Guet-
tier 2007) for the logical semantic definition):
• before: agent A performs its action on its vertex before

agent B performs its action on its other vertex, within a
time window;

• after: agent A performs its action on its vertex after agent
B performs its action on its other vertex iff agent B before
agent A;

• simultaneous: agents A and B perform their respective ac-
tions on their respective vertices during the same period of
time;

• disjunct : agent A is disjunct from agent B on vertex v iff
agent A is passing before agent B or agent B is passing
before agent A on vertex v.
In order to represent temporal uncertainty into these coor-

dination constraints, the confidence intervals of the previous
section must also be considered into the above coordination
formulation. Let A and B be two different agents transiting
in a topological map:
• Agent A is uncertainly simultaneous to agent B iff their

respective confidence intervals exactly overlap (see equa-
tion (14)).

• Agent A is uncertainly disjunct from agent B iff the upper
bound of the confidence interval of agent A is less than
the lower bound of the confidence interval of agent B (in-
cluding the duration of the action performed by agent A
on the vertex), or the opposite by switching A and B (see
equation (15)).
Formally, given two confidence intervals

[Dmin

v

(A);Dmax

v

(A)] denoting the passing time of
agent A at waypoint v, and [Dmin

v

0 (B);Dmax

v

0 (B)] simi-
larly for agent B at waypoint v0, the following uncertain
coordination formulations can be written:

D

min

v

(A) = D

min

v

0 (B) ^D

max

v

(A) = D

max

v

0 (B) (14)

D

max

v

(A) + S

v

(A)  D

min

v

0 (B) _
D

max

v

0 (B) + S

v

0(B)  D

min

v

(A) (15)

D

min

v

(A)  D

min

v

0 (B) ^D

max

v

(A)  D

max

v

0 (B) (16)

D

max

v

(A) + S

v

(A)  D

min

v

0 (B) (17)

Since temporal intervals are represented in addition to
time points, the certain before coordination constraint is
turned into weak (see equation (16)) or strong (see equation
(17)) uncertainly before coordination constraints, depending
on the existential (see equation (18)) or universal (see equa-
tion (19)) quantifier used for the realization of the variables
D

v

(A) and D
v

0(B) for the synchronization between agents
A and B. The difference between the weak and strong un-
certainly before constraints can also be considered as en-
abling/forbidding overlaps between the two confidence in-

tervals, which can be formalized with temporal intervals (see
relations ”before” and ”overlaps” (Allen 1983)).

weak synchronisation before(A,B) ,
8v 2 V, 9(D

v

(A), D
v

0(B))

2 [Dmin

v

(A);Dmax

v

(A)]⇥ [Dmin

v

0 (B);Dmax

v

0 (B)]

s.t.D

v

(A)  D

v

0(B) (18)
strong synchronisation before(A,B) ,

8v 2 V, 8(D
v

(A), D
v

0(A))

2 [Dmin

v

(A);Dmax

v

(A)]⇥ [Dmin

v

0 (B);Dmax

v

0 (B)]

s.t.D

v

(A)  D

v

0(B) (19)

Finaly, the same formal model and constraints are defined
for the after uncertain coordination constraint, by switching
agents A and B in the previous before uncertain coordina-
tion model.

Compound search algorithms
Two search algorithms are considered, one to solve the ini-
tial coordinated P&S problems, and then one to solve the
temporal uncertainty resulting from the coordinated paths.

Solving the P&S problem with ORTAC
The global search technique under consideration guarantees
completeness, solution optimality and proof of optimality. It
relies on three main algorithmic components:
• Variable filtering with correct values, using specific la-

beling predicates to instantiate problem domain variables.
the constraint propagator being incomplete, value filtering
guarantees the search completeness.

• Tree search with standard backtracking when variable in-
stantiation fails.

• Branch and Bound (B&B) for cost optimisation, using
minimise predicate.
Designing a good search technique consists in finding the

right variables ordering and value filtering, accelerated by
domain or generic heuristics. A static probes provides an ini-
tial variable selection ordering, computed before running the
global branch and bound search (Guettier and Lucas 2016).
In the approach, the variable selection order provided by the
probe can still be iteratively updated by the labeling strat-
egy that makes use of other variable selection heuristics. In
general, dynamic probing techniques use solutions to some
relaxations of the original problem and consider these ’par-
tial’ solutions as tentative values, see for example (Sakkout
and Wallace 2000) and (Ruml 2001). In ORTAC, the search
strategy uses a static prober which orders problem variables
before the search. This ordering is based on the relations
between problem structure and the partial solution found.
Then, the solving relies on a standard CP branch and bound
search strategy, combining variable filtering, AC-5, generic
heuristic and B&B. The probing technique proceeds in three
steps:
• Establish the relaxed problem, abstracting away manda-

tory waypoints and coordination constraints.
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• Compute a shortest reference path between starting and
ending vertices, using Dijkstra or A*.

• Establish a minimal distance between any problem vari-
able and the solution to the relaxed problem.
The last step considers the following distance between

partial solution values X
s

and all original problem variables
X .:

8x 2 X, �(x) = min
x

02Xs

||(x, x0)|| (20)

where ||.|| is the distance metric, corresponding to the num-
ber of vertices between x and x0. The last step uses the re-
sulting partial order to sort problem variables in ascending
order, using �(x). Problem variables are explored following
that order in the global search. The probe construction is
polynomial and does not change completeness nor optimal-
ity properties of the global branch and bound loop.

Search with Uncertainty
As explained above, confidence intervals are intervals over
integers representing temporal uncertainty at planning time
around an exact (certain) planned integer value. That is, in-
volving confidence interval [Dmin

v

(X), Dmax

v

(X)] of pass-
ing time D

v

(X) of agent X on vertex v, in which
Dmin

v

(X)  D
v

(X)  Dmax

v

(X).
We follow this definition by using a labeling search on

uncertainty after the labeling search on the exact (certain)
value of the passing time D

v

(X) of agent X at each ver-
tex v. Hence, paths and passing times on vertices are known
(i.e., D

v

(X) finite-domain variables are instantiated) before
search on uncertainty is performed.

In order to increase performances, a static heuristic on
variables is used: If a path of length n is composed of way-
points v1, v2 . . . , vi, . . . vn, this heuristic reorders variables
Dmin

vi
(X) and Dmax

vi
(X) according to the path from start to

end in the forward direction, by increasing i. This heuristic
on variables considers the uncertainty variables Dmin

vi
(X)

and Dmax

vi
(X) for agent X in the following order (21):

D

min

v1
(X) � D

max

v1
(X) � D

min

v2
(X) � D

max

v2
(X)

. . . D

min

vi
(X) � D

max

vi
(X) · · · � D

min

vn (X), Dmax

vn (X)) (21)

Since the confidence interval [Dmin

v1
(X);Dmax

v1
(X)] at

the starting location v1 of agent X is known, labeling is
sufficient to instantiate these confidence intervals along the
path. If a coordination constraint creates an empty domain
of any finite-domain variable Dmin

vi
(X) or Dmax

vi
(X)] for

any agent X on any vertex v
i

, CP backtracking occurs in-
side the search on uncertainty (i.e., on confidence intervals)
and then possibly inside the search on certainty (i.e., on ex-
act variables) — finding other confidence intervals for the
same realization of D

vi(X), or finding another realization.

Experimental results
Benchmarks
Experiments on four benchmarks are presented, which are
representative of peace keeping missions or disaster relief.

Figure 4: Paths solution for coordinated manned vehicle and
the AUGV

Missions must be executed in less than 30 minutes. Areas
range from 5x5 kms to 20x20 kms.
1. Recon villages: Observing different villages after a major

water flooding event, described as a running example in
Fig. (1) and for which a solution to a 2 agents problem is
given in Figure (4);

2. Reinforce UN: Bring support to a United Nations mission
by deploying observers in an unsecure town;

3. Sites inspections: Observing different parts of a town dur-
ing inspection of suspect sites;

4. Secure humanitarian area: Observing different threats be-
fore securing refugees, over a large area.
On the first benchmark, Figure 4 shows the two paths

found by the first P&S algorithm. Resolving uncertainty then
provides the confidence intervals given in Figure 5 for the
two coordinated agents.

Performances of the Uncertainty Model
In order to measure the additional computational cost of the
solving process due to the uncertainty model, ORTAC has
been run on 4 topological maps, composed of 22 / 33 / 23 /
22 vertices and, respectively, 74 / 113 / 76 / 68 edges. Each
example involves 2 to 8 agents. The experiments were car-
ried out on a computer with processor i7 at 2GHz with 4Gb
RAM on a virtual machine. The computation time is mea-
sured for the certainty search and for the uncertainty one
— see Figure 6. Further experiments have been carried out
with a topological map representing the streets and intersec-
tions of Paris: solving time takes more than 2 hours under
the same experimental conditions.

Related work and Discussion
First, Nilsson et al. (Nilsson, Kvarnström, and Doherty
2015) define Simple Temporal Networks with Uncertainty
(STNUs) as an extension of Simple Temporal Networks
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- Uncertain coordination simultaneous between:

unit1 on node 11 and unit2 on node 12

--- Agent : unit1

Absolute uncertainty on node 2 : -2 =< 0 =< 3

Absolute uncertainty on node 11 : 10 =< 32 =< 35

Absolute uncertainty on node 16 : 55 =< 77 =< 80

Absolute uncertainty on node 17 : 59 =< 81 =< 84

Absolute uncertainty on node 18 : 65 =< 87 =< 90

Absolute uncertainty on node 19 : 71 =< 93 =< 96

--- Agent : unit2

Absolute uncertainty on node 1 : -2 =< 0 =< 3

Absolute uncertainty on node 4 : 2 =< 4 =< 7

Absolute uncertainty on node 10 : 5 =< 7 =< 10

Absolute uncertainty on node 12 : 10 =< 12 =< 35

Absolute uncertainty on node 13 : 16 =< 18 =< 41

Absolute uncertainty on node 19 : 82 =< 84 =< 107

Absolute uncertainty on node 20 : 88 =< 90 =< 113

Figure 5: Excerpt of output of ORTAC for 2 units ”unit1”
and ”unit2” with the coordination constraint ”simultaneous”
between vertices 11 for unit1 and 12 for unit2. Each line
shows the lower bound of the confidence interval Dmin

v

(X),
the exact (certain) passing time D

v

(X) on each vertex v, and
the upper bound of the same confidence interval Dmax

v

(X).
Times are given in minutes and progression time in search
and rescue is expressed in meters per minute.

(STNs) (Dechter, Meiri, and Pearl 1991) towards represent-
ing uncertainty — this has been extended towards contin-
uous uncertainty with Probabilistic STNUs (Santana et al.
2016). A temporal action in a STNU is represented as start
and end times, with a bounded duration: for every tem-
poral action A, duration(A) = end(A) � start(A) 2
[min(A),max(A)]. These authors propose an algorithm
with O(n3) complexity to incrementally verify that there al-
ways exists a solution for the start and end times of each
action (dynamic controllability), regardless of what hap-
pens at execution time — these start and end times are
constrained by uncontrollable/contingent phenomena (e.g.,
wind, weather). In contrast, our approach does not consider
one agent only, as with STNUs, but several, which is mod-
elled by a flow constraint (refer to equation (2)). As such,
our model can represent coordination constraints among
agents (crucial for our application on AUGVs), which can-
not be represented by STNUs’ binary constraints. A com-
mon ground between STNUs and our approach would be to
define a CP global constraint, called dynamic controllabil-
ity verification, to ensure consistency of a subset of our CP
constraints model.

Second, Fargier et al. (Fargier, Lang, and Schiex 1996)
extend the CSP framework to deal with reasoning under in-
complete knowlege: they propose an anytime algorithm (im-
plemented in (Guettier and Yorke-Smith 2005) for an appli-
cation in the aerospace domain) based on a set X of un-
controllable variables and on another set Y of controllable
variables — hence its name mixed-CSP. The algorithm pro-
posed by these authors covers realizations of variables of X ,
one by one, with CSP resolution over variables of Y and iter-
ates on realizations until they are all covered. This algorithm
exhibits an anytime property, since uncontrollable variables
are considered first one by one: interrupting this algorithm
leaves covered a subset of X . In contrast, our approach is
based on uncertainty by extending a certainty reasoning, as

6.a Recon village after flooding

6.c Suspect sites inspection

6.b Reinforce UN in town

6.d Secure humanitarian area

Figure 6: Performance on benchmarks according to the num-
ber of agents and one coordination constraint per run: execu-
tion time in blue and red, respectively for the reference P&S
problem, and the scheduling under uncertainty
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STNU extends STN, whereas mixed-CSP considers uncon-
trollability first and then responds to it by controllability —
an approach which suffers from severe algorithmic complex-
ity.

Third, one could argue that mixed-integer programming
(MIP), instead of CP, could be used to solve our model. That
is, equation (2) would be interpreted as an integrity equation,
common in MIP, whereas the rest of the model would be
turned into linear inequalities among variables on integer or
real values. Unfortunately, our velocity model is not linear
but quadratic (refer to equation (3)).

However, following this idea anyway, our model is based
on finite-domain variables (i.e., on variables over integers),
as in every CSP, and it would be interesting to mix inte-
gers and real numbers, as in MIP. For example, for rep-
resenting continuous values of temporal variables in our
model, such as passing time D

v

at waypoint v or duration
S
v

. Indeed, the implementation language, Sicstus Prolog, in-
cludes a continuous solver (Carlsson 2015), but that latter
solver and the CSP solver hardly cooperate. A more inter-
esting approach towards mixing discreteness and continu-
ity in CP is the CSP solver CHOCO (Prud’homme, Fages,
and Lorca 2017), harmoniously integrated to the continuous
solver IBEX (Chabert and Jaulin 2009). But porting ORTAC
onto these two solvers would entail large software engineer-
ing work.

Finally, the incremental property of STNU’s verification
algorithm and the anytime property of mixed-CSP are inter-
esting, which would lead in our context to what could be
called anytime CSP, meaning interrupting a CSP solver be-
fore completion and having a partial solution where some
quality would increase over the allocated time. But that
would be another story — after all, time that passes can also
be considered as an uncontrollable continuous variable.

Conclusion
A discrete representation of temporal uncertainty based on
confidence intervals in a CSP-based planning and schedul-
ing system has been presented. This extends a system known
as ORTAC (Guettier 2007) which finds paths in a topologi-
cal map for multiple agents with coordination constraints —
its applications include planning paths of tactical units in a
wargame, finding routes in a road network while minimizing
consumed energy and planning medical visits of patients.
Early experiments show that adding an uncertainty model
to a certainty one does not significantly degrade the solving
performances of the whole system.

Future work includes: Considering a higher level lan-
guage inspired by ANML (Smith, Franck, and Cushing
2008), which seems more appropriate than PDDL (McDer-
mott et al. 1998) for P&S robotic applications (Dvorak et
al. 2014); And connecting ORTAC to a wargame simulating
AUGVs, before porting the system to AUGVs for real.
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Abstract 
The Z Machine is the world’s most powerful x-ray source, 
routinely delivering over 20 MA of electrical current to tar-
gets in support of US nuclear stockpile stewardship and in 
pursuit of inertial confinement fusion. The large-scale, multi-
disciplinary nature of experiments (“shots”) on the Z Ma-
chine requires resources and expertise from disparate organ-
izations to execute Emergent Knowledge Processes with in-
dependent functions and management, forming a Collabora-
tive System-of-Systems. A previous work identified the re-
sulting significant challenges of distributed planning and co-
ordinating a given experiment day, and described one poten-
tial approach to scheduling based on a Simple Temporal Net-
work with only minimum times between activities defined. 
The present work extends that approach in two ways. First, a 
method is proposed to establish latest cutoff times for activity 
starts through the setting of a single operational goal to back-
schedule all latest times of when activities might begin to 
achieve that goal (so that unlike the lower bounds which are 
physically possible intervals, the upper bounds reflect opera-
tionally required times if the goal is to be achieved). Second, 
the present work implements a real-time web-based software 
tool to enable more informed planning of “shot day” activi-
ties and presenting information relevant on shot day to aid as 
an enabling interface between workers among the varied 
groups involved in planning and execution. The resulting 
software product is a scheduling tool that displays windows 
of time during which each activity could and should begin. 
The software’s initial results are evaluated, and future areas 
for improvement are discussed. 

 Introduction   
“Thou goest thine, and I go mine – many ways we wend; 

Many days, and many ways, Ending in one end.” 
-George MacDonald, Phantastes 

 
The Z Machine (hereafter “Z”) is the world’s most powerful 
x-ray source, routinely delivering over 20 MA of electrical 
current to targets in support of various programs, including 
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US nuclear stockpile stewardship and pursuit of inertial con-
finement fusion. A single experiment (or “shot”) requires 
months of planning, design work, specialized hardware fab-
rication, and diagnostics configuration, all involving experts 
from a variety of specialized back-grounds such as plasma 
physics, hydrodynamics, dynamic material properties, laser 
technologies, atomic spectroscopy, neutron diagnostics, 
electrical engineering, mechanical engineering, and electro-
mechanical controls, among others. Execution of a shot can 
often be achieved in one day; regular operation of Z on a 
daily basis requires specialists from all of the fields above 
as well as technicians and installers performing regular ma-
chine maintenance and configuration. These personnel are 
involved in activities ranging from operating heavy machin-
ery to refurbishing equipment, performing routine mechan-
ical and electrical work, and even underwater diving.  
 A previous work (Schaffner 2017) identified Z and its 
participants as a Collaborative System-of-Systems (SoS) 
(Maier 1998) replete with Emergent Knowledge Processes 
(EKPs) (Markus et al. 2002), exhibiting independent man-
agement and operation, volunteer-like participation, and un-
predictable and emergent arrangements of people and sys-
tems. All of these traits create significant challenges to plan-
ning and scheduling activities for a given Z experiment 
(which can take anywhere from half a day to multiple days), 
which in turn create significant challenges to coordination 
of the various participants involved in the experiment – es-
pecially as configurations are redefined and as new needs 
emerge over the experiment’s preparation and execution. 
This latter emergent condition is common, given the nature 
of EKPs, and yet it is also the most likely to cause previously 
communicated planning and scheduling information to be-
come obsolete, whether or not all participants are aware of 
the developments.  
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Motivation: Aiding coordination of EKPs with an 
information system 

Despite these challenges posed to planning and schedul-
ing, “encouraging cooperation” of participants remains the 
primary goal of the present work in keeping with Maier’s 
(1998) architectural principles for an SoS; efficient coordi-
nation is one of the means by which the present work at-
tempts to encourage cooperation. In the present case, effi-
cient coordination is enabled through an information system 
intended to provide a higher-level understanding of the an-
ticipated and actual temporal behavior for a given experi-
ment, which respectively reflect two of Maier’s (2005) re-
search challenges for the study of an SoS: Upper Layer De-
scription and Upper Layer Analysis. Rhodes and Ross 
(2010) identify some of the behavioral and perceptual fac-
tors at play when attempting to describe the complexity of 
systems like Z, as described in (Schaffner 2017): success 
can only be achieved when the temporal behavior of a Z ex-
periment is captured and presented in a way that can account 
for the varying perceptions of what that behavior means for 
individual participants, ultimately encouraging cooperation 
from each individual participant. Similarly, (Markus et al. 
2002) state that since “the mix of backgrounds and expertise 
brought to bear on emergent knowledge processes can differ 
each time the process is performed,” a meta-requirement for 
information systems that support EKPs “…must meet the 
diverse and some-times contradictory needs of different user 
groups.” In addition, since “no one individual or group has 
a complete grasp of both the general and specific knowledge 
that applies,” a supporting information system “…must in-
corporate the frameworks and perspectives of several differ-
ent kinds of participants” (Markus et al. 2002). 

Method 
Schaffner (2017) discussed some of the challenges to both 
the feasibility and usefulness of probabilistic information 
about scheduled activities for a Z experiment, concluding 
that communicating earliest time estimates (ETEs) instead 
of “likely” (or any other probabilistic) time estimates is the 
most effective approach to wide-scale coordination of inde-
pendent agents in environments with large exogenous un-
certainties (such as EKPs). Mass transit systems (e.g., 
planes, trains, buses) engage in widespread application of 
this idea of communicating earliest times for more efficient 
coordination of independent participants. However, stake-
holders and research readers will still inevitably raise the 
question: why not use triangle distributions, or beta distri-
butions, or PERT, or [insert favorite probabilistic method 
here] to describe each activity in the Simple Temporal Net-
work, and therefore communicate so much more forecasting 
information to participants? 

An evaluation of Earliest Time Estimates (ETEs) 
and probabilistic time estimates in EKPs 
While Simon (1992) nicely sums up the big picture of why 
probabilistic methods are not appropriate in this context 
(“the heart of the data problem for design is not fore-casting 
but constructing alternative scenarios for the future”), 
Markus et al. (2002) offer several specific, relevant meta-
requirements for information systems that support EKPs. 
These meta-requirements are presently described and used 
to evaluate the appropriateness of earliest times vs. proba-
bilistic times for coordination of participants in EKPs.  
 Meta-requirement: Because “knowledge must be ac-
tionable in application,” an information system supporting 
EKPs “must be directed at improving off-line behavior and 
must tie knowledge to concrete practical action” (Markus et 
al. 2002). The question then arises, how is concrete practical 
action enabled by a probabilistic estimate of an activity’s 
scheduled time? How should (or will) a participant change 
their actions if they receive an estimate of 30% confidence 
as opposed to 60% confidence, for example? Keeping in 
mind that participants each have their own cognitive biases, 
independent management, and voluntary participation with 
other participants, can they be expected to respond consist-
ently, much less uniformly, to such information? (In addi-
tion, in a Collaborative SoS, who could enforce uniform re-
sponses even if they were desired by some participants?) 
Providing earliest times, on the other hand, provides the con-
crete action of “checking in” – communication is simple in 
the modern age, and a quick “check-in” is all it takes for a 
participant to find out whether to start an activity or check-
in at a future time. With an ETE, therefore, a participant can 
be consistently prepared to begin an activity when needed, 
rather than showing up late because it was “not probable” 
that they’d be needed. In addition, participants can be off-
line as much as they like after receiving an ETE, since (ide-
ally) the estimate will not be invalidated by any future up-
dates to that ETE. 
 Meta-requirement: Because “it is not possible to know 
in advance who will be involved” in an EKP, a supporting 
information system “must employ terms, operations, and an 
interface that are usable by participants who are un-known 
in advance” (Markus 2002). Setting aside the obvious (and 
significant) problems with relying on probabilistic infor-
mation about processes that include unknown participants, 
the fact that unknown participants may be present com-
pounds the challenges of the previous meta-requirement. 
Not only would the unknown participants need to be able to 
use the existing information effectively, but they would 
need to be able to provide their own probabilistic infor-
mation so that the information system could update the prob-
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abilistic information about all following activities (likely in-
validating the previously calculated values). It remains un-
clear how or when such information would be obtained from 
such participants (not to mention how such collection would 
be enforced), and it remains especially unclear how such in-
formation could be validated (since, as (Markus et al. 2002) 
point out, many participants “may participate only infre-
quently or in circumstances that do not reoccur”). ETEs, on 
the other hand, are agnostic to unknown participants, since 
the ETEs can always be pushed later in time without invali-
dating previously calculated ETEs of an activity or any of 
its successors.  
 Meta-requirement: Because participants in EKPs “may 
have considerable discretion over their use of methods and 
tools,” a supporting information system must ensure “that 
decisions are easier to make with the system than without 
it.” With probabilistic information, a participant could be 
confused, misled, or have other malformed cognitive func-
tioning with respect to their actions in support of scheduled 
activities, making their real-time decisions potentially much 
more stressful and much more difficult to later analyze re-
flectively. In contrast, ETEs make decisions easier for every 
participant, since it is straightforward to infer when they 
might need to check-in in the future. 
The meta-requirements above demonstrate the challenges to 
and ultimate insufficiency of providing probabilistic infor-
mation to Z SoS participants as a means of effecting effi-
cient coordination. They also demonstrate the appropriate-
ness of providing ETEs in the context of Z’s SoS, where 
EKPs are found throughout an experiment’s lifecycle. 

Providing Latest Cutoff Times (LCTs) 
Schaffner (2017) raises the question of whether latest time 
estimates for activities could be provided in the same man-
ner as ETEs, since Simple Temporal Networks naturally 
support both constructs. The meta-requirements above 

                                                 
1 The operational goal could also be mixed with other operational con-
straints (e.g., upper bounds of resource availability for individual activities) 

demonstrate that in addition to providing ETEs, providing 
latest time estimates for activities could also help partici-
pants (e.g., through enabling more appropriate off-line be-
havior and more concrete action). The SoS-style collabora-
tion in EKPs in Z experiments, however, implies that upper 
bound estimates on experimental activities’ durations are 
dubious at best, and misleading at worst. For many of the 
same reasons as with ETEs, probabilistic estimates cannot 
help here.  
 If lower bound temporal relationships between activities 
are established, however, then latest cutoff times (LCTs) for 
those activities could be derived through backward propa-
gation of the lower bounds from some future “goal” time 
(i.e., back-scheduling). Since in the case of Z experiments 
all activities eventually lead to a Z Shot, an operational goal 
for the activity of shooting the machine can be de-fined (e.g., 
“Fire the machine by 5pm today”), which can be back-
scheduled through the network to provide the latest cutoff 
times (LCTs) for all preceding activities1. An illustration of 
ETEs and LCTs can be seen in Figure 1. 
Example derivation of ETE and LCT 

Let G be the directed edge-weighted graph defined as a 
tuple G := <V, E>: 

 
V: set of nodes, each representing the start of an activity 
(e.g., “Begin Water Fill”) 
E: set of edges ωij representing the minimum minutes be-
tween nodes, of form jstartTime – istartTime > ωij, where  
 j,i ∈ V 
 i = source node for the directed edge 
 j = destination node for the directed edge 
 ωij ∈ ℝ > 0 
No cycles exist.  
 

to incorporate more complete information on LCTs, but for present pur-
poses only the shot event is considered. 

Figure 1. ETEs of activities (denoted by gray lines on each activity’s left-hand side) are derived by scheduling the earliest times of activi-
ties starting at 0600.  LCTs (black lines on right-hand sides) are derived by choosing a goal for Downline of 1700 (indicated by bold ar-

row), which allows minimum bounds to be back-propagated through the network to generate LCTs for all other activities. 
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Once G is constructed, the ETEs can be derived by sched-
uling all activities at their earliest times. To do so, the net-
work is first ordered topologically using Kahn’s (1962) al-
gorithm, and then nodes without predecessors are assigned 
an ETE2. Successive nodes are then assigned ETEs in topo-
logical order through the calculation of:  

 
ETEj = max { ETEi + ωij, ∀ i, ωij ∈ E-(j) }       (1) 
 
In other words, a node’s ETE can be assigned by adding 

each incoming edge ωij (edge weight, in minutes) to that 
edge’s source node’s ETE, and taking the maximum (i.e., 
latest time) of this calculation for all incoming edges (E-). 

Once the ETEs have been assigned, the latest cutoff time 
(LCT) for the goal node can be established (e.g., “5pm” for 
the Z Shot): 

 
LCTZShot = 5pm                     

 
and then LCTs for all preceding activities can be assigned 
through back-propagation, or the inverse of the ETE calcu-
lations in Equation 1: 
 

LCTi = min { LCTj – ωij, ∀ j, ωij ∈ E+(i) }         (2) 
 
The basic idea of Equation 2 is that a node’s LCT can be 

assigned by calculating, for each of its outgoing edges (E+), 
the edge weight (in minutes) subtracted from the edge’s des-
tination node’s LCT; the minimum time calculated from all 
outgoing edges (E+) is then assigned as the node’s LCT. By 
beginning at the goal node (Z Shot) and working topologi-
cally backward, each node in the network is assigned its 
LCT after all its successors’ LCTs have already been deter-
mined. 
 In this way, the STN from Schaffner (2017) can be ex-
tended to also include maximum times for activities, but un-
like the lower bounds between activities derived from the 
minimum physically possible times, the upper bounds are 
derived from the maximum operationally desirable times 
(i.e., without sacrificing the overall operational goal for the 
day). The resulting network is similar to a Simple Temporal 
Network with Uncertainty (Vidal 1999), as it implicitly re-
flects “strong controllability” – though with the important 
difference that, in the present application, it is still entirely 
possible for activities’ durations to violate the upper bounds, 
which violation would simply indicate that the operational 
goal can no longer be reached by the desired time given the 
structure of the network. 

                                                 
2 Initial experiment start time or estimated time of resource availability can 
be used to determine ETEs for source nodes (i.e., no predecessors). 

(More) Functional Distributed Reasoning 
Through the construction of ETEs and LCTs, then, the pre-
sent work aids in the goal of Schaffner (2017): that of par-
ticipants’ functional reasoning laid out by both Simon 
(1992) and Markus (2002), leading to more efficient coordi-
nation. While the present work extends the information in-
corporated and presented to the reasoning agents, it still con-
tinues the two means set out by Schaffner (2017):  
 1) Require as little information as possible from partici-
pants while still reliably modeling shot activities (e.g., only 
one common goal is required for calculation of all LCTs – 
though if a participant provides resource availability con-
straints, those can be easily incorporated), and  
 2) Provide consistently actionable information regarding 
alternative scenarios to Z SoS participants in order to aid 
them in their own planning, execution, adapting, and inter-
facing with other entities. 
 Including LCTs can provide SoS participants with action-
able information to help coordinate work through reasoning 
that is more functional in several ways than the ETE-only 
STN constructed by Schaffner (2017). First, it can provide 
at-a-glance information regarding slack in the experiment’s 
schedule: when viewing a timeline, a participant can easily 
ascertain the window of time for each activity to begin, and 
the length of window for each activity’s start time (Figure 
1) relative to other windows can indicate that activity’s 
proximity to the (anticipated) critical path. Second, it can 
provide an easy heads-up for those activities that will most 
impact the developing timeline of operations (and result-
antly most impact the chances that the operational goal is 
achieved). If a participant perceives that the window for be-
ginning an activity is uncomfortably small, they may adjust 
their behavior or the activity’s scope, prepare in advance, 
garner additional resources, or even attempt to communi-
cate/collaborate with others who may be impacted. Third, 
the bounded-window view compactly summarizes Simon’s 
(1992) “alternative scenarios” (i.e., by showing a range of 
time over which each activity might happen, rather than a 
single prediction) – even showing the alternate ways an ex-
periment is at risk of failing to achieve the operational goal. 
Through all of these means, this view increases understand-
ing of the behavioral aspect of an experiment’s schedule of 
activities for all participants (a la Rhodes & Ross 2010), and 
at once contributes to both the Upper Layer Description and 
Upper Layer Analysis of the SoS operations during a given 
day (a la Maier 2005). 
 One caveat in the present work’s method of LCT calcula-
tion is that, since LCTs are derived from back-scheduling an 
operational goal through the minimum bounds of the net-
work, the calculated LCTs are highly optimistic. If an activ-
ity is started at its latest cutoff time, the operational goal 
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might still be able to be achieved, but only if all following 
activities’ edges hold to their respective lower bounds (each 
of which are individually optimistic). This optimism raises 
potential concerns for the perceptual aspect of complex sys-
tems interpretation (especially for unknown/unanticipated 
future participants in experiments, who may not realize just 
how optimistic the LCTs are). To help address this percep-
tual challenge, this high degree of built-in optimism to the 
LCTs should always accompany the LCTs through what-
ever means they are communicated, and the upper bounds 
of activities’ windows should be clearly identified as chal-
lenging and undesirable locations to be occupying on the 
shot timeline – which is helped, for example, by including 
“cutoff” in the name. 

Results 
As discussed above in Method, the present work uses the 
minimum-bound STN constructed by Schaffner (2017) to 
provide a template for a Z experiment. All activities are then 
scheduled to begin at their earliest times (thereby providing 
ETEs) on experiment day. The Z Shot activity is then de-
fined as the operational goal, using a latest time determined 
by managers and experimenters. This goal node-time is then 
back-scheduled through the network in order to provide the 
upper bounds on activities’ execution. The design of the da-
tabase-driven web application created for use in storing, 
viewing, and modifying the plans and schedules of Z exper-
iments is now discussed. 

Creation of the Software Application 
The scheduling of activities’ ETEs and LCTs has been in-
corporated into an ASP.NET interactive web application, 
deemed PSYCHE (Planning with SYstematic CHronologi-
cal Estimates). The resulting information system allows Z 
participants to capture and view information about activities 

before shot day, aiding them in making more informed de-
cisions about their own work vis-à-vis the potential timeline 
developments of the experiment. Allowing the automated 
scheduling information to be viewed during planning stages 
is consistent with Smith’s (2003) observation that in many 
applications, “planning…and scheduling…are not cleanly 
separable” and helps address the need Smith raises for “the 
design of more tightly integrated planning and scheduling 
processes” (2003). The vis.js framework (visjs.org) was 
used on the front-end to enable smooth, intuitive interactiv-
ity with the timeline, so that clicking on any activity on the 
timeline will provide more information about that activity, 
including valid operational hours of the activity as well as 
edges and lengths to other activities on the timeline. An ex-
ample of this information can be seen in Figure 2.  
 In addition to aiding planners before an experiment is ex-
ecuted, PSYCHE aids experiment execution on shot day by 
including back-end interfaces with embedded facility diag-
nostics to provide real-time updates to the windows of time 
for which activities are scheduled. PSYCHE includes a 
scheduler that runs once each minute, updating the earliest 
times of all scheduled activities’ windows to provide accu-
rate up-to-the-minute information to shot participants on 
shot day. As real-time information comes in regarding when 
activities actually began (or as minutes pass by and activities 
do not begin), dependent activities’ execution windows can 
be updated (i.e., their earliest time estimates shift to be later 
in time). These real-time updates do not affect the Latest 
Cutoff Times, since LCTs only depend on the predefined 
operational goal and the minimum edges defined in the tem-
poral network. These minute-by-minute updates to an activ-
ity’s ETE means that a scheduled activity’s window 
“closes” as the day progresses, which is the way many par-
ticipants already think about execution opportunities; there-
fore, the software’s “closing window” depiction is in line 
with Markus et al.’s (2002) recommendation to match user 
intuition when possible. 

Figure 2. Meta-information available about an activity shown when a user selects that activity on the timeline. Edges and edge lengths are 
shown on each respective side of the info box, where they can be edited as needed (prompting rescheduling of the network). Calculated 

ETEs and LCTs as well as resource constraints (06:30 and 17:00) are shown in the info box. 
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Verification: Measuring Accuracy 
One of the primary ways that PSYCHE’s performance is be-
ing measured is by recording activities’ ETEs minute-by-
minute and comparing those estimates against activities’ ac-
tual begin times. As discussed in Method, an ETE for an 
activity should always remain valid as an estimate of the 
earliest start time; if the estimate is adjusted, it should only 
be adjusted to be later in time (i.e., the left-hand side of an 
activity’s execution window on the timeline should only 
move to the right), so that the original estimate remains valid 
as an earliest time (following Markus et al’s (2002) recom-
mendation to “improve offline behavior”). If any of the 
ETEs provided over a day for a given activity ends up being 
later than the actual start time of that activity, it is an inac-
curate ETE. In addition, if any of an activity’s ETEs esti-
mate a time that is earlier than a previously provided ETE 
for that activity, then the previously provided ETE(s) should 
be considered inaccurate. By recording all of the minute-by-
minute ETEs of an activity up to the actual begin time of 
that activity, it becomes possible to measure both of these 
conditions in order to check that the adjustments of esti-
mates are behaving as desired (i.e., are only adjusted to es-
timate later start times as the experiment unfolds). 
 Motivated by the above observations, the calculated ear-
liest times for a day’s activities are recorded on a minute-
by-minute basis throughout the day (since PSYCHE’s real-
time scheduler runs each minute, potentially updating the 
earliest times for each activity that day). The resulting rec-
ords clearly show the behavior of estimates of all activities 
involved in a given experiment; an instance of the recorded 
minute-by-minute estimates for all activities in a shot can be 
seen in Figure 3. Each estimate can be seen to increase as a 
function of the time of the estimates, which is the expected 
and desired “accurate” behavior. The working definition for 

“accuracy” is defined for the present work as “the propor-
tion of minute-based estimates of earliest begin time that are 
earlier than an activity’s actual begin time.” 

In order to avoid surprise and encourage the check-in be-
havior discussed above in Method, it is necessary to max-
imize accuracy of the minimum bounds; however, it should 
be pointed out that one of the rather severe risks of achieving 
100% accuracy by this definition is that the minimum 
bounds between activities might be too small. This would 
cause the LCTs of activities to be more optimistic than is 
appropriate (due to back-scheduling’s use of minimum 
bounds). To address this risk, it may be desirable for some 
very small portion of estimates to be inaccurate – meaning 
an occasional activity’s actual begin time is earlier than its 
minimum time estimate. Formalization of these latter con-
cepts is ongoing, with the definition of “precision” of esti-
mates being an area identified as a needed step in future 
work. In the meantime, the working definition of accuracy 
presently outlined serves as a practical measure of perfor-
mance in serving the purpose of coordination. 

Validation: Z SoS Participant Feedback 
If Z participants are ostensibly those being served by the ap-
proach outlined in the present work, it stands to reason that 
they should be consulted on the perceived value of the work. 
Initial feedback along these lines has been obtained in sev-
eral ways, albeit all anecdotal. First, casual conversations 
with installers and technicians have been conducted, inquir-
ing as to which information would they rather be given:  a 
“likely time” or even quantified probabilistic estimate, or a 
window of time during which an activity may occur. The 
results of these conversations fairly consistently reflect a de-
sire for the “window” option. 
 Second, in response to direct questioning by a Z partici-
pant of “When will Activity X happen?”, the response has 
been given in terms of a window of time (sometimes show-
ing the PSYCHE timeline) and asked if that was satisfying. 
The answer was usually “Yes”, though on occasion the reply 
was “Sure, but what time do you think it will happen?” (This 
latter response is not unexpected, since it reflects established 
cultural norms around gauging various individual percep-
tions in forming one’s own opinion of likelihood, which is 
one of the asystematic behaviors that the present work is at-
tempting to address.) 
 Finally, the timeline has been consulted and shown to de-
cision makers on particularly complex shot days in order to 
communicate the slim margins of time associated with the 
operational goal that day. The decision makers were more 
informed by the visual timeline than they otherwise would 
have been, and were able to take action accordingly. 
Through continuing these types of interactions, it is hoped 
that feedback will continue to affirm the usefulness of the 
provided windows of time. 

Figure 3. Traces of all activities' ETEs throughout a day; each 
line represents the trace of one activity’s ETEs over the day (dot 
represents activity start). ETEs only increase as time increases. 
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 It is anticipated that as Z participants and decision makers 
interact with the visualization of PSYCHE, their perceptions 
and valuations of hypothetical and actual outcomes will 
change. This expectation is derived from previous applica-
tions of established psychology research to interactive visu-
alizations, such as (Ricci et al. 2014). As discussed in that 
work, stakeholder’s mental models of complex systems dif-
fer from the constructed models of systems used in engineer-
ing design. Interacting with visualizations of the constructed 
models (more specifically, being able to see the estimated 
results of different design choices), allows adjustment of 
both a stakeholder’s mental model of a system and the con-
structed model of that system, leading to “better” decisions 
(defined by Ricci et al. as “trusted, truthful” decisions). It is 
further hypothesized in the present work that as Z partici-
pants observe and respond to the ETEs and LCTs provided 
to them (i.e., interact with the constructed model of an ex-
periment), they will grow to trust the model and allow it to 
update their mental model as appropriate, leading to more 
consistent (and more confident) distributed functional rea-
soning 

Further Work 
With an initial prototype of PSYCHE complete, work can 
now transition to several fronts. First, the embedded sensors 
in the machine often provide false, conflicting, or irrelevant 
information. Real-time filtering and state estimation is 
needed to ensure that PSYCHE’s estimates reflect the actual 
states of the machine. In tandem with the effort of creating 
such a filter/estimator, one of the next major improvements 
could be automated planning on subsets of activities to han-
dle unscheduled events (e.g., rework) when the machine 
states indicate so.  
 Second, the activities chosen for the initial version of 
PSYCHE were chosen based on machine states which are 
already automatically diagnosed by embedded sensors. This 
set of states does not equal the set with which all Z partici-
pants are concerned, however. A more complete (and hope-
fully more broadly useful) state model is under construction, 
along with analysis of how embedded diagnostics could re-
liably indicate those states. 

Finally, the methods of communication of the information 
captured and calculated by PSYCHE is an essential area ripe 
with opportunity. Live schedule updates could be communi-
cated in multiple ways to various parties on the machine, 
increasing dissemination of progress and risks throughout a 
shot’s execution. It is envisioned that this increased level of 
communication will further strengthen the interfaces be-
tween participants and implicitly encourage further cooper-
ation. 

Adding Probabilities and Entropy for Estimates 
With a subset of the current states, and as more states are 
added, some of the temporal relationships between states 
will be able to be described reliably with probabilistic infor-
mation. Because the current application does not incorporate 
any such information, it may need to be expanded in some 
way in order to provide as much useful information as pos-
sible when planning a Z experiment and increasing the 
chances of success in following a plan (even in the face of 
other activities/uncertainties that cannot be so character-
ized). One example of a potential improvement in this re-
spect would be to implement a Probabilistic Simple Tem-
poral Network with Uncertainty (PSTNU), which marries 
STNUs with probabilistic information so that a planner may 
incorporate as much information as possible to minimize 
risk (Santana et al. 2016). It is possible that a modified form 
of the PSTNU would allow more informed planning of Z 
experiments by experimenters interested in minimizing spe-
cific risks.  
 Importantly, however, this probabilistic information 
would only be intended to help planners before shot day: all 
of the challenges identified in Method remain for broad 
communication of such probabilistic information to the par-
ticipant community, and it is not currently perceived that 
this added capability would contribute toward the present 
work’s SoS-level goals of encouraging cooperation and lev-
eraging interfaces for real-time execution. 
 An intriguing middle ground for broad communication of 
pseudo-probabilistic information might be an ordinal rank-
ing of entropy for any ETE provided, so that if an activity 
were deemed fairly well known/described (e.g., automated 
fluid drains), successive activities’ ETEs could be deemed 
“high quality”, since less entropy is introduced into the tem-
poral network from less-EKP-like activities. This measure-
ment of “quality of estimate” could be useful to some par-
ticipants, and those who are not helped by it could still safely 
ignore it, using only the ETE provided. 

Adding System States 
Another area of ongoing work is the expansion of the set of 
activities included in the planning and scheduling of Z shots. 
The currently included set comprises activities which are as-
sociated with already-existing embedded sensors. While the 
sensors are useful for the proof of concept of the present 
work, it is hypothesized that more useful states can be de-
rived from stakeholder analysis and state machine studies, 
which are presently underway. The state machine(s) con-
structed will not only be able to inform the filtering of sensor 
input for more reliable real-time updates, but should also 
prove to be useful in any efforts toward automated planning 
on a subset of machine states. 
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Rolling Out Live Status Indicators 
Once the initial version of PSYCHE has been operational 
for some time providing accurate estimates of the earliest 
times that activities can begin, those estimates (along with 
the latest times) can begin to be automatically communi-
cated to Z participants. The aforementioned stakeholder 
analysis will likely aid in determining which types of partic-
ipants need what information regarding schedule updates, as 
well as how often those updates are needed and the most 
effective methods for communication. Prior to the com-
pleted stakeholder analysis, various communication meth-
ods are already being considered, ranging from electronic 
kiosks with PSYCHE’s view of the higher-level schedule 
for a shot, to LED matrix signs placed throughout work-
spaces, to automated email and PA announcements, among 
others. Since communication itself is one of the primary 
components of “the interfaces” between participants, the 
choices of what information to communicate, to whom to 
communicate that information, and the frequency and 
method of communication, have potentially drastic effects 
on the eventual success or failure of the present goals of lev-
eraging interfaces and encouraging cooperation. 

Conclusion 
This work continues previous efforts to improve the inter-
faces of the Z System-of-Systems through distributed plan-
ning and automated scheduling of activities. Goals were de-
fined for higher-level planning and scheduling activities to 
“leverage interfaces” and “encourage cooperation”  by 1) re-
quiring minimal information from each participant regard-
ing their own planned activities, and 2) aiding in functional 
reasoning around the execution of activities for a given ex-
periment. The present extension of the originally proposed 
STN is an STNU-like construct relating each activity with 
others, scheduling activities’ Earliest Time Estimates 
(ETEs) and then using a single operational goal to provide 
the Latest Cutoff Times (LCTs) for all activities. The com-
bination of ETE and LCT ultimately provide an execution 
window for each activity, which was incorporated into an 
interactive software tool, PSYCHE, intended to support 
both planning and execution. On-going areas of work were 
then discussed, including validation of estimates of earliest 
times, elicitation of participant feedback, and expanding the 
set of activities, sensors, and communications with which 
PSYCHE interfaces. 
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Abstract

Existing algorithms for Agile Earth Observing Satel-
lites((Lemâıtre et al. 2002)) were largely created for
1D line sensors that acquire images in linear swaths.
However, imaging satellites increasingly use 2D fram-
ing sensors (cameras) that capture discrete rectangu-
lar images. We describe tiling step-stare approaches
that are more suited to rectangular image footprints
than are 1D swath-based algorithms. Optimal area
planning for these 2D framing instruments is an NP-
complete problem and intractable for large areas, so
we present four approximation algorithms. Strategies
are compared against a prior 2D framing instrument
algorithm (Knight 2014) in three computational ex-
periments. The impact of observer agility on sched-
ule makespan is examined. Makespans vary more as
observer agility decreases toward a critical point, then
vary less after the critical point, suggesting a possible
problem phase transition.

Observer

Target

Footprint

Unobserved

Observed

Figure 1: Framing sensor observations (teal) of a target
area (white).

Introduction

Most existing area coverage algorithms for agile Earth-
observing satellites are intended for 1D sensors and
adapt poorly to 2D framing instruments with rectangu-
lar fields of view. These pushbroom algorithms contin-
uously sweep the sensor across the target, which would

Copyright © 2018, by the California Institute of Technol-
ogy. United States Government Sponsorship acknowledged.

Contact author: Michael Trowbridge

smear the image captured by a framing sensor. An
obvious alternative is to track a target point, which
informs a step-stare strategy where the target is de-
composed into a rectangular grid, and the sensor tracks
each grid point for the duration of an image capture
before moving on to the next(figure 2). The challenge

Pushbroom AEOS Track 
Selection & Scheduling 
problem (Lemaître 
et al. 2002)

Step-stare
tiling concept

Figure 2: Comparison of pushbroom and step-stare.

in determining grid layout is that the the imager foot-
print (projection of instrument field of view onto body
surface) change as the observer flies past (figure 3).

Final 
footprint 

(+4 minutes)

Initial
footprint

t0t0+4 min

Spacecraft

p (target)

p

Figure 3: Imager footprint changes size and shape

We wish to image the entire target area while mini-
mizing makespan (schedule duration). The area visible
to the sensor is time dependent, and the cost to slew
between target points is time varying and asymmetric
(Lewellen et al. 2017a). This paper discusses the di�-
culty of this optimization problem, presents optimal so-
lution approximation algorithms, then evaluates them
in three computational experiments.
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Figure 4: 1D (Lemâıtre et al. 2002) algorithm adapted
to use a 2D framing sensor, with sweep lines (blue line)
and image footprints (green). Only 81% of the target
(white) was satisfied

Related Work

Lemâıtre et al. present a swath-based Boustrophedon
(lawnmower) decomposition algorithm for area cover-
age with agile satellites (Lemâıtre et al. 2002). They
argue that the track selection problem is NP-hard, so
approximation algorithms are acceptable. The paper
assumes 1D sensors and does not discuss 2D sensors.
Our adaptation of their algorithm for 2D framing in-

struments performed poorly when slew rate was con-
strained to the slower readout times of 2D framing in-
struments. On our easiest test case1, the swath-based
algorithm did not cover the entire target (figure 4).
Knight identified area coverage planning for 2D fram-

ing instruments as NP-hard by analogy to finding a
Hamiltonian path through a grid-graph, then presented
a concentric ring (Milling) tiling algorithm (Knight
2014). While provably optimal for even grid-graphs, a
target polygon’s grid decomposition could be odd, pro-
ducing sub-optimal ring stitch points. The algorithm
subdivides grid tiles into either two or four sub-tiles,
which makes the graph even, but reduces area satis-
fied per image capture and increases makespan due to
overlapping imager footprints. This paper presents al-
gorithms that do not subdivide.

Formulation

Problem Statement

Choose observations (real-valued target points, rota-
tions, observation times) s.t. the union of all images
captured by those observations when projected onto the
target body (modeled as a triaxial ellipsoid) cover the
target great-circles polygon within a bounded temporal
interval (single overflight), subject to constraints, with
su�cient slew time between observations.

1GOLIAT/CICLOP CubeSat, using ON Semiconductor
AR0331 subwindowed to 16:3 aspect ratio (Semiconductor
Components Industries, LLC 2017)

Figure 5: Milling (Knight 2014) algorithm grid points
(connected by white line) and footprints (green). Sub-
division causes excessive overlap and some skipped tiles
that cover no target area (see edge crossing).

Nomenclature
p A point on the target body

(p
1

, . . . , p
n

) A great circles polygon on the target body
with n vertices

P A set of target great circles polygons

r
obs

Position vector of the observer at a given time
t, determined by spacecraft orbit

r
tgt

Position vector of the observer’s imaging target
(center of camera field of view)

✓ A rotation of the observer about its look vector
r
look

(r
tgt

� r
obs

)

t Time. t
0

is the start time of the planning hori-
zon, t

f

is final time.

b A single observation that captures an image:
(r

obs

, r
tgt

, ✓, t)

B The set of all possible valid observations b

A The observation tour (schedule), an ordered list
of scheduled valid observations a

m Makespan of A, m = [min t 2 A,max t 2 A]

T ile A image footprint polygon: intersection of the
body surface and the observer’s field of view

g A tile corresponding to a scheduled observation

G The set of scheduled image footprint polygons.

Formal Problem Statement
Given a set P of polygons on the target body,

P = {(p
1

, p
2

, p
3

)
i

} (1)

the set B of all possible valid observations b that fall
within the planning horizon [t

0

, t
f

]

8 (b = {r
tgt

, ✓, t}) 2 B, t
0

< t < t
f

(2)

a function to create a polygon g from an observation,
representing the image footprint2

g  footprint(r
tgt

, ✓, t) (3)

2The image’s angular field of view depends on instrument
design
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a Boolean valued function to check if a slew between
observations b

i

and b
j

is valid

Boolean slewOk(b
i

, b
j

) (4)

Some tour A ✓ B is valid i↵

P ✓ union ({footprint (a
i

) |i 2 1, 2, . . . , |A|}) (5)

and
|A|�1^

i=1

slewOk (a
i

, a
i+1

) (6)

Constraints
The observation schedule A must have a makespan m
within the visibility window [t

v0

, t
vf

] where there is a
line of sight from the observer to the target:

m ✓ [t
v0

, t
vf

] (7)

We enforce this by scoping B to the planning horizon
([t

0

, t
f

] ✓ [t
v0

, t
vf

]). The geometric visibility window
[t
v0

, t
vf

] is a finite planning horizon.
Observations b 2 B have minimum duration

�t
obs

> 0 (8)

Observations cannot be concurrents. Observation tran-
sition time is strictly positive and depends on spacecraft
agility.
Geometric constraints are satisfied by restricting our

search to the visibility interval [t
v0

, t
vf

] determined
with existing software3.

Tractability of the Optimization Problem
OptFramePlan is the optimization formulation of the
framing instrument area coverage scheduling problem.
The goal is to find the shortest makespan schedule that
satisfies conditions 5 and 6, subject to the previously
listed constraints.

Theorem 1. Finding the makespan-optimal area cov-
erage plan for a space-based 2D framing instrument is
NP-complete.

Lemma 1.2 shows that the problem belongs to NP
because an arbitrary solution is polynomial-time veri-
fiable. Lemma 1.3 shows that the problem is at least
as hard as finding a Hamiltonian path in a grid graph,
which is NP-complete (Itai, Papadimitriou, and Szwar-
cfiter 1982).

Lemma 1.1. The size |A| of a solution schedule A ✓ B
is bounded from above by

tf�t

0

�t

obs

.

Proof. By contradiction/pigeon-hole principle. Assume
A contains tf�t

0

�t

obs

+ 1 observations. Neglecting transi-
tion costs between observations, the horizon [t

0

, t
f

] can

accommodate tf�t

0

�t

obs

non-overlapping observations. If

|A| = tf�t

0

�t

obs

+1, then at least two observations overlap,
contradicting the problem constraints.

3Systems Toolkit (STK) (Analytical Graphics Inc.
2017), Satellite Orbit Analysis Platform (SOAP) (Stodden
and Galasso 1995), SPICE (Acton et al. 2016)

Lemma 1.2 (OptFramePlan 2 NP ). An arbitrary
area coverage plan for a space-based 2D framing instru-
ment is verifiable in polynomial time.

Proof. Lemma 1.1 proves that |A| = |G| is bounded
linearly by the planning horizon and minimum obser-
vation duration. A plan that contains |A| observations
has at most |A|�1 slews to validate using the constant-
time slewOk function. Validating constraint compli-
ance of each observation is also linear in |A| observa-
tions. Unioning G (a set of sets) has no worse than
O(|G|2) time complexity (Cormen et al. 2009).

Lemma 1.3 (HamiltonianPath 
P

OptFrame-
Plan). Finding the makespan-optimal area cover-
age plan for a space-based 2D framing instrument is
polynomial-time mappable onto an instance of finding a
Hamiltonian path in a grid graph.

Proof. Relax the makespan-optimal area coverage plan-
ning problem by discretizing the target polygons into a
uniform, target-fixed grid of points V . Omit rotation
about the look vector ✓ and set the planning horizon
short enough that skew may be neglected. Assume that
the observer can slew equally well in any direction, mak-
ing slew distance metric within the grid graph.
Define general grid graph � = {V,E}, where time

cost c
ij

(t) between v
i

2 V to v
j

2 V via edge e
ij

2 E is
a function of arrival time t, the sum of all previous costs
added to the tour start time. An edge e

ij

exists only if
arrival time t  t

end

 t
f

, where t
end

is the end time
of the shortest known schedule. The makespan-optimal
area coverage plan for this target discretization will visit
each point in V once (i.e. be a Hamiltonian path).

OptFramePlan is NP-complete, so makespan-
optimal framing instrument scheduling of large areas
is expected to be intractable. Thus, we limit our dis-
cussion to approximation algorithms.

Approximation Planning Algorithms

This section presents four deterministic step-stare tiling
algorithms that approximate a makespan-optimal so-
lution to OptFramePlan. The algorithms di↵er in
when they commit the plan to target points r

tgt

, how
far ahead they plan and how they maintain the plan.

Sidewinder: Target-fixed Boustrophedon

Sidewinder is an adaptation of the Boustrophedon
(lawnmower) algorithm (Choset and Pignon 1998).
Construct a grid of ground points R with a 2D flood-
fill algorithm (Lee, Pan, and Chu 1987) and walk the
grid in alternating rows (algorithm 1). Each r

tgt

2 R is
fixed at plan start time t

0

- but the other time-varying
elements of the observation tuple a are fixed at schedule
time t (algorithm 2).
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Algorithm 1 Sidewinder planTour

function planSidewinderTour(P, t)
Tour  ; . Planned tour
bBox computeBoundingBox(P )
closestSide findClosestSide(bBox, t)
T iles discretize(bBox)
bearing  true . Alternates row direction
(x

min

, x
max

, y
min

, y
max

) gridExtrema(T iles)
if closestSide 2 {NORTH,SOUTH} then

for i y
min

to y
max

do
y  y

max

� i+ y
min

if closestSide = NORTH then
y  i

end if
for j  x

min

to x
max

do
x x

max

� j + x
min

if bearing then
x j

end if
Tour.add(x, y)

end for
bearing  ¬bearing

end for
else . East or West side is closest

for i x
min

to x
max

do
x x

max

� i+ x
min

if closestSide = EAST then
x i

end if
for j  y

min

to y
max

do
y  y

max

� j + y
min

if bearing then
y = j

end if
Tour.add(x, y)

end for
bearing  ¬bearing

end for
end if
return Tour

end function

Algorithm 2 Sidewinder

while P 6= ; do
Tour  planSidewinderTour(P, �, t)
while Tour 6= ; do

a
i

 pop(Tour, t)
append a

i

to A
g  footprint(a

i

)
P  P � g
t t+�t

obs

+ slewDur(t, a
i�1

, a
i

)
end while

end while

Figure 6: Sidewinder: rotation and skew invalidate
the initial and second plans, prompting restarts by the
outer loop (while P 6= ;).

Figure 7: Fixing the grid to the target at t
0

causes gaps.

Replanning Sidewinder

Sidewinder commits grid points to target-fixed points
too early. Image footprints change, so the plan devel-
ops gaps over time (figure 7). Replanning Sidewinder
replans the tour after each move (algorithm 3) and only
commits a planning grid point to a target point r

tgt

at
schedule time t.

Algorithm 3 Replanning Sidewinder

while P 6= ; do
�
i�1

 pop(Tour) or center(P ) if Tour = ;
�  optimizeGridOrigin(�

(i�1

)
Tour  planSidewinderTour(P, �, t)
a
i

 pop(T, t)
append a

i

to A
g  footprint(a

i

)
P  P � g
t t+�t

obs

+ slewDur(t, a
i�1

, a
i

)
end while

Five pieces of plan state persist between replans: the
most recently scheduled point r

tgt,i

, next target point
r
tgt,i+1

, ⌧
row

2 {+,�}, ⌧
col

2 {+,�} and row align-
ment axis ↵ 2 {w, h}. The next grid origin point �

i+1

is r
tgt,i+1

and the algorithm usually4 scans row 0. When
r
tgt,i

discretizes to a row that is in the ⌧
row

direction
from r

tgt,i+1

, ⌧
col

is negated.

4If the next tour point is the final point in a row, and is
in the tour at �i�1 but out of the tour at �i, then the next
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Figure 8: Replanning Sidewinder: adaptive row width

Current tile

Taboo tiles (blue)

Figure 9: Two taboo tiles (circled in blue).

Changing geometry can move target area into a previ-
ously visited grid cell (the blue circle of figure 9), requir-
ing a revisit of either a prior row (in the ⌧

row

direction),
or a di↵erent column in the current row (in the ⌧

col

di-
rection). Tiles requiring backwards moves are taboo.
The tour can cycle between two taboo tiles until the
opportunity interval is exhausted, so we remove taboo
tiles by shifting the row with 1d constrained local op-
timization (algorithm 4). Perturb the origin by � until
the grid with origin �

i+1

+ � has no taboo tiles. Mini-
mize � in the ⌧

row

direction (shifting rows backward).

Online Frontier Repair
This strategy updates a global plan after each action.
The target is discretized into a grid using an 8-neighbor
flood-fill based on the O (n log n) stack flood-fill algo-
rithm (Lee, Pan, and Chu 1987). The initial plan (fig-
ure 10) is a rectangular Boustrophedon decomposition

point in the tour will belong to row 1, not 0.

Algorithm 4 Optimize Grid Origin �
(0,0)

T . set of taboo tiles in the grid
w

tile

. width of a tile
h
tile

. height of a tile
↵ . grid alignment direction (w or h)
function optimizeGridOrigin(�, ⌧

row

, ⌧
col

)

D  
⇢⇥

0, w

tile

2

�
, if ↵ = w⇥

0, h

tile

2

�
, otherwise

. search domain

�
↵

 minimize(|�|, � 2 D s.t. T |
�+�

= ;)
return � + �

↵

end function

(Choset and Pignon 1998). Tiles are converted from ob-

Figure 10: Initial plan (red arrows) from Online Fron-
tier Repair algorithm. Frontier tiles are yellowed.

server planning space to ground coordinates at schedule
time t (algorithm 5).

Algorithm 5 Online Frontier Repair

Plan Tour
while P 6= ; do

updateGrid(Tour, F,N,X)
remove(Tour, x 2 X) . tiles we no longer need
insertCheapest(Tour, n 2 N) . New tiles
a
i

 pop(Tour, t)
append a

i

to A
g  footprint(a

i

)
P  P � g
t t+�t

obs

+ slewDur(t, a
i�1

, a
i

)
end while

Update the grid by seeding the flood-fill algorithm
with the prior iteration’s flood-fill result (algorithm 6).
In the best case, only the outer edge changes. In the
worst case, every tile is on the frontier, so updating is
as slow as creating a new discretization – O (|T | log |T |)
per update, where T is the set of grid points in the
tour. In practice, interior points are infrequently re-
evaluated.
We use the cheapest insertion heuristic (Rosenkrantz,

Stearns, and Lewis 1977) with a Manhattan distance
cost function when adding new tiles. Future work
should examine more sophisticated heuristics.

Figure 11: Online Frontier Repair. Note suboptimal
repairs on the right side (final leg).
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Algorithm 6 Frontier Flood-fill Update

function updateGrid(Tour, F,N,X)
C

in

 ;, C
out

 ; . closed lists
O  F . Open list O starts as frontier set F
if O = ; then

O  discretize(unsatisfied target vertices)
end if
S  O . Seeds: initial open list
while O 6= ; do

o O.pop()
if covers(o, targets) then

C
in

 o
membershipChanged (o 3 Tour)

else
C

out

 o
membershipChanged (o 2 Tour)

end if
if membershipChanged _ (o 2 S) then

for all n 2 neighbors (o) do
if (n 3 C

in

) ^ (n 3 C
out

) then
O.push (n)

end if
end for

end if
end while
N  C

in

� Tour . identify new tiles
X  Tour \ C

out

. tiles to remove from tour
F  ; . rebuild frontier list
for all tile 2 Tour do

if |neighbors(tile) \ Tour| < 8 then
F.push(tile)

end if
end for

end function

Algorithm 7 Grid Nibbler checkNeighbors

function checkNeighbors(r, t)
C  getCardinalNeighbors(r, t) . "# !
D  getDiagonalNeighbors(r, t) . .-%&
best argmax(score(c, t),c 2 C)
if best did not finish a polygon then

x . Bias against diagonal neighbors
bestScore score(best, t) ⇥x
for d in D do

if d finishes a polygon then
best d

else if score(d, t) > bestScore then
best d
bestScore score(d, t)

end if
end for

end if
return best

end function

Local Grid Planning
This approach uses AI-inspired local planning with
globally-informed heuristics such as radial distance of

Figure 12: Grid Nibbler: Radial distance heuristic.

Algorithm 8 Nibbler

while P 6= ; do
best checkNeighbors(prev)
if area(best, t) < ✏ then

newStart closesttargetcorner
best checkNeighbors(newStart, t)
if score(newStart, t) > score(best, t) then

best newStart
end if

end if
a makeObservation(best, t)
append a

i

to A
g  footprint(a

i

)
P  P � g
t t+�t

obs

+ slewDur(t, a
i�1

, a
i

)
end while

r
tgt

from center of target polygons P , area of P that
footprint g satisfies and number of polygons g elimi-
nated from P .
Consider a 3 ⇥ 3 grid of tiles centered on the tar-

get corner closest to the previous pointing. Score the
eight neighbors with some global heuristic, and add the
highest-scoring neighbor to the tour (algorithm 7). Nib-
ble (subtract) the imager footprint from the target. Re-
peat, centering the grid on the previous tour point, until
no target remains (algorithm 8). To prevent gridlock,
the previous direction is taboo.

Experiment Methodology

Each algorithm is used to schedule a target polygon in
five experiments, with these metrics:

• Completeness: fraction of target satisfied

• Schedule e�ciency: shortest makespan (duration)

• Computational e�ciency: lowest CPU runtime

• Memory consumption (minus fixed overhead)

In one experiment, we fix the orbit, imaging pay-
load and target, then vary observer agility to character-
ize the planning problem. The other experiment tests
algorithm performance over both target di�culty and
observer capability. Target di�culty is based on size
(226381 km2 vs 8181 km2, respectively). Both the hard
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and easy targets have almost direct overflights during
the planning horizon.

Table 1: Hard and easy observer configurations

Easy Hard
Agility GOLIAT Commercial
Imager CICLOP THEIA
Orbit Altitude (km) 309 ⇥ 1441 5 615 6

Two key traits influence observer suitability for
minimum-makespan scheduling: agility and field of
view (FOV). The actual GOLIAT/CICLOP CubeSat
(Balan and Piso 2008; Dumitru 2006) is our capable
(easy) observer with a wide FOV and high agility (180°
slew in 30 seconds). A hypothetical7 observer with typ-
ical commercial imagery satellite orbit and agility (180°
slew in 120 seconds), but a smaller 1° FOV THEIA
framing imagery payload (Ellison et al. 2013) is our less
capable (hard) observer. Table 2 shows the instrument
models used in this experiment. Agility is modeled as
two-point linear interpolation of eigenaxis slew angle8

between targets, with fixed settle time.

Table 2: Imaging Instruments

CICLOP 9 THEIA 10

Shape Rectangular Rectangular
Horizontal FOV 5.73� 1�

Vertical FOV 4.26� 1�

Image duration 0.17s 1.0s

The experiments run on a 2015 Macbook Pro (2.6
GHz Intel Core i7, 16 GB RAM).

Results

Agility and Problem Di�culty
Figure 13 demonstrates agility ranging from that of
GOLIAT (upper limit) to ALL-STAR (lower limit),
with a band covering some typical commercial imagery
satellite agilities (Hutin 2009; Satellite Imaging Corpo-
ration 2017; MDA DigitalGlobe 2017). A commercial
imagery satellite bus should be capable of satisfying the
target area in a single overflight.
The problem is easier (more constrained) for less agile

spacecraft because they slew too slowly to cover the

5Elliptical. Obtained from GOLIAT tracking TLE (Ro-
manian Space Agency (ROSA) 2012).

6Circular. Reasonable when compared to commercial im-
agery satellite data sheets (Satellite Imaging Corporation
2017; MDA DigitalGlobe 2017).

7ALL-STAR is not agile enough and commercial imagery
satellites (Hutin 2009; Satellite Imaging Corporation 2017;
MDA DigitalGlobe 2017) do not use framing instruments

8The angle about an Euler rotation axis
9Data derived from (Dumitru 2006)

10Data obtained from (Ellison et al. 2013). No image
duration value published for THEIA, assuming 1s.

Figure 13: Performance under varying observer agilities

entire target. For a more agile spacecraft, it is easy
to find a valid solution, but harder to find the optimal
solution. Future work should examine the critical point
at the slow end of the commercial agility band (figure
13) as a possible problem phase transition.

Observer Capability vs. Target Di�culty

When the observer is very agile and has a large FOV,
path quality is less important. The easy/easy case
is degenerate because CICLOP can satisfy the target
with one image. In the easy observer, hard target case,
Grid Nibbler generates the shortest schedule by requir-
ing fewer images. The hard observer, easy target case
shows the opposite - optimizing global planners gen-
erate shorter schedules with e�cient pathing, despite
requiring more images. We infer that lower agility
requires more e�cient paths because slews are more
costly. With high agility, image number dominates path
quality.
No algorithm completely satisfied the hard/hard

case, even with multiple overflights. All algorithms con-
sumed 10⇥ more CPU and memory. Both Grid Nib-
bler variants covered more target area than the other
algorithms.
Overall, Sidewinder used the least CPU time in all

cases and the least memory in 3 of the 4. Grid Nibbler
generally consumed more CPU time and memory than
the other algorithms, with Online Frontier Repair and
Replanning Sidewinder somewhere in between.

Overall Experiment Evaluation

All algorithms can produce admissible solutions, but no
single algorithm is universally best. We recommend a
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Table 3: Comparison of algorithm performance for a cross-product of observer capability and target di�culty. Best
in test values are green, - denotes failure to produce a schedule.

Easy Observer (GOLIAT) Hard Observer (Hybrid)
Algorithm CPU RAM |m| |A| % CPU RAM |m| |A| %

E
a
sy

ta
rg

et

Online Frontier Repair 2s 0.04MB 1s 1 100 4s 3.14MB 87s 54 100
Replanning Sidewinder 2s 0.08MB 2s 2 100 5s 2.11MB 89s 54 100
Milling (Knight 2014) 11s 0.04MB 11s 8 100 3s 0.37MB 107s 64 100

Sidewinder 2s 0.05MB 2s 2 100 2s 0.30MB 117s 63 100
Grid Nibbler (distance) 4s 0.05MB 1s 1 100 8s 4.13MB 118s 72 100

Grid Nibbler (area) 3s 0.05MB 1s 1 100 14s 3.71MB 109s 52 100

H
a
rd

ta
rg

et Online Frontier Repair 7s 3.21MB 87s 48 100 80s 22.80MB 39429s 387 32
Replanning Sidewinder 9s 2.19MB 81s 41 100 - - - - -
Milling (Knight 2014) 6s 0.42MB 118s 68 100 24s 3.80MB 39430s 343 30

Sidewinder 3s 0.22MB 74s 43 100 19s 2.30MB 39430s 389 18
Grid Nibbler (distance) 19s 4.52MB 96s 52 100 56s 23.20MB 39428s 391 34

Grid Nibbler (area) 20s 3.73MB 70s 39 100 146s 23.30MB 39429s 392 41

portfolio approach, where a higher level scheduler con-
siders a possible start time, then chooses the best algo-
rithm for each circumstance, by either executing each
algorithm and comparing makespans, or by evaluating a
heuristic estimate model of each algorithm’s makespan
(Lewellen et al. 2017b).

Discussion

Overall, fewer tour points |A| means shorter makespans
|m|. However, tour quality has a greater impact on the
less-agile observer: an e�cient plan with more points
can outperform a bad plan with fewer points (compare
the hard observer/easy target instance of Online Fron-
tier Repair vs. Grid Nibbler (area) in table 3).
All algorithms have linear complexity in number

of tiles except for Online Frontier and Replanning
Sidewinder, which are quadratic. Algorithmic complex-
ity had negligible impact on schedule makespan and
CPU runtime in our tests because |A| was small.

These algorithms are only feasible on the upper end
of current CubeSat processor modules. The algorithms
themselves consume between 0.3 and 6.15 MB RAM,
but our hasty implementation adds an extra 470 MB
of non-algorithm memory overhead. This is too much
RAM for low end PIC-based CubeSat modules, but rea-
sonable for the 800 MHz CPU, 512 MB RAMRaspberry
Pi compute module in the AAReST MirrorSat CubeSat
(Underwood and Bridges 2015). Linearly scaling to an
800 MHz flight processor, our algorithms would require
an estimated 10-65 seconds runtime to produce 70-118
seconds of schedule, faster than real time.

Future Work

We constrained our experiments to targets that are en-
tirely within the field of regard. Larger targets could
be decomposed into neighborhoods associated with vis-
ibility windows to accommodate multiple overflights.
Grid Nibbler was comparable to Online Frontier Re-

pair, but was susceptible to dead ends due to its greedy

approach. If Grid Nibbler looked ahead, it could retain
the advantages of late commitment while avoiding dead
ends. Future work should examine local optimization
and relationships between next nibble heuristics.
Crude slew models were used for these experiments

because detailed performance models of imagery satel-
lites are typically not available to the public. Future
e↵orts should constrain maximum angular rates and ac-
celerations for slews, considering di↵erent agility about
di↵erent spacecraft-fixed axes.

Conclusion

The three axis steerable 2D framing instrument area
coverage planning problem was proven to be NP-
complete. Four approximation algorithms for an op-
timal framing instrument path were outlined and com-
pared in a computational experiment.
Naive approaches, such as applying pushbroom al-

gorithms to a framing instrument or choosing a fixed
target decomposition at start time, performed poorly.
Locally scoped or replanning algorithms produced the
shortest makespan schedules. Replanning Sidewinder
and Online Frontier performed the best across the
widest range of observer agilities. An algorithm from
this paper outperformed the existing 1D (Lemâıtre et
al. 2002) and Milling/Subdividable framing instrument
(Knight 2014) algorithms in all experiments.
If the spacecraft is extremely agile, or if the target

area is small relative to the imager footprint, the more
sophisticated algorithms o↵er few advantages over a
naive plan. The choice of algorithm matters most when
the observer has only marginally su�cient agility to at-
tempt a target.
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