
28th International Conference on
Automated Planning and Scheduling

June 24-29, 2018, Delft, the Netherlands

2018 - Delft

PlanSOpt 2018
Proceedings of the 3rd Workshop on

Planning, Search and Optimization

Edited by:

Michael Cashmore, Andre A. Cire, Chiara Piacentini

Organization

Michael Cashmore
Department of Informatics, King’s College London, UK

Andre A. Cire
Department of Management & Rotman School of Management, University of Toronto, Canada

Chiara Piacentini
Department of Mechanical and Industrial Engineering, University of Toronto, Canada

Program Committee

Kyle E. C. Booth, University of Toronto
Margarita Castro, University of Toronto,
Michele Lombardi, DISI, University of Bologna
Andrea Micheli, Fondazione Bruno Kessler
Michael Morin, Laval University
Mark Roberts, Naval Research Laboratory
Domenico Salvagnin, University of Padova
Enrico Scala, Fondazione Bruno Kessler

ii

Foreword

AI planning problems are traditionally formulated using state transition systems and solved using heuristic search. In
optimization, problems consist of finding the values for variables that maximize an objective, while subject to logical
and mathematical constraints. Many optimization algorithms, e.g. branch and bound for Mixed Integer Linear
Programming, rely on search over the solution space. While similarities between AI planning and optimization
are numerous, the two fields advanced almost independently and their interconnection remains largely unexplored.
Renewed interest in the integration of optimization techniques into AI planning has emerged recently with the use
of integer and linear programming to automatically derive heuristics, but several other auxiliary methods can be
exploited to speed up search from one area to the other.

The aim of this workshop is to foster communication and collaboration between researchers in the fields of AI
planning/scheduling, search, and optimization.

Michael Cashmore, Andre A. Cire, Chiara Piacentini
June 2018

iii

Contents

Using Squeaky Wheel Optimization to Derive Problem Specific Control Information for a One
Shot Scheduler for a Planetary Rover
Wayne Chi, Jagriti Agrawal and Steve Chien 1

Off-line/on-line Optimization under Uncertainty
Allegra De Filippo, Michele Lombardi and Michela Milano 10

Metric Nonlinear Hybrid Planning with Constraint Generation
Buser Say and Scott Sanner 19

iv

Using Squeaky Wheel Optimization to Derive Problem Specific Control
Information for a One Shot Scheduler for a Planetary Rover

Wayne Chi, Steve Chien, Jagriti Agrawal
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

{firstname.lastname}@jpl.nasa.gov

Abstract
We describe the application of using Monte Carlo simula-
tion to optimize a schedule for execution and rescheduling
robustness and activity score in the face of execution uncer-
tainties. We apply these techniques to the problem of op-
timizing a schedule for a planetary rover with very limited
onboard computation. We search in the schedule activity pri-
ority space - where the onboard scheduler is (a) a one shot
non-backtracking scheduler in which (b) the activity prior-
ity determines the order in which activities are considered
for placement in the schedule and (c) once an activity is
placed it is never moved or deleted. We show that simulation
driven search outperforms a number of alternative proposed
heuristic static priority assignment schemes. Our approach
can be viewed using simulation feedback to determine prob-
lem specific heuristics much like squeaky wheel optimiza-
tion.

Introduction
Embedded schedulers must often perform within very lim-
ited computational resources. We describe an approach to
automatically deriving problem specific control knowledge
for a one-shot (non-backtracking) scheduler intended for a
planetary rover with very limited computing. In this appli-
cation, the onboard scheduler is intended to make the rover
more robust to run-time variations (e.g., execution dura-
tions) by rescheduling. Because the general structure of the
schedule is known a priori on the ground before uplink, we
use both analysis of the schedule dependencies and simula-
tion feedback to derive problem specific control knowledge
to improve the onboard scheduler performance.

The target onboard scheduler is a one-shot limited search
scheduler. Because the scheduler does not backtrack across
activity placements, the order in which it considers activi-
ties heavily influences generated schedule quality. In our ap-
proach, we search the space of activity priorities which de-
termine the order in which the scheduler considers activity
placement. At each step in the priority search, a Monte Carlo
simulation is conducted to assess the likelihood of an activ-
ity being executed. Using an approach analogous to squeaky
wheel optimization, these runs are automatically analyzed

Copyright c� 2018, California Institute of Technology. Govern-
ment sponsorship acknowledged.

and used to feed back into adjustments to the activity prior-
ities (and hence the order in which they are considered for
inclusion in the schedule for both initial schedule genera-
tion and rescheduling). This search in the activity priority
space continues until all requested activities are included or
a resource bound is exceeded. We call this method Priority
Search and we present empirical results that show that Pri-
ority Search outperforms several static priority assignment
methods (those that do not use Monte Carlo feedback) in-
cluding manual expert derived priority setting.

We study this problem in the context of setting activity
priorities as part of the ground operations process for a one-
shot, non-backtracking scheduler (Rabideau and Benowitz
2017) designed to run onboard NASA’s next planetary rover,
the Mars 2020 (M2020) rover (Jet Propulsion Laboratory
2017a). For our problem, the onboard scheduler is treated
as a predetermined ”black box”.

The remainder of the paper is organized as follows. First
we describe our formulation of the scheduling problem, met-
rics for schedule goodness, and the onboard scheduling al-
gorithm. Second, we describe several static approaches to
priority assignment as well as our priority search approach
that leverages Monte Carlo simulation feedback. Third, we
describe empirical results demonstrating the efficacy of pri-
ority search over static methods, evaluating on sol types, the
best available anticipated operations plans for the M2020
planetary rover mission. Finally, we describe related and fu-
ture work and conclusions.

Problem Definition
For our defined scheduling problem (Rabideau and
Benowitz 2017), the scheduler is given

• a list of activities
Aihp, R, e, dv,�, T, Di . . . Anhp, R, e, dv,�, T, Di

• where p is the scheduling priority of the activity, and

• R is the set of unit resources R1 . . . Rm that the activity
will use (up to project limitations - 128 for M2020), and

• e and dv are the rate at which the consumable resources
energy and data volume respectively are consumed by the
activity, and

• � are non-depletable resources used such as sequence en-
gines available or peak power, and

1

1

• T is a set of the activity’s optional a) start time win-
dows Ti start . . . Ti end and b) preferred schedule time
Ti preferred, and

• D is a set of the activity’s dependency constraints from
Aj ! Ak

1

All activities are Mandatory Activities. These are activi-
ties, m1 . . . mj ✓ A, that must be scheduled as long as the
given set of inputs are valid. In order for a set of inputs to
be considered valid, there must exist a valid (e.g. constraint
satisfying) schedule - in the context of the scheduler - that
includes all of the mandatory activities. Note that the M2020
Onboard Scheduler is an incomplete algorithm. As a result,
there could be a set of inputs where valid schedule exists
and a complete scheduler would place all mandatory activi-
ties, but the Onboard scheduler would not. Since not all in-
put sets will be valid, it is important for us to modify the
input sets (e.g. changing priorities) to allow all mandatory
activities to be scheduled.

In addition, activities can be grouped into Switch Groups.
A Switch Group is a set of activities where exactly one of the
activities in the set must be scheduled. The activities within
a switch group are called switch cases and vary only by how
many resources (time, energy, and data volume) they con-
sume. Switch groups allow us to schedule a more resource-
consuming activity if it will fit in the schedule. For example,
one of the M2020 instruments takes images to fill mosaics
which can vary in size; for instance we might consider 1x5,
3x5, or 5x5 mosaics. Taking larger mosaics might be prefer-
able, but taking a larger mosaic takes more time, takes more
energy, and produces more data volume. These alternatives
would be modeled by a switch group that might be as fol-
lows:

SwitchGroup =

8
<
:

Mosaic1x5 Duration=100 sec
Mosaic3x5 Duration=200 sec
Mosaic5x5 Duration=400 sec

(1)

In the above example, the scheduling priority order would
be Mosaic1x5 the lowest of the three, then Mosaic3x5, and
Mosaic5x5 the highest. The desire is for the scheduler to
schedule the activity Mosaic5x5 but if it does not fit then try
scheduling Mosaic3x5, and eventually try Mosaic1x5 if the
other two fail to schedule. The challenge for the scheduler
is that getting a preferred switch case is not deemed worth
forcing out another mandatory activity from the schedule.
Because the normal approach to handling such interactions
is to search, this introduces complications into the schedul-
ing algorithms but these are the subject of a different paper.

The charter of the scheduler is to produce a grounded time
schedule that satisfies all of the above constraints.

We also make the following assumptions:
1. There exists a set of activity scheduling priorities that

would allow all mandatory activities to be scheduled by
the scheduler 2.
1Aj ! Ak means the scheduled end time of Ak must be before

the scheduled start time of Aj .
2Since our algorithm includes an incomplete scheduler, our as-

sumption of a valid set of inputs can only hold true for our particu-
lar scheduler

2. The prior schedule is executed while the scheduler is run-
ning (Chi et al. 2018).

3. Activities do not fail.
4. No preemption (activities are only preempted as a major

failure case for M2020).
5. The onboard scheduler is a ”black box” - the onboard

scheduler algorithm (Algorithm 1) is fixed.
The goal of the scheduler is to schedule all mandatory ac-

tivities and better switch cases 3 while respecting individual
and plan-wide constraints.

The goal of the priority setting algorithm is to derive a set
of priorities that will best allow the scheduler to achieve that
goal. Not only that, but we must derive that set of priorities
in the shortest amount of time possible in order to satisfy
daily mission time constraints.

Scheduler Design

Algorithm 1 Onboard Scheduler
Input:

Ahp, R, e, dv,�, T, Di: List of activities with their individual
constraints
C: Constraints for the whole plan (e.g. available cumulative
resources)
S: Current state of the spacecraft (state of charge, data volume,
activity status)

Output:
U : Resulting schedule

1: Sort(A) . Sorted by highest to lowest priority.
2: for each a 2 A do
3: P ; . Some activities may require automatically

generated preheats
4: M ; . Some activities may require automatically

generated maintenances

5: I
[a.earliest start time, a.latest start time]T

find valid intervals(a.unit resources)T
find valid intervals(a.activity status)T
find valid intervals(a.data volume)

6: if requires preheat(a) then
7: P generate preheat activities(a)
8: M generate maintenance activities(a)
9: end if

10: I I
T

find valid intervals(a.energy, P, M)T
find valid intervals(a.peak power, P, M)

11: awake generate awake activity(a, I)
12: if I 6= ; then
13: schedule activity(a, I)
14: schedule activity(awake, I)
15: for each p 2 P do
16: schedule activity(p, I)
17: end for
18: for each m 2M do
19: schedule activity(m, I)
20: end for
21: end if
22: end for

The Mars 2020 onboard scheduler (Algorithm 1) is a sin-
gle shot, non-backtracking scheduler that schedules (consid-

3See Evaluating a Schedule for more information

2

2

ers activities) priority first order and never removes or moves
an activity after it is placed during a single scheduler run. It
does not search except when considering valid intervals for
a single activity placement and when scheduling sleep and
preheats 4 (Rabideau and Benowitz 2017).

Due to the greedy, non-backtracking nature of the onboard
scheduler, the order in which activities are scheduled can
greatly impact the quality of the schedule.

Evaluating a Schedule
In order to evaluate the goodness of a particular priority as-
signment, we have developed a scoring method based on
how many and what type of mandatory and switch group
activities are able to be scheduled successfully by the sched-
uler. The score is such that the value of any single manda-
tory activity being scheduled is much greater than that of any
combination of switch cases (at most one activity from each
switch group can be scheduled). This ensures the following
strict ordering:

V (m 2M)�
nSX

i=1

V (s 2 Si) (2)

where V (x) is the value of activity x being scheduled, M
is the set of all mandatory activities, nS is the number of
switch groups, Si is switch group i, and s is a switch case in
switch group Si.

Static Algorithms for Activity Priority
Assignment

We have developed several static algorithms which set the
priorities of activities based on various activity ordering cri-
teria. These algorithms do not consider Monte Carlo simu-
lations of plan execution where activities may end early or
late while determining priorities, unlike our Priority Search
approach. We will later compare these to our Priority Search
approach to gain a better understanding of how well it per-
forms. Activities which must begin at a particular time (e.g.
data downlink) are always given the highest priority and thus
are not affected by the static algorithms described.

The following four methods are used to initialize activity
priorities:
• Equal Priorities. All activities have equal priorities.
• Random Assignment. Each activity is given a random pri-

ority.
• Latest Start Time. The activity priorities are ordered by

the latest time they are allowed to start. The activity with
the earliest such time has the highest priority.

• Human Expert. Each activity is assigned a priority based
on the start time of the activity in a schedule constructed
by a human expert. The activity with the earliest start time
in this schedule has the highest priority.
The following two methods are applied to the priorities

after they have been initialized in one of the four ways de-
scribed above:

4Sleep and preheats are activities automatically generated and
scheduled by the scheduler.

• Dependencies. A ! B means that B must execute suc-
cessfully before A can start. To generate a schedule that
respects this,

A! B) priorityA < priorityB (3)

where higher priority means an activity is considered for
scheduling earlier.

• Tie Breaker. If activities have the same priority assign-
ment the activity with earliest latest allowed start time is
of higher priority. If they also have the same latest allowed
start time then the longer activity has the higher priority. If
all of these attributes are equal then the higher priority ac-
tivity is chosen lexicographically based on each activity’s
unique identifier.

Priority Search
In order to determine a set of priorities which will allow the
scheduler to generate a schedule better than our static heuris-
tics, we attempt to search the priority space in an approach
similar to Squeaky Wheel Optimization (SWO) as described
in Joslin and Clements 1999 (Joslin and Clements 1999).
Squeaky Wheel Optimization usually involves a construc-
tor, an analyzer, and a prioritizer. The constructor generates
a schedule, the analyzer determines problem areas and as-
signs ”blame” to certain elements in the schedule, and the
prioritizer modifies the order in which the elements are con-
sidered. This process repeats until a satisfactory result is
reached or allotted time runs out. However, our scheduling
problem is intrinsically tied to execution and analyzing the
initial schedule generated by itself is not satisfactory. Our
approach (Figure 1) builds upon the usual SWO approach
by incorporating a simulation of execution and Monte Carlo
to build an execution sensitive result. We call our approach
Priority Search as it searches the priority space using Monte
Carlo simulation feedback to find a good set of priorities,
unlike the static algorithms.

Figure 1: Squeaky Wheel accounting for Execution

Constructor
Typically, the constructor generates a schedule as the so-
lution, which is then fed into the analyzer. However, our
scheduling problem must be taken in context with execu-
tion. Activities may finish early or late which affect how
many and which activities can be scheduled. In order to
take this into account, we generate the final schedule of a

3

3

(lightweight) simulation of the entire plan execution. This
is simulated by letting activities finish early or late by a
variable amount based on a probabilistic model of plan ex-
ecution 5. However, the probabilistic model may promote
misleading results if only sampled once. As a result, our
constructor (Algorithm 2) runs a Monte Carlo and simu-
lates multiple plan executions, passing on all of the executed
plans as the solution to the analyzer.

Algorithm 2 Monte Carlo Constructor
Input:

Ahp, R, e, dv,�, T, Di: List of activities with their individual
constraints
C: Constraints for the whole plan (e.g. available cumulative
resources)
N : Number of runs in the Monte Carlo

Output:
S: List of all final schedules after simulating execution

1: i 0
2: while i < N do
3: schedule simulation(A, C)6

4: Si schedule
5: i i + 1
6: end while

Priority Analyzer
The analyzer (Algorithm 3) takes the solution and assigns
blame to problem areas. Since our objective is to schedule
all mandatory activities and better switch cases, we blame
all activities that are not scheduled. Since the solution is
multiple schedules, there may be some Monte Carlo runs
where the activities do not succeed or fail to be scheduled.
For simplicity, we chose to blame any activity that was un-
scheduled in any of the schedules, but other approaches may
assign blame according to how many times an activity was
not scheduled.

Algorithm 3 Monte Carlo Analyzer
Input:

Ahpi: List of activities with priorities
S: List of all final schedules after simulating execution

Output:
U : List of all unscheduled activities
score: Score (objective function)

1: for each Si 2 S do
2: U U

S {8a 2 A|a /2 Si}
3: score score + get score(Si)
4: end for

Constant Step Prioritizer
A simple way to re-prioritize is to increase the blamed (un-
scheduled) activities’ priorities by a constant step size s.

Typically, activities have varying degrees of flexibility
due to their constraints (resources, dependencies, time, etc.).

5See Empirical Results for how that probabilistic model was
generated.

6The final schedule after simulating execution.

Algorithm 4 Constant Step Reprioritization
Input:

Ahpi: List of activities with priorities
U : List of all unscheduled activities (from analyzer)
step: Constant step size

Output:
A: Best relative ordering of activities found

1: for each a 2 U do
2: incrementRelativePriority(a, step, A)
3: for each d 2 a.dependents do
4: incrementRelativePriority(d, step, A)
5: end for
6: for each sg 2 a.switchGroup do
7: incrementRelativePriority(sg, step, A)
8: end for
9: end for

Higher priority activities can consume resources (unit re-
sources, energy, and data volume) or change state in a way
that prevents lower priority activities from scheduling such
that their constraints are satisfied. Increasing the blamed ac-
tivities’ priorities allows them to schedule earlier (schedul-
ing order) which means they have more ”slack” to satisfy
their constraints. The goal is that the algorithm will slowly
promote less flexible activities to the top so that their con-
straints can be satisfied, and demoted activities are flexible
enough to be scheduled in a more constrained plan.

When increasing the relative priorities of blamed activi-
ties, the existing relative priorities between certain groups
of activities must remain enforced.

First, each switch group must maintain the relative prior-
ities between each activity in the grouping. For each switch
group, the activities (s1, . . . , sn) must be ordered such that
those with higher resource consumption (time, energy, and
data volume) have higher priorities as well.

Second, dependency relationships must be enforced such
that (3) is held true.

Figure 2: Cycle in the Constant Step approach. Red activities
were unable to be scheduled and assigned blamed.

There is one main issue with the Constant Step approach

4

4

- it is extremely susceptible to cycles. One common cause
for cycles is that a set of activities needs to be promoted be-
yond a particular activity together, but the constant step size
prevents this from ever occurring. For example, in Figure 2
activity F is unschedulable and assigned blame. Its priority
is increased, but this causes activity E to fail to schedule.
Activity E is then promoted in the next iteration, causing F
to fail to schedule and the process repeats. In reality, both
E and F have to be promoted above D, but because the step
size is constant, they will never achieve that and form a cy-
cle. The situation where activities are unable to be promoted
above an activity blocking it can be extended to any constant
step size less than the maximum step size 7.

Stochastic Step Reprioritization

Algorithm 5 Stochastic Step Reprioritization

Input:
Ahpi: List of activities with priorities
U : List of all unscheduled activities (from analyzer)

Output:
A: Best relative ordering of activities found

1: step random(1, A.length)
2: for each a 2 U do
3: incrementRelativePriority(a, step, A)
4: for each d 2 a.dependents do
5: incrementRelativePriority(d, step, A)
6: end for
7: for each sg 2 a.switchGroup do
8: incrementRelativePriority(sg, step, A)
9: end for

10: end for

Injecting randomness to the step size allows the algorithm
to become robust to cycles. In each iteration of the priority
setting algorithm, a random step distance between 1 and N ,
where N is the number of activities in the plan, is assigned
to all of the blamed activities. This lets the scheduler always
have the possibility of being promoted above a resource con-
straining activity, while still allowing smaller step size pri-
ority permutations.

The main issue that lies with a random approach is that
empirically 8 it finds the global maximum score slower than
desired. This is further exacerbated by the fact that each it-
eration of our SWO cycle takes a non-negligible amount of
time (a few seconds) due to the need to run a lightweight
simulation and Monte Carlo.

Max Step Reprioritization
Stochastic Step Reprioritization (empirically) produced re-
sults slower than desired. Max Step Reprioritization seeks to
solve both of those issues by always promoting blamed ac-
tivities to have the highest scheduling priorities. The earlier
an activity is considered for scheduling, the more flexibil-
ity that activity has to be scheduled. Therefore, if an activity

7See section Max Step Reprioritization
8More information can be found in Empirical Evaluation.

Algorithm 6 Max Step Reprioritization

Input:
Ahpi: List of activities with priorities
U : List of all unscheduled activities (from analyzer)

Output:
A: Best relative ordering of activities found

1: for each a 2 U do
2: step A.length
3: incrementRelativePriority(a, step, A)
4: for each d 2 a.dependents do
5: incrementRelativePriority(d, step, A)
6: end for
7: for each sg 2 a.switchGroup do
8: incrementRelativePriority(sg, step, A)
9: end for

10: end for

is first to be considered for scheduling, but still cannot be
successfully scheduled, there is no other scheduling priority
that would allow the activity to be scheduled. Knowing this,
by promoting blamed activities to have the highest schedul-
ing priorities we can attempt to avoid iterations that fail to
schedule the same blamed activities, thereby speeding up the
overall algorithm.

Since the blamed activities will have the highest schedul-
ing priorities, cycles such as those seen in Figure 2 can be
avoided. However, Max Step Reprioritization doesn’t pre-
vent cycles entirely and they still pose an issue when en-
countered.

Empirical Evaluation
In order to evaluate how well our Priority Search algorithm
is able to generate a priority assignment which results in
an optimal schedule, we have applied the algorithm to var-
ious sets of inputs comprised of activities with their con-
straints and priorities and compared against various static
algorithms. The inputs are derived from sol types. Sol types
are currently the best available data on expected Mars 2020
rover operations (Jet Propulsion Laboratory 2017a). In order
to construct a schedule and simulate plan execution, we use
the M2020 surrogate scheduler - an implementation of the
same algorithm as the M2020 onboard scheduler (Rabideau
and Benowitz 2017), but implemented for a Linux work-
station environment. As such, it is expected to produce the
same schedules as the operational scheduler but runs much
faster in a workstation environment. The surrogate scheduler
is expected to assist in validating the flight scheduler imple-
mentation and also in ground operations for the mission (Chi
et al. 2018).

Each input file contains approximately 40 activities. We
use a probabilistic execution model based on operations data
from the Mars Science Laboratory Mission (Jet Propulsion
Laboratory 2017b; Gaines et al. 2016a; 2016b) in order to
simulate activities completing early by a reasonable amount.
In our model to determine activity execution durations, each
of the actual execution durations provided in MSL data is
first divided by the corresponding predicted execution dura-

5

5

tion. Then, we use a linear regression on the scaled values to
obtain a mean and standard deviation presuming the ratio of
predicted to actual execution times is normally distributed.
The value representing the actual execution duration on the
regression line for the given conservative duration is used as
the mean. A scaled prediction of the actual duration is gen-
erated from a a normal distribution using the derived mean
and standard deviation. Finally, this value is scaled back by
multiplying by the given conservative duration. Note that we
do not explicitly change other activity resources such as en-
ergy and data volume since they are generally modeled as
rates and changing activity durations implicitly changes en-
ergy and data volume as well.

Using each of the sol types, we create variants by adding
two switch groups to a set of inputs. Each switch group con-
tains three switch cases where the switch cases differ in du-
ration in a manner similar to the one described in (1). Each
of the two switch groups are as follows:

SwitchGroup =

8
<
:

Activityoriginal Duration=x sec
Activity2x Duration=2x sec
Activity4x Duration=4x sec

(4)
Due to the inequality in (2), a successfully scheduled

mandatory activity is of much higher value than a success-
fully scheduled longer switch case. Therefore, the manda-
tory activity score is weighted at a much larger value then
the switch group score. Each mandatory activity that is suc-
cessfully scheduled is given one point which contributes to
the mandatory score. If a switch case with a duration that is
2 times that of the original activity is able to be scheduled,
then it contributes 1/5 to the switch group score. If a switch
case that is 4 times the original duration is able to be sched-
uled, then it contributes 2/5 to the switch group. Since there
are two switch groups in each variant, the maximum switch
group score for a variant is 2 ⇤ (2/5) = 4/5. In the follow-
ing empirical results, we average the mandatory and switch
groups scores over all Monte Carlo runs of execution.

Also, in each of our variants we set the preferred sched-
ule time of each activity to the earliest time the activity is
allowed to start.

We first compare the different approaches to implement-
ing Priority Search to understand which performs better.

The highest score so far is a combination of the manda-
tory score and the switch group score where the mandatory
score is weighted at a much higher value than the switch
group score. In Figure 3 we plot how the mandatory and
switch case components of the highest score achieved up to
the current time change over time using both the Stochas-
tic method and the Max Step method. We do not consider
the Constant Step method since it is so highly susceptible to
cycles. For both methods, as the score for mandatory activi-
ties increases, the score for switch groups largely decreases
until the highest mandatory score is reached. This is a rea-
sonable outcome because as more mandatory activities are
scheduled, the schedule likely becomes more constricted,
thus making it more difficult to schedule longer switch cases.
Since the mandatory score contributes much more to the to-
tal score than the switch group score and the mandatory sore

(a) Mandatory score component of highest score so far vs Time av-
eraged across sol type variants using both priority search methods.

(b) Switch group score component of highest score so far vs Time
averaged across sol type variants using both priority search meth-
ods.
.

Figure 3: Plot of the highest score so far separated by manda-
tory score (3a) and switch group score (3b) over time using
the Stochastic Step method and the Max Step method aver-
aged over 9 sol types, each with 10 variants each containing
2 switch groups. Each iteration of Priority Search was run
with 10 Monte Carlo runs and with 30 iterations of Priority
Search alloted for each run of the algorithm.

is increasing in both figures, the total highest score so far is
always increasing over time, as it should be.

Figure 3a shows that Stochastic Step reaches its highest
mandatory score that is ever achieved over the time span
of approximately 920 seconds (30 iterations of the priority
search algorithm) in 207.58 seconds. The highest mandatory
score achieved at this time and onwards is 38.047. The high-

6

6

est mandatory score using the Max Step method is reached at
120.59 seconds and has a value of 38.044. Figure 3b shows
that the highest switch group score after the point at which
the highest mandatory score is reached is 1.67 at 568.16 sec-
onds using the Stochastic method and 1.48 at 150.87 seconds
using the Max Step method. Therefore, we conclude that us-
ing the stochastic method results in a marginally higher total
highest score but it takes less time to reach the highest score
using the Max Step method.

(a) Difference from perfect mandatory score averaged across
sol type variants for various scheduling methods.

(b) Difference from perfect switch group score averaged
across sol type variants for various scheduling methods.

Figure 4: The difference from a perfect mandatory score of
38.11 and perfect switch group score of 1.0 using various
scheduling methods is averaged over 9 sol types where 15
variants are derived from each sol type and each variant con-
tains 2 switch cases. Each iteration of the Priority Search
algorithm is run with 50 Monte Carlo runs of execution

Figure 4 shows the results of comparisons between Prior-
ity Search and other static priority setting algorithms. Since
the scheduling of mandatory activities and switch groups
are not weighted equally, we have constructed two separate
plots to show the results for each. Both methods of Priority
Search, in red, result in fewer unscheduled mandatory activ-
ities and consequently a lower difference from the perfect
mandatory score. This implies they set the priorities such
that more mandatory activities are able to be scheduled over
multiple Monte Carlo runs compared to how the static al-
gorithms set the activity priorities. As shown in 4b, they re-
sult in a higher number of unscheduled switch cases, likely
because if more mandatory activities were scheduled it be-
comes more difficult to schedule longer switch cases. Due
to the strict inequality described in (2), even though fewer
longer switch cases are scheduled, the total scheduling score
is still higher when using Priority Search. Thus, we conclude
that both Priority Search methods outperform the static algo-
rithms. Among the static algorithms, running the Dependen-
cies algorithm with Tie Breaker on equal priorities performs
the best as it results in the highest mandatory score while
running Tie Breaker after setting the priorities based on the
latest start time performs the worst.

Related Work

Our Priority Search approach is inspired by Squeaky Wheel
Optimization (SWO). Typically, SWO uses a constructor
and analyzer, and prioritizer for the next iteration of sched-
ule generation (Joslin and Clements 1999). Priority Search
differs in that the intent is not to generate a good schedule
but rather to set priorities that perform well in execution and
rescheduling. Therefore the Priority Search constructor must
use the scheduler through multiple runs of execution (where
each run of execution incurs multiple scheduler invocations)
to assess priority assignment performance.

Generating schedules that are robust to execution run time
variations (Leon, Wu, and Storer 1994) is a mature area of
work. However, the topic usually revolves around develop-
ing a scheduler that can generate robust schedules. In our
case, the scheduler is a) a fixed ”black box” that we have no
control over and b) robust to execution run time variations
mainly through rescheduling (Chi et al. 2018). As a result,
rather than developing a scheduler itself, we’re developing
a methodology that is able to generate a set of priorities for
a fixed scheduler that enables it to be robust to rescheduling
due to runtime variations.

Other approaches (Drummond, Bresina, and Swanson
1994; Washington, Golden, and Bresina 2000) use branch-
ing to increase robustness - these differ from our work that
adjusts priorities and allows rescheduling.

A number of other spacecraft (Muscettola et al. 1998;
Pell et al. 1997; Chien et al. 2005; 2016) and rover (Woods
et al. 2009; Gregory et al. 2002) autonomy systems have in-
cluded planning, but these differ in that we are deriving con-
trol information specific to scheduling for a limited context
- e.g. one rover sol. temporal schedule.

7

7

Discussion and Future Work
While we have focused on the impact of activity priority
on the scheduler (and hence rescheduling during execution),
there is often an execution system that may also have some
flexibility to add robustness to the overall system (Chi et al.
2018). For the empirical evaluation described above, we ran
without such an execution system. In the future, we could
consider the execution system in the schedule and Monte
Carlo analysis and potentially derive information usable by
the execution system (e.g. allow an activity to run late but
only until time T). This paper describes initial work to de-
termine priorities for scheduler activity consideration order-
ing to optimize scheduler execution results for an embedded
scheduler. However, this work is still preliminary with many
other ideas to be explored as described below.

First, more sophisticated critique/blame assignment meth-
ods should be explored. Currently, priorities of activities
that are not executed are modified, but more sophisticated
analysis of scheduler runs could provide greater insight into
how the priorities should be modified. Prior work in Process
Chronologies (Biefeld and Cooper 1991) has been used to
focus scheduling tactics by finding regions where time con-
straints or high demand for some resource results in conflict.
By evaluating which periods of time or what resources are
over-subscribed using Capacity/Over-Subscription Analy-
sis, we can pinpoint which activities are more tightly con-
strained and increase their priorities. Prior work in Over-
subscribed Scheduling Problems (Kramer and Smith 2006)
show that scheduling according to maximum-availability
(least subscribed) allows a suitable schedule to be generated.
Similar analysis could be used to determine which activities
to assign blame to and by how much to promote the blamed
activities. We can also consider precedence constraints when
deciding by how much to promote activity priorities. For ev-
ery blamed activity, there is likely a scheduled activity that
is using resources needed by the blamed activity. Precedence
constraints could help discern which activity is using those
resources. The blamed activity could then be promoted only
as much as is necessary in order to be scheduled before the
offending activity.

We can also implement several methods to help us explore
different search spaces. Priority Search only adjusts priori-
ties to improve execution and rescheduling performance. We
could also add new activity precedence constraints (e.g. A
must end before B starts) or enforce partitions in the sched-
ule (e.g. all of these activities must be scheduled to end prior
to 11 am). These types of constraints could drive the sched-
uler towards subsets of the schedule search space. Random-
ized restart can allow our priority search algorithm to better
explore the global space rather than searching locally. An-
other alternative would be to keep a list of promising sched-
ule priority assignments and backtrack to those randomly,
allowing us to better explore the search space.

We can also make improvements to our Monte Carlo
method and use the resulting simulations for further analysis
of the scheduler. In order to build a model of run time vari-
ations that is not overly skewed, we use Monte Carlo to re-
peatedly sample a variety of execution run time results. Stan-
dard Monte Carlo simulations tend to focus most runs on

the nominal cases, but a more effective methodology sam-
ples edge cases but weighs the cases by their likelihood to
increase coverage of the variability in the space (in this case
variable activity execution times). The Monte Carlo of exe-
cution run time variations can provide valuable information
for why activities fail to schedule, what input plans are best
suited for the current scheduler design, and how the current
input could end up executing. We are working on visualiz-
ing this information to better inform those working with the
scheduler.

Currently, we only test with mandatory activities. In the
future, we will extend our approach to include optional ac-
tivities, which will add further complexity to the algorithm
and analysis. Optional activities are lower priority activities
what are nice to have scheduled, but not necessary. They
are generally only able to be scheduled if mandatory activi-
ties end early or consume less resources than expected. We
also plan to use an activity’s actual scheduled preferred time
while testing.

Cycles pose an issue to both Constant Step Reprioritiza-
tion and Max Step Reprioritization. Better cycle detection
would allow us to not only overcome the issues presented,
but also provide additional information on how to permute
the priority set for the next iteration. For example, cycle de-
tection could allow us to not only detect the cycle in Figure
2, but know that both E and F should be incremented to-
gether.

While we have established a few methods to improve the
prioritizer and decide on the next permutation of activity
priorities, we have utilized the same objective function to
determine the success of our algorithm. However, our ob-
jective function is simple and coarse; oftentimes, the same
score will appear repeatedly in multiple consecutive. As a
result, the algorithm often travels swaths of plateaus be-
fore sharply improving. This choppiness is suboptimal for
Squeaky Wheel Optimization and gradient descent problems
in general. Some potential additions to the objective function
could be how much energy is leftover in the plan or how
close an activity is to their preferred scheduling time. Eval-
uating a more precise objective function can reduce choppi-
ness and better steer the algorithm towards a more optimal
solution.

Conclusion
We have presented a study of methods to assign activity pri-
orities to control a limited, embedded scheduler to optimize
rescheduling for a specific problem. We first define a set of
static methods that assign activity priorities based on heuris-
tics and schedule dependencies. We then describe how these
priorities can be further adjusted based on feedback from
simulated execution and rescheduling using Monte Carlo
methods to perform Priority Search. We present an empirical
evaluation of several static and priority search methods using
best available planetary rover operations data. This empiri-
cal evaluation shows that Priority Search outperforms static
methods including human expert derived priorities. Finally
we describe a number of promising areas for future improve-
ments to our algorithms.

8

8

Acknowledgments
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

References
Biefeld, E., and Cooper, L. 1991. Bottleneck identification
using process chronologies. In IJCAI, 218–224.
Chi, W.; Chien, S.; Agrawal, J.; Rabideau, G.; Benowitz, E.;
Gaines, D.; Fosse, E.; Kuhn, S.; and Biehl, J. 2018. Em-
bedding a scheduler in execution for a planetary rover. In
ICAPS.
Chien, S. A.; Sherwood, R.; Tran, D.; Cichy, B.; Rabideau,
G.; Castano, R.; Davies, A.; Mandl, D.; Trout, B.; Shulman,
S.; et al. 2005. Using autonomy flight software to improve
science return on earth observing one. Journal of Aerospace
Computing Information and Communication 2(4):196–216.
Chien, S.; Doubleday, J.; Thompson, D. R.; Wagstaff, K. L.;
Bellardo, J.; Francis, C.; Baumgarten, E.; Williams, A.; Yee,
E.; Stanton, E.; et al. 2016. Onboard autonomy on the in-
telligent payload experiment cubesat mission. Journal of
Aerospace Information Systems.
Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-
in-case scheduling. In AAAI, volume 94, 1098–1104.
Gaines, D.; Anderson, R.; Doran, G.; Huffman, W.; Justice,
H.; Mackey, R.; Rabideau, G.; Vasavada, A.; Verma, V.; Es-
tlin, T.; et al. 2016a. Productivity challenges for mars rover
operations. In Proceedings of 4th Workshop on Planning
and Robotics (PlanRob), 115–125. London, UK.
Gaines, D.; Doran, G.; Justice, H.; Rabideau, G.; Schaffer,
S.; Verma, V.; Wagstaff, K.; Vasavada, A.; Huffman, W.; An-
derson, R.; et al. 2016b. Productivity challenges for mars
rover operations: A case study of mars science laboratory
operations. Technical report, Technical Report D-97908, Jet
Propulsion Laboratory.
Gregory, N. M.; Dorais, G. A.; Fry, C.; Levinson, R.; and
Plaunt, C. 2002. Idea: Planning at the core of autonomous
reactive agents. In Proceedings of the 3rd International
Workshop on Planning and Scheduling for Space. Citeseer.
Jet Propulsion Laboratory. 2017a. Mars 2020 rover mission
https://mars.nasa.gov/mars2020/ retrieved 2017-11-13.
Jet Propulsion Laboratory. 2017b. Mars science laboratory
mission https://mars.nasa.gov/msl/ 2017-11-13.
Joslin, D. E., and Clements, D. P. 1999. Squeaky wheel
optimization. Journal of Artificial Intelligence Research
10:353–373.
Kramer, L. A., and Smith, S. F. 2006. Resource contention
metrics for oversubscribed scheduling problems. In ICAPS,
406–409.
Leon, V. J.; Wu, S. D.; and Storer, R. H. 1994. Robustness
measures and robust scheduling for job shops. IIE transac-
tions 26(5):32–43.
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C.
1998. Remote agent: To boldly go where no ai system has
gone before. Artificial Intelligence 103(1-2):5–47.

Pell, B.; Gat, E.; Keesing, R.; Muscettola, N.; and Smith,
B. 1997. Robust periodic planning and execution for au-
tonomous spacecraft. In International Joint Conference on
Artificial Intelligence, 1234–1239.
Rabideau, G., and Benowitz, E. 2017. Prototyping an on-
board scheduler for the mars 2020 rover. In International
Workshop on Planning and Scheduling for Space.
Washington, R.; Golden, K.; and Bresina, J. 2000. Plan
execution, monitoring, and adaptation for planetary rovers.
Electron. Trans. Artif. Intell.
Woods, M.; Shaw, A.; Barnes, D.; Price, D.; Long, D.; and
Pullan, D. 2009. Autonomous science for an exomars rover–
like mission. Journal of Field Robotics 26(4):358–390.

9

9

Off-line/On-line Optimization under Uncertainty

Allegra De Filippo, Michele Lombardi and Michela Milano
DISI, University of Bologna

allegra.defilippo@unibo.it, michele.lombardi2@unibo.it, michela.milano@unibo.it

Abstract

In this work we present two general techniques to deal with
multi-stage optimization problems under uncertainty, featur-
ing off-line and on-line decisions. The methods are applica-
ble when: 1) the uncertainty is exogenous; 2) there exists a
heuristic for the on-line phase that can be modeled as a para-
metric convex optimization problem. The first technique re-
places the on-line heuristics with an anticipatory solver, ob-
tained through a systematic procedure. The second technique
consists in making the off-line solver aware of the on-line
heuristic, and capable of controlling its parameters so as to
steer its behavior. We implement our approaches on two case
studies: an energy management system with uncertain renew-
able generation, and load demand and a vehicle routing prob-
lem with uncertain travel times. We show how both tech-
niques achieve high solution quality w.r.t. an oracle operating
under perfect information, while striking different trade-offs
in terms of computation time.

1 Introduction
Dealing with uncertainty in optimization problems is chal-
lenging, but also increasingly recognized as necessary to
obtain practically relevant results (Powell 2016). In many
cases, this class of problems features both an off-line “strate-
gic” phase that can be tackled with relative leisure, and
an on-line “operational” phase where decisions need to be
taken under stringent time constraints. Since optimization
under uncertainty is tough, anticipatory methods such as
stochastic optimization (see (Shapiro and Philpott 2007;
Birge and Louveaux 1997; Kall, Wallace, and Kall 1994))
have been historically employed for the off-line phase, and
simple non-anticipativity heuristics for the on-line phase.

However, on-line algorithms have the ability to exploit ad-
ditional information as the uncertainty is slowly revealed.
With the aim of tapping into this potential, a growing num-
ber of works has been addressing on-line problems via
techniques originally introduced for stochastic program-
ming, e.g. sampling and the Sample Average Approxima-
tion (Shapiro 2013). Sampling refers to obtaining realiza-
tions (scenarios) of the random variables used to model the
uncertainty; by solving deterministic optimization problems
over multiple scenarios and by computing averages, it is pos-
sible to enrich an on-line algorithm with some degree of an-
ticipation. These developments lead to the EXPECTATION

(Chang, Givan, and Chong 2000), CONSENSUS (Bent and
Van Hentenryck 2004b) and REGRET (Bent and Van Hen-
tenryck 2004a) algorithms, and to more advanced methods
such as AMSAA (Hentenryck and Bent 2009; Mercier and
Van Hentenryck 2008). All such methods are well discussed
in (Hentenryck and Bent 2009).

There is a delicate trade-off between speculating vs. wait-
ing for the uncertainty to be resolved and this leads to an in-
formal distinction between off-line and on-line problems. In
particular, on-line algorithms require to make decisions over
time and delaying decisions can either increase the costs or
be impossible due to constrained resources. Off-line prob-
lems are often solved via exact solution methods on approx-
imate models with limited look-ahead, e.g. via decomposi-
tion based methods (Laporte and Louveaux 1993). The next
logical step seems to find methods to integrate off-line and
on-line decision making. This paper proposes two methods
that are applicable when: 1) the uncertainty is exogenous;
2) there exists a heuristic for the on-line phase with certain
basic properties. Each method alters either the off-line or
the on-line part of the solution process, so that the two play
better together. We believe our techniques represent a signif-
icant step toward integrated off-line/on-line optimization.

We implement our approaches on two case studies: 1) an
energy system management problem, where load shifts are
planned off-line and power flows must be controlled on-line;
and 2) a Vehicle Routing Problem where customers are as-
signed off-line, but the routes can be chosen on-line. We
show how the two methods strike radically different trade-
offs in terms of off-line and on-line complexity, but they
achieve solutions of high quality.

The rest of the paper is organized as follows: Section 2
formalizes our two solution methods. Section 3 shows how
our methods can be implemented. Section 4 reports experi-
mental results. Concluding remarks are in Section 5.

2 Formalization
We consider multi-stage optimization problems under un-
certainty, where the first stage (indexed with 0) involves off-
line decisions, and all subsequent n stages involve on-line
decisions. We will start by describing a baseline solution ap-
proach, and then improve it by: 1) adding anticipation to the
on-line solver through a systematic procedure; and 2) mak-
ing the off-line solver aware of the on-line one, and capable

10

of controlling its parameters so as to steer its behavior. The
first method is related to existing on-line anticipative algo-
rithms; the second relies on the mixed nature of the problem.

Formally, let y represent the off-line decisions; let xk rep-
resent the on-line decisions for stage k; let sk (resp. ξk) rep-
resent the system state (resp. the uncertainty) revealed at the
beginning (resp. the end) of stage k. All variables are as-
sumed to be vectors, they can be numeric or discrete, and
have finite or infinite domain.
Baseline on-line heuristic (PH) : We assume the availabil-
ity of an on-line heuristic that can be modeled as a paramet-
ric convex (and therefore efficient) optimization problem:

min f(y, xk, sk;αk) (PH)

s.t. e(y, xk, sk) = 0 (1)

g(y, xk, sk) ≤ 0 (2)

where f is the cost function with parameter vector αk, while
e and g are the constraint functions (with vector output). We
assume the optimization problem to be convex, which means
that f and g must be convex and e to be linear. Typically, the
convexity requirement will prevent xk from being integer,
but there are important exceptions (e.g. the one in Sec. 3.2).

We will refer as F(y, xk, sk) to the actual cost incurred at
stage k for taking decisions xk. Note this is distinct from the
objective function f of the heuristic, although in practice the
two are likely to be based on similar formulas. The transition
from the state in stage k to the state in stage k+ 1 is defined
by means of a transition function T , i.e.:

sk+1 = T (y, xk, sk, ξk)

where it can be seen that the effect of the uncertainty (i.e.
the random variable) is encoded in the state.
Flattened Problem (PF) : Let Ω be a set of scenarios ω
from the sample space of ξ = (ξ0, . . . ξn−1). Given a single
scenario ω, it is possible to collapse the instantiations of PH
for each stage to obtain a flattened (on-line) problem:

min
n∑

k=1

F(y, xkω, s
k
ω) (PF)

s.t. e(y, xkω, s
k
ω) = 0 ∀k = 1..n (3)

g(y, xkω, s
k
ω) ≤ 0 ∀k = 1..n (4)

sk+1
ω = T (y, xkω, s

k
ω, ξ

k
ω) ∀k = 1..n− 1 (5)

where xkω/skω/ξkω are the on-line decisions/state/realizations
for stage k in scenario ω. The only actual adjustment w.r.t.
instantiating PH multiple times is that the true costF is used
rather than the heuristic cost function. Since PF assumes the
availability of all ξkω values, it is effectively a clairvoyant
approach. In the on-line optimization literature the flattened
problem is known as the off-line problem (see (Hentenryck
and Bent 2009)), but we adopt a different name to avoid am-
biguity with the actual off-line phase.

Since the on-line problem can be solved with relative
ease, the complexity depends heavily on the properties of
the state transition function. If T is linear (e.g. in Sec. 3.1),

then the flattened problem will be convex and relatively easy
to solve. Non-linear transition functions (e.g. Sec. 3.2) are
conversely much harder to handle.
Baseline off-line problem (PO) : As a baseline to deal with
the off-line decisions we consider a two-stage stochastic op-
timization problem obtained by instantiating PF once per
scenario:

min fo(y) +
1

|Ω|
∑

ω∈Ω

n∑

k=1

F(y, xkω, s
k
ω) (PO)

s.t. Eq.(3)− (5) ∀ω ∈ Ω

s1
ω = To(y, ξ0

ω) ∀ω ∈ Ω (6)
y ∈ Y (7)

where the function fo(y) represents the cost that depends
directly on the off-line decisions. The remainder of the cost
function is given by the Sample Average Approximation of
the expected cost of the subsequent stages. The function
To(y, ξ0

ω) determines the initial state for the on-line stages,
based on the value of y and on the uncertainty revealed at
the end of the off-line stage (i.e. ξ0

ω). Finally, Y is the fea-
sible space for the off-line decision variables y. We make
no special assumption on Y , fo(y), and To(y, ξ0

ω), meaning
that even when the flattened problem is convex the off-line
problem may be NP-hard (or worse). Still, the fact that the
problem is solved off-line makes its complexity less critical.

The biggest drawback of this approach is that using the
flattened problem to estimate the effect of the off-line de-
cision on the future stages is equivalent to assuming the
availability of an oracle. In practice, however, an on-line
approach can behave much worse than an oracle-powered
solver.
Anticipatory On-line Phase (PB) : In this context, off-line
on-line integration can be obtained by providing the on-line
algorithm with something that resembles an oracle, i.e. by
making it anticipative. A simple approach to achieve this is
the one employed for the baseline off-line problem, i.e. in-
stantiating PF for the remaining stages. Formally, let h be
the index of the current stage, then we consider:

min F(y, xh, sh) +
1

|Ω|
∑

ω∈Ω

n∑

k=h+1

F(y, xkω, s
k
ω) (PB)

s.t. Eq.(1), (2) for stage h
Eq.(3), (4) for k > h

Eq.(5) for k ≥ h, with shω = sh and xhω = xh

The off-line decisions are taken using PO. This first ap-
proach, named Boosted On-line OptimizatoN (BOON), im-
proves the accuracy of the on-line component at the expense
of its solution time.

PB has the same semantic of the EXPECTATION algo-
rithm, which obtains the same results by enumerating the
feasible decisions for the current stage, and evaluating the
expected cost by solving the flattened problem on each sce-
nario. Since each scenario is considered in isolation, EXPEC-
TATION is arguably much more efficient than BOON when-
ever the current stage decisions can be enumerated reason-

11

ably fast. The same argument applies to the REGRET algo-
rithm, an efficient approximation of EXPECTATION.

However, when the decision space is not enumerable (e.g.
for continuous xk variables, as in Sec. 3.1), EXPECTATION,
REGRET (and even CONSENSUS and AMSAA) cannot be ap-
plied directly, while our method is still viable. Moreover,
when each on-line stage requires to take multiple decisions,
enumeration may be expensive and associating an expected
cost to each decision in isolation leads to underestimations
if the costs are not additive ((Awasthi and Sandholm 2009)).
On-line Aware Off-line Phase (PM) : An alternative in-
tegration approach consists in making the off-line solver
aware of the on-line heuristic. Moreover, we can allow the
off-line phase to adjust the heuristic parameters so as to steer
its behavior. We start by observing that, since the on-line
heuristic problem PH is convex, any local minimum must
be a global minimum. Local minima can be characterized
in terms of the Karush-Kuhn-Tucker optimality conditions
(Winston 2004), which for PH in a given scenario ω are
given by:

−∇xk
ω
f =

|e|∑

i=1

λkω,i∇xk
ω
ei +

|g|∑

i=1

µk
ω,i∇xk

ω
gi (8)

µk
ω,igi = 0 ∀i = 1..|g| (9)

µk
ω,i ≥ 0 ∀i = 1..|g| (10)

Eq.(1), (2)

where, for sake of readability, f(y, xkω, s
k
ω;αk) has been

shortened to f , the i-th component (out of |e|) of
e(y, xkω, s

k
ω) to ei, and the i-th component (out of |g|) of

g(y, xkω, s
k
ω) to gi. The λkω,i and µk

ω,i variables represent dual
multipliers. Eq. (8) corresponds to the gradient cancellation
condition, Eq. (9) to complementary slackness, Eq. (10) to
dual feasibility (λkω,i is free), and Eq. (1), (2) to primal fea-
sibility. Note that here we use the actual heuristic cost, pa-
rameterized in αk.

Now, the KKT conditions can be injected as constraints in
PO. This will force all xkω variables in the off-line problem
to take the values that would be actually assigned by the
heuristic. This leads to the following problem:

min fo(y) +
1

|Ω|
∑

ω∈Ω

n∑

k=1

F(y, xkω, s
k
ω) (PM)

s.t. Eq.(3)− (5) ∀ω ∈ Ω

Eq.(6), (7)
Eq.(8)− (10) ∀ω ∈ Ω,∀k = 1 . . . n

The decision variables are in this case y, xkω , skω , λkω,i, µ
k
ω,i,

and crucially αk. The on-line decisions are then taken using
the original heuristics, but its behavior will be affected by the
“parameter schedule” α1, . . . αn produced by solving PM.

We named this second approach Master Off-line Opti-
mizatioN (MOON): it achieves integration at the cost of off-
line solution time, because of the additional variables in PM
and the presence of non-linearities in Eq. (9). The approach
has some similarities with Logic Based Benders Decompo-
sition (LBBD): in our case, however, the KKT conditions

provide an exact model of the subproblem rather than a re-
laxation to be iteratively defined. As an interesting future
development, it should be possible to use LBBD to solve
our PM.

3 Case Studies
In this section we present our case studies. The first one
(an energy management system) was considered in (De Fil-
ippo et al. 2017): since it features continuous on-line de-
cision variables, it is not amenable to existing approaches
such as EXPECTATION or REGRET. The second use case (a
Vehicle Routing Problem variant) is meant to provide a re-
alistic, different, example of how the methods can be im-
plemented: it features discrete on-line decisions, and allows
a quality comparison with classical algorithms because in
such cases BOON leads to the same results as EXPECTATION
(with no solution time restrictions). For simplicity, we will
make heavy use of monolithic models: our methods work
however with any solution approach, provided that the cor-
rect problems are solved.

3.1 Energy Management System
We consider a Virtual Power Plant (VPP) management sys-
tem (see (Morales et al. 2013)) with partially shiftable loads,
renewable energy generators, storage systems, and grid-
connection. The VPP concept is based on the idea of aggre-
gating the capacity of many Distributed Energy Resources
(DER) to create a single operating profile to increase flex-
ibility to manage the uncertainty. The load shifts must be
planned off-line and the energy balance should be main-
tained on-line. The goal is to decide the minimum-cost en-
ergy flows at each on-line stage (see (Clavier et al. 2015)),
i.e.: 1) how much energy should be bought; 2) which gener-
ators should be used; 3) whether the surplus energy (if any)
should be stored or sold to the market.

The uncertainty stems from uncontrollable deviations
from the planned shifts and from the presence of Renew-
able Energy Sources (RES) (see (Palma-Behnke et al. 2011;
Bai et al. 2015)). We assume that the RES production fore-
cast is good enough that its error in each stage can be con-
sidered an independent random variable.
Baseline Heuristic and Transition Function: Based on the
shifts produced by the off-line step, and adjusted to take into
account the uncertainty, the on-line heuristic minimizes the
operational cost and covers the energy demand by manipu-
lating flows between nodes in g ∈ G. We assume the index
0 refers to the storage system and index 1 to the RES gener-
ators. The stages represent periods long enough to treat the
corresponding flow decisions as independent. The heuristic
can be formulated as an LP model:

min
n∑

k=1

∑

g∈G
ckgx

k
g (P1.1)

s.t. L̃k =
∑

g∈G
xkg (11)

0 ≤ γk + ηxk0 ≤ Γ (12)

xg ≤ xkg ≤ xg (13)

12

where n is the number of on-line stages, and xkg represents
the flow from g to the VPP (if positive) or in the reverse
direction (if negative). All flows must respect the physical
bounds xg and xg . The flow costs ckg correspond to the prob-
lem parameters αk in PH. The state variables are the RES
energy flow xk1 , the load to be satisfied L̃k, and the battery
charge γk. The battery upper limit is Γ and η is the charging
efficiency. The off-line decisions do not appear directly in
the heuristic model, but they affect instead the state transi-
tion function:

γk+1 = γk + ηxk0 (14)

xk+1
1 = R̂k + ξkR (15)

L̃k+1 = L̂k + yk + ξkL (16)

where R̂k and L̂k are the estimated RES production and
load, and ξkR and ξkL are the corresponding errors (random
variables). We assume that the errors follow roughly a Nor-
mal distribution N(0, σ2), and that the variance σ2 is such
that the 95% confidence interval corresponds to ±20% of
the estimated value (Gamou, Yokoyama, and Ito 2002). The
yk variable represents the (off-line planned) shift from the
estimated load.

Baseline Off-line Problem: The off-line problem is mod-
eled via Mixed Integer Programming (MILP):

min
1

|Ω|
∑

ω∈Ω

∑

g∈G

n∑

k=1

ckgx
k
g,ω (P1.2)

s.t. L̃k
ω =

∑

g∈G
xkg,ω ∀ω ∈ Ω,∀k = 1, . . . n (17)

xg ≤ xkg,ω ≤ xg ∀ω ∈ Ω,∀k = 1, . . . n (18)

0 ≤ γkω ≤ Γ ∀k = 1, . . . n (19)

γk+1
ω = γkω + ηxk0,ω ∀ω ∈ Ω,∀k = 1, . . . n− 1 (20)

xk+1
1,ω = R̂k + ξkR,ω ∀ω ∈ Ω,∀k = 1, . . . n

(21)

L̃k+1
ω = L̂k + yk + ξkL,ω ∀ω ∈ Ω,∀k = 1, . . . n

(22)
t+m∑

k=t

yk = 0 ∀t = 1, . . . n−m (23)

yk ≤ yk ≤ yk ∀k = 1, . . . n

(24)

where Eq. (17) − (22) define the flattened problem, and
Eq. (23)− (24) the feasible space for the off-line variables y.
Eq. (23) ensures that the shifts respect a local balance. The
initial battery charge γ0

ω is identical for all scenarios.

Implementing BOON for the VPP: A model for the BOON
approach can be obtained by applying in an almost straight-

forward fashion the definitions from Sec. 2:

min
∑

g∈G
chgx

h
g +

1

|Ω|
∑

ω∈Ω

n∑

k=h+1

∑

g∈G
ckgx

k
g,ω (P1.3)

s.t. Eq. (11)− (13)
Eq. (17)− (19) ∀k > h

Eq. (20)− (22) ∀k ≥ h, with shω = sh and xhω = xh

Note that P1.3, although potentially large, is a Linear Pro-
gram and can be solved in polynomial time.
Implementing MOON for the VPP: We start by formulat-
ing the KKT conditions for the on-line heuristic in a single
scenario, thus obtaining:

− ckg = λkω + µk
g,ω − νkg,ω ∀g ∈ G (25)

µk
g,ω(xkg,ω + xg) = 0 ∀g ∈ G (26)

νki,ω(xg − xtg,ω) = 0 ∀g ∈ G (27)

µ̂k
ω(ηxk0,ω + γk − Γ) = 0 (28)

ν̂kω(ηxk0,ω + γk) = 0 (29)

µk
g,ω, ν

k
g,ω ≥ 0 ∀g ∈ G (30)

µ̂k
ω, ν̂

k
ω ≥ 0 (31)

where µk
g,ω and νkg,ω are the multipliers associated to the

physical flow bounds, while µ̂k
ω and ν̂kω are associated to the

battery capacity bounds. The multiplier λkω is associated to
the balancing constraint, i.e. Eq. (11), and can be eliminated
with a few algebraic transformations. Injecting the condi-
tions in the off-line model yields:

min
1

|Ω|
∑

ω∈Ω

∑

g∈G

n∑

k=1

ckgx
k
g,ω (P1.4)

s.t. Eq. (17)− (24)
Eq. (25)− (31) ∀ω ∈ Ω,∀k = 1, . . . n

where the decision variables are yk, xkg,ω, µk
g,ω , νkg,ω , µ̂k

ω , ν̂kω .
To those, we add the cost ck0 associated to the flow between
the VPP and the storage system (the only parameter that we
allow the solver to adjust). Normally, there are neither eco-
nomic penalties nor incentives for such flow, while there is a
profit associated to flows from the VPP to the grid. As a side
effect, the naive P1.1 heuristic will always choose to sell the
surplus energy. MOON allows the off-line solver to associate
a “virtual profit” to storing energy, which enables addressing
the original limitation at no on-line computational cost.

3.2 Vehicle Routing Problem
We consider a variant of the Capacitated VRP with uncertain
travel times (Toth and Vigo 2002; Bertsimas and Simchi-
Levi 1996; Lee, Lee, and Park 2012; Taş et al. 2013). The
problem consists in establishing the paths of a set of ve-
hicles to serve a set of customers. All vehicles have a fi-
nite capacity, and customers have a known demand and can
be visited by a single vehicle. There are n fully connected
customers/nodes, with node 0 being the (single) depot. Cus-
tomer assignments must be done off-line, while the vehicle

13

routes are chosen on-line. We assume that, whenever a node
is reached, its binary “state” becomes known, and with that
the (uniform) distributions followed by the travel times of
all its outgoing arcs. Formally, this results in bimodally dis-
tributed, statistically dependent, travel times. The objective
is to minimize the total travel time.

Baseline Heuristic and Transition Function: The on-line
heuristic consists in simply picking the outgoing arc with the
shortest travel time. This can be modeled also as a simple
Integer Program. Let h be the current node, then we have:

min
∑

j∈Vh

chjxhj (P2.1)

s.t.
∑

j∈Vh

xh,j = 1 (32)

xh,j ∈ {0, 1} ∀j ∈ V (33)

where xhj = 1 iff we choose to move from h to j, Vh is the
set of nodes that still needs to be visited (and it always in-
clude the depot), and the travel times chj are the heuristic pa-
rameters. P2.1 does not apparently satisfy our assumptions,
due to the integer variables. However, its LP relaxation has
always an integer solution, banning degenerate cases (i.e.
arcs with the same cost). We can therefore relax the inte-
grality requirement without loss of generality. The transition
function is given by:

Vh∗ = Vh \ {h∗} (34)
ch∗,j = ξh∗,j (35)

where h∗ is index of the next node selected by the heuristic
and ξh∗,j is the travel time from h∗ to j (a random variable).
Note also that in this case the index of the on-line stage is
implicitly given by h. We take advantage of this and reduce
the notation clutter by moving the ω index to apex position.

Baseline Off-line Problem: We tackle the off-line problem
via Mixed Integer Linear Programming, which forbids us to
directly embed the non-linear Eq. (34) in the model. In prac-
tice, however, the equation states that 1) each vehicle should
serve only its assigned customers, and 2) the visit should
form a single loop. Both are well known VRP constraints

and can be linearized. In particular, we use the model:

min
1

|Ω|
∑

ω∈Ω

∑

k∈K

∑

i,j∈V
ξωi,jx

ω
k,i,j (P2.2)

s.t.
∑

j∈V
xωk,i,j = yk,i ∀k ∈ K,∀i ∈ V (36)

∑

i∈V
xωk,i,j = yk,j ∀k ∈ K,∀j ∈ V (37)

yk,0 = 1 ∀k ∈ K (38)

tωk,j ≥ tωk,i −M + (M + 1)xωk,i,j
∀k ∈ K,

∀i, j ∈ V, V +

(39)
tωk,0 = 0 ∀k ∈ K (40)
∑

i∈V
qiyk,i ≤ Ck ∀k ∈ K (41)

∑

k∈K
yk,i = 1 ∀i ∈ V + (42)

where all constraints where an ω apex appears should be
posted ∀ω ∈ Ω. All x and y variables are binary, and
yki = 1 iff customer i should be visited by vehicle k. We
have M = |V |, and V + = V \ {0}. Eq.(36) − (40) define
the flattened problem, and Eq. (41)− (42) define the feasible
space of the off-line decision variables. For sake of simplic-
ity, we eliminate subloops by keeping track of the visiting
order tωki of each node for each vehicle: this is a simple, but
not particularly effective method, because it relies on big-Ms
and reduces the quality of the LP bound.
Implementing BOON for the VRP: The BOON method can
be implemented for each vehicle k separately, by first re-
stricting the focus to the set of nodes Vh, and then by apply-
ing the definition from Sec. 2 and linearizing Eq. (34) in the
baseline off-line problem, we get:

min
∑

j∈Vh

ch,jxk,i,j +
1

|Ω|
∑

ω∈Ω

∑

i,j∈Vh

ξωi,jx
ω
k,i,j (P2.3)

s.t. Eq. (32)
Eq. (36) restricted to Vh \ {0} (43)
Eq. (37)− (39) restricted to Vh
tωk,h = 0 (44)

where Eq. (44) means that the vehicle path should start from
the current node h (and end as usual in the depot).
Implementing MOON on the VRP: As usual, the first step
in the MOON is formulating the KKT conditions for P2.1. In
this case after some algebraic transformations, for a given
vehicle k, node h, and scenario ω we obtain:

(chj + λωk,h)xωk,h,j = 0 ∀j ∈ Vh (45)

(chj + λωk,h) ≥ 0 ∀j ∈ Vh (46)

where λωk,h is the multiplier for Eq. (32), and all other mul-
tipliers have been eliminated. The main difficulty is again
dealing with the set Vh, which is part of the state and
should be constructed dynamically in the off-line problem.

14

Here, we handle Vh by introducing new variables rωkji such
that rωkji = 1 iff node i has been visited when node i is
reached. The semantic is enforced via additional non-linear
constraints in the off-line model. The latter is given by:

min
1

|Ω|
∑

ω∈Ω

∑

k∈K

∑

i,j∈V
ξωi,jx

ω
k,i,j (P2.4)

s.t. Eq.(36)− (42)
(cij + λωk,i)x

ω
k,i,j(1− rkji) = 0 ∀k ∈ K,∀i, j ∈ V

(cij + λωk,i)(1− rkji) ≥ 0 ∀k ∈ K,∀i, j ∈ V
rωk,i,i = yk,i ∀i ∈ V
rωk,j,i = rωk,h,ix

ω
k,h,j ∀i ∈ V,∀h ∈ V,∀j ∈ V

cij ≤ cij ≤ cij ∀i, j ∈ V
The decision variables are yki, xωkij , λωki, r

ω
kji, plus the “vir-

tual travel times” cij , i.e. the parameters for the on-line
heuristic. Where the constraints on the rωkji variables enforce
the transitive property on the set of visited nodes. Bound-
ing the virtual travel times is necessary to prevent the solver
from building degenerate parameterizations for P2.1 on pur-
pose, which would trivially satisfy all KKT constraints and
make the approach boil down to the baseline off-line solver.

4 Experiments
We performed an experimentation to compare the solution
quality and run times of our methods. As references for
comparison we use the baseline approaches, plus an optimal
solver operating under perfect information. Additionally, on
the VRP, BOON obtains the same solution quality as EXPEC-
TATION, which gives a third term of comparison.
Experimental Setup: Our methods are evaluated over dif-
ferent uncertainty realizations, obtained by sampling the
random variables for the loads and RES generation in the
VPP model, and for the travel times in the VRP model. We
consider a sample of 100 realizations for six different in-
stances of each problem. We then run each approach on each
realization and measure the cost and run time. The scenarios
in our models, conversely, are not sampled, but program-
matically chosen: for the VPP we consider four “extreme”
scenarios where (resp.) the load and the RES generation are
at low/high values. For the VRP, each scenario corresponds
to the mean travel times in one mode of the distribution. The
VPP problem has 24 on-line stages, while in the VRP the
number depends on how many customers are assigned to
each vehicle.

We solve our LPs and MILPs using Gurobi, while for the
non-linear problems we use BARON via the GAMS mod-
eling system on the Neos server for optimization. The time
limit is 100 seconds for the VPP, and 500 seconds for the
VRP. For the VPP, we use data from two public datasets
to define problem instances for a residential (Espinosa and
Ochoa 2015) and industrial plant1. For the VRP we use mod-
ified version of classical instances2, by including problems

1https://data.lab.fiware.org/dataset/
2http://myweb.uiowa.edu/bthoa/TSPTWBenchmarkDataSets.htm

Instance Oracle (ke) Baseline (ke) BOON (ke) MOON (ke)

I1 331.36 404.62 (+22.1%) 342.06 (+3.2%) 344.60 (+4.1%)

I2 247.21 311.14 (+25.9%) 265.32 (+7.3%) 263.80 (+6.7%)

I3 393.81 462.57 (+17.5%) 404.32 (+2.7%) 408.72 (+3.8%)

I4 798.38 923.24 (+15.6%) 819.24 (+2.6%) 811.11 (+1.6%)

I5 565.60 684.19 (+21.1%) 580.17 (+2.7%) 573.93 (+1.5%)

I6 856.95 984.90 (+14.9%) 874.58 (+2.1%) 868.76 (+1.5%)

Table 1: Cost values for the different VPP models

Off-line part (sec) On-line part (sec)
Instance Baseline MOON Heuristic BOON

I1 0.184 27.884 0.778 5.011

I2 0.190 31.992 0.772 5.017

I3 0.185 30.772 0.775 5.009

I4 0.346 58.913 0.839 5.430

I5 0.341 59.184 0.832 5.423

I6 0.348 57.777 0.835 5.420

Table 2: Computation time for the different VPP model parts

from 10 to 30 customers with one depot and different num-
bers of vehicles.
Discussion for VPP: In Tables 1 and 2 we show the aver-
age costs and run time over the 100 input realizations for
each approach for the VPP use case. On-line times refer to
the sum of the stages. The baseline model (being an LP) ap-
pears to be rather efficient in terms of computation time, but
yields solutions of limited quality. The BOON method comes
much closer to the oracle solver, at the cost of a higher, but
still reasonable, on-line run time. The MOON method incurs
substantially larger off-line solution times, but it manages to
beat or match the BOON solution quality by making use of
the original, straightforward, on-line heuristic.

We show, for the VPP, the average values of each hourly
optimized flow over the 100 realizations for each proposed
model (i.e. Oracle, Baseline, BOON, MOON) in instance
I2. We can see, in Fig. 2, the limits of using a non antici-
patory algorithm, compared for example to Fig. 1 showing
the Oracle optimization, since it is not possible to acquire
energy from the grid in advance (i.e. when the cost is lower)
and/or to sell energy to the grid in periods of highest price
on the market or when more energy is available from re-
newable sources. Moreover the exchange of energy with the
storage system is almost never used, i.e. to store RES en-
ergy. In Fig. 4, it is possible to see that, near the peak of re-
newable energy production, the MOON model accumulates
energy in the storage and uses in a more balanced way the
energy present in the storage system compared to the base-
line model represented in Fig. 2. Furthermore, still looking
at Fig. 3, it can be seen that BOON has peaks of energy sold
on the network near the increase in electricity prices on the
market. In Fig. 3 it is possible to notice the more consistent

15

Figure 1: Oracle optimized energy flows

Figure 2: Baseline optimized energy flows

use of the storage system. We can see that, by optimizing
the virtual storage cost in the off-line stage, we can improve
solution quality in term of cost (see Table 1) by using the
storage system. Since the on-line solver has the ability to
sell energy on the market, and storing energy has no profit, it
ends up in always selling unless the virtual cost is employed.
Discussion for VRP: Tables 3 and 4 report the same re-
sults in terms of costs and computation time for the VRP.
Here the on-line times are summed over all the vehicles.
The original on-line heuristic is very efficient, but coupled
with the baseline off-line model it does not come close to
the oracle quality. The off-line model (a Mixed Integer Lin-
ear Program) takes also considerably more time to be solved.
BOON, which in this case yields the same results as EXPEC-
TATION with no time limit, yields substantially better solu-
tions, but, being also MILP-based, it takes non-negligible
time during the on-line phase. The MOON results follow the
same trend as the VPP: the solution quality matches or beats
that of BOON, at the cost of a higher off-line computation
time, though the gap wrt the baseline is now much smaller.

From Fig. 5 to Fig. 8 we show the average on-line routing
decisions over the 100 realizations for the same instance I2
(10 customers, one depot and two vehicles). The heatmaps
shown below represent different colors for each vehicle and
different color intensity for the number of times that each
route has been chosen over the 100 realizations. We remem-

Figure 3: BOON optimized energy flows

Figure 4: MOON optimized energy flows

ber that our models make first off-line decisions (i.e. as-
signment of clients for each vehicle) and then make rout-
ing (on-line) decisions. We remember also that in MOON
model we can have different off-line decisions (compared
to those made from the other three models) since we inject
KKT conditions in the off-line part. We therefore propose
an instance as example where the off-line decisions are the
same for all the models with the aim to observe the different
on-line routing decisions. Indeed, we have different trends
with the same off-line decisions. In particular, the Baseline
model makes different routing decisions compared to the Or-
acle decisions: routes 2 -> 10, 3 -> 2, 6 -> 5 are never con-
sidered in the Baseline decisions while they are (with a cer-
tain probability) considered in the BOON decisions. We can
also notice that, the Baseline and BOON models assume a
(low) probability also for different routing decisions of vehi-
cle 0 and this is not present in MOON routing decisions. The
MOON routing decisions are equals to the Oracle ones for
vehicle 0 in terms of probability and, for the other vehicle,
they present routes (with the relative probability) never used
by BOON (e.g. 0 -> 6, 5 -> 7). Moreover, we can notice that
BOON presents on-line decisions with a higher probability
but, in general, different from the most frequent decisions
of the Oracle. Instead, MOON makes more decisions with
lower probability than BOON, but considering more often
decisions similar to the Oracle.

16

Instance Oracle (t) Baseline (t) BOON (t) MOON (t)

I1 146.10 165.83 (+13.5%) 151.23 (+3.5%) 148.84 (+1.9%)

I2 278.37 347.28 (+24.8%) 298.67 (+7.3%) 290.43 (+4.3%)

I3 372.82 561.66 (+50.7%) 477.16 (+28.1%) 507.80 (+36.2%)

I4 321.57 381.45 (+18.6%) 342.94 (+6.6%) 340.85 (+6.1%)

I5 503.65 670.86 (+33.2%) 559.22 (+11.1%) 543.92 (+8.2%)

I6 448.53 971.87 (+116.7%) 470.99 (+5.1%) 504.82 (+12.5%)

Table 3: Travel time (cost) values for the different VRP models

Off-line part (sec) On-line part (sec)
Instance Baseline MOON Heuristic BOON

I1 1.699 6.255 0.255 7.134

I2 2.477 17.445 0.169 15.222

I3 2.532 25.938 0.554 18.024

I4 186.798 338.998 3.444 255.932

I5 243.330 357.543 5.248 313.656

I6 361.537 490.856 5.342 416.645

Table 4: Computation time for the different VRP model parts

5 Conclusion
This paper makes a first step toward generic integrated off-
line/on-line optimization. We propose two alternative ap-
proaches, based on the idea of making the off-line and on-
line solvers operate synergistically.

In the BOON method this is done by providing the on-line
solver with the approximation of an oracle. In the MOON
method, we instead make the off-line solver aware of the
limitations of the on-line one, and capable of controlling
its behavior by adjusting parameters. In general, our ap-
proaches work best for problems with numeric on-line de-
cisions, but important classes of on-line heuristics are also
covered (e.g. arg min of parametric scores).

Both techniques yield substantially improved solutions:
BOON matches the quality level of EXPECTATION, but it is
applicable under more general assumptions. Unfortunately,
the method is less efficient. MOON often manages to beat

Figure 5: Oracle routing decisions

Figure 6: Baseline routing decisions

Figure 7: BOON routing decisions

BOON (and therefore EXPECTATION) in terms of solution
quality. While this comes at the price of a substantially
increased off-line computation time, the method achieves
these results by using naive and efficient on-line heuristics.

We believe there is room for improving the efficiency of
our methods, for example by applying a method such as
Logic Based Benders Decomposition to tackle each scenario
in a separate subproblem (similarly to what done in the L-
shaped method). As an alternative, we may attempt to gen-
eralize the technique used by REGRET to improve the effi-
ciency of EXPECTATION. We also plan to test the sensitivity
of our methods w.r.t. different choices for the on-line heuris-
tic, and to apply our approaches to different problems, such
as resource allocation and scheduling with Simple Temporal
Networks under Uncertainty.

Figure 8: MOON routing decisions

17

References
Awasthi, P., and Sandholm, T. 2009. Online stochastic op-
timization in the large: Application to kidney exchange. In
IJCAI, volume 9, 405–411.
Bai, H.; Miao, S.; Ran, X.; and Ye, C. 2015. Optimal
dispatch strategy of a virtual power plant containing bat-
tery switch stations in a unified electricity market. Energies
8(3):2268–2289.
Bent, R., and Van Hentenryck, P. 2004a. Regrets only! on-
line stochastic optimization under time constraints. In AAAI,
volume 4, 501–506.
Bent, R. W., and Van Hentenryck, P. 2004b. Scenario-based
planning for partially dynamic vehicle routing with stochas-
tic customers. Operations Research 52(6):977–987.
Bertsimas, D. J., and Simchi-Levi, D. 1996. A new genera-
tion of vehicle routing research: robust algorithms, address-
ing uncertainty. Operations Research 44(2):286–304.
Birge, J. R., and Louveaux, F. 1997. Introduction to stochas-
tic programming. series in operations research and financial
engineering.
Chang, H. S.; Givan, R.; and Chong, E. K. 2000. On-line
scheduling via sampling. In AIPS, 62–71.
Clavier, J.; Bouffard, F.; Rimorov, D.; and Jos, G. 2015.
Generation dispatch techniques for remote communities
with flexible demand. IEEE Transactions on Sustainable
Energy 6(3):720–728.
De Filippo, A.; Lombardi, M.; Milano, M.; and Borghetti, A.
2017. Robust optimization for virtual power plants. In Con-
ference of the Italian Association for Artificial Intelligence,
17–30. Springer.
Espinosa, A. N., and Ochoa, L. N. 2015. Dissemination doc-
ument “low voltage networks models and low carbon tech-
nology profiles”. Technical report, University of Manch-
ester.
Gamou, S.; Yokoyama, R.; and Ito, K. 2002. Optimal unit
sizing of cogeneration systems in consideration of uncertain
energy demands as continuous random variables. Energy
Conversion and Management 43(9):1349 – 1361.
Hentenryck, P. V., and Bent, R. 2009. Online stochastic
combinatorial optimization. The MIT Press.
Kall, P.; Wallace, S. W.; and Kall, P. 1994. Stochastic pro-
gramming. Springer.
Laporte, G., and Louveaux, F. V. 1993. The integer l-shaped
method for stochastic integer programs with complete re-
course. Operations research letters 13(3):133–142.
Lee, C.; Lee, K.; and Park, S. 2012. Robust vehicle routing
problem with deadlines and travel time/demand uncertainty.
Journal of the Operational Research Society 63(9):1294–
1306.
Mercier, L., and Van Hentenryck, P. 2008. Amsaa: A mul-
tistep anticipatory algorithm for online stochastic combina-
torial optimization. Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization
Problems 173–187.

Morales, J. M.; Conejo, A. J.; Madsen, H.; Pinson, P.; and
Zugno, M. 2013. Integrating renewables in electricity mar-
kets: operational problems, volume 205. Springer Science
& Business Media.
Palma-Behnke, R.; Benavides, C.; Aranda, E.; Llanos, J.;
and Saez, D. 2011. Energy management system for a re-
newable based microgrid with a demand side management
mechanism. In 2011 IEEE Symposium on Computational
Intelligence Applications In Smart Grid (CIASG), 1–8.
Powell, W. B. 2016. A Unified Framework for Optimization
Under Uncertainty. chapter 3, 45–83.
Shapiro, A., and Philpott, A. 2007. A tutorial on stochastic
programming. Manuscript. Available at www2. isye. gatech.
edu/ashapiro/publications. html 17.
Shapiro, A. 2013. Sample average approximation. In Ency-
clopedia of Operations Research and Management Science.
Springer. 1350–1355.
Taş, D.; Dellaert, N.; Van Woensel, T.; and De Kok, T. 2013.
Vehicle routing problem with stochastic travel times includ-
ing soft time windows and service costs. Computers & Op-
erations Research 40(1):214–224.
Toth, P., and Vigo, D. 2002. The vehicle routing problem.
SIAM.
Winston, W. 2004. Operations research: applications and
algorithms, volume 3.

18

Metric Nonlinear Hybrid Planning with Constraint Generation

Buser Say, Scott Sanner
Department of Mechanical & Industrial Engineering, University of Toronto, Canada

{bsay,ssanner}@mie.utoronto.ca

Abstract

We introduce a novel planner SCIPPlan for metric nonlinear
hybrid planning in domains with general metric objectives,
transcendental functions such as exponentials, and instanta-
neous continuous actions. Our key contribution is to leverage
the spatial branch-and-bound solver of SCIP inside a non-
linear constraint generation framework where we iteratively
check relaxed plans for temporal feasibility using a domain
simulator, and repair the source of the infeasibility through a
novel nonlinear constraint generation methodology. We ex-
perimentally show that SCIPPlan can plan effectively on a
variety of domains, and outperforms ENHSP in terms of plan
quality and runtime performance. We further show that SCIP-
Plan is competitive with a Tensorflow-based planner in highly
nonlinear domains with exponential transition functions and
a variety of metric objectives.

Introduction
Metric optimization is at the core of many real-world non-
linear hybrid planning domains where the quality of the
plan matters. Most nonlinear hybrid planners in the liter-
ature either ignore metric specifications (Penna et al. 2009;
Bryce et al. 2015; Cashmore et al. 2016), or leverage heuris-
tics to guide their search for finding a plan quickly (Löhr et
al. 2012; Piotrowski et al. 2016) with the notable excep-
tions COLIN (Coles et al. 2012) and ENHSP (Scala et al.
2016), which can handle metric optimization for a subset of
PDDL+ (Fox and Long 2006) domains.

In this paper, we leverage the SCIP nonlinear constrained
optimization solver SCIP (Maher et al. 2017) to present
SCIPPlan for solving metric nonlinear hybrid planning prob-
lems by decomposing the original problem into a master
problem and subproblem. In the master problem, we re-
lax the original problem to a system of sequential func-
tion updates, which allows us to handle arbitrary nonlinear
functions (such as polynomial, transcendental, logarithmic,
trigonometric etc.) with metric objectives and instantaneous
continuous action inputs that are beyond the expressivty of
existing hybrid planners.

In the nonlinear hybrid planning literature, the time at
which a conditional expression (e.g., a mode switch condi-
tion) is satisfied is known as a zero-crossing (Shin and Davis
2005), and the candidate solution found by solving the mas-
ter problem can include zero-crossings between two consec-

utive decisions which can violate the global constraints of
the original problem. When the dynamics of the planning
problem are piecewise linear, one can use the TM-LPSAT
compilation to find valid plans. Similarly, when the con-
tinuous change of the planning problem can be described
as polynomials, one can use the SMTPlan (Cashmore et al.
2016) compilation of the hybrid planning problem to avoid
zero-crossings between two consecutive decision points (i.e.
happenings). However in general, problem dynamics can
include arbitrary nonlinear change which can violate these
assumptions. To identify and repair global constraint vio-
lations that are due to zero-crossings, we use simulate-and-
validate approach (Fox et al. 2014) in the subproblem where
domain simulators are used to simulate the candidate plan,
and if the candidate plan is found to be infeasible, temporal
constraints associated with zero-crossings are added back to
the master problem. SCIPPlan iteratively solves the master
problem and the subproblem until a valid plan is found.

Experimentally, we show that SCIPPlan outperforms the
state-of-the-art metric nonlinear hybrid planner ENHSP in
almost all problem instances with respect to solution quality
and run-time performance. We further experiment with the
capabilities of SCIPPlan beyond the expressiveness limita-
tions of ENHSP in the optimization of general metrics on a
subset of modified domains and test its scalability against a
Tensorflow-based planner (Wu et al. 2017) on a nonlinear
RDDL domain with exponential functions from the litera-
ture.

Problem Definition
A factored metric nonlinear hybrid planning problem is
a tuple Π = 〈F,A,C, T,M, I,G〉 where F = {F d, F r}
is a mixed set of fluent variables (fluents) with discrete
F d ∈ Z and real F r ∈ R domains, A = {Ad, Ar} is
a mixed set of action variables (actions) with discrete
Ad ∈ Z and real Ar ∈ R domains, global constraint
C(f, a, s) → {true, false} is a function that returns
true if value assignments to actions a ∈ A and fluents
f ∈ F at time s ∈ R≥0 satisfies C, T denotes the
transition of fluent f ∈ F to f ′ ∈ F after duration
∆s ∈ R≥0 from time s such that T (f, a, s,∆s) = f ′

if there does not exist ∆s′, 0 ≤ ∆s′ ≤ ∆s and
C(T (f, a, s,∆s′), a, s + ∆s′) = false where ∆s ∈ R≥0
denotes the duration of the transition, I ⊆ C and G ⊆ C

19

are the initial and goal constraints that specify the values
of all fluents and subset of fluents at times s = 0 and
s =

∑
t∈{1,...,H}∆st respectively where horizon H is

the bound on the number of sequential actions allowed
to be executed (decisions), and M denotes the metric
of interest that must be optimized. For a given hori-
zon H , a solution (plan) to Π is a value assignment to
all action variables a ∈ A from their domains such that
T (. . . T (T (f0, a0, s0,∆s0), a1, s1,∆s1) . . . , aH , sH ,∆sH)
satisfies all constraints c ∈ C and optimizes metric M .

Note that our definition Π extends RDDL formalism (San-
ner 2010) with the addition of goal constraints G and the
temporal validity condition that checks whether a transition
T (f, a, s,∆s) between time interval [s, s + ∆s] violates a
global constraint c ∈ C. Unlike the PDDL+ (Fox and Long
2006) formalism, we do not assume that the effects of instan-
taneous actions are realized ε time after their execution. The
formalism of RDDL allows us to model the instantaneous
effects of actions by the use of layers and intermediate flu-
ents, and allow instantaneous continuous actions Ar ⊆ A
that are not functions of time.

Spatial Branch-and-Bound
Spatial Branch-and-Bound (SBB) (Mitten 1970) is an al-
gorithm based on the divide-and-conquer strategy for solv-
ing Mixed-Integer Nonlinear Programming (MINLP) that is
in the form of min f(x) subject to g(x) ≤ 0 where func-
tion f(x) and function vector g(x) contain nonlinear func-
tions, and the decision variable vector x can have continuous
and/or discrete domains. The SBB algorithm utilizes tree
search where the branching decisions are made on candidate
solutions x̄, and the optimal value of the objective function
f(x̄) is bounded at each node of the search tree until some
optimality gap parameter g is reached.

Domain Simulators
Domain simulators, such as VAL (Howey et al. 2004)
or RDDLsim (Sanner 2010), can be used to validate
a candidate solution π = 〈a1,∆s1 . . . , aH ,∆sH〉
to the planning problem Π by checking whether
T (. . . T (T (f0, a0, s0,∆s0), a1, s1,∆s1) . . . , aH , sH ,∆sH)
satisfies constraints c ∈ C by discretizing the duration of
transitions ∆st for all decisions t ∈ {1, . . . ,H}.

Constraint Generation for Metric Nonlinear
Hybrid Planning

In this section, we introduce our novel SCIP-based planner
(SCIPPlan) to plan in metric nonlinear hybrid planning do-
mains with general metric considerations as outlined by Al-
gorithm 1. The novelty of our work is that we decompose Π
into a master problem M(Π, H) and a subproblem S(π),
where M(Π, H) solves a relaxation of Π for a bounded
number of decisions H , and S(π) checks whether π is valid
for Π. If π is found invalid, we return the first time inter-
vals [s, s+ ∆s] that violate C, and construct an informative
temporal constraint to be added back to the master problem.

Master problem
The master problem M(Π, H) modifies Π by first assum-
ing a bound on the number of decisions t ∈ {1, . . . ,H}
and relaxing the constraint @∆s′, 0 ≤ ∆s′ ≤ ∆s ∧
C(T (f, a, s,∆s′), a, s+ ∆s′) = false that checks for zero-
crossing between two consecutive decisions t and t+1. This
allows us to construct the master problem as a MINLP using
the same methodology described in (Raghavan et al. 2017)
for compiling the RDDL formalism into a Mixed-Integer
Linear Program (MILP) for piecewise linear domains, ex-
cept that now we simply allow fully nonlinear domains and
we also add goal constraints as G(f, .,

∑
t∈{1,...,H}∆st).

Subproblem
Given a candidate plan π, the subproblem S(π) checks ev-
ery pair of consecutive decisions t, t+ 1 ∈ {1, . . . ,H − 1}
for T (f̄t, āt,

∑
t′∈{1,...,t−1}

¯∆st′ , ∆̄st) 6= f̄t+1 where pa-
rameters f̄t, āt and ∆̄st denote the optimal values of the
variables ft, at and ∆st from the master problem. If such
a discrepancy is found between decisions t and t + 1, it
must be true that there exists an interval [s1t , s

2
t] such that

some conditional expression (i.e., if-else-then condition) or
a global constraint that is not satisfied at times st or st+1,
is satisfied for the duration of the interval [s1t , s

2
t] where

st < s1t ≤ s2t < st+1. We use our own domain simula-
tor to simulate π, and either validate π or return [s1t , s

2
t] and

the violated constraint gt ∈ C for decision t.

Temporal Constraint Generation
Given the interval [s1t , s

2
t] identified by the domain simulator

for decision t ∈ {1, . . . ,H − 1} and the respective violated
constraint gt(ft, at, st ∈ [s1t , s

2
t]) ≤ 0, we generate a non-

linear constraint of the form:

gt(ft, at, kst) ≤ 0 (1)

k = [1, . . . ,
s2t + s1t − 2

∑
t′∈{1,...,t−1}

¯∆st′

2∆̄st
, . . . , 1] (2)

to be added to M(Π, H) with k denoting the coefficient
vector for the duration variables ∆st for all decisions t ∈
{1, . . . ,H} where all the elements of the vector are equal to
1 except the t-th entry which has a value between 0 and 1.
Note that unlike SMTPlan, the function gt is not restricted
to polynomials.

The benefits of our constraint generation methodology are
threefold. The first benefit is that we preserve the functional
relationship between duration of the control input ∆st and
the violated constraint gt, which removes symmetrical zero-
crossings in the form of gt(ft, at, st) = gt(f

′
t , a
′
t, st), where

ft 6= f ′t and at 6= a′t. The second benefit is that SCIPPlan
only generates the temporal constraints as they are needed.
This behavior is desired as not all zero-crossings lead to
invalid plans. Similar to the zero-crossings constraints of
SMTPlan, Constraint (1) is also a sufficient condition to val-
idate π for Π. The addition of unnecessary instances of Con-
straint (1) can potentially eliminate candidate plans π from
the solution space of M(Π, H) that are in fact valid for
Π. The last benefit is computational. Since Constraint (1)

20

only perturbs function gt by changing its coefficients and not
adding any additional decision variables, it allows SCIPPlan
to preserve some important information between iterations
(e.g., warm start features).

Algorithm 1 SCIPPlan

1: H← 1, π ← ∅, s1t , s2t , t← ∅
2: while π is ∅ do
3: π ←M(Π, H)
4: if π is ∅ then
5: H← H + 1.
6: else [s1t , s

2
t , t]← S(π)

7: if s1t , s2t , t are ∅ then
8: return π
9: elseM(Π, H)← Constraint(1)

Illustrative Example

To illustrate how our metric nonlinear hybrid planner works
for one iteration, let us consider the following simple nav-
igation domain with two continuous action variables Ar =
{ax, ay} for moving the agent in x and y directions, two
continuous fluent variables F r = {fx, fy} to represent the
location of the agent, with constraints c1, c2, c3 ∈ C on
s1, s2, a1, a2 such that:

c1 : 0 ≤ fx,t, fy,t ≤ 10 ∀t ∈ {1, . . . ,H + 1}
c2 : −1 ≤ ax,t, ay,t ≤ 1 ∀t ∈ {1, . . . ,H}
c3 : 4 ≥ fx,t ∨ 6 ≤ fx,t ∨ 4 ≥ fy,t ∨ 6 ≤ fy,t
∀t ∈ {1, . . . ,H}

over horizon H = 2 where constraints c1, c2 denote bounds
on the domains of fluents fx, fy ∈ F r and constraints c3
represents an obstacle located in the middle of the maze, and
initial and goal constraints:

I : fx,1, fy,1 = 0

G : fx,2, fy,2 = 8 ,

respectively. Given the transition function:

T : fx,t+1 = fx,t + ax,t∆st ∀t ∈ {1, . . . ,H}
T : fy,t+1 = fy,t + ay,t∆st ∀t ∈ {1, . . . ,H}

and the metric of interest min
∑

t ∆st, the master problem
M(Π, H) can return a candidate plan π = [ax,1 = 1, ay,1 =
1,∆s1 = 8, ax,2 = 0, ay,2 = 0,∆s2 = 0] as visualized by
Figure 1. The subproblem S(π) will detect the interval of
zero-crossing by simulating the transition function T for all
decisions t ∈ {1, . . . ,H} and detect the first violation of
constraint c3 which occurs within the interval [s11 = 4, s21 =
6]. Given the identified zero-crossing interval [s11 = 4, s21 =

Figure 1: Visualization of the candidate plan generated by the mas-
ter problem of SCIPPlan for the illustrative hybrid navigation do-
main. The candidate plan violates the constraints of the problem
for the interval [4,6], which corresponds to the zero-crossings.

6] and the violated constraint c3, the following constraint:

g11 : 4 ≥ fx,1 + (0.625)ax,1∆s1
∨ 6 ≤ fx,1 + (0.625)ax,1∆s1
∨ 4 ≥ fx,1 + (0.625)ax,1∆s1

∨ 6 ≤ fx,1 + (0.625)ax,1∆s1

g21 : 4 ≥ fy,1 + (0.625)ay,1∆s1
∨ 6 ≤ fx,1 + (0.625)ax,1∆s1

∨ 4 ≥ fy,1 + (0.625)ay,1∆s1
∨ 6 ≤ fy,1 + (0.625)ay,1∆s1

will be added to the master problem. The master problem
would then be re-solved and further constraints generated if
needed. Once no zero-crossings were detected in a solution,
that plan would be returned as the final feasible plan.

Next, we describe the experimental setup under which
we test SCIPPlan over complex metric nonlinear hybrid do-
mains.

Experimental Results
In this section, we present four metric nonlinear hy-
brid domains to test the computational efficacy of
SCIPPlan, namely: HVAC (Agarwal et al. 2010),
ComplexPouring (Scala et al. 2016), (Bryce et al.
2015), NavigationJail and NavigationMud (Say
et al. 2017), against ENHSP (Scala et al. 2016) and a
Tensorflow-based planner (Wu et al. 2017) with respect to
computation time and solution quality.

21

Domain Descriptions
In this section, we describe the benchmark domains in
detail. The domains were chosen to test the capabilities
of SCIPPlan on metric optimization, handling nonlinear
transitions and concurrency.

Heating, Ventilation and Air Conditioning is the problem
of heating different rooms r ∈ R of a building upto a desired
temperature by sending heated air br. The temperature of a
room hr,s+1 is bilinear function of its current temperature
hr,s, the volume of heated air sent to the room br, the tem-
perature of the adjacent rooms hr′,t and the duration ∆ts of
the control input at time point s where r′ ∈ Adj(r) ⊂ R
denotes the set of adjacent rooms to room r. The dynamics
of the domain are described as follows:

hr,s+1 = hr,s +
∆ts
Cr

(br +
∑

r′∈Adj(r)

hr′,s − hr,s
Wr,r′

) (3)

for all r ∈ R, s ∈ {1, . . . ,H} where Cr and Wr,r′ are
parameters denoting the heat capacity of room r and the
heat resistance of the wall between r and r′, respectively.
Moreover, the initial and the goal constraints are described
as hr,1 = Hinit

r and hr,H = Hgoal
r for all rooms r ∈ R

where the parameters Hinit
r and Hgoal

r denote the initial
and goal temperatures of the rooms, respectively.

ComplexPouring is the problem of filling buckets b ∈ B
upto a desired volume with the water that is initially stored
in the tanks t ∈ T . The volume of a bucket vb,s+1 (or a
tank) is a nonlinear function of its current volume vb,s (or
vt,s), volume of water poured in (and out) from (and to)
other tanks and ∆ts at time point s. The dynamics of the
domain are described as follows:

vb,s+1 = vb,s + v+b,s − v−b,s ∀b ∈ B ∪ T (4)

v+b,s =
∑

t∈T
∆tspt,b,s

(2Rt
√
vt,s −R2

t) ∀b ∈ B ∪ T (5)

v−b,s =
∑

t∈B∪T
∆tspb,t,s

(2Rb
√
vb,s −R2

b) ∀b ∈ T (6)
0 ≤ vb,s ≤ V max

b,s ∀b ∈ B ∪ T (7)

for all s ∈ {1, . . . ,H} where pb,t,s ∈ {0, 1} is a binary
decision variable denoting whether tank b pours into bucket
(or tank) t at time point s, and Rb and V max

b,s are parameters
denoting the flow rate and capacity of bucket (or tank) b,
respectively. Further, the initial and the goal constraints
are described as vb,1 = V init

b for all buckets and tanks
b ∈ B ∪ T and vb,H ≥ V goal

b for all buckets b ∈ B where
the parameters V init

b and V goal
b denote the initial and goal

volumes of tanks and buckets, respectively.

NavigationJail is a two-dimensional d ∈ {x, y} = D path-
finding domain that is designed to test the ability of planners
to handle instantaneous events. The location of the agent

ld,s+1 is a nonlinear function (i.e., cubic polynomial) of its
current location ld,s, speed vd,s, acceleration ad,s and ∆ts at
time point s. Moreover, the agent can be instantaneously re-
located to its initial position Linit

d for all dimensions d ∈ D
and set its speed to 0 if it travels through a two-dimensional
jail area that is located in the middle of the maze with the
corner points Jmin

d , Jmax
d for all d ∈ D. The system dy-

namics of the domain is described as follows:

l′d,s+1 = ld,s + vd,s∆ts + 0.5ad,s∆t
2
s ∀d ∈ D (8)

v′d,s+1 = vd,s + ad,s∆ts ∀d ∈ D (9)

if ∀d ∈ D Jmin
d ≤ l′d,s+1 ≤ Jmax

d (10)

then ld,s+1 = Linit
d , vd,s+1 = 0 ∀d ∈ D (11)

else ld,s+1 = l′d,s+1, vd,s+1 = v′d,s+1 ∀d ∈ D (12)

Lmin
d ≤ ld,s ≤ Lmax

d ∀d ∈ D (13)

Amin
d ≤ ad,s ≤ Amax

d ∀d ∈ D (14)

for all s ∈ {1, . . . ,H} where (Lmin
d ,Lmax

d) and
(Amin

d ,Amax
d) are the minimum and the maximum bound-

aries of the maze and the control input for dimension d ∈ D,
respectively. The goal of the domain is to find a path from
the initial location Linit

d to the goal location Lgoal
d for all

dimensions d ∈ D. The initial and the goal constraints are
described as ld,1 = Linit

d , vd,1 = 0, and ld,H = Lgoal
d for all

dimensions d ∈ D, respectively.
In all three domains, the total makespan

∑
s∈{1,...,H}∆ts

is minimized where ∆ts is always non-negative such that
0 ≤ ∆ts ∀s ∈ {1, . . . ,H}. While SCIPPlan supports
general metric optimization, the aibr heuristic of ENHSP
does not support general metric optimization with processes
and events. Therefore we picked a metric that was captured
by the heuristic calculation of ENHSP.

NavigationMud is a two-dimensional d ∈ {x, y} = D
RDDL domain that is designed to test the ability of planners
to handle transcendental functions with general optimization
metrics. The location of the agent ld,s+1 is a nonlinear func-
tion (i.e., exponential) of its current location ld,s and posi-
tional displacement action pd,s at time point s due to higher
slippage in the center of the maze. The system dynamics of
the domain is described as follows:

ld,0 = Linit
d ∀d ∈ D (15)

ld,s+1 = ld,s − 0.99 + pd,s
2.0

1.0 + e−2ys
∀d ∈ D (16)

ys =

√√√√∑

d∈D
(ld,s −

Lmax
d − Lmin

d

2.0
)

2

(17)

Lmin
d ≤ ld,s ≤ Lmax

d ∀d ∈ D (18)

Pmin
d ≤ pd,s ≤ Pmax

d ∀d ∈ D (19)

for all s ∈ {1, . . . ,H} where (Pmin
d ,Pmax

d) are the min-
imum and the maximum boundaries of the positional dis-
placement for dimension d ∈ D, respectively.

The objective of the domain is to find a path from the
initial location Linit

d with the minimum total Manhattan dis-

22

tance
∑

s∈{1,...,H}
∑

d∈D |ld,s − L
goal
d | from the goal loca-

tion Lgoal
d over all time points s.

Computational Performance
In this section, we investigate the efficiency of using a SCIP-
Plan for solving metric hybrid planning problems. We ran
the experiments on MacBookPro with 2.8 GHz Intel Core i7
16GB memory. We optimized the nonlinear encodings us-
ing SCIP 4.0.0 (Maher et al. 2017) with 1 thread, and 30
minutes total time limit per domain instance.

Modeling differences between SCIPPlan versus
PDDL+
In SCIPPlan, we modeled the control inputs br,s and ad,s
from HVAC and NavigationJail domains as decision
variables with continuous domains. In PDDL+, we in-
cremented and decremented the control input as a func-
tion of time with some constant rate z. Further in the
NavigationJail domain, we have modeled constraints
(11-13) using events in PDDL+ (as opposed to using global
constraints) since going into the jail location is not a dead-
end. In the HVAC and NavigationJail domains, we
tested ENHSP with relaxed goal settings where the respec-
tive equality goal constraints were relaxed to the following
constraints:

Hgoal
r − z ≤ hr,H ≤ Hgoal

r + z ∀r ∈ R (20)

Lgoal
d − z ≤ ld,H ≤ Lgoal

d + z ∀d ∈ D (21)

due to the continuous domains of fluents f and actions a
(i.e., a, f ∈ R), and the fact that ENHSP identified these
domains to be infeasible with equality constraints. We tested
SCIPPlan under different optimality gap parameters g. For
both parameter settings z and g, we will use the notation
SPx to report results for SCIPPlan under the optimality gap
setting g = x, and EPx for ENHSP under the rate setting
z = x.

Comparison of the runtime performance and
solution quality
In Table 1, we compare the run times and the quality of
plans produced by SCIPPlan, ENHSP and Tensorflow-based
planner with respect to the chosen optimization metric un-
der the best performing parameter settings. From left to
right, the first column of Table 1 specifies the domains and
problem instances solved. The second and third columns
present the optimal makespan found by the respective plan-
ners. The fourth and firth columns present the computational
effort that is required to produce the metrics presented in the
second and third columns. The sixth column presents the
running time (seconds) that is required to optimize the gen-
eral metric variants of the domains in cases where a simpler
metric was required to meet expressivity requirements for
the ENHSP comparison.

Comparison of runtime performances The detailed in-
spection of the columns associated with solution quality
shows that SCIPPlan can successfully find high quality plans
in almost all the instances with optimality gap parameter

Table 1: Comparison of the run times and the quality of plans pro-
duced by SCIPPlan, ENHSP and Tensorflow-based planner with
respect to the given domain metrics.

Makespan General
Domain Quality Run Time Run Time

HVAC SP 0 EP 0.1 SP 0 EP 0.1 SP 0

(2,R) 88.00 145.00 ≤ 0.01 1.02 0.02
(2,D) 88.00 145.00 ≤ 0.01 1.02 0.19
Pouring SP 0 EP SP 0 EP SP 0

(3,1) 4.30 11.00 0.10 0.32 0.01
(5,1) 5.51 19.00 1.38 0.41 0.87
(4,2) 7.67 22.00 0.93 0.37 0.58
(9,2) 1.69 10.00 0.90 0.37 0.08
NJail SP 0.05 EP 0.1 SP 0.05 EP 0.1 -
(-1.0,1.0) 13.59 - 281.75 ≥ 1800 -
(-0.5,0.5) 13.63 - 60.94 ≥ 1800 -
(-0.2,0.2) 13.35 - 59.29 ≥ 1800 -
NMud SP 0.05 TF SP 0.05 TF -
(-1.0,1.0) 64.25 65.23 15.46 30.00 -
(-0.5,0.5) 140.35 136.55 232.84 240.00 -
(-0.2,0.2) 800.00 360.38 1800.00 960.00 -

g ≤ 0.05, except the largest domain NavigationMud
(-0.2,0.2). In contrast, we observe that in HVAC and
ComplexPouring domains, ENHSP can find plans with
on average 60% lower quality compared to SCIPPlan.
Moreover in NavigationJail domain, neither EP 0.1

nor EP 0.01 found feasible plans within time limit. In
NavigationMud domain, we tested the scalability of
SCIPPlan against the Tensorflow-based planner. We found
that SCIPPlan is competitive with the Tensorflow-based
planner with respect to the solution quality of the plans
found in the first two instances, whereas the instance
NavigationMud(-0.2,0.2) is hard to optimize (i.e.,
the plan does not contain actions other than no-ops) for
SCIPPlan. We note that unlike the Tensorflow-based plan-
ner, we currently do not leverage parallel computing, which
is one of the main strengths of Tensorflow to handle large
scale optimization problems. In Figure 2, we visualize the
plan traces to get a better understanding of what makes a
domain hard in terms of plan computability. The inspec-
tion of plan traces shows from left to right: linear, piece-
wise linear and nonlinear state transitions. Together with the
computational results presented in Table 1, we confirm that
domains with nonlinear state transitions (e.g., Navigation-
Jail) are significantly harder to compute compared to linear
(e.g., HVAC) and piecewise linear (e.g., ComplexPouring)
domains.

Comparison of solution qualities The inspection of the
last two columns show that SCIPPlan finds high qual-
ity plans with little computational effort in HVAC and
ComplexPouring domains, whereas it takes on average
135 seconds and 125 seconds to find high quality plans for
NavigationJail and NavigationMud domains, with
the exception of the largest instance NavigationMud
(-0.2,0.2,50). The benefit of spending computational re-
sources to provide stronger optimality guarantees is justi-

23

0 10 20 30 40 50 60 70 80 90
time

10

12

14

16

18

20

22

te
m

pe
ra

tu
re

room 1
room 2

(a) HVAC instance with 2 rooms and actions
with continuous domains.

0 1 2 3 4 5 6
time

0

10

20

30

40

50

60

70

80

vo
lu

m
e

tank 1
tank 2
tank 3
tank 4
tank 5
bucket

(b) ComplexPouring instance with 5 tanks and
1 bucket.

0 2 4 6 8 10
x-axis

0

2

4

6

8

10

y-
ax

is

agent
jail
goal

(c) NavigationJail domain with acceleration
bounded within the interval [-0.5,0.5].

Figure 2: Visualization of example plans generated by SCIPPlan. The inspection of plan traces show from left to right: linear, piecewise
linear and nonlinear fluent transitions as a function of time. The visualization of the plan traces confirm the results presented in Table 1;
domains with nonlinear state transitions are significantly harder to compute compared to linear and piecewise linear fluent transitions.

0 20 40 60 80 100
optimization parameter g

10

12

14

16

18

20

pl
an

 m
et

ric
 (m

in
im

iza
tio

n)

NJail(-1,1)
NJail(-0.5,0.5)
NJail(-0.2,0.2)

Figure 3: The increase in plan quality (lower is better for mini-
mization) as a function of optimality gap parameter g for the SCIP-
based planner on NavigationJail domain.

fied in Figure 3, where we plot the increase in plan qual-
ity as a function of optimality gap parameter g. Figure 3
shows that spending more computational resources can sig-
nificantly improve the quality of the plan found as the in-
stances get harder to solve.

General metric specifications
We test SCIPPlan on general metrics of interest in HVAC
and ComplexPouring domains and measure its effect on
run time performance. In the HVAC domain, we modify the
metric to minimize the total cost

∑
s∈{1,...,H}

∑
r∈R crbr,s

of heating all the rooms r ∈ R of a building across all time
points where the parameter cr denotes the unit cost of heat-
ing room r ∈ R. Similarly in ComplexPouring domain,
we minimize the total number of times we pour from one
tank to the bucket (or other tanks) across all time points such
that

∑
s∈{1,...,H}

∑
t∈T

∑
b∈B∪T pt,b,s.

The results presented in the last column of Table 1
show that the performance of SCIPPlan is on average the
same for general metric optimization and makespan opti-
mization. As demonstrated in NavigationMud and mod-
ified HVAC and ComplexPouring domains, SCIPPlan ef-
ficiently finds high quality plans with respect to the metric.

Conclusion
In this paper, we presented a novel SCIP-based planner
(SCIPPlan) that can plan in metric nonlinear hybrid planning
domains with metric specifications, transcendental functions
such as exponentials and instantaneous continuous actions.
In SCIPPlan, we leveraged the spatial branch-and-bound
solver of SCIP inside a nonlinear constraint generation
framework where candidate plans are iteratively checked
for temporal infeasibility using a domain simulator, and the
sources of infeasibilities are repaired through a novel non-
linear constraint generation algorithm. Experimentally, we
have shown that SCIPPlan can plan effectively on a variety
of domains and outperformed ENHSP in terms of plan qual-
ity and runtime performance. We have further shown that
SCIPPlan is competitive with a Tensorflow-based planner in
highly nonlinear domains with exponential state transition
functions and general metric specifications.

24

References
Yuvraj Agarwal, Bharathan Balaji, Rajesh Gupta, Jacob
Lyles, Michael Wei, and Thomas Weng. Occupancy-driven
energy management for smart building automation. In
ACM Workshop on Embedded Sensing Systems for Energy-
Efficiency in Building, pages 1–6, 2010.
Daniel Bryce, Sicun Gao, David Musliner, and Robert Gold-
man. SMT-based nonlinear PDDL+ planning. In 29th AAAI,
pages 3247–3253, 2015.
Michael Cashmore, Maria Fox, Derek Long, and Daniele
Magazzeni. A compilation of the full PDDL+ language into
SMT. In ICAPS, pages 79–87, 2016.
Amanda J. Coles, Andrew I. Coles, Maria Fox, and Derek
Long. COLIN: Planning with continuous linear numeric
change. JAIR, pages 1–96, 2012.
Maria Fox and Derek Long. Modelling mixed discrete-
continuous domains for planning. JAIR, 27(1):235–297,
2006.
Maria Fox, Derek Long, and Daniele Magazzeni. Plan-
based policies for efficient multiple battery load manage-
ment. CoRR, abs/1401.5859, 2014.
Richard Howey, Derek Long, and Maria Fox. Val: Auto-
matic plan validation, continuous effects and mixed initia-
tive planning using pddl. 16th IEEE International Confer-
ence on Tools with Artificial Intelligence, pages 294–301,
2004.
Johannes Löhr, Patrick Eyerich, Thomas Keller, and Bern-
hard Nebel. A planning based framework for controlling
hybrid systems. In ICAPS, pages 164–171, 2012.
Stephen J. Maher, Tobias Fischer, Tristan Gally, Gerald
Gamrath, Ambros Gleixner, Robert Lion Gottwald, Gre-
gor Hendel, Thorsten Koch, Marco E. Lübbecke, Matthias
Miltenberger, Benjamin Müller, Marc E. Pfetsch, Chris-
tian Puchert, Daniel Rehfeldt, Sebastian Schenker, Robert
Schwarz, Felipe Serrano, Yuji Shinano, Dieter Weninger,
Jonas T. Witt, and Jakob Witzig. The scip optimization suite
4.0. Technical Report 17-12, ZIB, Takustr.7, 14195 Berlin,
2017.
L. G. Mitten Mitten. Branch-and-bound methods: General
formulation and properties. Operations Research, 18(1):24–
34, 1970.
Giuseppe Della Penna, Daniele Magazzeni, Fabio Mercorio,
and Benedetto Intrigila. UPMurphi: A tool for universal
planning on PDDL+ problems. In ICAPS, pages 106–113,
2009.
Wiktor Mateusz Piotrowski, Maria Fox, Derek Long,
Daniele Magazzeni, and Fabio Mercorio. Heuristic planning
for hybrid systems. In AAAI, pages 4254–4255, 2016.
Aswin Raghavan, Scott Sanner, Prasad Tadepalli, Alan Fern,
and Roni Khardon. Hindsight optimization for hybrid state
and action mdps. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence (AAAI-17), San Fran-
cisco, USA, 2017.
Scott Sanner. Relational dynamic influence diagram lan-
guage (rddl): Language description. 2010.

Buser Say, Ga Wu, Yu Qing Zhou, and Scott Sanner. Non-
linear hybrid planning with deep net learned transition mod-
els and mixed-integer linear programming. In Proceedings
of the Twenty-Sixth International Joint Conference on Arti-
ficial Intelligence, IJCAI-17, pages 750–756, 2017.
Enrico Scala, Patrik Haslum, Sylvie Thiébaux, and Miquel
Ramı́rez. Interval-based relaxation for general numeric
planning. In ECAI, pages 655–663, 2016.
Ji-Ae Shin and Ernest Davis. Processes and continuous
change in a sat-based planner. Artificial Intelligence, 166(1-
2):194–253, August 2005.
Ga Wu, Buser Say, and Scott Sanner. Scalable planning with
tensorflow for hybrid nonlinear domains. In Proceedings
of the Thirty First Annual Conference on Advances in Neu-
ral Information Processing Systems (NIPS-17), Long Beach,
CA, 2017.

25

