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Lukáš Chrpa, Ron Petrick,

Mauro Vallati, Tiago Vaquero.



Organization

Lukas Chrpa, Czech Technical University & Charles University in Prague, Czech Republic

Ron Petrick,  Heriot-Wat University, UK

Mauro Vallat,  University of Huddersield, UK

Tiago Vaquero, CalTech, USA

Program Committee

Roman Barták, Charles University, Czech Republic

Daniel Borrajo, Universidad Carlos III de Madrid, Spain

Amedeo Cesta, Naional Research Council of Italy (CNR), Italy

Susana Fernandez, Universidad Carlos III de Madrid, Spain

Simone Fratni, European Space Agency - ESA/ESOC, Germany

Alan Lindsay, University of Huddersield, UK

Lee Mccluskey, University of Huddersield, UK

Andrea Orlandini, Naional Research Council of Italy (ISTC-CNR), Italy

Simon Parkinson, University of Huddersield, UK

Patricia Riddle, University of Auckland, New Zealand

Shirin Sohrabi, IBM Research, USA

Dimitris Vrakas, Aristotle University of Thessaloniki, Greece



Contents

Evaluatng a Knowledge-Based Scheduling Assistant................................................................1

Neil Yorke-Smith

On Learning from Human Expert Knowledge for Automated Scheduling..................................3

Neil Yorke-Smith

Improving Planning Performance in PDDL+ Domains via Automatc Predicates Reformulaton.6

Saniago Franco, Mauro Vallai, Alan Lindsay

Domain Model Analysis using Statc Graphs...........................................................................11

Rabia Jilani

Distributed Planning and Model Learning for Urban Traic Control........................................20

Alberto Pozanco, Susana Fernandez, Daniel Borrajo

Towards a Framework for Understanding and Assessing Quality Aspects of Automated Planning 

Models..................................................................................................................................28

Mauro Vallai, Thomas L. McCluskey

LOUGA: Learning Planning Operators using Genetc Algorithms.............................................31

Jiř  Kučera, Roman Bartákı ı

Compiling Away Sot Trajectory Constraints in Planning.........................................................38

Benedict Wright, Robert Matmüller, Bernhard Nebel

Learning Numerical Acton Models from Noisy and Partally Observable States by means of 

Inductve Rule Learning Techniques.......................................................................................46

José Á. Segura-Muros, Raúl Pérez, Juan Fernández-Olivares

On the use of ontologies to extend knowledge in online planning.........................................54

Mohannad Babli, Eliseo Marzal, Eva Onaindia

Discovering Numeric Constraints for Planning Domain Models..............................................62

Alan Lindsay, Peter Gregory

Modelling Sequences of Processes in PDDL+ for Eicient Problem Solving.............................70

Elad Denenberg, Amanda Coles

Building Support for PDDL as a Modelling Tool.......................................................................78

Derek Long, Jan Dolejsi, Maria Fox



1

Evaluating a Knowledge-Based Scheduling Assistant

Neil Yorke-Smith
Delft University of Technology, Netherlands, and

American University of Beirut, Lebanon
n.yorke-smith@tudelft.nl

Abstract

We summarize a recent article that studies the evaluation of
a knowledge-based scheduling system. The article considers
a user-adaptive personal assistant agent designed to assist a
busy knowledge worker in time management. We examine
the managerial and technical challenges of designing adequate
evaluation and the tension of collecting adequate data without
a fully functional, deployed system. The PTIME agent was
part of the CALO project, a seminal multi-institution effort
to develop a personalized cognitive assistant. The project in-
cluded a significant attempt to rigorously quantify learning
capability in the context of automated scheduling assistance.
Retrospection on negative and positive experiences over the
six years of the project underscores best practice in evaluat-
ing user-adaptive systems. Through the lessons illustrated
from the case study, the article highlights how development
and infusion of innovative technology must be supported by
adequate evaluation of its efficacy.

Evaluation of the Personalized Time

Management (PTIME) Agent

The case study article by Berry et al (2017) reports and cri-
tiques the evaluation of a knowledge-based scheduling sys-
tem that learns preferences over an extended period. The
domain of application is personal time management, in par-
ticular, providing assistance with arranging meetings and
managing an individual’s calendar. The Personalized Time
Management (PTIME) calendaring assistant agent increased
in usefulness as its knowledge about the user increases. The
enabling technologies involved were preference modelling
and machine learning to capture user preferences, natural
language understanding to facilitate elicitation of constraints,
and constraint-based reasoning to generate candidate sched-
ules (Berry et al. 2011). Human-computer interaction (HCI)
and interface design played central roles.

The PTIME system was part of a larger, seminal project,
Cognitive Assistant that Learns and Organizes (CALO),
aimed at exploring learning in a personalized cognitive assis-
tant. Thus, the primary assessment of PTIME was in terms
of its adaptive capabilities, although such a knowledge-based
system must necessarily have a certain level of functionality
to assist with tasks in time management, in order to provide
a context for learning.

Figure 1: Screenshot of the PTIME system.

At the commencement of the project, however, the degree
of robustness and usability required to support evaluation was
not immediately obvious. Evaluation was focused almost ex-
clusively on the technology; experiments were designed to
measure performance improvements due to learning within a
controlled test environment intended to simulate a period of
real-life use—rather than in a genuinely ‘in-the-wild’ envi-
ronment. Technologists such as the majority of the authors
are trained primarily to conduct such ‘in-the-lab’ evaluations,
but—as argued in the article—many situations require plac-
ing the technology into actual use with real users in a business
or personal environment, in order to provide a meaningful
assessment. In retrospect, the authors suggest that the evalu-
ation methodology of CALO gave too little attention to the
usefulness and usability of the technology.

Scheduling in PTIME

We briefly review the role of automated scheduling in the
PTIME system. PTIME consists of four main components:
user interface, calendar proxy, constraint reasoner, and prefer-
ence learner. In its main mode of operation, PTIME elicits an
event request: for the user, this corresponds to stating details
on the desired event to be arranged; these details correspond
to constraints.

PTIME computes preferred candidate schedules (possi-
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bly relaxations) in response to the request and presents a
ranked subset of the candidate schedules to the user. Note
that, because PTIME will consider moving existing events
if necessary, the options presented to the user are sched-
ules rather than single events. The number of such candidate
schedules presented depends on the number of feasible sched-
ules. PTIME will typically display 10 candidate schedules,
including a mix of more optimal and more diverse options.

PTIME accepts the user’s selection from among the pre-
sented candidate schedules. PTIME updates the preference
model accordingly, based on the implicit feedback of the
selected versus non-selected options. The updated model is
used in the subsequent interactions.

These steps repeat as necessary, with the system presenting
new or refined options after each new detail is entered or mod-
ified by the user. Through a collaborative negotiation process,
event invitees comment, respond, and counter-propose to
reach agreement over the event.

At the heart of the scheduling is the constraint reasoner.
This component generates scheduling options in response to
new or revised details and constraints from the user, using the
current preference model to generate preferred options. The
reasoner translates requests such as “next tues afternoon with
nigel and kim” into a set of soft constraints, and solves a soft
constraint problem with preferences (Moffitt, Peintner, and
Yorke-Smith 2006). Soft constraints allow all aspects of the
user’s request—including times, location, and participants—
to be relaxed in the case where the request cannot be satisfied,
i.e., when the scheduling problem is over-constrained. Details
of the constraint solving, and the other aspects of the system,
are given in Berry et al. (2006; 2009; 2011).

Lessons Learned

The six lessons that emerged from the evaluation journey
with PTIME are not unfamiliar from other experiences of
evaluating (non-adaptive) systems (Cohen and Howe 1989;
Nielsen and Levy 1994; Chen and Pu 2014):

1. The contexts of the use of technology, and the competing
interests of the stakeholders, must be a primary focus in
designing an evaluation strategy.

2. Evaluating one component based on an evaluation of a
whole system can be misleading, and vice versa.

3. User-adaptive systems require distinct evaluation strate-
gies.

4. In-the-wild evaluation is necessary when factors affect-
ing user behaviour cannot be replicated in a controlled
environment.

5. In-the-wild evaluation implies significant additional devel-
opment costs.

6. Ease of adoption of the system by users will determine the
success or failure of a deployed evaluation strategy.

Our hope is that, since the conclusion of the CALO project,
these lessons are increasingly understood in Artificial Intel-
ligence and its constituent communities, including the auto-
mated planning/scheduling community. Indeed, Foster and

Petrick (2017) contrast differences between the latter com-
munity and the dialogue systems community. They discuss
the overhead of integration, deployment in real-world envi-
ronments, and the need to evaluate certain types of systems
in-the-wild—as all encountered in the case of PTIME.

Summarizing the article, the main lesson from this case
study of evaluation of a knowledge-based scheduling sys-
tem is obvious but under-valued: researchers and project
managers benefit from familiarity with and adoption of best
practice in evaluation methodologies from the start of a tech-
nology project.
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On Learning from Human Expert Knowledge for Automated Scheduling

Neil Yorke-Smith
Delft University of Technology, Netherlands, and

American University of Beirut, Lebanon
n.yorke-smith@tudelft.nl

Abstract

Automated scheduling systems and decision support tools re-
quire at least four kinds of knowledge: 1) domain knowledge,
2) problem instance knowledge, 3) control knowledge, and 4)
solving knowledge. This short paper draws attention to learn-
ing from human experts for these different kinds of knowledge,
and advocates a complementarity of knowledge acquisition by
automated techniques and by human knowledge engineers.

Introduction

Knowledge – computational knowledge – is the fulcrum of
Artificial Intelligence. Whether hand-coded in a logical for-
malism, or extracted from data by a deep learning network,
knowledge is the basis for computation. AI-based scheduling
and planning is no different. Take a now-ubiquitous ‘intelli-
gent’ personal assistant agent. One of the pain points helped
by an assistant like Siri is scheduling meetings and managing
your calendar (Berry et al. 2011). This assistance is based on
knowledge of your calendar, to-do list, emails, location – and
learned preferences.

If knowledge for computation is the fulcrum, then AI rests
on its acquisition. As the KEPS workshop organizers put it,
automated planning and scheduling systems “still need to be
fed by carefully engineered domain and problem descriptions,
and fine tuned for particular domains and problems.” This po-
sition paper draws attention to learning from human experts
as a way to accelerate the knowledge engineering process,
which we take to comprise both elicitation and encoding.

We briefly discuss four of the kinds of knowledge required
for automated scheduling:

1. Domain knowledge. What is the ‘physics’ of the problem
domain?

2. Problem knowledge. What are the particulars of the prob-
lem instance, including its data and objectives?

3. Control knowledge. How does the system go about de-
ciding how to solve the problem instance, and manage the
solving process?

4. Solving knowledge. What solving approaches and heuris-
tics can be used?

Information science has for decades distinguished between
data, information, knowledge, and wisdom (Ackoff 1989).
According to Ackoff’s oft-quoted taxonomy, starting from the

broad base layer of a pyramid and progressing to its narrow
pinnacle layer1, we have:

• Data: raw symbols (‘know-nothing’ (Zeleny 1987))

• Information: data that is processed to be useful; provides
answers to ‘who’, ‘what’, ‘where’ and ‘when’ questions
(know-what)

• Knowledge: application of data and information; answers
‘how’ questions (know-how)

• Wisdom: evaluated appreciation of ‘why’ (know-why)

Seen with this lens, the activity of ‘knowledge engineering’
– such as for an automated scheduling system – aims to apply
raw data and processed data in order to support the answering
of ‘how’ questions. For example, the calendaring assistant
can (has the know-how to) arrange a meeting with Alice
and Bob for next week. While not dwelling on nuances of
terminology, we can see domain and problem knowledge as
fitting closer to Ackoff’s Information level, and control and
solving knowledge as fitting closer to his Knowledge level.

We advocate a complementarity of knowledge acquisition
by automated techniques and by human knowledge engineers,
for the purpose of automated scheduling.

Learning for Domain and Problem Acquisition

The power of automated planning and scheduling systems
comes from the combination of the model of the problem and
the problem-solving techniques applied to that model. Two
elements comprise the former: the model of the domain, and
the model of the problem instance. The domain model tells
us what is possible, while the problem instance models the
questions we want to answer.

As surveyed by Vaquero et al. (2013), real-world problems
require detailed knowledge elicitation, encoding and manage-
ment. These authors’ methodology, itSIMPLE, strives to use
common notations such as UML in a process of moving from
requirements analysis all the way to an input-ready model for
solving algorithms.

This kind of methodology, which starts from a graphical
representation used to represent statements from subject mat-
ter experts (SMEs), is found not only in AI planning and

1We follow a number of authors and join Ackoff’s Understand-
ing and Wisdom layers.
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scheduling, but across other areas of AI such as organiza-
tional modelling and agent-based simulation (van Putten et
al. 2008) and goal-oriented programming (Abushark et al.
2017).

In line with the rise of machine learning (ML), we can un-
dertake automated acquisition of domain and problem models
from data, as Celorrio et al. (2012) survey for AI planning.
Since that survey, there has followed much more work on
learning domains and problem instances.

Pushing further with learning from data, Lombardi, Mi-
lano, and Bartolini (2017) propose a strongly empirical ap-
proach to model learning for general combinatorial optimiza-
tion problems, using ML to construct components of a model
from data. The model encompasses both problem domain
and instance. The data is obtained either from a relaxed ver-
sion of the model (a form of boot-strapping), or if applicable
and possible, from the modelled system itself. The SME
could be involved in creating the initial approximate model;
otherwise this approach is driven by data.

A key question is representation: how do we formulate
the domain and problem models? There are various represen-
tations for AI planning, including standard languages such
as PDDL, and ML approaches to acquire models into these
representations are actively researched.

By contrast to planning, quite commonly scheduling prob-
lems have a fixed structure of domain and data, such as flow
shop scheduling and other classical Operational Research
(OR) scheduling problems. Learning into these representa-
tions is more straightforward, and it can suffice to learn from
data – since the human expertise has already been put into
defining the problem structure. For example, a knowledge
engineer encodes the problem as a flow shop with a cyclic job
structure, and obtains the data from instrumentation embed-
ded in the manufacturing process. We note that a difficulty,
however, given classical OR models is that the modeller can
be tempted to coerce the actual problem at hand into one of
the standard models, for the sake of convenience, tractability,
or the assurance of familiarity.

A more general model for scheduling problems is based
on Constraint Satisfaction Problem (CSP): see Salido et al.
(2007) for a typical example. ML approaches to acquire
(general) CSPs are also actively researched (O’Sullivan 2010;
Beldiceanu and Simonis 2016; Bessiere et al. 2017). Bessiere
et al. (2017) exemplify this line of work, in deriving CSP mod-
els – which like Lombardi, Milano, and Bartolini (2017)’s
approach encompass both domain and instance – from a user;
both passive and active elicitation are supported.

We advocate for a position that uses data-driven methods
as much as possible, and hand-engineered methods in all
other aspects. The advantage is to attempt to gain the best
from both types of methods: automation and parsimony, and
judgement and completeness. In some cases, the two can
be used together to triangulate certain knowledge. In other
cases, the knowledge acquired with ML can form the starting
point for the knowledge engineer’s refining of models. In
still other cases, manual knowledge engineering can provide
or structure data far enough so that ML can then be used.

Learning for Control and Problem Solving

Control knowledge decides what search and reasoning strate-
gies to apply in a problem-solving process, and can adjust
the strategies as solving proceeds. Problem solving knowl-
edge comprises of the available strategies, in particular those
suited to the domain or to the problem instance. Hence
control knowledge is predicated on having problem solving
knowledge available to it.

A potent recipe for control knowledge consists of portfolio
solving approaches, in which control knowledge is acquired
in the form of selection among solving algorithms for a prob-
lem instance. Portfolio approaches have proved successful in
several subareas of AI, such as SAT (Xu et al. 2008) and au-
tomated planning (Gerevini, Saetti, and Vallati 2014). Beck
and Freuder (2004) is one example of a portfolio approach
specifically for a scheduling problem.

We identify problem solving knowledge for scheduling as
‘heuristics’. The literature is substantial on learning how to
solve a particular scheduling problem or class of problems
(e.g., (Li, Pan, and Mao 2015)). Perhaps because scheduling
problems tend to have structure – and at that often a variant
of a standard structured problem class, as we have noted – it
is easier for scheduling problems than for planning problem
to hand-code the problem domain, and extract instance data
from some book-keeping system or instrumentation.

Hence the focus of ML for scheduling is drawn to solving
problem instances. In a now-classic paper, Gratch, Chien,
and DeJong (1993) learn control knowledge for an aerospace
scheduling problem; a whole literature on learning meta-
heuristics is now known. Shahrabi, Adibi, and Mahootchi
(2017) is a recent example of learning control knowledge
for scheduling, using reinforcement learning. Examples of
heuristic learning are many (Russell et al. 2009; Braune and
Doerner 2017).

In contrast to this kind of work, which focuses on learning
from data, Alzugaray and Sanfeliu (2016) learn path planning
heuristics from human expert problem solvers. The point
here is that the experts may not be cognisant of their own
strategies: they cannot articulate them fully.

Similarly, Berry et al. (2011) learn users’ calendering pref-
erences (heuristics) from user actions, with explicit elic-
itation being optional. These authors found that users’
stated preferences often differ from their preferences ex-
posed by their actions. Generalizing, Gombolay et al. (2016a;
2016b) coin the term ‘apprenticeship scheduling’ for appren-
ticeship learning techniques applied to scheduling problems.
These authors learn heuristics from experts’ actions, and in
two domains show how an automated scheduling system per-
forms at or exceeds a level that satifices for human approval.

We note that a difficulty of learning from a scheduling prob-
lem can arise when the data is gathered under a certain policy
(objective, schedule) that we are now trying to optimize.
This situation amounts to the classic exploration/exploitation
dilemma in reinforcement learning.

We advocate for a position that uses data-driven methods
inasmuch as data is available; using learning from experts,
particularly to acquire expert knowledge that the SMEs can-
not articulate; and using “fine tuned” interventions of knowl-
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edge engineers in synergy with the ML techniques. Indeed,
it has not passed un-noticed that the engineering of a ML
model can be as much effort as manually engineering solving
strategies and heuristics (Domingos 2012).

Outlook

We have considered four types of knowledge of automated
scheduling, and drawn attention to learning from human ex-
perts for these different kinds of knowledge. We note that
SME knowledge, and certainly human decision-making, may
be imperfect; both (semi-)automated and manual knowledge
engineering must recognize this. In advocating a complemen-
tarity of knowledge acquisition by automated techniques and
by human knowledge engineers, we anticipate a growth in
the KEPS sub-community and fruitful interactions with the
ML community, including reinforcement learning. Let us
take up this opportunity.

Acknowledgements Thanks to the KEPS workshop re-
viewers for their suggestions. The author also thanks J. Shah,
M. Spaan, E. Walraven, M. de Weerdt and C. Witteveen.
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Improving Planning Performance in PDDL+ Domains via Automatic Predicates
Reformulation

Santiago Franco, Mauro Vallati, Alan Lindsay, Thomas L. McCluskey
School of Computing and Engineering, University of Huddersfield, UK

Abstract

In the last decade, planning with domains modelled in the
hybrid PDDL+ formalism has been gaining significant re-
search interest. PDDL+ models enable the representation of
problems that involve both continuous processes and discrete
events and actions, which are required in many real-world ap-
plications. A number of approaches have been proposed that
can handle PDDL+, and their exploitation fostered the use of
planning in complex scenarios.

In this paper we introduce a PDDL+ reformulation method
that reduces the size of the grounded problem, by reducing
the arity of sparse predicates, i.e. predicates with a very large
number of possible groundings, out of which very few are
actually exploited in the planning problems. Arity is reduced
by merging suitable objects together, and partially ground-
ing the operators, processes and events in which reformulated
predicates are involved. Our experiments show that these
methods can substantially improve performance of domain-
independent planners on PDDL+ domains.

Introduction
The growing number of domain-independent PDDL+ plan-
ners is fostering the exploitation of planning in complex
real-world applications, where notions of continuous pro-
cesses and discrete events and actions are needed (Fox and
Long 2006). Since they accept the domain and problem de-
scription in a standardized interface language and return
plans using the same syntax, they can now be exploited as
embedded components within larger frameworks, as they
can be interchanged without modifying the rest of the sys-
tem.

This modular approach supports the use of reformulation
and configuration techniques, which can automatically re-
represent the planning model in order to increase efficiency
and enable a scale up in size of applications that can be
handled. Types of reformulation of PDDL models include
macro-learning (Botea et al. 2005; Newton et al. 2007),
bagged representation (Riddle et al. 2015), action schema
splitting (Areces et al. 2014) and entanglements (Chrpa and
McCluskey 2012; Chrpa, Scala, and Vallati 2015): here the
domain model is transformed to a more efficient form that
is fed into the planner. Recent work (Vallati et al. 2015) also
highlights the importance of domain model configuration.

Hybrid PDDL+ models are amongst the most advanced
models of systems and the resulting problems are notori-
ously difficult for planners to cope with due to non-linear

behaviours and immense search spaces. Complexity is exac-
erbated by the potentially huge size of the fully grounded
problems, which can make some problems impossible to
tackle. Particularly, grounding is also strongly affected by
predicates’ instances that will not be reachable in any state
of the problem.

In this paper we introduce a PDDL+ reformulation
method that allows to drastically reduce the size of the
grounded problem, by reducing the arity of sparse predi-
cates, i.e. predicates with a very large number of possible
groundings, out of which very few are actually exploited in
the planning problems. Arity is reduced by merging suitable
objects together, and partially grounding the operators, pro-
cesses and events in which reformulated predicates are in-
volved. In a broader sense, our work is inspired by the gen-
eral use of dimensionality reduction to make processes more
efficient in AI. For example, in Machine Learning, dimen-
sionality reduction has been to reduce the size of hypothesis
space (Srinivasan and Kothari 2005). Our experimental anal-
ysis shows that the proposed reformulation technique can
substantially improve the performance of PDDL+ planning
engines, by allowing problems to be grounded and by con-
straining the search space.

The Proposed Reformulation Approach

In this section we describe the proposed reformulation step
that collapses variables within sparsely instantiated predi-
cates. Our approach relies on identifying sparse predicates
that are partially constrained by a static predicate. Through
combining the sparsity measure for dynamic predicates with
a constraining static predicate, the approach is able to better
identify predicates for which the reformulation will have sig-
nificant impact. We first provide a motivating example from
the Rovers domain and then present our algorithm.

A Motivating Example from the Rovers Domain

Let us consider an hybrid version of the well-known Rovers
domain model, where movements and energy generation via
solar are modelled as continuous processes, triggered by ac-
tions under the control of a planner, and constrained by ap-
propriate events. In the Rovers domain, rovers are used to
make soil and rock samples and to take pictures for various
objectives. This requires that the rovers are moved between
waypoints in order to establish shots and collect samples
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Algorithm 1 Reformulation for flattening sparse predicates

Input: Do, Io, st, at

Output: Dr ,Ir
1: SP = statics(Do);P = predicates(Do)∪functions(Do)
2: Dr = Do; Ir = Io
3: for all pj in P , where arity(pj) > 2 do

4: if sparsity(pj , Io) > st then
5: pstat = findConstrainingStatic(pj , SP )
6: if pstat 6= None then
7: Tpstat

= getSparseV ariables(pstat, Io, a
t)

8: Cnew = makeConstants(Tpstat
, so)

9: Dr = addAsConstants(Dr, C
new)

10: Dr = updateOpProEv(Dr, Tpstat
, Cnew)

11: Ir = updatePredsFuncs(Dr, Ir, Tpstat
, Cnew)

12: end if
13: end if
14: end for

Predicate CP s0 ∧CP Sparsity
can traverse 32 10 0.3125
have image 18 0 0.0
energy 2 2 1.0
recharges 1 1 1.0
rover-movement 2 2 1.0
movementduration 1 1 1.0

Table 1: The size of the cross product (CP), initial state
(s0 ∧ CP) and sparsity score for the predicates or numeric
predicates with arity > 2 for a Rovers problem.

from certain positions. The constraints establishing the prop-
erties of the rovers and the relationships between waypoints
(e.g., that a rover can traverse between waypoints) are en-
coded as static facts. As with many network based relation-
ships, only a fraction of the potential connections are made
available in any particular problem model. Of course, as the
number of waypoints (and rovers) grows this fraction will
reduce. We have observed that sparsely instantiated pred-
icates like these can lead to poor performance in PDDL+
planners. The problem model reformulation reported in this
paper collapses the variables of predicates, creating a model
with fewer sparsely instantiated predicates. This procedure
can be applied to Rovers, for example, consider replacing
the (arity 2) predicate: (visible ?waypoint1 ?waypoint2)
with an alternative (arity 1) encoding: (visible ?visi-
ble waypoint1 waypoint2). Whereas in the original version,
the domain of possible instantiations is every pair of way-
points; in the second approach, we can reduce the domain by
only defining constants for the combinations of waypoints
for which the relation holds.

The Reformulation Algorithm

Algorithm 1 shows how the reformulation of a domain
model, Do, and a problem model, Io, is performed. Beside
the models to be reformulated, the algorithm requires as in-
put a sparsity threshold st, which is used to decide whether
or not it is useful to perform the reformulation and a param-
eter, and at, which sets the maximum number of variables
considered in the reformulation (how these parameters are
set is explained below).

In the algorithm (see Algorithm 1) the sparsity of the
predicates (boolean or numeric) with arity greater than 2
are assessed in turn (line 3) to determine if they are suit-
able for the reformulation step. As a measure of sparsity we
compare the set of propositions in the initial state with the
possible set of all propositions for the predicate. For exam-
ple, if we consider a specific example Rovers problem from
our benchmark problems, with 4 waypoints and 2 rovers,
we can calculate the total set of possible propositions as:
4 × 4 × 2 = 32. In this example, there are 10 instances of
can traverse in the initial state and so the sparsity for
this predicate is 10/32. Table 1, presents the sparsity values
for can traverse and the other predicates with a higher
arity than 2 for the same example Rovers problem.

In the case of a sparse predicate, pj , the procedure at-
tempts (line 5) to find a static predicate, pstat, such that
pj is only used in transition schemas (that is in the action,
process or event schemas) with pstat. We consider predi-
cates as static if instances of the predicate can not be deleted
or created during the planning process but, in the case of
numeric predicates, their value can be changed. If there is
more than one constraining static predicate then one is se-
lected heuristically by selecting the predicate that occurs the
most in transition schemas. There are two static facts that
constrain the can traverse predicate: can traverse

itself and visible. The algorithm selects visible as it
appears in more transition schemas.1

Reformulating the domain model

In the case that pstat exists (e.g., visible), a reformu-
lation step is applied using pstat as the basis. In our cur-
rent system, we have considered subsets of the variables
of the static facts and so we add a parameter, at, to de-
termine the maximum arity of the reformulation. The best
max(at) variables are selected (line 7) using the sparsity
of the tuple for pstat in Io. We use Tp to denote a sub-
set of the variables of p. In our example, visible has
arity 2 and therefore Tvisible would contain both its vari-
ables. The variables in Tstat are then combined to form a
set of constants, Cnew, of type, tnew, which are added to
the domain model. One constant is defined for each distinct
combination of these variables for the instances of the pred-
icate in Io. For example, a new constant is generated for
each distinct combination of the waypoints in the instances
of the visible predicate in the initial state. For instance,
(visible waypoint3 waypoint0) leads to a new
constant waypoint3 waypoint0 (using the new type).

At this stage (line 10) each of the transition schemas that
refer to pstat are reformulated. For example, in Rovers, the
transitions with visible as a precondition are identified
(e.g., start-navigate, communicate soil data).
For each predicate (dynamic, static or numeric) in these tran-
sitions the algorithm tests to determine if it can be part of
this reformulation step. If the predicate is only used in tran-
sition schemas with pstat, and Tpstat

is a subset of the pa-
rameters of the predicate then it is selected for reformula-
tion. In the case of visible, only the can traverse

1Notice that although the have image predicate is sparsely
defined in the initial state (see Table 1), there is no constraining
static predicate, hence it does not satisfy the condition in line 6.
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predicate is constrained by the visible predicate and so
only these two are selected for reformulation. For each se-
lected predicate, p, (including pstat) a new predicate, p′, is
made by replacing the variables that are in Tpstat

with a sin-
gle variable of type, tnew and retaining the other variables
(e.g., arity(p′) = arity(p) − |Tpstat

| + 1). For example,
(can traverse ?rover ?waypoint1 ?waypoint2), is refor-
mulated as (can traverse ?rover ?new-type). The origi-
nal predicate, p, is omitted from the new model, Dr.

Each transition schema that depends on pstat is
partially grounded so that the variables correspond-
ing to those in Tpstat

are grounded and constants
added as necessary (i.e., for referencing the individ-
ual objects). This allows the relation between the new
constants and the original objects to be maintained.
For example, there are new start-navigate

operators for each of the new constants, e.g.,
start-navigate-waypoint3-waypoint2. In
start-navigate, each matching of ?waypoint is added
as constant as it is referred to in other predicates.

Reformulating the problem model

Finally, the problem model is reformulated (line 11) by
changing those predicates involved in the reformulation to
use the constants in Cnew in the initial state and goal, us-
ing a similar approach as described above. For example, the
proposition:

(can traverse rover0 waypoint3 waypoint0)

is reformulated as :

(can traverse rover0 waypoint3 waypoint0).

Of course, after this step has been applied once, the pro-
cedure can be repeated on the reformulated model support-
ing further combining of variables as appropriate. In cases
where action parameter lists have been modified, a simple
post-process can be used to resolve plan steps correctly.

Experimental Analysis

Our experimental analysis aims at assessing the usefulness
of the proposed reformulation approach in improving the
performance of domain-independent planners able to handle
PDDL+ hybrid domains.

Four PDDL+ planners at the state of the art are in-
cluded in the evaluation: ENHSP (Ramı́rez et al. 2017;
Scala et al. 2016), UPMurphi (Della Penna et al. 2009),
DINO (Piotrowski et al. 2016), and SMTPlan (Cashmore et
al. 2016). Planners have been run using default heuristics,
unless differently specified.

For a fair comparison, all reported results were achieved
by running the planners on a machine equipped with i7-
4750HQ CPU, 16 GB of memory, running Ubuntu 16.10
OS. 4 GB of memory were made available for each run, and
a 15 CPU-time minutes cut-off time limit was enforced.

We observed that traditional PDDL+ benchmarks usually
include a very limited number of objects and restricted num-
ber of predicates and operators / processes / events. For this
reason, the experimental evaluation is performed by consid-
ering three benchmark domains, namely Hybrid Rover, Ur-
ban Traffic Control, and Baxter, –which have been recently
introduced or have been designed on the basis of existing

domains– and five instances per domain.2 The domains have
been selected for their complexity, in terms of involved ob-
jects and predicates, and due to the fact that they represent
interesting applications of planning in real-world scenarios.
For the sake of this analysis, here we considered for refor-
mulation the predicates with the largest arity in each domain.
Baxter. The Baxter domain, recently introduced in (Capi-
tanelli et al. 2017), exploits planning for dealing with ar-
ticulated objects manipulation tasks. The available “simpli-
fied” domain model3 has been extended by allowing con-
tinuous movements of a joint, modelled via actions and
process envelope, on different axis, and by adding events
for preventing movements wider than 360 degrees. Prob-
lems consider articulated objects composed by between 2
and 5 links. In this model, the objects of type link has
been merged into a new type, and four predicates have
then been reformulated: connected, increasing angle,
decreasing angle, and use. Our reformulation approach
has been applied following the fact that the connected

predicate is static, and is exploited in operators and pro-
cesses to control all the other mentioned predicates.

According to the results shown in Table 2 UPMurphi,
DINO, and SMTPlan grounded and explored the search
space of all the considered problems but only ENHSP solved
most of the problems using the original representation. This
domain gives a high degree of freedom to the planner to
decide how to manipulate the articulated object. ENHSP
solved all but one of the problems using the original mod-
els. Remarkably, the use of reformulated models did lead
to a significant search speedup, and allows ENHSP to solve
all the considered benchmarks. Empirical evidence indicates
that the reformulation allows to improve the pruning done
by the reachability analysis of ENHSP, leading to a faster
expansion and evaluation of the search states. Interestingly,
DINO works better with the original representation. Accord-
ing to our observations, in that specific problem, the DINO
heuristic expanded twice the number of states compared to
its use with the reformulated model, but to find the same
solution.
Hybrid Rover. We extended the well-known Rover domain
model introduced in IPC-3 (Long and Fox 2003) by mod-
elling as continuous processes the movements of the rovers,
and the energy generation via solar power. Each of the men-
tioned process can be controlled by the planner using two
appropriate actions (one for starting the process, and one
for terminating it), and is constrained, where appropriate,
via events. In this domain, the predicate can traverse

has been reformulated by merging the objects of type
waypoints, as shown in the previous section.

The use of reformulated models allows ENHSP to solve a
larger number of problem instances. However, in few cases,
the reformulation negatively affected search performance,
once the grounding is completed.

SMTPlan is not significantly affected by the different do-
main models. This seems to be related to the compilation
of the PDDL+ model into an SMT encoding that allows to
reduce grounding-related issues.

2Benchmarks will be made available in the CRC, via link.
3https://github.com/EmaroLab/paco_

synthetic_test
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Planner Baxter Hybrid Rover UTC

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ENHSP
O 0.40 X 26.8 13.5 335.7 1.3 18.9 58.54 77.33 – 5.3 10.8 – – –

R 0.45 151.7 23.5 15.2 17.9 1.1 35.0 60.28 65.5 87.5 2.7 3.2 12.5 6.9 30.8

UPMurphi
O X X X X X X X X X X 7.26 X – 148.78 X

R X X X X X X X X X X 0.62 5.02 29.34 5.2 49.4

DINO
O 12.0 X X X X 116.24 X X X X X X – X X

R 27.6 X X X X X X X X X X X X X X

SMTPlan
O 0.01 X X X X 0.5 1.8 X X X NA NA NA NA NA

R 0.01 X X X X 0.5 1.8 X X X NA NA NA NA NA

Table 2: For each considered problem, the CPU-time seconds needed by the planners to find a satisficing solution. O (R) rows
show the results achieved when running the Original (Reformulated) model. X indicates grounded but not solved. ”–” means
crashed during grounding. NA indicates that the planner is not able to handle the domain model.

Baxter Hybrid Rover UTC

Problem 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Ratio 2.42 3.98 3.98 3.13 4.76 1.00 1.05 1.88 2.86 4.18 18.59 37.08 – 18.58 21.05

Table 3: Ratio of maximum search space sizes of original vs reformulated representations for the UPMurphi and DINO planners.
”–” is used to indicate cases where one of the approaches lead planners to crash during grounding.

Urban Traffic Control (UTC). This domain has been intro-
duced in (McCluskey and Vallati 2017). It models the use
of planning for generating traffic light signal plans, in order
to de-congest an area of a urban region. In this analysis we
considered the problems introduced by McCluskey and Val-
lati, which involved a network of 10 junctions, and we ex-
tended it by considering problems with 20 and 30 junctions,
obtained by connecting identical regions. Problems 1–3 have
10, 20 and 30 junctions respectively and only one goal. Prob-
lems 4 and 5 have 10 and 20 junctions respectively, both of
them have 3 goals.

In this domain, the predicate flowrate has been refor-
mulated by merging the objects of type link into a new
type, which represents road links which are connected via a
junction. In this domain, ENHSP and UPMurphi were run
using the heuristic proposed by McCluskey and Vallati.

Results presented in Table 2 indicate that reformulation
has a strong beneficial impact on planners’ performance.
ENHSP and UPMurphi are able to quickly solve problems
involving large networks as they can manage to ground the
problem. In ENHSP most of the improvement is due to the
faster grounding, and on the largest 30 junction problem 3,
to be able to ground it at all. On the contrary, in the case
of UPMurphi and DINO, the reformulation boosts also the
search performance, as –given the data structure used by
those planners– also the size of each state is significantly
reduced by the reformulation. Unsurprisingly, the heuristic
exploited by DINO is not very informative in UTC prob-
lems, since it is domain-independent, but the planner is able
to ground and to explore a large area of the search space
when run on reformulated models.

Finally, Table 3 shows how planners DINO and UPMur-
phi benefit from the reformulation of PDDL+ models, in
terms of state size. Results are presented in terms of ratio of
maximum space sizes between original and the correspond-
ing reformulated representation; for instance, a value of 2.0
means reformulated search can create twice the number of
states before running out of memory. In almost every in-

stance, reformulation greatly increases the maximum state
space. An outstanding ratio has been achieved in the UTC
domain, where for problem 2 the reformulation allows to
raise the maximum number of states by a factor of 37. We
expect the ratio for problem 3 to be even better as it has an
even larger number of junctions, unfortunately a direct com-
parison can not be made because the original representation
is too large for UPMurphi/DINO parsers to process.

Conclusion

Despite the importance of hybrid planning for real-world ap-
plications, there is a lack of knowledge engineering tech-
niques for PDDL+ models, that would allow to improve
the performance of any domain-independent planner on the
problems of interest.

In this paper, we introduced a reformulation approach that
allows to reduce the size of a PDDL+ grounded problem
by tackling the arity of sparse predicates. Our experimental
analysis showed that: (i) the proposed reformulation tech-
nique can effectively reduce the grounding size of hybrid
problems, hence allowing planners to deal with them; (ii)
the reformulation can also positively affect the size of each
search state, leading to a faster and more effective explo-
ration of the search space; and (iii) merged objects can pos-
itively affect heuristics. As an example of the importance of
the proposed technique, in the UTC domain, the reformula-
tion enables two planners (ENHSP and UPMurphi) to pro-
duce strategies in urban regions with 30 junctions (contain-
ing over 120 road links) which gives it a clear advantage in
scale over conventional connected road traffic management
systems such as SCOOT (Taale, Fransen, and Dibbits 1998).
This suggests that PDDL+ reformulation techniques, by al-
lowing larger problems to be reasoned upon by planning en-
gines, can lead to a new class of heuristics and foster the
exploitation of planning in real-world applications. Future
work will be focused on extending the number of objects
that can be merged, and an in-depth study of the importance
of the sparsity threshold.
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Abstract

Automated Planning is a systematic search for a range of ac-
tions to reach some desired goals. Automated Planners must
have a model of the dynamics of the domain to reason with.
Domain Models can be encoded by human experts or, as re-
quired by autonomous systems, automatically acquired from
observation. Domain model correctness is a crucial factor in
the overall quality of the planning process. This leads to the
increased need to measure and analyze domain models, in
particular, to evaluate Knowledge Representation (KR) and
Knowledge Engineering (KE) techniques.

In this paper, we present a static domain analysis method by
the combined use of our previously published work on static
graphs learning systems ASCoL with the system of Wickler
to understand domain dynamics. A fundamental difference be-
tween the two systems is that the Wickler’s system depends on
the manual extraction of domain features, whereas ASCoL can
extract automatically. The resulting technique builds on the
static domain analysis of automated planning domain models
in terms of automatic identification of static graph relations,
Extended Static Relations (ESRs) and Static Modifier Opera-
tors (OSM ). The method has been evaluated using 13 planning
domains drawn from the international planning competition.

Introduction

In 2003 PLANET Roadmap (Biundo et al. 2003), the authors
generally describe the steps for domain model development
that covers the complete definition of Knowledge Engineer-
ing for Planning and Scheduling (KEPS). According to the
report, the following are general steps within the domain
modelling process:

1. Early Analysis

2. Knowledge Acquisition

3. Domain Design

4. Domain Validation

5. Maintenance

Although AI planning technology is mature, the research
in the KEPS community mostly relies on the use of experi-
mental domains for bench-marking the KE experiments. This
is also because KE has no standard evaluation and analy-
sis methods, and just like the requirements specification, it
cannot be objectively assessed and proved correct.

The evaluation of KE tools and methodologies is chal-
lenging when compared to other tools and methods, such as
planning algorithms and planners. Moreover, knowledge en-
gineers of domain models use planners to design, develop and
debug the domain model, and the planners were not primarily
developed for this purpose. This problem of methods/tools
validation and verification (V&V) in KE inclines the research
community to avoid paying much attention to knowledge
engineering for AI planning and it becomes harder to fos-
ter the encoding of sophisticated domain models. Indeed,
Bensalem et al (Bensalem, Havelund, and Orlandini 2014)
state that domain models present the biggest V&V challenge
to the Planning and Scheduling (P&S) community. More-
over, for real-time applications of P&S inside critical area
e.g. space missions, the domains turn out to be very complex
and it takes hard work for domain engineers to validate such
domain models. The source of complexity in the planning
descriptions arises from the highly declarative form they take
and also the complex interactions between the behaviours
of different component subsystems within a domain (Long,
Fox, and Howey 2009). Such complex domains express the
need for automatic analysis, evaluation, V&V techniques to
be integrated as parts of KE and P&S systems.

Despite the efforts in the VVPS workshops in ICPAS 2009
and 2011, there are few tools that strive to provide some
kind of validation analysis of domain models. Some KE tools
such as GIPO (Simpson, Kitchin, and McCluskey 2007) and
itSIMPLE (Vaquero et al. 2007) allows users to develop and
validate domain model design. (Giunchiglia and Traverso
2000) presents Planning as Model Checking paradigm, a
verification system for a domain by exploring its state space.
Model Checking has been utilised in the validation of domain
models more safety-critical environments such as in Remote
Agent Experiment (Khatib, Muscettola, and Havelund 2001).
VAL (Howey, Long, and Fox 2004) is another well-developed
tool for PDDL domain encoding and provides insight into the
behaviour of a domain encoding by evaluating plans. Some
authors (Shoeeb 2012)(González Ferrer 2012) have also
proposed varying factors that identify the quality of a domain
model from a KR and KE point-of-view. Regardless of such
efforts of researchers, the scope of domain validation remains
limited.

(Biundo et al. 2003) classify process of domain model
validation in the process of promoting domain quality in
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terms of internal and external criteria by the identification
and removal of errors in the model. Internal criteria include
properties such as syntactic correctness and logical consis-
tency. External criteria include properties such as accuracy,
correctness and completeness.

Our work concentrates on the fourth stage of domain mod-
elling process i.e. Domain validation in terms of static analy-
sis. More specifically to check logical consistency, identify
bugs and to check the accuracy of the static domain model
structure. As the sources of knowledge elicitation (i.e. plan
traces in our case) and domain model development are not
mathematical procedures, it is challenging for them to be
measured on a correctness scale. Its quality must be checked
not only in terms of syntactic and semantics’ accuracy but it
also includes checking the completeness of the generated do-
main through static and dynamic testing (Vaquero, Silva, and
Beck 2011). One aim of this piece of publication is to stress
the importance and need of KE validation tools. We have
extended our work on previously published static constraints
learning system to use it alternatively as static domain analy-
sis system along with another published analysis technique.
The overall aim is to automate and simplify the availability
and use of domain analysis systems by domain designers and
research community for easy, elaborated and error-free de-
sign. The research contributes a visualization tool to help the
modeller observe, analyse and validate the static constraints
and features of the domain model as a whole.

We use ASCoL (Jilani et al. 2015) -a general system that
learns static constraints from previous experience. The sys-
tem supports domain-independent planning and knowledge
engineering in the modelling phase of planning domains. It
learns domain-specific static constraints or invariants for do-
main models in the form of a static graph of ordered static
rules (positive preconditions). It demonstrates the feasibil-
ity of automatically identifying static relations for domain
models by considering application knowledge in the form
of training plans for a range of application areas. ASCoL
exploits the information which is implicit in the log of action
sequences (also called plan traces). It exploits graph analysis
for automatically identifying static relations and static graphs
from example training plans, in order to enhance planning
domain models. ASCoL has been evaluated on domain mod-
els from the international planning competition benchmarks,
using differently-shaped plan traces.

Wickler’s method (Wickler 2013) of domain model anal-
ysis uses static graphs of a planning domain. We use this
method to identify objects or properties related to the nodes
of the static graph that may be modified by the operators in
ways restricted by the graph. The formal definition of shift
operators over static graphs as a domain feature is the main
contribution of Wickler’s method.

The remainder of this paper is organised as follows. Sec-
tion 2 includes preliminary definitions and the necessary
background. Section 3 describes the ASCoL + Wickler 2013
method, with the Freecell and Grid domain (from IPC) oper-
ators as our running examples. Section 4 includes discussion
and results of the empirical evaluation. Finally, Section 5
discusses some applications and concludes the paper.

Preliminaries

In this section, we provide the necessary background and
define the key terms that are proposed and exploited by both
ASCoL and Wickler’s system.

Graphs

A graph is an abstract representation of data in the form of a
set of vertices or nodes that are connected either by directed
or undirected edges and is used to model multiple types of
relationships between objects.

Graph: G = (V, E, µ, v)

• V: finite set of nodes.

• E ⊆ V × V denotes a set of edges.

• µ: V → LV denotes a node labelling function

• v: E → LE denotes an edge labelling function

Graphs are a popular way to formulate representations
and provide a visual way for easily explaining to the user
the varying type and complexity problems, including math-
ematical and computational problems, as well as reasoning
about action. Due to the visual representations of complex
interrelationships between entities graphs enable the human
brain to hold facts and records for longer as compared to the
logical representation of the same data.

Static constraints or relations

Domain classes and objects inside them interrelate in differ-
ent ways. Some interactions are dynamic and others are static.
These interrelations are modelled as relationships. Static rela-
tionships or sometimes called invariants are implicit in the
set of operators and are not directly expressed in the plans.
Static relationships enforce constraints in dynamic relation-
ships and restrict the traversal of unnecessary reachable states
in solution search. Without using static constraints planners
are slower because they have wider search space options to
search for a solution to a problem and most of the times
produce invalid plans. These can be seen as predicates that
appear in the preconditions of operators only, and not in the
effects. Therefore, the truth value of static facts and objects
never change in the world from state to state under closed
world assumption, and that is why they do not appear in state
transitions and cannot be relocated. Many domains contain
static background information that remains unchanged with
the given (problem) task changes, for example, in transport
domains the map of an area is the static fact whereas, the
routes of a traveller might change depending on the pur-
chases she needs to carry out each day. Other examples of
static constraints include the connections of roads in the lo-
gistics domain, the level of floors in the Miconic domain and
the fixed stacking relationships between specific cards in the
Freecell domain.

In the ontology, domain invariants are inter-relationship
constraints. In particular, they constrain instance relation-
ships. Since instance relationships are the elements in mod-
eling object states, domain invariants enforce constraints in
state-space.
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Let Op = op1, op2, ..., opn be a set of operators and let
P = P1, P2..., Pn is a set of all the predicate symbols that
occur in these operators. A predicate Pi in P is fluent iff there
is an operator opj in Op that has an effect that changes the
value of the predicate Pi. Otherwise, the predicate is static.
We call the static predicate, Main Static Relation (MSR) of
the operator.

Gregory et al in (Gregory and Cresswell 2015) define static
relations as restrictions on groundings of operators in the
domains. In other words, a static relation for each operator is
a collection of all the valid groundings for that operator.

Static graph relations Wickler in (Wickler 2013) defines
a static graph relation as follows:
If a(Pi) are the arities of predicates Pi, then Pi is a static
graph relation if and only if:

• Pi is a Main Static Relation (MSR);

• Pi is a binary relation i.e. a(Pi) = 2; and

• The two arguments of Pi are of the same type T =
argPi(1) = argPi(2).

Static Graph

ASCoL identifies static graphs and MSRs automatically from
plan traces Pl = (pl1, pl2, ..., pln). Each plan contains an
action sequence of N actions on numerous objects, i.e. each
Pli ∈ Pl has the form:

pli(a1, a2, ..., am) for i = 1, ..., n

Where ai is an action of the plan trace pli. Each action has
a format which is made up of an identifier (the name of the
action), and the names of objects that it affects, in order of
occurrence, which all have the form:

ai(oi1, ..., oij)

Where oi1 represents the object provided as first parameter
for the action ai.

In ASCoL, all kinds of static relations are represented
as graphs, where the graph vocabulary can be seen as the
object instances of a particular type t which can be taken
from a live activity record(s) or from a manually recorded
log of an action sequence. It parses the input plan sequences
to induce the universe of same-typed object instances from
plan traces. The identified same-typed object instances make
the elements of the graph vocabulary. It then identifies all
the possible combination pairs of same-type objects in each
unique action. The formula to calculate the total number of
parameter pairs for each action header is:

(n− 1) + (n− 2) + ...+ (n− n)

Where n represents the total number of arguments in
an action that belongs to same type t. For instance, if in
an action, the number of available same-typed arguments
is four then the total number of parameter pairs would
be 3 + 2 + 1 + 0 = 6. The next step is to generate the
embedding and analysis of graphs G = (IDs, Conn, µ, v) by
considering all the pairs involved in the matching actions

from the complete input set of plans (Pl).

Graph: G = (IDs, Conn, µ, v)

• IDs: {oij ∈ O|t(O) = ti} is a finite set of nodes

• Conn ⊆ IDs × IDs denotes a set of edges

• µ: IDs → LIDs denotes a node labelling function

• v: Conn→ LConn denotes an edge labelling function

IDs is the set of vertices of the graph G which are labelled
by elements in the vocabulary and are observed from plan
traces in the form of object instances or action parameters.
O is the set of object instances from all matching action
instances in plan traces and t(O) is the type of the object
instances O. Conn is the finite set of edges for each of a
particular pair of action instances across all the plan traces
available.

Extended Static Relations (ESRs)

Given an automatically extracted MSRs, there could be
other relations in the operator that connect the static feature
to other objects of different types and which have a fixed
relation to the MSR in the form of a graph too. We call such
relations Extended Static Relations (ESRs). The object type
due to which ESR is associated with MSR, Wickler refers to
this object type as a Node-Fixed Type.

Let Op = op1, op2, ..., opn be a set of domain operators
and Pi be the MSR learnt from the static graph, GPi =
(IDs,Conn,µ, v) consisting of nodes called IDs and the
finite set of directed edges called Conn where µ is a node
labelling function and v is an edge labelling function. ti is
the object type of Pi. A type tj 6= ti is called a node-fixed
type if the following conditions hold:

• there exists a static binary relation Pj ; and

• Pj has one argument of type ti and the other of type tj .

ESR Pj is the relation/predicate that is not dynamic but
its arguments are of two different types including the over-
lapping type (ti) with MSR Pi. These relations identify the
functional properties of the defining static relation, e.g. a
value, cost, colour or physical location of the object. The
objects in ESRs cannot move between nodes in the static
graph and have some fixed relationship with nodes in the
static graph. This can be stated as Whole-part relationship or
aggregation as mentioned by (Biundo et al. 2003).

Each ESR can further be extended if it fulfils the above-
mentioned conditions for producing further extension in the
static graph by considering ESR’s node-fixed static type tj
in place of MSR’s static type ti. We call such relations as
Level-Two ESRs (ESRL2)

Shift Operators or Static Modifier (OSM )

Given a domain model that exhibits static aspects in addition
to dynamic behaviour in operator definition, there are often
dynamic first-order relations that support the transitions of
object states by representing the dynamicity or movement of
static graph objects in the dynamic domain scenario. Such
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first-order dynamic predicates carry different functional prop-
erties with the same semantics and define the relationship
between static and dynamic aspects of objects in the pre- and
post-execution of that action. Wickler calls operators that
encompass such a property, Shift Operators and defines them
as follows:

If O be a particular planning operator having preconditions
P1, ..., Pn, positive effects+ (ep

1
, ..., epn) and negative effects-

(en
1
, ..., enn) where each precondition and positive/negative

effect is a first-order atom, and

If Pi = static graph relation for the O,
ti = static type for Pi

tj = node-fixed type for Pi.

Then, O is a shift operator wrt tj iff:

• O has a MSR Pi(v, v
′);

• O has a precondition pps with argument v (or v’);

• O has a negative effect- = pps ;

• O has a positive effect+ = pps but the argument v (or v’)
must alternate with v’(or v), respectively.

We altered the definition by also including unary predi-
cates with an only static object of type ti (and no necessity
of tj as a second argument), in addition to binary predicates
with reference to tj . Because only few domains exist that
contain this shifting property with respect to tj , we extended
the definition in order to bring a larger range of domains in
the application focus of this analysis in addition to transport
domains. We call such operators Static Modifiers (OSM ). Bi-
undo et al. in (Biundo et al. 2003) refer to such relationships
as cardinality relationships.

Figure 1 shows the pseudo code for shift operator identi-
fication presented by Wickler. The pseudo code attempts to
find preconditions and effects that satisfy all the conditions.
It accepts an operator and an MSR as inputs. As output, it
indicates if the input operator is Shift Operator or not wrt. the
argument type of the given predicate. The algorithm loops
through all the precondition to finding one that represents an
edge in the graph. Then it checks the preconditions again to
find one that represents a candidate for a shifted property. A
necessary condition here is that the node from which we are
shifting occurs in the property precondition. Given such a
candidate, the algorithm tests whether the property is deleted
by the operator, which is another necessary condition. Fi-
nally, the algorithm tests whether a positive effect exists that
represents the shifted property, which is true if it agrees with
the property precondition in all arguments except for the one
representing the static graph node, which must be the node
to which we are shifting to the effect.

ASCoL + Wickler’s Method

Static analysis is an analysis method known for the helpful in-
ternal validation of a domain description, such as to examine
the effects of static knowledge or to discover state invariants.
This section presents a method for the visual investigation
and validation of a Planning Domain Definition Language
(PDDL) domain model through finding a static graph and

Figure 1: Pseudo Code for Shift Operators.

related properties from the training plans and domain oper-
ators. This uses the Freecell and Grid domains as running
example in order to demonstrate the combined usage of both
techniques (ASCoL + Wickler’s). This is because the Freecell
domain is comprehensive and provides a suitable framework
on which to visualise the effectiveness of the approach. All
of the ten operators of the domain satisfy the condition (of
having the same types) and it is rich in terms of MSRs, ESRs
and Shift operators. It encodes a network of static constraints
which includes the allowed sequential arrangement of cards
in the free cells, the home cells and among the card columns,
used within ten operators of the domain model. We randomly
chose Grid domain as our second example.

In the combined use of both the methods, we first learn
the MSRs using ASCoL. Based on those MSRs, Wickler’s
method then analyse the domain definition based on static
analysis of ESRs and Shift Operators. Together both systems
produce the static graph structure with nodes as objects of cer-
tain type from the domain and edges as relationships between
the nodes.

Following is the operator homefromfreecell from the Free-
cell domain. This operator sends cards from freecells to the
top of the home cells based on the ascending order of the
playing cards. Here (successor ?vcard ?vhomecard) and (suc-
cessor ?ncells ?cells) are two MSRs in the operator.

(:action homefromfreecell

:parameters (?card - card ?suit - suit

?vcard - num ?homecard

- card ?vhomecard - num

?cells ?ncells - num)

:precondition(and

(incell ?card)

(home ?homecard)

(suit ?card ?suit)

(suit ?homecard ?suit)

(value ?card ?vcard)

(value ?homecard ?vhomecard)

(successor ?vcard ?vhomecard)

(cellspace ?cells)

(successor ?ncells ?cells))

:effect (and

(home ?card)

(cellspace ?ncells)
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(not (incell ?card))

(not (cellspace ?cells))

(not (home ?homecard)))

)

Main Static Relation (MSR)

ASCoL successfully learns static graph G for both the MSRs
from operator homefromfreecell. For each of the identified
pairs of arguments, ASCoL generates a directed graph by
considering the objects used in the plan traces. In order to
exemplify how directed graphs are generated, consider the
following instances of the homefromfreecell action which are
collected from the input set of plan sequences.

homefromfreecell(club4,club,n4,club3,n3,n0,n1)
homefromfreecell(diamond4,diamond,n4,diamond3,n3,n0,n1)
homefromfreecell(diamond5,diamond,n5,diamond4,n4,n1,n2)
homefromfreecell(spade2,spade,n2,spadea,n1,n0,n1)
homefromfreecell(spade3,spade,n3,spade2,n2,n1,n2)
homefromfreecell(heart3,heart,n3,heart2,n2,n0,n1)
homefromfreecell(heart4,heart,n4,heart3,n3,n1,n2)
homefromfreecell(spade7,spade,n7,spade6,n6,n0,n1)
homefromfreecell(heart6,heart,n6,heart5,n5,n1,n2)
homefromfreecell(spade8,spade,n8,spade7,n7,n2,n3)
homefromfreecell(heart8,heart,n8,heart7,n7,n3,n4)

For type num, the following six vertex pairs are identified
for the action homefromfreecell:

pair1 (?vcard, ?vhomecard), pair2 (?vcard, ?cells),
pair3 (?vcard, ?ncells), pair4 (?vhomecard, ?cells),
pair5 (?vhomecard, ?ncells), pair6 (?cells, ?ncells).

In order to generate the directed graph for the pair1
arguments of type num, i.e., pair1 (?vcard, ?vhomecard),
ASCoL considers all of the objects used as the third and fifth
arguments of the homefromfreecell action instances. Given
our example, all the unique IDs include:

IDs = { n4, n3, n5, n2, n1, n7, n6, n8 }.

The Conn set includes the following unique edges:

Conn = [(n4,n3),(n5,n4),(n2, n1),(n3, n2),(n7, n6),(n6,
n5),(n8, n7)].
Figure 2 represents IDs and Conn in the form of a graph
embedding. This linear order in the third and fifth arguments
of the homefromfreecell action instances suggests that there
is an important one-to-one relationship between the two posi-
tions. This linear relationship is implicit in the plan traces and
cannot be captured by assembling the transition behaviour of
an individual type of objects.

ASCoL draws a graph structure based only on the avail-
able number of edges to learn the relationship. In principle,
relations can be predicted by only looking at value-pairs of
parameters but the difficulty level rises with the increase in
the number of parameters of the same type. Using a graph
structure makes it easy to analyse such situations where an ac-
tion has more than two same typed parameters. It also makes

Figure 2: Example of a directed graph with a linear structure
(Pair 1: type num).

Figure 3: ESRs over a linear graph for homefromfreecell.

the system visually explicit for human users when generating
or debugging domains. To determine whether to define the
relation, it uses a specific graph structure to decide the correct
pair of arguments for producing a MSR.

Extended Static Relations (ESRs)

We continue with our example of operator homefromfreecell
from the benchmark Freecell domain. There are two ESRs
in the benchmark domain for (successor ?vcard ?vhomecard)
predicate:

• (value ?card ?vcard)

• (value ?homecard ?vhomecard)

Both these above mentioned ESRs explain the objects of
(successor ?vcard ?vhomecard) in terms of face value that
both card objects contain.

• MSR = Pi = (successor ?vcard ?vhomecard)

• ESR = Pj = (value ?card ?vcard) and (value ?homecard
?vhomecard)

• Static type of MSR = ti = num

• Node-fixed type = tj = card

Each identified ESR in an operator explains the MSR to
further level of details in different ways depending upon the
nature of the domain e.g. ESR relates some physical objects
to one node in the graph in transportation domains. Similarly,
in skill-based games, it explains the value, cost or property
of the node. The same property or ESR may repeat for more
than one node of MSR graph. ESRs Pj with the node-fixed
type are represented using rectangular nodes in figure 3 over
totally ordered static graph.

Level-Two ESRs (ESRL2)

Each ESR can further be extended if it fulfills the conditions
for ESR for producing further extension in the static graph
with respect to the node-fixed type, i.e. considering ESR’s
node-fixed static type tj in place of MSR’s static type ti. We
call it Level-two ESRs (ESRL2).

To explain this, the same example can further be expanded
in the form of (suit ?card ?suit) and (suit ?homecard ?suit)
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Figure 4: ESRs and ESRL2 over a linear graph with MSR.

considering previous tj = ti = card and level-two tj = tk =
suit as demonstrated in figure 4. ESRL2 Pk are represented
using rectangular nodes with marked label Pk.

The extended part of the graph contains directed edges with
node-fixed type as a source of each edge. This is because the
ESR Pj could possibly be functional in both directions. This
mainly depends upon the order of predicate arguments in the
domain under verification.

Grid Domain Example: The strips version of Grid do-
main was used in the first planning competition. Without
going into the details of the domain description, we just de-
scribe how the following Unlock operator of this domain can
be used as an example and the source of finding ESR and
ESRL2.

(:action unlock

:parameters (?curpos ?lockpos ?key ?shape)

:precondition(and

(place ?curpos)

(place ?lockpos)

(key ?key)

(shape ?shape)

(conn ?curpos ?lockpos)

(key-shape ?key ?shape)

(lock-shape ?lockpos ?shape)

(at-robot ?curpos)

(locked ?lockpos)

(holding ?key))

:effect (and

(open ?lockpos)

(not (locked ?lockpos)))

)

Unlock describes the lock position for the lock with a par-
ticular key that has a particular shape. Here the MSR or the
static graph is defined by the Conn predicate that indicates the
relationship between current and lock positions of the lock.
Keeping in-mind the definition of ESRs, there is a predicate
lock-shape which fulfills both the conditions of being ESR
and have node fixed-type i.e. a binary predicate as well as
having two variables of different types including the type of
objects from MSRs:

Here

• MSR = Pi = (conn ?curpos ?lockpos)

• ESR = Pj = (lock-shape ?lockpos ?shape)

• Static type of MSR = ti = position

• Node-fixed type = tj = shape

To find ESRL2, corresponding static graph analysis can fur-
ther be expanded in the form of predicate (key-shape ?key
?shape) considering previous tj = ti = shape and at level-two
tj = tk = key.

By using this search and analysis method, it not only pro-
duces the static relationships between objects in the plan
traces but also discovers a further level of networking be-
tween the objects depending upon the nature of the domain.
For instance, in patience card games, it can provide the rela-
tionship between a card, its face value and its suit, as previ-
ously shown in the Freecell example.

Shift Operators or Static Modifier (OSM )

In our example of Freecell domain, we use following move-b
operator as an illustrative example of OSM . The operator
move-b moves a card between columns when that card hap-
pens to be the last card in the column.

(:action move-b

:parameters (?card ?newcard - card

?cols ?ncols - num)

:precondition(and

(bottomcol ?card)

(clear ?newcard)

(canstack ?card ?newcard)

(colspace ?cols)

(successor ?ncols ?cols))

:effect (and

(on ?card ?newcard)

(colspace ?ncols)

(not (bottomcol ?card))

(not (clear ?newcard))

(not (colspace ?cols)))

)

There are two MSRs involved in this operator:

• (successor ?ncols ?cols)

• (canstack ?card ?newcard)

Here, (colspace ?cols) is the modifier predicate of (suc-
cessor ?ncols ?cols) which represents the transition of the
number of empty columns before and after the action exe-
cution in the form of the action precondition, effect+ and
effect-, respectively. No predicate fulfills the conditions to be
the shift predicate for (canstack ?card ?newcard).

From the same domain Freecell, the operators homefrom-
freecell, colfromfreecell, sendtofree, newcolfromfreecell and
sendtofree-b also modifies (cellspace ?cells) to (cellspace
?ncells) using MSR (successor ?cells ?ncells) . Opera-
tors sendtohome-b, sendtonewcol, newcolfromfreecell and
sendtofree-b has a modifier predicate (colspace ?cols) along
(successor ?ncols ?cols) and modifies to (colspace ?ncols).

Grid Domain Example: From Grid domain, we use the
move operator as an illustrative example of OSM .

(:action move

:parameters (?curpos ?nextpos)
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:precondition(and

(place ?curpos)

(place ?nextpos)

(at-robot ?curpos)

(conn ?curpos ?nextpos)

(open ?nextpos))

:effect (and

(at-robot ?nextpos)

(not (at-robot ?curpos)))

)

(conn ?curpos ?nextpos) is the MSR involved in this oper-
ator. Here, (at-robot ?curpos) is the shift predicate for (conn
?curpos ?nextpos) which represents the transition of the posi-
tion of the robot from its current position to its next position
in the form of the action precondition, effect+ and effect-,
respectively.

Discussion and Evaluation

The correctness of the plans depends on the correctness of
the domain model in model-based planning systems. The
aim of the analysis presented is the better understanding
of the domain model in a more intuitive way by automatic
identification of static domain structure at early design as
well as at validation stage instead of doing a manual analysis
Among most common ways of checking domain correctness
followed in literature are by explicit testing or by using a
more formal method of model checking. Model checking
is expensive in terms of computational power since it looks
for all the reachable states of the domain model and the
size of the problem increase exponentially with the domain
complexity.

To evaluated the approach and the visual output, we man-
ually tested the present benchmark domains from IPC. To
obtain the input plan traces for each domain, available prob-
lem generators are used to create the training problems, which
are subsequently solved by planners. Potential plan traces
can be gathered from multiple sources and applications, for
example, the sequence of work-flow in some process execu-
tion, logs of commands for installing a piece of software or
the moves or steps captured from game playing etc.

The first step is the generation of static constraints for
all the domains by considering the plan traces. The acquisi-
tion of static constraints and corresponding graphs from plan
traces is evaluated by manually comparing the results gener-
ated with the known benchmark domains and by performing
reachability test for a variety of values of static facts.

The totally ordered graph in the outcome represents a
strong static relationship between the arguments. In case of a
Directed Cyclic Graph, ASCoL tests if G is fully connected
or not. By exploiting the feature of shift operator for the
purpose of domain analysis, it is interesting to check if the
graph is connected or disconnected. If it is disconnected then
which nodes are reachable from the available node. All the
nodes reachable from the initial states (which occur as shift
property of any shift operator), would also hold this shifting
property. This eases the evaluation of reachability condition
and guides solution search.

With MSRs as the edges of the graph, the second step again

uses graph behaviour to identify and validate the functional
properties of the static graphs by identifying the extended
nodes and corresponding node-fixed types, i.e. to identify
the objects that cannot move between nodes in the static
graph and have some fixed relationship with nodes in the
static graph. It applies the definition of ESRs, ESRL2 and
shift operators and finds preconditions and effects that fulfils
all the conditions. The algorithm takes two parameters, an
operator and an MSR. It returns true if and only if the given
operator is a shift operator wrt. the argument type of the given
predicate.

We used a batch of eleven domains that encode mean-
ingful knowledge. From considered domains, fourteen more
examples have been found in addition to Freecell and Grid
domain. Table 1 shows the names of domains, the names of
the shift/modifier operators (OSM ) in each domain, the MSR
of the OSM , the discovered shift/modifier predicate preSM

and the arity of preSM . All the domains used for the evalua-
tion were the simple PDDL versions of the domains. From
all fourteen examples, ASCoL learns some additional static
relations in Move operator of Gripper domain, Fly operator
of Zenotravel domain and Fly-Airplane operator of Logistics
domain, while their benchmark hand-coded versions do not
contain any MSR. Upon visually generating the additional
learnt static facts and verifying the test plans for such do-
mains we concluded that such relations do not reduce the
solvability of problems and help in the pruning of search
space.

Out of all the domains considered for evaluation, only
Freecell, Grid and Logistics domain contain Extended Static
Relations (ESRs). Freecell and Grid domains are already dis-
cussed in the description section of the method. The bench-
mark Logistics domain does not contain any same-typed
MSR while ASCoL discovers an additional MSR in the Drive-
Truck operator of the domain. The additional static relation
connect (loc-from, loc-to) connects the two locations for the
movement of a truck across different cities. Based on the
additional MSR discovered, connect (loc-from, loc-to) visu-
ally extend into two ESRs in the same operator i.e.In-city
(loc-from city) and In-city (loc-to city).

The above definitions, algorithms and evaluation let us
analyse and determine which relations represent edges and
which types represent nodes in a static graph which will be
encoded in the domain model. In terms of utility, a static
graph can signify many things and it is more general than
specific for some domains like transport domains.

The static knowledge of a domain model is usually fixed
and cannot be changed by the action effects. Therefore, the
graph formed by this analysis system can be analysed in-
dependently from the state information of the rest of the
domain states. The graph analysis will also be correct for all
the problem instances attached to the analysed domain.

Application and Conclusion
Modelling a domain involves both capturing the dynam-
ics and background knowledge and validating the captured
knowledge to the level where it maximum coincides with
actual possible worlds in the domain. The accepted wisdom
from the field of Formal Methods is to capture the structure
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Domains Operator(s) OSM Binary MSR Shift/Modifier Predicate prei Uniary/Binary

Ferry Sail Not-equal (at-ferry ?location) Unary

Gold-miner Move Connected (at-robot ?location) Unary

Gripper Move Connected (at-robby ?room) Unary

Logistics Drive-Truck Connected (at ?truck ?location) Binary

Miconic Up, Down Above (Lift-at ?floor) Unary

TPP Drive Connected (at ?truck ?location) Binary

Trucks Drive Connected (at ?truck ?location) Binary

Trucks Drive Next (time-now ?time) Unary

Visitall Move Connected (at-robot ?place) Unary

Spanner Walk Link (at ?man ?location) Binary

Storage Move, Go-in, Go-out Connected (at ?hoist ?area) Binary

Zenotravel Fly Next (Fuel-level ?aircraft ?level) Binary

Zenotravel Fly Route (at ? aircraft ?city) Binary

Zenotravel Refuel Next (Fuel-level ?aircraft ?level) Binary

Table 1: Examples of Static Modifier Operators (OSM ).

and in particular the invariants of a domain in a formal lan-
guage (Biundo et al. 2003). The contribution of this paper
is the development and analyses of static knowledge of the
domain model visually in the form of graphs and by manual
reachability testing.

The combined method described in this paper builds on
the static domain analysis in terms of automatic identification
of static graph relations (MSRs, as ASCoL names it), ESRs
and OSM . Specifically, by using Static Modifier property, it
becomes easy to understand the manipulation of world states
in guiding the search space in planning.

Graph embedding and analysis theory are particularly suit-
able to develop this approach because graphs can be used
to represent logical semantics (meaning of propositions and
of their formal analogues) without using the language of
logic but visual notions and this is why Static support for
model analysis is mostly visual. In addition, because many
efficient graph-processing algorithms exist, thus graphs can
be exploited as a good computational mechanism to compute
relations between objects. Particularly, graphs that represent
static relationships show the permanent relationships between
constant objects of a problem (Botea et al. 2005).

This combined analysis method and the definitions that it
is based on exploits certain representational choices that are
mostly used when formally representing knowledge in PDDL
domain models. There may be substitutes that we have not
reflected here that may make the analysis unsuccessful even
with the presence of static graphs. It supports knowledge en-
gineers and builds on domain analysis based on the features
described. Apart from AI planning and Knowledge Engineer-
ing, other wider application areas that involve the synthesis
of constraints or invariants can benefit from the method. Ex-
amples include the detection of anomalies in domain design,
extraction of maps of locations from past activity, learning of
the static rules of games such as solitaires, draft etc.

It can also be used by other systems/individuals to extract
patterns in large real-world case studies which cannot be
dynamically discovered using finite state automata, e.g. to
extract data from large databases, to analyse social networks

or work markets, the diagnosis of certain diseases like spread-
ing of the virus. Hence, the internet which is a network on its
own can be a good application area where different HTML
documents act as the nodes of the graph and the hyperlinks
act as the edges in the graph. An example includes Google,
which uses the structure of Internet in its famous PageRank
algorithm (Ma, Guan, and Zhao 2008) for websites ranking.

Although the combined method works on domains, prob-
lem instances can also be analysed based on the fact that often
the initial conditions in a planning problem that comprise of
the static relations are reusable and does not change across
a range of problems. Apart from static constraints, clearly,
there is much more to an operator of a domain that makes
a planning domain and problem complex. The long-term
goal is to extend this initial idea of integrating different KE
systems to include dynamic analysis and present formal vali-
dation method which can provide wider coverage of domain
features and lead to increased confidence in the correctness
of validated domain model. WE also aim to learn how to
structure domain models which are more responsive to static
analysis.

References

Bensalem, S.; Havelund, K.; and Orlandini, A. 2014. Verifi-
cation and validation meet planning and scheduling.

Biundo, S.; Aylett, R.; Beetz, M.; Borrajo, D.; Cesta, A.;
Grant, T.; McCluskey, T.; Milani, A.; and Verfaille, G. 2003.
Technological roadmap on ai planning and scheduling.

Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-ff: Improving ai planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research 24:581–621.

Giunchiglia, F., and Traverso, P. 2000. Planning as model
checking. In Biundo, S., and Fox, M., eds., Recent Advances
in AI Planning, 1–20. Berlin, Heidelberg: Springer Berlin
Heidelberg.
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Abstract

Urban Traffic Control is a key problem for most big cities.
Current approaches to handle the city traffic rely on control-
ling traffic lights. The systems in operation range from static
control of traffic light phases to adaptive systems based on
numeric models and traffic sensors. Recently, some planning-
based approaches have also been proposed. We have identi-
fied two main difficulties to the wide use of planning tech-
niques in this domain: generating the control models is a
difficult task; and some algorithms scale poorly. In this pa-
per we present APTC, a control system based on Automated
Planning, that successfully overcomes these two problems.
It combines techniques that continuously: learn an accurate
planning model; and also divide the city for distributed rea-
soning in order to scale to large city networks. Experimental
results show that APTC outperforms static approaches as well
as other planning-based systems. We also show that the com-
bination of both approaches improves over using only one of
them.

Introduction
In the last decades the world’s population has grown
steadily, becoming more urbanised over the years. This
growth consequently increases the public transport demand
as well as the number of cars and vehicle movements.
However, traffic infrastructures do not grow at the same
rate, so implementing efficient Urban Traffic Control (UTC)
systems is increasingly important. Hence, traffic manage-
ment can influence the entire city dynamics, causing sig-
nificant damages to the population, ranging from unneces-
sary time and fuel consumption up to deteriorating citizen’s
health. The traffic control task is a difficult one, since it in-
volves stochastic behavior by independent agents (drivers)
and plenty of unforeseen events that can affect the trans-
portation network, such as maintenance, accidents, weather
or sports events.

Most current systems control the city traffic using macro-
scopic approaches (Treiber and Kesting 2013) that model
traffic at the flow level rather than taking into account iso-
lated cars. They usually set traffic lights programs, that are
defined in terms of three parameters: split and cycle, which
refer to the amount of green and red time allocated to each
traffic light; and offset, that represents the difference be-
tween the start of green time at two consecutive intersec-
tions. An appropriate offsets’ setting at various connected

traffic lights generates “green waves” that allow vehicles
not to stop in several consecutive junctions. There are many
known algorithms to define those programs, ranging from
early static off-line approaches that are still in use in many
cities, to most recent adaptive approaches that change the
programs according to the network’s state (Papageorgiou et
al. 2007; Hamilton et al. 2013). An example of a successful
adaptive approach is the SCOOT system, a commercial prod-
uct that uses information coming from traffic sensors to feed
numerical models (Bretherton, Wood, and Bowen 1998). A
weak point of these systems is that they cannot deal well
with dynamic incidents (Vallati et al. 2016). Also, their mod-
els are usually difficult to maintain.

Recently, some Artificial Intelligence (AI) approaches
have emerged, using diverse techniques: neural net-
works (Box and Waterson 2012), reinforcement learning (Jin
and Ma 2017); or scheduling techniques (Xie, Smith, and
Barlow 2012). Automated Planning (AP) has also been re-
cently shown to perform well in this kind of tasks (Cenamor
et al. 2014; Gulic̀, Olivares, and Borrajo 2016; Vallati et al.
2016). The main advantage of using AP is that the problem
can be modeled using a declarative language in combination
to powerful reasoning engines. Thus, traffic engineers can
easily include or modify new actions, sensor information or
metrics to adapt the model to evolving traffic conditions.

In general, previous techniques and particularly the ones
based on AP have two main drawbacks. Firstly, given the
stochastic nature of the control task, as well as the amount of
different ways to control traffic lights, properly modeling the
planning task requires some knowledge engineering effort.
Moreover, in most cases, the defined model does not per-
fectly fit the real scenario, which affects the system’s behav-
ior. Also, most of these models assume all junctions share
the same behavior within a city and across cities. Secondly,
these approaches scale poorly and can not be implemented in
large areas or cities with numerous streets and traffic lights.

In this paper we present APTC (Automated Planning for
Traffic Control), a system based on AP to perform UTC.
The goal of APTC is to overcome the previously men-
tioned two problems. First, we propose to automatically
update the planning domain model through continuous in-
cremental learning. The automatic generation of planning
domains in stochastic environments has been previously
studied (Garcı́a-Martı́nez and Borrajo 2000; Pasula, Zettle-
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moyer, and Kaelbling 2007; Jiménez et al. 2012; Jiménez,
Fernández, and Borrajo 2013; Martı́nez et al. 2016; Mourao
2014). However, these domain-independent approaches are
not adequate when the learning tasks involve actions that use
many parameters as it is the case of UTC actions. Therefore
we propose a domain-dependent model updating approach.
The learning technique monitors the observed states at each
junction and automatically generates actions that match the
junction’s dynamics. This allows APTC to quickly adapt to
the city traffic behavior and its changes, generating better
planning domains requiring less model engineering work.

Second, we propose to use distributed planning by divid-
ing the city into a set of areas. Given that it is difficult to
define those areas “a priori”, APTC identifies the most im-
portant junctions and divides the city according to the traf-
fic flows that dynamically arise or disappear over time. This
city splitting criteria not also leads APTC to better scala-
bility. By keeping the junctions involved in a flow in the
same planning problem, APTC can automatically generate
“green waves”. The system generates them by setting the
traffic lights in such a way that they allow the vehicles to
quickly traverse the junctions involved in the traffic flows.
A planning problem is generated in each area and they
are solved asynchronously. The resulting plans are concate-
nated and executed to control the traffic lights. APTC can be
seen as an instance of a fully autonomic (autonomous) sys-
tem (Huebscher and McCann 2008), given that it incorpo-
rates many self-* properties, as self-monitoring (continuous
observation), self-diagnosis (undesired behavior detection),
self-optimization (planning), self-healing (execution of traf-
fic control actions) and self-adaptation (learning).

Planning Models for UTC

We propose to use AP to solve traffic control tasks. From all
the different kinds of available planning techniques, we will
use those that take as input an explicit model described in
the standard PDDL language (Planning Domain Description
Language) (Fox and Long 2003). These planning techniques
take as input a planning task and return a plan that solves it.

Planning Models

A single-agent STRIPS planning task can be formally defined
as a tuple Π = {F,A, I,G}, where F is a set of proposi-
tions, A is a set of instantiated actions, I ⊆ F is an initial
state, and G ⊆ F is a set of goals. Each action a ∈ A is
described by a set of preconditions (pre(a)), that represent
propositions that must be true (or false for negative precon-
ditions) in a state to execute the action and a set of effects
(eff(a)), propositions that are expected to be true (add(a)
effects) or false (del(a) effects) after execution of the ac-
tion. The application of an action a in a state s is defined
by a function γ, such that γ(s, a) = (s \ del(a)) ∪ add(a)
if pre(a)⊆ s and s otherwise (it cannot be applied). Plan-
ners should generate as output a sequence of actions, called
a plan, π = (a1, . . . , an) such that if applied in order from
the initial state I would result in a state sn, where the goals
are true, G ⊆ sn. Under this definition, A and F are fully
grounded propositions. To alleviate the definition of plan-

ning tasks, the AP community has defined PDDL, a high-
level language that allows planning users to easily define
these tasks. It is based on predicate logic, and requires the
definition of two files: domain and problem. The domain
model D contains the definition of predicates for represent-
ing sets of propositions and the actions that agents can per-
form. The problem P describes the particular task instance
to be solved; i.e., the objects involved, the initial state and
the set of goals to achieve.

Modeling UTC with PDDL

There have been different approaches to model UTC from
an AP point of view, but all of them rely on acting over the
traffic lights. Vallati et al. 2016 propose a PDDL+ formula-
tion (Fox and Long 2006). PDDL+ is an extension of PDDL
to model mixed discrete-continuous domains. This approach
switches the traffic lights for a certain amount of time de-
pending on the queues of vehicles on the streets entering the
junction.

In parallel, and using a simpler PDDL domain, Gulić et
al. modeled UTC taking into account street’s density lev-
els instead of flows and queues of cars in their IAS sys-
tem (Gulic̀, Olivares, and Borrajo 2016). Actions are exe-
cuted over the city network only when a high density level
is detected at any street. This is done for a fixed time and
then the system monitors if the congestion has been solved,
i.e., the density is low in all streets, returning to the default
program. This planning model assumes the world is deter-
ministic and the agent has full observability. But UTC does
not follow these premises, since the actions have stochastic
outcomes and the agents have partial observability. In order
to deal with uncertainty, they follow a simple and popular
approach; reasoning (planning) with a deterministic world
model and when execution of some action fails (the con-
gestions are not solved), the agent replans (Yoon, Fern, and
Givan 2007). Besides, as in robotics, this approach usually
employs a simplified model to solve high-level deliberative
problem solving. And there is a low-level reasoning model
that takes care of some of the complexities of dealing with
numeric quantities and continuous processes. In their case,
the low-level model translates high-level actions into each
crossing’s traffic lights for specific amounts of time. In this
paper, we will take the UTC model used in IAS as a base-
line. It presents two advantages over using PDDL+: there are
many more planners that can work with PDDL; and discrete
models are usually easier to define and learn. The potential
disadvantage would be that the IAS PDDL models are not
as accurate as the PDDL+ ones, given that they do not deal
with continuous numeric models. However, we can allevi-
ate this problem by the low-level (simple) behavior in this
case where the relevant parameters to traffic lights control
are set appropriately given a high-level action. And, also, by
our learning mechanism later described.

The first step when generating a planning domain is to
determine the predicates and the actions to use. Each high-
level action in IAS controls all the traffic lights of a junc-
tion at once. As an example, in a four-way junction there
are four incoming streets and another four outgoing streets
(each with a finite number of lanes) and each incoming street
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(:action one-high

:parameters (?c - junction ?sin1 - street ...

?sout1 - street ...)

:precondition (and (goes-into ?sin1 ?c)

(in-front-of ?sin1 ?sin3)

...

(goes-out ?sout4 ?c)

(not (= ?sin1 ?sin2))

...

(densityLevel ?sin1 high)

(densityLevel ?sin3 low)

...)

:effect (and (densityLevel ?sin1 low)

(not (densityLevel ?sin1 high))

(densityLevel ?sin3 low)

(not (densityLevel ?sin3 high))

(densityLevel ?sout2 low)

(not (densityLevel ?sout2 high))))

Figure 1: Part of an example description of a PDDL action
that sets one traffic light of a junction to green.

is controlled by one traffic light. The actions that can be ap-
plied at this specific type of junctions are limited: you can
set to green one of the four traffic lights separatedly, or set
to green two of them if they are in front of each other. The
high-level action that sets to green a traffic light is translated
into several low-level actions to set to red the other traffic
lights in the junction.

Since we want to model how to control traffic lights, pred-
icates allow us to represent the current state of the junction.
We use most of the predicates defined in IAS. There are static
predicates that reflect the city network composition such as
goes-into and goes-out to indicate whether a street
enters or leaves a junction; and dynamic predicates such
as densityLevel that indicates the congestion level of
a given street.1 Since sensors return numeric values for the
density, we applied a discretization step for its values, using
a threshold. We use the same two density values defined by
Gulić et al.; high for density values higher than 0.35 and
low otherwise.

In UTC, actions should decide how to control the traffic
lights. In our case, we will use again the same approach in-
troduced by IAS that sets the traffic lights to green when it
decides that the default program is performing badly. So,
the preconditions of each action check if the densities of
some street sections are high (dynamic predicates) as well
as some static preconditions (network structure around each
junction). If the action is executed, the effects describe the
expected changes in the new state. Figure 1 shows the defi-
nition of an action in which a traffic light is set to green.

Problems are mainly composed of a set of objects, an ini-
tial state and a set of goals. In our case, the objects are the
streets and the junctions. The initial state would be com-
posed of: the static part of the city i.e., the connections be-
tween the streets and the geometry of the junctions; and the
dynamic part made of the initial density levels of the streets.
The goal would be to have low density in all the streets. A
potential planning problem would be as shown in Figure 2.

1This value is provided by the simulator we use, and it would
be generated by street sensors in a real scenario.

(define (problem traffic1) (:domain traffic)

(:objects sin1 ... sout7 - street

j1 j2 - junction)

(:init (goes-into sin1 j1)

(in-front-of sin1 sin3)

(densityLevel sin1 high)

(densityLevel sin2 low)...)

(:goal (and (densityLevel sin1 low)

(densityLevel sin3 low)

(densityLevel sout7 low) ...)))

Figure 2: Part of an example description of a PDDL initial
problem. The goal is to achieve low density in all the streets.

APTC UTC Model

IAS model is a good baseline for our goals, since it is based
on a simple traffic model that can be modified by learning.
However, IAS actions’ descriptions are limited since they
only allowed each junction to set one green traffic light at
each time step. In order to generate a better model, we would
have to study the different cases. The next modeling step
takes into account all the possible combinations of density
levels and traffic lights that can be set to green at the same
time. Finally, it is necessary to guess the effects of apply-
ing an action. For instance, in a four-ways junction, if only
one incoming street has high density and that traffic light
is set to green, we need to guess the density levels of the
four outgoing streets after applying this action in order to
define the action effects. Clearly, it becomes a hard knowl-
edge engineering task, given the amount of different alterna-
tives, and the variety of behaviors in different junctions and
traffic/weather/day conditions.

Also, it is impossible to achieve all goals, i.e., low den-
sity in all the streets, under some traffic circumstances. IAS

did not return any plan in these cases, which degraded the
system’s performance. To solve this problem, we transform
the hard goals to soft ones following the compilation pro-
posed by Keyder and Geffner [2009]. Individual plans’ qual-
ity does not necessarily relate to overall quality, since the
latter can only be measured at the end of the execution (with
metrics such as average waiting time, or pollution). There-
fore, we will again use an scheme where we assume that
executing more actions implies better performance. Our fi-
nal domain is composed of ten actions. Only the most basic
cases are contemplated in these actions. Then, we propose to
automatically update that planning domain by learning the
city dynamics, generating junction-based actions that could
lead the system to better performance.

APTC Architecture
APTC architecture is based on IAS’s and PELEA (Guzmán et
al. 2012) architecture and comprises five modules: EXECU-
TION, MONITORING, PLANNING, MODEL LEARNER and
CITY SPLITTER. It is shown in Figure 3.

The EXECUTION component receives an initial AP do-
main D along with other APTC parameters (M and L). The
monitoring rate M indicates how often the city is observed
and the duration of the applied actions, i.e., phase sequence.
The learning rate L refers to how much time will elapse be-
tween two learning episodes. EXECUTION is connected with
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Figure 3: Planning and execution architecture that includes
model learning capabilities.

the SIMULATOR that sends the simulation info S every time
step and translates the planning actions to low-level actions
applied to the traffic lights. S is a directed weighted graph
that contains the geometry of the network, S = (J,E). J
is the set of vertices (city junctions) and E are the edges
that connect those vertices (city street sections). The edges
that leave the network to vertices outside it are connected
to artificial vertices. An edge e ∈ E connects two vertices
j1, j2 ∈ J if there is a street section that goes from j1 to j2.
Each e ∈ E has an associated weight w(e) with values from
0 to 1. At each time step, the weights represent the current
density level ratio of that street section. Thus, the structure of
the graph has a static component (represented by J and E)
and a dynamic component (represented by the weights). At
every M steps, EXECUTION asks MONITORING for a plan
π and a domain D. If it receives a plan, it is translated from
PDDL actions to low-level traffic lights control signals that
are sent to the SIMULATOR for their execution. Otherwise,
it returns the empty set, so the default traffic light’s program
in the simulator decides the next actions on the traffic light.

MONITORING is described in Algorithm 1. MONITOR-
ING receives a domain, D, the information on the city net-
work, S, the parameter L and the maximum junctions per
problem N . It returns a plan π and an updated domain D.
It maintains and update two sets based on S: F (Flows) and
B (Junction’s Behavior), as well as the last executed plan
π. F contains information on how the cars traverse the city
network and it will be used by the CITY SPLITTER mod-
ule. B contains information related to the effects of apply-
ing an action at a traffic light, and it will be used by the
MODEL LEARNER module. The next subsections describe
these two modules in detail and how they update D and
generate a set of problems P . If a high density street is de-
tected by MONITORING, it automatically generates P based
on the network’s state S and the information returned by
the CITY SPLITTER. Then, the PLANNER module is called
asynchronously with D and every problem P ∈ P , and the
resulting plans are concatenated and returned. We use the
notation π1⊕π2 to represent the concatenation of two plans.

CITY SPLITTER returns a set of disjoint planning tasks in
terms of junctions. There is a single traffic light program
per junction that controls the incoming streets. The solution
of each problem will be composed of actions that affect the
junction traffic lights. Since there is only one action per junc-
tion and the junctions are only present in one planning prob-
lem, we can concatenate the plan of each individual plan-
ning task and all these actions are executed in the network
in parallel. This strategy will set to green traffic lights that
are predicted by the model to have high density levels in
the next M (monitoring rate) seconds (starting at the begin-
ning of the planning episodes). The result of this strategy is
that green waves are created during these M seconds which
can be considered as equivalent to controlling the offsets in
classical approaches. The system uses planning to take into
account the effects of setting to green a traffic light and how
it will affect the surrounding junctions. This is a key dif-
ference with respect to reactive systems that usually only
consider one traffic light.

Algorithm 1 MONITORING(D,S, L,N)
Inputs: domain D, graph S, learning ratio L, max junctions per problem N

Outputs: π,D

1: B,F, π ←RETRIEVE()

2: F ←UPDATEF(S)

3: B ←UPDATEB(S, π)

4: if simulation-step mod(L) = 0 then

5: D ←MODEL LEARNER(B,D)

6: A ←CITY SPLITTER(F, S,N )

7: F,B ← ∅

8: if ∃e ∈ E, ISHIGH(w(e))=True then

9: P ←GENERATEPROBLEMS(A, S)

10: for P ∈ P do

11: πP ←PLANNING(D,P )

12: π ← π1 ⊕ π2 ⊕ . . .⊕ πn

13: else

14: π ← ∅

15: STORE(B,F, π)

16: return π,D

Model Learner

In stochastic environments such as UTC, the world model
does not perfectly fit the real world. Also, in the particular
case of UTC, most works assume that the model of each ac-
tion is shared by all network junctions at any time step. But
this assumption does not hold in most cases. To overcome
these problems we propose to apply learning techniques to
continuously adapt and improve the planning model as the
actions are executed in the environment. This adaptation
starts from the observation of the real effects produced by
the execution of each action at each junction in the envi-
ronment. Every M steps, MONITORING observes the exe-
cuted action at each junction, the preconditions that hold at
that time step, and, at the next MONITORING cycle, the ef-
fects after applying that action. Preconditions and effects are
related to the density levels of the incoming and outgoing
streets of the junction.

Then, the junctions’ behavior set B is updated by func-
tion UPDATEB. It takes as input the current state of the



24

network in S and the last executed plan π, and updates
the set B. B is composed of tuples b=〈j, a, p̂, ô, f〉 tu-
ples, where j ∈ J is a network junction; a is an action;
p̂=〈iN, iE, iS, iW, oN, oE, oS, oW 〉2 is the preconditions
vector with as many positions as street sections getting in
(i) or out (o) of j, with their density values before applying
the action; ô is the effects vector with the same structure as
p̂, but with the observed density values after applying a; and
f is the number of times that the same values for the tuple
〈j, a, p̂, ô〉 have been observed. This data is used to compute
the most likely effects after applying an action at a particular
junction. We will follow the same determinization principles
used by Yoon, Fern, and Givan, using only the most frequent
effects o for each tuple 〈j, a, p̂〉 in order to build the new ac-
tions. Other determinization schemes could be used in order
to apply planning under uncertainty. Table 1 shows an ex-
ample of a possible set of observations B. Given this data,
when oneHigh (a) is executed with p̂=〈h, l, l, l, l, l, l, l〉,
ôa,p̂=〈l, l, l, l, l, l, l, l〉 are its most frequent effects.

Table 1: Example of B for a specific junction. It shows the
frequency with which a set of effects’ values ô are observed
after applying an action a with a given vector of precondi-
tions’ values p̂. h is used for high density and l for low.

j a p̂ ô f

j6 oneHigh 〈h, l, l, l, l, l, l, l〉 〈l, l, l, l, l, l, l, l〉 9

j6 oneHigh 〈h, l, l, l, l, l, l, l〉 〈l, l, l, l, l, h, l, l〉 7

j6 twoHighIF 〈h, l, h, l, l, l, l, l〉 〈l, l, l, l, l, l, l, l〉 3

j6 twoHighIF 〈h, l, h, l, l, l, l, l〉 〈l, l, l, l, h, l, l, l〉 7

The MODEL LEARNER module takes as input the pre-
vious working domain D and a new set B generating as
output a new domain D that includes new actions corre-
sponding to the most frequent observed cases in B. If there
is any previous learned action, it is removed from D. So,
let us assume that, for each tuple 〈j, a, p̂〉, 〈j, a, p̂, ô〉 is the
most frequently observed tuple. a is the action in the orig-
inal domain D (where st(a) are its static preconditions),
p̂ are the observed dynamic preconditions, and ô are the
most frequent effects. Then, a new action a′ is generated
as: a′=〈pre(a’), eff(a′)〉. It does not have parameters, and
pre(a′)=st(a) ∧ p̂ and eff(a′)=ô. Since this action is defined
for a particular junction, a is maintained in the domain.

The new action is added to the domain model if no con-
flicts are found. We define a conflict between preconditions
p̂ of an action a and its most common effects ô if: a) none
of the input streets has high density; or b) when p̂=ô. For
example, a new action would not be added to the planning
domain if p̂=〈l, l, l, l, h, l, l, h〉, or if p̂=ô=〈h, l, l, l, l, l, l, l〉.

An example of a learned action from B in Table 1 is
shown in Figure 4. The action’s preconditions are the con-
junction of st(a) and p̂. The effects reflect the most frequent
density levels after applying a. Note that the action is com-
pletely instantiated, given that it refers to a specific junc-
tion and a set of specific preconditions. After learning the
model, APTC has some new actions that represent the real

2This is an example of a junction with four cardinal directions
(N, S, E, W).

(:action J6-twoHighIF-h-l-h-l-l-l-l-l

:parameters ()

:precondition (and (goes-into sin1 j54)

(goes-out sout4 j54)

(densityLevel sin1 high)

(densityLevel sout4 low)

...)

:effect (and (densityLevel sin1 low)

(not (densityLevel sin1 high))

...))

Figure 4: Part of an example description of a learned PDDL
action for action twoHighIF in junction J6 from Table 1.

behavior of each junction for a given time period, instead
of using a common action that tries to describe the behavior
of all junctions in the city at all time steps. Given that the
domain model is dynamically learned, it can be adjusted to
sudden changes in traffic conditions and automatically re-
turn to “normal” conditions when needed. This solves some
of the problems that classical approaches face; dynamically
adjusting to unexpected situations.

City Splitter

The second contribution of this paper is the use of distributed
planning to help scaling up AP when solving UTC prob-
lems. The goal is to improve the system’s performance and
scalability by factoring the whole network into a set of ar-
eas A. Each area s ∈ A is a subgraph of S such that given
two areas s1=(J1, E1), s2=(J2, E2) ∈ A, J1 ∩ J2=∅. There-
fore, areas have disjoint subsets of junctions. Some edges
in the limits of an area can be shared with neighbour areas.
These edges are connected to artificial vertices in each area
that represent either the vertices outside the network or the
junctions in another area. Thus, the same edge can appear in
two different areas. Once, a new division in areas A is com-
puted, APTC generates a set of problems, one per area, that
are independent- and asynchronously solved by a planner.
The resulting plans can be safely concatenated since they
correspond to independent junctions.

The areas could be divided in regular areas following a
naı̈ve domain-dependent approach. However, as we show
later in the experiments, this leads to a worse performance
due to the loss of a property of traffic networks: emergent
traffic flows. Since the densities are propagated through the
effects of the actions, a bad city partition (split) will not cor-
rectly propagate those densities (flows) over different areas.
Therefore “green waves” can not be handled.

We overcome this problem by detecting the vehicle flows,
taking advantage of the continuous monitoring of the city
traffic. APTC joins in a single area those streets and junc-
tions that conform a flow. We say that two street sections
with corresponding edges in E, e1, e2, are connected if there
is a pair of junctions j1, j2 ∈ J and: e1 enters j1; and e2
leaves j1 and enters j2. If a street e1 with high density at t1
is connected with another street e2 with low density at t1,
and e2’s density becomes high at the next time step t2, there
might exist a flow from junction j1 to junction j2. APTC

stores these potential transitions in a set of flows F that is
updated by function UPDATEF. Each element fl ∈ F is a
tuple fl=〈j1, j2, f〉, where j1 is the first junction that vehi-
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cles traverse, j2 the junction cars arrive at and f the number
of times that this flow has been observed in the last simula-
tion steps.
F will be used for possibly splitting the city every L steps

of simulation. The complete set of tuples in F form a di-
rected graph G=(J ′, E′) ⊆ S=(J,E). J ′={j|(j, j′, f) ∈
F ∨ (j′, j, f) ∈ F}; i.e. set of junctions that appear in tu-
ples in F . And E′={(j1, j2)|j1, j2 ∈ J, (j1, j2, f) ∈ F}
such that w(e)=f if e=(j1, j2) ∈ E′ and (j1, j2, f) ∈ F . All
cycles are removed from G to make it acyclic by using the
algorithm in (Johnson 1975). In order to maintain the junc-
tions involved in a flow in the same area (and thus planning
problem), we look for the maximum-length disjoint paths in
G. This can be done in polinomial time, since G is directed
and acyclic (Fortune, Hopcroft, and Wyllie 1980). We use
the Python package NetworkX3 for the computation of the
maximum length paths as well as the removal of cycles. Al-
gorithm 2 presents the procedure to divide the city.

Algorithm 2 CITY SPLITTER(F, S,N )
Inputs: Set of flows F , graph S, max junctions per problem N

Outputs: A

1: U ←GETJUNCTIONS(S)

2: Flows←MAXLENGTHPATHS(F )

3: A ← ∅
4: for each flow in Flows do

5: if length(flow)≥ N then

6: while flow 6= ∅ do

7: A ← A∪ {flow[..N ]}

8: U ← U \ {flow[..N ]}

9: flow← flow[N..]

10: else

11: while length(flow) < N do

12: flow← flow∪NEIGHBOUR(flow, U )

13: A ← A ∪ {flow}, U ← U \ {flow}

14: while U 6= ∅ do

15: div ← {pop(U )}

16: while length(div) < N do

17: k =neighbour(div, U )

18: div ← div ∪ {k}

19: U ← U \ {k}

20: A ←A∪div , U ← U \ div

21: returnA

For each flow returned by MAXLENGTHPATHS(F ), a par-
tition is generated if it has N elements, the maximum junc-
tions per problem. This parameter affects the planning time
and will be discussed in the next section. If the flow includes
a higher number of junctions than N , the flow is separated.
The first N junctions of the flow are inserted into A and
the remaining junctions ([N..]) are the flow that needs to be
splitted. If flow has a lower number of junctions than N ,
the function NEIGHBOUR(flow, U ) inserts in flow a junction
that is not already part of A, j ∈ U (the set of unassigned
junctions) and it is connected to the last junction in flow.
This is done until flow has N junctions. After all junctions
in Flows have been assigned to an area and the area added
to A, the remaining junctions in U are separated, trying to
group neighbour junctions. Finally, the algorithm returns A,

3https://networkx.github.io/

that MONITORING will use to generate the different problem
files (one per area in A).

Evaluation

We have used SUMO (Behrisch et al. 2011) for the exper-
iments, an open source traffic simulator. It allows users to
define networks, demand and traffic lights control programs.
The evaluation is conducted in a grid network similar to the
ones present in many cities. The network is composed of
100 junctions and 400 streets. We simulated five hours of a
realistic city behavior. This scenario is described in Figure 5.
The first 30 minutes of simulation introduces an input flow
of cars following a uniform distribution in the city with an
average frequency (a vehicle enters the city) of two seconds.
With this frequency and distribution, none or just a few con-
gestions are expected to occur. After that, there is a one hour
period in which some cars enter the city by two fixed junc-
tions and want to go to the work center. We do this in order
to simulate the real behavior of a work day in which most of
the people access their job through some main roads. Later,
vehicles leave the work and others want to access the sta-
dium in order to attend an sport event. This situation leads
to big congestions and the peak of cars in the city is reached
at that point. Finally, people leave the stadium and the sim-
ulation finishes.

Figure 5: Simulation scenario. The x axis represents the time
in hours and the y axis how many cars enter the city every
second. The dotted line represents the frequency of cars with
random start and destination. The continuous line represents
the frequency of cars with fixed start and destination.

The total number of vehicles introduced in the city net-
work is 17, 400 which is way beyond to what other AP-
based UTC approaches have reported. For instance, Vallati
et al. [2017] used 10 junctions, while our network com-
prises 100 junctions. Also, Gulic̀ et al. [2016] introduced
5, 000 vehicles in their biggest experiments. Furthermore,
most works have used shorter simulation steps than the one
reported here.

We compare APTC with three other strategies: STATIC,
REACTIVE and IAS (Gulic̀, Olivares, and Borrajo 2016).
STATIC corresponds to the default system used by SUMO

and it represents the standard one used in most cities. RE-
ACTIVE can be seen as a simplification of SCOOT that does
not consider offsets of neighboring traffic lights. IAS does
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not have any learning component and only calls the planner
when a vehicle has been stopped for a long time. IAS stopped
the simulation until a plan was found while APTC does not
stop the simulation. We also compare APTC against the start-
ing planning domain without any domain model learning to
test whether updating the planning domain represents an im-
provement or not. We will refer to it as FIXED. Finally, all
the AP-based approaches are run twice: one with a MANUAL

division and another one with a FLOWS split, the one pre-
sented in this paper. We do it in order to test if our factoring
criteria works well by itself. We have also tried to compare
APTC with the PDDL+ representation employed in (Vallati
et al. 2016). However, in our experiments their model is not
able to scale up to the networks we use in the time limits we
need. Unfortunately, we cannot compare our system against
commercial products (e.g. SCOOT).

The values of the parameters used by APTC are the fol-
lowing. Monitoring ratio M is the number of steps (seconds)
elapsed between two monitoring episodes. This parameter
affects the length of the executed actions among others. It
has been fixed to 30 seconds, a common cycle in the static
traffic lights programs. Learning ratio L is the number of
steps (seconds) elapsed between two learning episodes. This
parameter determines how fast the system is going to react
to the changes produced in the environment, updating the
planning domain and problems. It has been fixed to 300 sec-
onds (five minutes) in this experiment. We consider that five
minutes is a reasonable time to react against changing traffic
conditions in the real world. Maximum number of junctions
per problem N has been fixed to five junctions since it is the
maximum number of junctions that a car can traverse in 30
seconds (M ) in the experimental city network. This number
also allows us to have short planning times.

We use the following metrics: the total amount of CO2

emitted; the total number of cars that arrive at their desti-
nation within the simulation time (DC); the average wait-
ing time of each vehicle (AWT); and the average travel time
(ATT). We report the percentage of improvement of each
configuration against the base system, STATIC. All the ex-
periments were ran on a Ubuntu machine with Intel Core
i7-410U running at 2.00 GHz. All the systems using Auto-
mated Planning use Lama 2011 (Richter and Westphal 2010)
with a time limit of 20 seconds in order to leave at least 10
seconds to execute the plan. Table 2 shows the results for
the simulated scenario. As we can see, APTC Flows, outper-
forms the rest in all the measured metrics. It is able to reduce
the pollution and the waiting and travel times of the vehicles
in the city. It also virtually allows all vehicles to reach their
destination. It means that the congestion after the end of the
sport event has been successfully solved. APTC also outper-
forms FIXED, the version that does not update the planning
domain, showing that learning the city dynamics and how
the vehicles traverse the city is in fact a big advantage. Fur-
thermore, the flow-based city split is better than manually
dividing the city in equal areas regardless of the planning
domain used.

APTC’s ability to adapt and react to new traffic conditions
is depicted in Figure 6. It shows how the number of new gen-
erated domain’s actions increases when the traffic dynamics

C02 AWT ATT DC

STATIC 2972 120 188 16355

REACTIVE −2% −15% −7% +1%

IASMANUAL −1% −13% −5% +1%

IASFLOWS −3% −16% −13% +2%

FIXEDMANUAL −4% −21% −15% +3%

FIXEDFLOWS −7% −25% −16% +4%

APTCMANUAL −11% −30% −18% +5%

APTCFLOWS −13% −33% −20% +6%

Table 2: Percentage of improvement of each system with re-
spect to the STATIC traffic lights program. AWT and ATT
are given in seconds, while C02 is in kg.

change during the simulation. After learning a traffic behav-
ior, these changes decrease meaning that an effective D has
been found for the current scenario.
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Figure 6: APTC adaptation to changes in the environment.

Conclusions and Future Work
In this paper we have presented APTC, an Automated Plan-
ning based system for UTC. As we have shown, there are
two main problems when implementing planning systems
in this kind of domain. One is related to the generation of
accurate planning domains from scratch whose actions re-
flect the real world dynamics. Our proposal helps designing
domain models as well as adapting the models to changes
in the environment by updating the model through moni-
toring and learning. APTC learns the effects of the actions
at a junction level and incorporates new actions in the do-
main. The second problem relates to scalability, where we
propose a distributed approach. APTC divides the city ac-
cording to the detected vehicle flows in order to generate
“green waves”. Using this approach the system is able to
perform well even in large city networks one order of mag-
nitude larger than the ones tested by other AP approaches.
The flows-based city splitting criteria and the model learn-
ing, the two main contributions of the paper, can improve an
AP system even if using them individually. Unifying both
techniques we obtain a declarative system for UTC that per-
forms better than other AP-based systems and the static and
reactive approaches present in many cities.

In future work, we are interested on analyzing how the
different parameters such as the monitoring and learning
rates affect the system’ performance. Continuous learning
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as well as concept drift detection aspects (Gama et al. 2004)
could be studied to improve the system’ performance and
adaptability.

Acknowledgements
This work has been partially supported by MINECO
projects TIN2014-55637-C2-1-R and TIN2017-88476-C2-
2-R and project PLICOGOR funded by Ministerio de
Economı́a y Competitividad.

References
Behrisch, M.; Bieker, L.; Erdmann, J.; and Krajzewicz, D.
2011. Sumo–simulation of urban mobility. In The Third
International Conference on Advances in System Simulation
(SIMUL 2011), Barcelona, Spain.

Box, S., and Waterson, B. 2012. An automated signal-
ized junction controller that learns strategies from a human
expert. Engineering applications of artificial intelligence
25(1):107–118.

Bretherton, R.; Wood, K.; and Bowen, G. 1998. SCOOT
version 4. In Proceedings of 9th International Conference
on Road Transport Information and Control.

Cenamor, I.; Chrpa, L.; Jimoh, F.; McCluskey, T. L.; and
Vallati, M. 2014. Planning & scheduling applications in
urban traffic management.

Fortune, S.; Hopcroft, J.; and Wyllie, J. 1980. The directed
subgraph homeomorphism problem. Theoretical Computer
Science 10(2):111–121.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of AI Research 20:61–124.

Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. J. Artif. Intell. Res.(JAIR)
27:235–297.

Gama, J.; Medas, P.; Castillo, G.; and Rodrigues, P. 2004.
Learning with drift detection. In Brazilian Symposium on
Artificial Intelligence, 286–295. Springer.

Garcı́a-Martı́nez, R., and Borrajo, D. 2000. An integrated
approach of learning, planning, and execution. Journal of
Intelligent and Robotic Systems 29(1):47–78.

Gulic̀, M.; Olivares, R.; and Borrajo, D. 2016. Using auto-
mated planning for traffic signals control. PROMET - Traf-
fic&Transportation 28(4):383–391.
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Jiménez, S.; Fernández, F.; and Borrajo, D. 2013. Integrat-
ing planning, execution and learning to improve plan execu-
tion. Computational Intelligence Journal 29(1):1–36.

Jin, J., and Ma, X. 2017. A group-based traffic signal control
with adaptive learning ability. Engineering Applications of
Artificial Intelligence 65:282–293.

Johnson, D. B. 1975. Finding all the elementary circuits of
a directed graph. SIAM Journal on Computing 4(1):77–84.

Keyder, E., and Geffner, H. 2009. Soft goals can be
compiled away. Journal of Artificial Intelligence Research
36:547–556.

Martı́nez, D.; Alenya, G.; Torrás, C.; Ribeiro, T.; and Inoue,
K. 2016. Learning relational dynamics of stochastic do-
mains for planning. In Proceedings of the 26th International
Conference on Automated Planning and Scheduling.

McCluskey, T., and Vallati, M. 2017. Embedding automated
planning within urban traffic management operations. In
Proceedings of the 27th International COnference on Au-
tomated Planning and Scheduling (ICAPS-17).

Mourao, K. 2014. Learning probabilistic planning operators
from noisy observations. In Proc. of the Workshop of the UK
Planning and Scheduling Special Interest Group.

Papageorgiou, M.; Ben-Akiva, M.; Bottom, J.; Bovy, P. H.;
Hoogendoorn, S.; Hounsell, N. B.; Kotsialos, A.; and Mc-
Donald, M. 2007. Its and traffic management. Handbooks
in Operations Research and Management Science 14:715–
774.

Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning symbolic models of stochastic domains. Journal of
Artificial Intelligence Research 29:309–352.

Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39(1):127–177.

Treiber, M., and Kesting, A. 2013. Traffic flow dynam-
ics. Traffic Flow Dynamics: Data, Models and Simulation,
Springer-Verlag Berlin Heidelberg.

Vallati, M.; Magazzeni, D.; Schutter, B. D.; Chrpa, L.; and
McCluskey, T. 2016. Efficient macroscopic urban traffic
models for reducing congestion: a pddl+ planning approach.
In Proceedings of the Thirtieth AAAI Conference on Artifi-
cial Intelligence (AAAI-16).

Xie, X.-F.; Smith, S. F.; and Barlow, G. J. 2012. Schedule-
driven coordination for real-time traffic network control. In
ICAPS.

Yoon, S.; Fern, A.; and Givan, R. 2007. FF-replan: A base-
line for probabilistic planning. In ICAPS, 352–360.



28

Towards a Framework for Understanding and Assessing Quality Aspects of
Automated Planning Models

Mauro Vallati and Thomas L. McCluskey
PARK research group, University of Huddersfield

Queensgate, HD13DH, Huddersfield
United Kingdom

n.surname@hud.ac.uk

Abstract

A crucial aspect of automated planning is the knowledge
model. It is used by the automated planning engines in order
to generate solution plans. Despite the fact that the quality
of the model has a strong influence on the resulting planning
application, the notion of quality for planning models is not
well understood, and the engineering process in building such
models is still mainly an ad-hoc process.

In order to replace ad-hoc processes and to support a more
comprehensive notion of quality, this paper introduces a qual-
ity framework specifically focused on automated planning
models.

Introduction

Planning knowledge models are conceptual models, in that
they are explicit (and formal) representations of some pro-
portions of reality as perceived by some actor (Wegner and
Goldin 1999). These models may contain representations of
objects, relations, properties, functions, resources, actions,
events and processes, in the application domain. There are
significant differences between generic conceptual models
and planning knowledge models, however, in that the plan-
ning model is aimed more for its operational value than for
its use in interactions and communications with domain ex-
perts and other stakeholders.

Up to now there has been no overall framework for con-
sidering the quality of the various components involved in
the life cycle of the planning knowledge model. There has
been research into the quality of planning applications in
terms of verification and validation (Frank 2013), and in
terms of accuracy and completeness of the knowledge model
(McCluskey, Vaquero, and Vallati 2017), but no overall con-
ceptual model covering the many aspects of such models.

In this paper, building on existing frameworks proposed
for general conceptual models (see, e.g., (Lindland, Sindre,
and Sølvberg 1994; Krogstie 2012; Krogstie, Sindre, and
Jørgensen 2006)), we introduce a quality framework specifi-
cally focused on automated planning models. The main ben-
efit of a framework is to replace ad-hoc notions of quality,
and ad-hoc knowledge engineering processes, with a con-
nected, composite and over-arching notion, that can be used
within all work relating to this endeavour. The proposed
framework is exploited for introducing and describing spe-
cialised aspects of quality of planning models.
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Figure 1: The proposed quality framework for planning
models.

Quality Framework for Planning Models
The framework aims at representing all the aspects that
affect the quality of knowledge planning models. Figure
1 presents the basic ideas of the quality framework. The
framework considers different sets, and processes. The fol-
lowing sets are introduced:

• L represents the language that is used to encode the model.
This can be, for instance, a version of PDDL. In this con-
text, the language is expected to have a well-defined syn-
tax, vocabulary, and operational semantics.

• D is the domain specification, a set of requirements for
the application domain at hand.

• M represents the model externalisation in a language L,
that is, a formal specification of the application domain
part of the requirements specification which represents
entities invariant over every problem instance, such as ob-
ject classes, functions, properties, relations, and operators
(McCluskey, Vaquero, and Vallati 2017), as well as the
specification of problem instances that has to be reasoned
upon by the planning engine.

• I is the interpretation, that is, the internal specification of
either a human (expert) or an automated technique of the
domain requirements D, that allows to generate the model
M, in the selected language L.
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• K represents the relevant explicit current knowledge, rep-
resented in formal or semi-formal format, that is available
with regards to the modelling of the domain.

• E is the algorithm exploited by a planning engine in order
to generate, given the model externalisation of the domain
and of a problem, a solution plan P.

• Finally, P stands for the solution plans that can be ob-
tained, using the engine E on the model externalisation
M.

Processes in Figure 1 represent interactions between sets,
that lead to changes in one (or more) of the involved
sets. In our framework, processes have been named follow-
ing, to some extent, the existing nomenclature proposed in
(Krogstie, Sindre, and Jørgensen 2006), appropriately ex-
tended and modified for the sake of dealing with planning
domain and problem models.

Articulation (D → M) is the process where the domain D
is encoded as a model M by means of a specific language L.
The articulation is performed by an interpreter, on the basis
of her interpretation I of the domain, and of the available
knowledge K.

The Reflection process stands for the impact that a lan-
guage L has on the model externalisation, as well as on the
planning engine E. The impact on the model is extremely
intuitive: different languages provide different expressive
power, and different ways for formalising the relevant spec-
ification requirements of the domain. The language has a
strong impact on the planning engine, as different engines
support different languages, or different subsets of the lan-
guage’s features. Furthermore, similar dynamics can be dif-
ferently encoded in different languages, with a potentially
different impact on the operationality of planning engines. In
this context, operationality refers to the ability of an engine
to deliver a solution plan given some resource constraints,
that are specified in the domain specification.

Execution (M → E → P) is the process of generating so-
lution plans, by proving as input of the planning engine E
the model externalisation M.

Activation (P → D) captures the changes that the use of
the model may trigger in the domain specification D. This
focuses on refinement in the specifications that the use of
planning highlighted.

The changes (D → D) process incorporates changes to
the specification that are due to environmental variables.
This can be the case of a logistic company that decides to
extended its transport fleet by including different kind of
vehicles. As it is apparent, such a decision would change
the domain specification, but not because of any automated
planning-related aspects.

The evolution (M → M) process focuses on the evolution
of M. This can be the result of improvements in the current
knowledge K or, for instance, because of the modification
of the interpretation I due to a better understanding of the
specifications. Evolution can also be due to the use of refor-
mulation techniques, that change the model externalisation
in order to improve the performance of the engine E.

Quality Concepts
A single general quality notion has been suggested by a large
strand of previous work in the AI planning area (McCluskey,
Vaquero, and Vallati 2017; McCluskey 2002). However, as
pointed out by the SEQUAL framework (Lindland, Sindre,
and Sølvberg 1994), a general quality notion cannot be di-
rectly evaluated nor measured. It is therefore pivotal to in-
troduce a number of quality dimensions, that include aspects
and elements that is possible to measure and analyse. Qual-
ity levels for conceptual models are usually defined follow-
ing the semiotic ladder (Stamper 1996). The semiotic ladder
introduced six levels, corresponding to different dimensions
(either related to the IT platform or to the human society).

In the following we specialise the main quality types in
order to fit the needs of planning models, and expected users
and knowledge engineers. Noteworthy, due to the inner aims
of planning models –that are not mainly focused on commu-
nicating knowledge, but on allowing the generation of so-
lution plans–, we have to introduce quality aspects that are
not covered in the semiotic ladder, and to drop some aspects
that are not particularly relevant for the planning models’
purposes. Quality aspects separate the goals, which repre-
sent what this aspect is trying to assess and maximise, from
the means for achieving such goals.

Physical Quality: following the existing literature, this
quality has two main goals, the externalisation and the in-
ternalisability. The former refers to the fact that the model
M is an artefact, resulting from the externalisation (in other
words, of making explicit) of the interpretation knowledge I
of an interpreter, and is based also on the available current
knowledge K. Externalisation also covers the fact that the
considered application domain can be represented under the
form of some symbolic model, specifically using available
planning-oriented languages. The internalisability stands for
the fact that the model M is persistent and available to inter-
preters that can understand it and interpret it, and can be
used by an appropriate engine E to generate solutions. In
other words, the internalisability focuses on the fact that the
model is available for the planning engine, as well as to ex-
perts that may need to check or revise it. At a first glance this
may seem trivial in the typical planning settings, particularly
for a domain model. However, in terms of problem mod-
els, it may be the case that such problems are automatically
generated by combining information gathered from differ-
ent sources (sensors, data bases, etc.), and the process may
be hard to reproduce.

Semantic Quality aims at the goals of accuracy and com-
pleteness. In this context, we rely on the definitions provided
by McCluskey, Vaquero, and Vallati (2017). Accuracy is fo-
cused on relating the model M and the domain specification
D, by ensuring that M is a valid representation of the spec-
ification, i.e. it encodes all the aspects that are correct and
relevant for the domain. Conversely, completeness involves
the solution plans P in that it means that M allows to gener-
ate all (and only) solution plans that are correct with regards
to the domain specification D.

Pragmatic Quality: this covers how the model external-
isation is activated, i.e. the way in which the exploitation
of the model, maybe within a larger framework, can affect
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the domain specification and, in a broader sense, the appli-
cation domain itself. In principle, activation and articulation
can be seen as a co-design cycle, where feedbacks allow in
turn to improve the overall domain understanding and spec-
ification, and to evolve and refine the model externalisation,
with potential impacts on the efficiency of engines and on
the interpretation and current knowledge.

Syntactic Quality is probably the easiest quality aspect
that can be measured and assessed, as it aims at the syntac-
tic correctness of the model M with regards to the selected
modelling language L. It is important to remark that plan-
ning engines E may add additional constraints on the syntax
of the language, due to partial support of some language fea-
tures, for instance. The planning engine can not be selected
in isolation: the language and the planning engine are affect-
ing each other and, of course, decisions taken with regards to
E and L have repercussions on the rest of the modelling pro-
cess. For this reason, it is crucial to include also the engine
in the analysis of the syntactic quality.

Operational Quality: covers the ability of the selected
planning engine E to reason upon the model externalisation
M to generate P. This quality aspect incorporates two per-
spectives. (i) The shape of solution plans that E allows to
generate. On this matter there may be preferences in terms
of number of actions involved, or makespan, or cost of the
actions that are considered. It may also be the case that, for
the specific application domain, only optimal solution plans
are acceptable. (ii) The resource bounds that can be used by
E to solve a problem instance. In this context, acceptable
resource bounds can be defined –instance– in terms of run-
time, memory usage, number of CPUs, etc. Resource bounds
can be specified in the domain specification D, or may be de-
rived by the interpretation I, or by the current shared knowl-
edge.

Conclusions and Future Work

Knowledge engineering for automated planning is of great
importance to foster the exploitation of planning techniques
in real-world applications. A deeper understanding of how
quality is involved in the development process of knowledge
models, as well as a notion of quality for models, needs to
be derived. In this paper we have briefly introduced a quality
framework for use in viewing the development of the knowl-
edge model in automated planning. For future work, we en-
courage studies which demonstrate in more concrete terms
the benefits of using the framework.
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Abstract

We propose a novel method for learning planning operators
(action schemata) from example plans. This method, called
LOUGA (Learning Operators Using Genetic Algorithms),
uses a genetic algorithm to learn action effects and an ad-hoc
algorithm to learn action preconditions. We show experimen-
tally that LOUGA is more accurate and faster than the ARMS
system, currently the only technique for solving the same type
of problem.

Introduction
Automated planning deals with the problem of finding a se-
quence of actions that transfer the world from the current
state to a desired state. It is a model-based method, where
the model formally describes how the actions are changing
states of the world. Hence an important aspect of automated
planning is obtaining a proper model of actions. In this paper
we deal with classical (STRIPS) planning where actions are
defined via preconditions and postconditions (effects), each
being a set of predicates. The problem that we are address-
ing in the paper is how to learn these sets of preconditions
and postconditions automatically from examples of plans.

There exist various approaches to acquisition of planning
domain models. The early works such as EXPO (Gil 1994)
or later works such as STRIPS-TraceLearn (Shahaf, Chang,
and Amir 2006) improve action models incrementally af-
ter observing some problem during plan execution. Another
approach learns from expert traces and subsequent simula-
tions (Wang 1995). Frequently, the acquisition problem con-
sists of finding the domain model from examples of plans,
which is also the topic of this paper. In other words, the
problem is to learn a correct state transition function accord-
ing to observed sequences of actions and states. The system
ARMS (Yang, Wu, and Jiang 2007) uses partially specified
plans as its input, namely each plan consists of the initial
state, a sequence actions, and goal predicates. Intermediate
states might also be partially specified. Using MAX-SAT,
ARMS learns the preconditions and effects of actions. The
follower of ARMS called AMAN (Zhuo and Kambhampati
2013) allows some actions in plans to be wrongly recog-
nized. LOCM (Cresswell, McCluskey, and West 2009) and
LOCM2 (Cresswell and Gregory 2011) do not use a predi-
cate model of world states but they rather learn finite-state
automata for objects in the world. These automata describe

how properties of objects are being changed by actions. Sim-
ilarly, Opmaker2 (McCluskey et al. 2009) learns actions as
methods to change properties (states) of involved objects
and it requires some invariant formulas describing propo-
sitions that must be true in any state. ASCoL (Jilani et al.
2015) and LC M (Gregory, Lindsay, and Porteous 2017)
both only extend the LOCM system. ASCoL learns static
preconditions for LOCM and LC M extends it to work with
missing and noisy data. Finally LAMP (Zhuo et al. 2010)
learns more complex action models with quantifiers and log-
ical implications.

We solve the same problem as ARMS, but we relax the
condition of knowing the goal predicates. The proposed
system LOUGA (Learning Operators Using Genetic Algo-
rithms) learns from valid sequences of actions (not necessar-
ily from plans reaching certain goals as ARMS). We assume
that the initial state and a valid sequence of actions is given
as input. LOUGA can also exploit partially specified inter-
mediate states and a final state to find more accurate models.
We use a classical genetic algorithm to learn the effects of
actions and an ad-hoc algorithm to learn the preconditions
of actions. We show experimentally that LOUGA produces
more accurate domain models and it is faster than ARMS.

Background and Problem Specification

We work with classical STRIPS planning that deals with se-
quences of actions transferring the world from a given initial
state to a state satisfying certain goal condition. World states
are modeled as sets of predicates that are true in those states
and actions are changing validity of certain predicates.

Formally, let P be a set of all predicates modeling proper-
ties of world states. Then a state S ⊆ P is a set of pred-
icates that are true in that state (every other predicate is
false). Each action a is described by four sets of predicates
(B+

a
, B−

a
, A+

a
, A−

a
), where B+

a
, B−

a
, A+

a
, A−

a
⊆ P,B+

a
∩

B−

a
= ∅, A+

a
∩ A−

a
= ∅. Sets B+

a
and B−

a
describe positive

and negative preconditions of action a, that is, predicates
that must be true and false right before the action a. Action
a is applicable to state S iff B+

a
⊆ S ∧ B−

a
∩ S = ∅. Sets

A+
a

and A−

a
describe positive (add list) and negative (del list)

effects of action a, that is, predicates that will become true
and false in the state right after executing the action a. If
an action a is applicable to state S then the state right after
the action a will be γ(S, a) = (S \ A−

a
) ∪ A+

a
. If an action
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a is not applicable to state S then γ(S, a) is undefined. In
this work we use additional assumptions about the applica-
bility of actions, namely A−

a
⊆ S and A+

a
∩ S = ∅. The

first assumption says that if an action deletes some predicate
from the state then this predicate should be present in the
state. Similarly, if an action adds some predicate to the state
then the predicate should not be in the state before. These
assumptions can be easily included in the action model as
A−

a
⊆ B+

a
and A+

a
⊆ B−

a
.

In practice, operators are used in the domain model rather
than actions. Operator can be seen as a parameterized action.
Each operator has a set of attributes and specifies precondi-
tions and effects as predicates over these attributes:

(:action move

:parameters (?o - object ?m - place

?l - place)

:precondition (at ?o ?m)

:effect (and (at ?o ?l)

(not (at ?o ?m))))

Actions are obtained by substituting constants for the at-
tributes. The planning domain model is then specified by
the set of predicates and the set of operators. PDDL mod-
eling language (McDermott et al. 1998) is the most widely
used language for modeling planning domains; we will use
syntax of that language in our examples.

In our approach, we assume two types of input informa-
tion. First, there is a partial planning domain model consist-
ing of a set of predicates and a set of operators with attributes
but without the description of preconditions and effects. The
second type of input is a set of plans, where each plan con-
sists of the initial state and a valid sequence of actions. Par-
tially specified intermediate states or a goal state might also
be provided. The information about states can be in three
forms: a predicate was observed in the state, a predicate was
observed not to be in the state, or the state was fully ob-
served. We do not make any other assumptions about the
input data unlike ARMS that presumes that some effect of
every action is used by some later action or in the goal state.
The task is to complete the domain model by learning pre-
conditions and effects of operators such that the provided
input plans are valid plans according to this domain model.

LOUGA

The proposed learning approach works in two main stages.
First, we will learn action effects using a standard genetic al-
gorithm (Mitchell 1998) with some extensions. Second, we
will complete the learned action model by learning action
preconditions using a polynomial ad-hoc algorithm.

For the genetic algorithm, we need to encode action ef-
fects to a genome. We will show, how to reduce the number
of possible genomes by eliminating those violating condi-
tions imposed on action effects. We will also define the fit-
ness function that guides the genetic algorithm and we will
show some methods to help the genetic algorithm when be-
ing stuck in a local optima. Next, we will show that it is pos-
sible to learn the effects predicate by predicate rather than
all together. Finally, we will present the method for learning
action preconditions.

Genome model

Genetic algorithms work with individuals, each individual
encoding a solution candidate. In our case, an individual de-
scribes effects of operators. First, we generate a list of all
operator-predicate pairs such that the operator can use the
predicate in its add or delete lists. This property can be eas-
ily verified by checking that all attributes of the predicate
are among the attributes of the operator. We assume that at-
tributes are typed though this assumption can be relaxed as
we will show in the section on experiments. Each operator-
predicate pair will be associated with one of three values:

• 0: predicate is not in operator’s add and del lists,

• 1: predicate is in operator’s add list (positive effect),

• 2: predicate is in operator’s delete list (negative effect).

The individual will be the sequence of numbers that corre-
sponds one-to-one to the description of effects of operators.

For example, let us have a model with the following pred-
icates and operators:

(:predicates

(at ?o - (either object briefcase)

?l - place)

(empty ?b - briefcase)

(free ?o - object)

(in ?o - object ?b - briefcase)

)

(:action move

:parameters (?b - briefcase ?m - place

?l - place)

)

(:action put-in

:parameters (?o - object ?p - place

?b - briefcase)

)

For this model, LOUGA generates the following pairs:

1. ((at ?b ?m), (move ?b ?m ?l))

2. ((at ?b ?l), (move ?b ?m ?l))

3. ((empty ?b), (move ?b ?m ?l))

4. ((at ?o ?p), (put-in ?o ?p ?b))

5. ((at ?b ?p), (put-in ?o ?p ?b))

6. ((empty ?b), (put-in ?o ?p ?b))

7. ((free ?o), (put-in ?o ?p ?b))

8. ((in ?o ?b), (put-in ?o ?p ?b))

Hence, each individual will be described by a list of length
eight. For example, the individual with genome ’210 11000’
corresponds to the model in which operator (move ?b ?m ?l)
has predicate (at ?b ?m) in its del list and predicate (at ?b ?l)
in its add list and operator (put-in ?o ?p ?b) has predicates
(at ?o ?p) and (at ?b ?p) in its add list.

Note that it is possible to encode operator’s preconditions
in the same way, but we will present a more efficient method
to learn operator’s preconditions later.

Pre-processing

The genome model specifies the search space that the ge-
netic algorithm will explore. We can reduce this space fur-
ther by eliminating individuals violating constraints of the
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model. This is done by exploring the example plans and
identifying predicates that cannot be present in the add or
del lists of specific operators. LOUGA simulates execution
of the plan and for each state it finds two sets of predicates:
the first set contains predicates that are definitely in the cur-
rent state and the second set contains predicates that can pos-
sibly be in the current state, but it is not certain. Algorithm 1
describes how these sets are constructed and used.

Algorithm 1 Removing possible values of some genes.

Input: plan P; array M representing possible values of genes
Output: modified array M

1: Q← predicates from initial state
2: R - empty set of predicates
3: for all actions a from P do
4: generate a set of predicates X , which a can use
5: for all p ∈ X do
6: if p ∈ Q then ⊲ p is in the current state
7: M[(a, p),add] = false
8: R = R ∪ {p}
9: Q = Q \ {p}

10: else if p /∈ R then ⊲ p is not in the state
11: M[(a, p),del] = false
12: R = R ∪ {p}
13: end if
14: if predicates S were observed after a then
15: Q = Q ∪ S
16: R = R \ S
17: end if
18: if preds. S were observed missing after a then
19: Q = Q \ S
20: R = R \ S
21: end if
22: end for
23: end for

Initially, the first set Q contains all predicates from the
initial state (line 1) and the second set R is empty (line 2).
LOUGA then goes through the actions in the order specified
by the plan. For each action it generates the set of all pred-
icates that the action can use. If some predicate is present
in the state before the action, LOUGA marks that the action
cannot have that predicate in its add list (line 7). If a pred-
icate is definitely not present in that state, LOUGA marks
that the action cannot delete it (line 11). All predicates gen-
erated for the action are then added to the second set and
removed from the first one if they were present in it. If there
are some predicates observed in the state after the action,
all of these predicates are added to the first set and removed
from the second one. After that, LOUGA continues with the
next action until it processes the whole plan. The justifica-
tion of this process is as follows. If some predicate can be
modified by the action then that predicate can possibly be
part of the next state. If some predicate is in the state and
it is not modified by the action then the predicate stays in
the state. Also, information about observed predicates can
be exploited there (lines 14-21).

For example let us assume this short plan:

(:state

(empty b1)

(at b1 home)

(free pencil)

(at pencil home)

(at rubber home)

(free rubber))

(put-in pencil home b1)

(move b1 home office)

We know that there are exactly six predicates in the initial
state. Action (put-in pencil home b1) can work with pred-
icates (at pencil home), (at b1 home), (empty b1), (free
pencil) and (in pencil b1). Pairs made of these predicates
and operator put-in correspond to genes 4-8. Predicates (at
pencil home), (at b1 home), (empty b1) and (free pencil)
are definitely present in the state before action put-in, which
means that the action cannot add them. As a result, genes 4-
7 will have disabled value 1 during evolution. Predicate (in
pencil b1) is not in the initial state, which means that the ac-
tion cannot delete it and therefore gene 8 will have disabled
value 2 during evolution.

After processing the action we move all these predicates
to the second set (line 8) and delete them from the first set
(line 9), if they are present there. Now the sets contain these
predicates:

first set Q (definitely in the state)

(at rubber home)

(free rubber)

second set R (possibly in the state)

(empty b1)

(at b1 home)

(free pencil)

(at pencil home)

(in pencil b1)

The next action is (move b1 home office). Operator move
corresponds to genes 1-3, that means that the action can
use predicates (at b1 home), (at b1 office) and (empty b1).
Predicate (at b1 office) is in none of the sets, therefore the
action cannot delete it and gene 2 cannot have value 2. Other
predicates are already in the second set, so genes 1 and 3
will remain unchanged. We add predicate (at b1 office) to
the second set and continue with the next action (if any).

Fitness function

The genetic algorithm uses a fitness function which evalu-
ates the error rate of the model represented by the individual.
We assume three types of errors:

• add error: an action tries to add a predicate that is already
present in the world state,

• del error: an action tries to delete a predicate that is not
currently present in the world state,

• observation error: a predicate was observed in a state in
the original plan, but it is not present in the corresponding
state of the plan executed according to the current model,
or there is a predicate in a state that should not be present
according to observations about the corresponding state
in the original plan.
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Formally we can define these errors as follows: let S be a
state of a plan executed according to the model represented
by the individual, T be a set of predicates that were observed
in the corresponding state in the input plan, N be a set of
predicates that were observed not to be present in the corre-
sponding state, a be the action performed from state S and
p ∈ A+

a
, q ∈ A−

a
, s ∈ S and t ∈ T be some predicates. Add

error occurs when p ∈ S, del error occurs when q /∈ S, and
observation error occurs when t /∈ S, s ∈ N or – if T was
marked as a fully-observed state – when s /∈ T .

After all plans are processed, the fitness value of the indi-
vidual is defined using this formula:

(1− (erroradd + errordel)/(totaladd + totaldel))∗

(1− errorobs/totalobs), (1)

where erroradd, errordel and errorobs are the numbers of
corresponding errors, totaladd and totaldel are the num-
bers of add and delete operations performed in simulation,
totalobs is the total number of observations about intermedi-
ate and goal states plus the number of surplus predicates in
fully-observed states.

We tried a version of the fitness function that treated all
three types of errors identically, but it turned out not to be
ideal. When there were too many or too few observations
in input data, evolution could get stuck in a local optima
that favors good add and delete error rates over the obser-
vation error rate or vice versa. Treating observation errors
separately solves this problem. We also tried to split the add
and delete errors, but that had a marginal effect on efficiency.
Obviously, the fitness value 1 means a perfect individual.

The genetic algorithm

LOUGA uses a classical genetic algorithm with one-point
crossover and mutation (Mitchell 1998). We tried more so-
phisticated versions of those operators but we did not find
any that would perform significantly better than the standard
versions. We extended the standard algorithm by two addi-
tional operators applied when the population stagnates for
some time (i.e. when the best individual is of certain age).

The first operator is basically 1-step local search starting
from the best individual’s genome to find all options how to
change one gene to get a better individual. Genes are picked
one by one and for every gene, every possible value is tried
and resulting individuals are evaluated. As every gene has at
most three possible values, there are at most 2∗N candidate
genomes, where N is the length of genome. All individu-
als that performed better than the current best individual are
added to the population.

The second operator is applied when even the local search
cannot find a better individual. It stores the best individ-
ual and restarts the population. Next time before restarting
it tries to use the information from previous runs by cross-
ing the current best individual with the stored genomes from
previous runs. If it breaks the stagnation, evolution goes on
as before until it starts stagnating again or a perfect individ-
ual is found. If the algorithm cannot find a better local op-
timum after multiple restarts, the operator deletes the local
optima list and the genetic algorithm starts from scratch.

Learning effects predicate by predicate

In complex1 domain models, individuals’ genomes can be
too long for the genetic algorithm to work effectively.
LOUGA solves this problem by learning operators’ lists sep-
arately for each predicate type. It means that an instance of
the genetic algorithm is run for each predicate type sepa-
rately. In each instance, genomes are built only from those
operator-predicate pairs that use the correct predicate type
and the fitness function ignores observations of predicates
of types other than the current predicate type.

This method generates the same genome as if all predi-
cates were learned at once, the learning process is only split
into multiple parts. These parts are independent to each other
because occurrence of a predicate of one type cannot affect
whether occurrence of a predicate of another type is incor-
rect or not. Therefore this method is sound and yields the
same outcome as the standard approach.

Algorithm 2 Generation of precondition lists

Input: genome G; set of input plans Q
Output: model M

1: create model M represented by G
2: Y, N - integer fields indexed similarly as G; all fields

initially 0
3: for all P ∈ Q do
4: s← initial state of P
5: for all a ∈ P do
6: for all pred. p, which can be generated by a do
7: g ← index of gene corresponding to (p,a)
8: if p ∈ s then
9: Y[g]++

10: else
11: N[g]++
12: end if
13: end for
14: s← s after performing a according to M
15: end for
16: end for
17: for all gene g ∈ G; g corresponds to predicate p and

operator o do
18: if G[g] = 0 then
19: if N [g] = 0 && Y [g] > 0 then
20: add p to preo
21: else if N [g] > 0 && Y [g] = 0 then
22: add (not p) to preo
23: end if
24: else if G[g] = 1 then
25: add (not p) to preo
26: else if G[g] = 2 then
27: add p to preo
28: end if
29: end for

1As ’complex’ models we consider models that have a large
number of predicate types and operators. Such models usually have
long genomes so the genetic algorithm has to search through a large
hypothesis space.
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Learning preconditions

After the add and del sets are learned, the sets of precon-
ditions (including preconditions due to static facts) are gen-
erated. LOUGA goes through every plan and for every op-
erator and every relevant predicate it counts the number of
cases where the predicate was present before the action was
performed and the number of cases where it was not present.
After every plan is processed, a positive precondition is cre-
ated for every such pair that the predicate was always present
before the action was performed, and a negative precondi-
tion is created for every such pair that the predicate was
never present before the action was performed. If evolution
gives a perfect individual, this method yields proper precon-
dition lists. Algorithm 2 describes this process formally.

Results of Experiments

We evaluated experimentally the contribution of compo-
nents of LOUGA and we compared LOUGA to ARMS,
which is the only other technique solving the same prob-
lems. All experiments were run on laptop with Intel Core
i5-2410 2.3GHz processor and 8GB of RAM. We used
five classical domains from planning competitions, namely
Blocksworld, Briefcase, Flat-tyre, Rover, and Freecell. Their
basic characteristics are given in Table 1.

Briefcase Blocksworld FlatTyre Rover Freecell

# object types 3 1 5 7 3
# predicate types 4 5 12 25 11
# operators 3 4 13 9 10
Avg. size of

effect lists
3.3 4.5 2 3 5.6

Avg. parameters
of operators

2.66 1.5 2.33 4 4.9

Table 1: Comparison of domain models used in experiments.

For each experiment, we randomly generated 200 valid
sequences of actions (plans) and performed five-fold cross-
validation test by splitting them in five equal parts and run-
ning algorithms five times. During each run we used four
groups as learning data and the fifth group as a test set.
Plans generated for the first three domains had usually 5-
8 actions. For domains Rover and Freecell, we generated
random walks (without a preset goal) that had about 15-20
actions.

Most tables show runtimes and error rates of generated
models (smaller numbers are better). We define errors in
similar way as described in the section about fitness function
of LOUGA. Add and delete error rates are calculated by di-
viding the number of errors by the number of performed add
or delete actions. Since ARMS does not work with negative
observations, we only evaluate fulfillment of those observa-
tions that state which predicates were definitely present in
state. Observation error rate is therefore calculated by divid-
ing the number of unfulfilled observations by the total num-
ber of predicates observed in intermediate and final states.

The size of population was set to 10, the threshold for
local search was set to 7, the threshold for crossover with

Pred. by pred. Basic version

Briefcase 0.22± 0.15 0.86± 0.64

Blocksworld 0.81± 0.66 22.78± 40.38

FlatTyre 2.26± 0.74 111.76± 116.06

Rover 4.11± 0.33 ≫ 600

Freecell 5.73± 1.1 ≫ 600

Table 2: Performance of LOUGA learning a model predicate
by predicate compared to basic version (runtime in seconds
with standard deviation).

individuals from previous runs to 10, the threshold for pop-
ulation restart was 15 and mutation probability was 5% with
10% chance for a gene to be switched. From our internal
tests we saw that benefits of having bigger population do
not outweigh the longer computational time, so we kept the
population sizes low. Keeping thresholds high did not pro-
vide much benefit neither, because the population did not
usually break stagnation in reasonable time anyway.

Efficiency of predicate by predicate approach

In the first experiment, we will show the effect of split-
ting the learning problem to multiple smaller problems,
where each predicate is learned separately. Both versions of
LOUGA reliably find flawless solutions, so we present the
runtimes only (Table 2).

As expected, the predicate-by-predicate mode performs
significantly faster than the basic version. Moreover as
the standard deviation indicates, the predicate-by-predicate
mode is also more stable. Runtimes of the basic version var-
ied greatly, some runs were even 10 times longer than oth-
ers. Genetic algorithms usually suffer from such behavior
because of the randomness of the method. The predicate-by-
predicate mode works more consistently thanks to evolution
having a clearer direction. We can say that it generates only
one property at a time even though it is composed of many
genes. The basic version works with all properties together
and improvement in one direction can go hand in hand with
step back in other.

Comparison of GA and hill climbing

In the second experiment, we compared the genetic algo-
rithm with the hill climbing approach. In particular, we com-
pared three setups:

• LOUGA - the standard version with 10 individuals

• HC - hill climbing with 1 individual and local search in
every generation; restart when stuck in local optimum

• GA - genetic algorithm without local search operator

We performed tests on four different inputs from the
Blocksworld, Flat tyre and Freecell domains. For the Flat
tyre domain, we used inputs with only goal predicates in
ending states, so the problem had many solutions. In the
other domains, we used plans with complete initial and end-
ing states.

The results (Table 3) show that the genetic algorithm with-
out the local search operator performs much worse than the
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LOUGA HC GA

Briefcase 0.22 0.88 0.36

Blocksworld 0.81 2.22 1.78

Flat tyre (ambiguious) 2.26 1.82 4.2

Rover 4.11 6.92 34.54

Freecell 5.73 11.11 51.52

Table 3: Runtimes [s] of LOUGA, hill-climbing and a ge-
netic algorithm.

Genome length Runtime [s]
Types NoTypes Types NoTypes

Briefcase 26 32 0.22± 0.15 0.97± 0.47

Blocksworld 16 108 0.81± 0.66 1.91± 0.76

FlatTyre 67 405 2.26± 0.74 11.47± 3.65

Rover 201 2796 4.11± 0.33 97.86± 7.67

Freecell 291 1481 5.73± 1.1 30.7± 3.96

Table 4: Performance of LOUGA on models with and with-
out typing.

other two setups. Pure hill climbing performs better on in-
puts where there are many possible solutions. However if we
use complex domains, there is an advantage in incorporating
GA, because local search takes a lot of time on big genomes.

Efficiency of using types

We assume that objects (constants) are typed, which reduces
the number of candidate predicates for preconditions and ef-
fects. LOUGA also works with models without types so our
next experiment shows the effect of typing on efficiency.

The results (Table 4) show that LOUGA can handle do-
main models without types, thought efficiency decreases sig-
nificantly. The table also shows the increased size of the
genome when types are not used. The added genes (pred-
icates) can be split in two groups. The first group con-
sists of genes that use the unary predicates describing types.
These genes do not add any difficulty to the problem, be-
cause they are not used in any add or delete lists and thus
LOUGA immediately finds a trivial solution for those pred-
icates. The second group consists of genes that use the
original predicates. These genes do make the problem no-
ticeably harder. In the Rover domain significantly more of
these genes were created, because this domain has more op-
erators and predicate types, and therefore more operator’s
parameter-predicate’s parameter pairs were created by re-
moving typing and more genes needed to be added.

Comparison to ARMS

Finally, we compared performance of LOUGA and ARMS
(Yang, Wu, and Jiang 2007), which is still the most efficient
system for this kind of problem. We used two settings there.
First, we used example plans with complete initial states,
goal predicates, and a small number of predicates observed
in intermediate states (every predicate will have 5% chance
to be observed). This is the kind of input ARMS was created

ARMS Add ER Del ER Pre ER Obs. ER Runtime [s]

Briefcase 0.263 − 0.029 0 6.19

Blocksworld 0.409 0.095 0.039 0.001 28.82

Flat tyre 0.319 0.479 0.342 0.003 504.19

LOUGA Add ER Del ER Pre ER Obs. ER Runtime [s]

Briefcase 0 0 0 0 0.29

Blocksworld 0 0 0 0 0.64

Flat tyre 0 0 0 0 1.04

Table 5: Comparison of ARMS and LOUGA systems. In-
puts with goal predicates and small number of predicates in
intermediate states were used.

ARMS Add ER Del ER Pre ER Obs. ER Runtime [s]

Briefcase 0.318 − 0.032 0 6.72

Blocksworld 0.331 0.061 0.036 0.014 29.64

Flat tyre 0.336 0.507 0.311 0.005 548.09

LOUGA Add ER Del ER Pre ER Obs. ER Runtime [s]

Briefcase 0 0 0 0 0.22

Blocksworld 0 0 0 0 0.81

Flat tyre 0 0 0 0 2.26

Table 6: Comparison of ARMS and LOUGA systems. Inputs
with complete goal states were used.

for. Second, we used plans with complete initial and ending
states but no information about intermediate states, which is
input that suits LOUGA well.

Tables 5 and 6 clearly indicate that LOUGA outperforms
ARMS both in terms of runtime and quality of obtained
models. From the data we can also see that ARMS has some
problems generating delete lists. In many cases, there were
zero predicates in delete lists in total. We assume that it is
due to ARMS not having enough information about which
predicates need to be deleted. LOUGA has less trouble gen-
erating those lists thanks to the assumption that a predicate
has to be deleted before it can be added again to the world.
But in some cases in the first experiment the learned delete
lists were not the same as the delete lists of the original
model, because the information about what has to be deleted
was not sufficiently present in the plans. In the second exper-
iment LOUGA knew that every predicate in the ending states
was observed, so it typically found the original models.

Conclusions

The paper presents a novel approach to learn planning op-
erators from example plans using a genetic algorithm. We
presented several techniques to improve performance of the
classical genetic algorithm. First, we suggested the prepro-
cessing technique to restrict the set of allowed genomes.
Second, we used the genetic algorithm to learn action effects
only while the preconditions are learnt separately using an
ad-hoc algorithm. Third, we showed that action effects can
be learnt predicate by predicate rather than learning the ef-
fect completely using a single run of the genetic algorithm.
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The presented approach LOUGA achieves much better ac-
curacy and it is faster than the state-of-the-art system ARMS
solving the same problem.
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Abstract

Soft goals in planning describe optional goals that should be
achieved in the goal state. However, failing to achieve soft
goals does not result in the plan becoming invalid. State tra-
jectory constraints describe requirements towards the way the
target goal is achieved, thus describing requirements towards
the state trajectory of the final plan. Soft trajectory constraints
express preferences on how the hard goals are reached, thus
stating optional requirements towards the state trajectory of
the plan. Such a soft trajectory constraint may require that
some fact should be always true, or should be true at some
point during the plan. The quality of a plan is then mea-
sured by a metric which adds the sum of all action costs and
a penalty for each failed soft trajectory constraint. Keyder
and Geffner showed that soft goals can be compiled away.
We generalize this approach and illustrate a method of com-
piling soft trajectory constraints into conditional effects and
state dependent action costs using LTLf and Büchi automata.
With this we are able to handle such soft trajectory constraints
without the need of altering the search algorithm or heuristics,
using classical planners.

Introduction

Soft goals in planning are additional requirements towards
the resulting plan. These requirements differ from classical
(hard) goals in that violating them does not render a plan in-
valid. PDDL 3.0 (Gerevini and Long 2005) introduced state
trajectory constraints, which add constraints towards how
goals are achieved. These come in two flavors, as hard con-
straints and as soft constraints. For the rest of the paper, we
will refer to optional state trajectory constraints as soft tra-
jectory constraints. We use the term “soft goals” to mean
reachability soft goals and soft trajectory constraints alike.
This is justified since reachability soft goals ϕ can be seen
as a special case of soft trajectory constraints of the form
(at end ϕ).

For checking satisfaction of reachability soft goals, it is
sufficient to test if they hold in the final state. However, for
soft trajectory constraints, a more sophisticated method of
checking their satisfaction is required. For example, if a soft
trajectory constraint requires a fact to be always true, it is
not sufficient to check if the fact is true in the final state, but
it needs to be tracked to check if the fact holds at any given
step of the plan.

The introduction of soft goals changes the overall quality
of a plan such that a cheapest plan achieving the hard goals
is not necessarily an optimal plan, as it does not take into ac-
count the achieving or failing of soft goals. For this, a metric
consisting of plan cost and a penalty for violated soft goals
is introduced. Thus, an optimal plan would incorporate all
soft goals while minimizing the total cost of the plan. This
corresponds to a constraint optimization problem, where the
constraints are the hard goals and the optimization tries to
fulfill the soft goals.

One issue that arises when dealing with soft goals is the
trade-off between minimizing cumulative action costs along
the way to a state satisfying the hard goals, and maximizing
rewards for achieved soft goals. An additional challenge is
how to inform the search about which paths appear promis-
ing towards optimizing this trade-off. In this paper, we show
how soft trajectory constraints can be compiled away using
LTLf, Büchi automata, conditional effects, and state depen-
dent action costs, generalizing the soft goal compilation in-
troduced by Keyder and Geffner (2009). This allows us to
use off-the-shelf classical planning heuristics to provide the
required guidance.

Related work

Baier and McIlraith (2008) give an overview over planning
with preferences, where they use the term preference to state
a preference of one plan over another, introducing differ-
ent preference formalisms based on quantitative, and qual-
itative languages. Using quantitative languages, the quality
of a given plan can be determined by a numeric value, such
as the overall reward in Markov Decision Processes (MDP).
In these MDPs the reward of an action can be used to spec-
ify preferences over actions. Alternatively, the quality of a
plan can be determined over a set of properties, such as
satisfied preferences. Such a system was implemented in
PDDL3 (Gerevini and Long 2005) where preferences can
be specified as temporal, or temporally extended predicates,
using a subset of LTL.

Baier et al. (2009) describe a method of compiling prob-
lems with temporally extended preferences into simpler ver-
sions consisting only of preferences that hold in the final
state, and can be evaluated using an objective function. The
authors achieve this by translating the LTL expressed prefer-
ences into parameterized non-deterministic finite state au-
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tomata (PNFA). They then track the state of each object
within the automaton using a predicate for each automaton,
which tracks the state of each object within the automaton.
Here objects can reside in more than one state of the automa-
ton at each time step. Additionally they introduce a predicate
that holds if the automaton is in an accepting state for any
given object. Instead of tracking the state of the automaton
by extending the existing operators, they modify their search
algorithm to automatically apply the automata’s state transi-
tions for each object. The quality of their approach can then
be measured using an updated objective function.

Keyder and Geffner (2009) show that soft goals can be
compiled away by introducing a new hard goal p, which can
be achieved in two ways: A collect(p) action which has zero
cost but requires the soft goal to be achieved, and a forgo(p)
action that has costs equal to the utility of p but can be exe-
cuted when the soft goal was not achieved. These actions can
only be executed after the original plan goal was reached.
However their approach does not take trajectory constraints
into account, focusing on reachability soft goals only. We
build upon this work to generalize their approach towards
soft trajectory constraints.

Preliminaries

Linear-time temporal logic on finite traces

Linear-Time Temporal Logic (LTL) is a modal logic capable
of expressing logic expressions referring to time. As we will
see later in this section, LTL can be used to express trajectory
constraints. Let V be a set of finite-domain state variables
with associated finite domains Dv . We call pairs (v, d) with
v ∈ V and d ∈ Dv facts, and we denote the set of all facts
by F . Then an LTL formula ϕ over V is either an atomic fact
(v, d) over V , or of the form ¬ϕ, ϕ ∨ ψ, ©ϕ (“next ϕ”),
or ϕUψ (“ϕ until ψ”), where ϕ, ψ are LTL formulas. Other
propositional connectives can be defined as abbreviations in
the usual way, such as conjunction (∧), implication (→), bi-
implication (↔), truth (⊤), and falsity (⊥). Similarly, ♦ϕ
(“finally ϕ”) can be defined as an abbreviation for ⊤Uϕ, and
�ϕ (“globally ϕ”) as an abbreviation for ¬♦¬ϕ. We also in-
troduce weak until ϕWψ as an abbreviation for ϕUψ ∨�ϕ.
Then the semantics of LTLf (LTL on finite traces) is defined
as the interpretation over finite traces denoting a sequence of
instants of time. Let µ = (µ(0), µ(1), . . . , µ(n)) be such a
trace with µ(i) ⊆ F for all i = 0, . . . , n. Then the truth of a
formula ϕ along trace µ is defined as follows (De Giacomo
and Vardi 2013):

µ, i |= a iff a ∈ µ(i) for a ∈ V

µ, i |= ¬ϕ iff µ, i 6|= ϕ

µ, i |= ϕ1 ∧ ϕ2 iff µ, i |= ϕ1 and µ, i |= ϕ2

µ, i |= ©ϕ iff i < n and µ, i+ 1 |= ϕ

µ, i |= ϕ1Uϕ2 iff ∃j, i ≤ j ≤ n : µ, j |= ϕ2 and

∀k, i ≤ k ≤ j : µ, k |= ϕ1

µ |= ϕ iff µ, 0 |= ϕ

Trajectory constraints as LTL

PDDL 3.0 (Gerevini and Long 2005) introduced state-
trajectory constraints, which are modal logic expressions
that ought to be true for the state trajectory produced dur-
ing the execution of the plan. As shown by De Giacomo et
al. (2014), these can be expressed using LTL:

(at end ϕ) := ♦(last ∧ ϕ)

(always ϕ) := �ϕ

(sometime ϕ) := ♦ϕ

(within n ϕ) :=
∨

0≤i≤n

© . . .©
︸ ︷︷ ︸

i

ϕ

(hold-after n ϕ) := © . . .©
︸ ︷︷ ︸

n

♦ϕ

(hold-during n1 n2 ϕ) := © . . .©
︸ ︷︷ ︸

n1

(
∧

0≤i≤n2

© . . .©
︸ ︷︷ ︸

i

ϕ)

(at-most-once ϕ) := �(ϕ→ ϕW¬ϕ)

(sometime-after ϕ ψ) := �(ϕ→ ♦ψ)

(sometime-before ϕ ψ) := (¬ϕ ∧ ¬ψ)W(¬ϕ ∧ ψ)

(sometime-within n ϕ ψ) := �(ϕ→
∨

0≤i≤n

© . . .©
︸ ︷︷ ︸

i

ψ)

Here, ϕ and ψ are propositional formulas on fluents, and
n, n1, n2 natural numbers. The predicate last is introduced
during the translation from LTLf to LTL, and is true if an
only if ¬©⊤ which is the case in the last state of the state
trajectory. As the plan resulting from our planning task is
always finite, we need this restriction on LTL.

Planning tasks

Since we want to compile away soft trajectory constraints
using conditional effects and state-dependent action costs,
we base our exposition on a formalization of planning tasks
that admits all of those features. This leads us to the follow-
ing definition:

A planning task is a tuple Π = 〈V, A, s0, s⋆,Φ〉 consist-
ing of the following components: V = {v1, . . . , vn} is a
finite set of state variables, each with an associated finite
domain Dv . A fact is a pair (v, d), where v ∈ V and d ∈ Dv ,
and a partial variable assignment s over V is a consistent
set of facts. If s assigns a value to each v ∈ V , s is called a
state. Let S denote the set of states of Π.A is a set of actions,
and each action is a pair a = 〈pre, eff〉, where pre is a par-
tial variable assignment called the precondition, and where
eff is an effect of the form eff =

∧

i=1,...,n(prei ⊲ effi) for

some number n ∈ N of conditional effects, each consisting
of an effect condition prei, again a partial variable assign-
ment, and an effect effi, also a partial variable assignment.
The state s0 ∈ S is called the initial state, and the partial
state s⋆ specifies the goal condition. Each action a ∈ A
has an associated cost function ca : S → N that assigns
the cost of a to each state where a is applicable. Finally, Φ
is a finite set of LTLf formulas over V , the soft trajectory
constraints. Each soft trajectory constraint ϕ ∈ Φ has an as-
sociated weight wϕ ∈ N specifying which importance we
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assign to satisfying ϕ. For states s, we use function notation
s(v) = d and set notation (v, d) ∈ s interchangeably. For
facts we also use sets and conjunctive logical expressions
interchangeably, where a set of facts is treated equivalently
to a conjunction of these facts.

The change set [eff]s of effect eff =
∧

i=1,...,n(prei⊲ effi)
in state s is the set of facts that eff makes true if applied in
s, i. e., the set

⋃

i=1,...,n[prei ⊲ effi]s, where [prei ⊲ effi]s
is either ∅, if s 6|= prei, or effi, if s |= prei. Then an action
a = 〈pre, eff〉 is applicable in state s iff pre ⊆ s and the
change set [eff]s is consistent. Applying action a to s yields
the state s′ with s′(v) = [eff]s(v) where [eff]s(v) is defined,
and s′(v) = s(v) otherwise. We write s[a] for s′. A state s
is a goal state iff s⋆ ⊆ s. We denote the set of goal states by
S⋆. Let π = (a0, . . . , an−1) be a sequence of actions from
A. We call π applicable in s0 if there exist states s1, . . . , sn
such that ai is applicable in si and si+1 = si[ai] for all
i = 0, . . . , n− 1. In that case, we call µπ = (s0, s1, . . . , sn)
the state trajectory induced by π in s0. We call π a plan
for Π if it is applicable in s0 and if sn ∈ S⋆. The action
cost of plan π is the sum of action costs along the induced

state sequence, i.e., cost(π) =
∑n−1

i=0
cai

(si). A plan π
is penalized with penalty wϕ for each soft trajectory con-
straint ϕ ∈ Φ that is violated on its induced trajectory. For-
mally, the value penalty(π, ϕ) for π with respect to ϕ is 0,
if µπ |= ϕ, and wϕ, if µπ 6|= ϕ. The overall penalty for π is
penalty(π) =

∑

ϕ∈Φ
penalty(π, ϕ).

The total cost of plan π is its action costs plus its overall
penalty, i. e., totalcost(π) = cost(π) + penalty(π). A plan
is optimal for Π if it minimizes totalcost among all plans
for Π.

Automata semantics of planning tasks

A deterministic finite automaton (DFA) is a tuple A =
〈Σ, Q,∆, q0, Qa〉 consisting of an alphabet Σ, a set of states
Q, a transition function ∆ : Q × Σ → Q, an initial state
q0 ∈ Q, and a set of accepting states Qa ⊆ Q. The transi-
tion system of any planning task Π = 〈V, A, s0, s⋆,Φ〉 can
be understood as a DFA A(Π) as follows: the input alphabet
is Σ = A× 2F . The set of states, the initial state, and the set
of accepting/goal states of A(Π) are those of Π, i. e.,Q = S,
q0 = s0, and Qa = S⋆. Finally, ∆ consists of all transitions
of the form 〈s, (a, t), t〉 where a ∈ A is applicable in s and
s[a] = t. What was lost in the translation from Π to A(Π)
are the action costs and the soft trajectory constraints. Costs
are trivial to handle by adding weights to the automaton, and
we will come back to that later. To give an automata-based
semantics to state-trajectory constraints, we need to review
the theory of Büchi automata first.

Büchi automata

A deterministic Büchi automaton (Büchi 1962) B =
(Σ, Q,∆, q0, Qa) consists of the same components as a
DFA, and differs from a DFA only in the acceptance con-
dition. Whereas a DFA A accepts a finite input word µ
if after reading µ, A is in an accepting state, a Büchi au-
tomaton B accepts an infinite word µ if, while reading µ,
B visits an accepting state infinitely often. For every LTL

formula ϕ, there is a deterministic Büchi automaton B(ϕ)
that accepts exactly those infinite words µ with µ |= ϕ. In
the case of finite traces (finite words) required by LTLf, the
same automaton accepts the word if at the end of the word
the automaton is in an accepting state (Giannakopoulou
and Havelund 2001). There are multiple algorithms for
constructing a Büchi automaton that accepts exactly those
words that satisfy a given LTL formula (Gerth et al. 1996;
Gastin and Oddoux 2001). Constructing an automaton from
a given LTLf formula ϕ can be achieved by first translating ϕ
into a LTL formula as described in De Giacomo et al. (2014)
and then applying a given construction algorithm. Simply
put, this translation adds a new predicate last which is only
true in the last instance of the interpretation sequence, and
therefore ensuring finite traces.

Now, for a planning task Π with a hard state-trajectory
constraint ϕ, the standard automaton construction consid-
ers the product automaton C of A(Π) and B(ϕ). Then, a
state trajectory µ is a solution to Π satisfying ϕ iff µ is ac-
cepted by C. For soft state-trajectory constraints, we can still
perform the same product automaton construction to track
which soft constraints are satisfied by a plan. Unlike with
hard constraints, however, the product automaton still has to
accept trajectories that violate soft constraints, and the vi-
olation has to be reflected in the plan costs, rather than in
the acceptance condition of the product automaton. The next
section describes the product construction, an assignment of
action costs that reflects the satisfaction or violation of soft
trajectory constraints, and a compact encoding of the prod-
uct automaton as a new planning task Π′.

Goal action penalty compilation

Let Π = 〈V, A, s0, s⋆,Φ〉 be the original planning task
with soft trajectory constraints Φ and with objective func-
tion totalcost as defined above. Transition costs aside, the
semantics of Π are captured by the product automaton
C = A(Π) ×

∏

ϕ∈Φ
B(ϕ). However, when compiling away

soft trajectory constraints, we do not want to generate an
automaton, but rather another planning task Π′ such that
A(Π′) is isomorphic to C. We now describe this construc-
tion. For simplicity of exposition, we assume that Φ consists
of a single constraint ϕ only. Generalization to more than
one soft trajectory constraint is straightforward.

The idea behind the construction of Π′ is to add a new
tracking variable τϕ to Π that keeps track of the current state
of B(ϕ). The actions in Π′ are those from Π, augmented with
conditional effects that take care of the correct evolution of
the value of τϕ, thus encoding the soft trajectory constraints
into the actions. Action costs stay the same. Finally, a ter-
minal action last op is added to Π′ that marks termination.
Only after termination has been marked, we may start eval-
uating the penalty term for unsatisfied soft goals.

Formally, let B(ϕ) = (Q,Σ,∆, q0, Qa) be the determin-
istic Büchi automaton that accepts ϕ. Then we create plan-
ning task Π′ = 〈V ′, A′, s′0, s

′
⋆, ∅〉 with V ′ = V ∪ {last} ∪

{τϕ}, with a propositional domain for last and domain Q
for τϕ. The initial state s′0 agrees with s0 on all variables in
V , and additionally, s′0(last) = ⊥ and s′0(τϕ) = q0.
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The actions are A′ = {o′ | o ∈ A} ∪ {last op} where
o′ = 〈pre′, eff′〉 is constructed from o = 〈pre, eff〉 as follows:
pre′ = pre and

eff′ = eff ∧
∧

〈q,s,q′〉∈∆ with

last /∈s

((τϕ = q ∧ P )⊲ τϕ := q′),

where P = q′ \ eff. In words, we add conditional effects to
track the value of τϕ for each transition in B(ϕ). The facts
in s are either already true in q as ensured by the effect con-
ditions P or are set to true by the original actions effect eff.
As an exception, if s contains the keyword last , which can
only be true in the last step of the plan, we add the new ac-
tion last op = 〈s⋆, last := ⊤〉 instead. To ensure that this
action has to be executed as the last step of any plan for Π′,
we replace the original goal condition s⋆ by the new goal
condition s′⋆ = last . As action costs, we have co′ = co for
all o ∈ A, and clast op = 0. Additional formal machinery
needed for the evaluation of the penalty term is deferred un-
til after the following proposition.

Proposition 1. Up to transitions with action last op, the
transition system A(Π′) is isomorphic to the product of the
transition system A(Π) and trajectory constraints LTLf au-
tomaton B(ϕ).

Proof. For this proof we slightly alter B(ϕ) such that each
transition not only consists of a partial variable assignment,
but a tuple of a state and an action. We replace each transi-
tion 〈q, s, q′〉 in B(ϕ) by a set of new transitions 〈q, (o, t), q′〉
for all (t, o) ∈ S × A such that s ⊆ t, where o is an action
that after applying to q results in q′. Doing this creates an
automaton with the same signature as A. From this altered
Büchi automaton we can now easily construct A(Π)×B(ϕ),
by simply creating the Cartesian product of the two automata

(Baier and Katoen 2008). A transition 〈s′q, (o′, t′q
′

), t′q
′

〉 is
contained in A(Π′) if and only if o is applicable in s ∈ Π

and t = apply(o, s) and (τϕ, q) ∈ s′q and (τϕ, q
′) ∈ t′q

′

.
Then 〈s, (o, t), t〉 ∈ A(Π) and 〈q, (o, t), q′〉 ∈ B(ϕ) if and
only if 〈(s, q), (o, t), (t, q′)〉 ∈ A(Π)×B(ϕ), thus A(Π′) is
isomorphic to A(Π)× B(ϕ).

Now that we can track the state of each soft trajectory con-
straint within the planning task Π′, we need to add penalties
for all constraints not achieved in the reached terminal state.
For this we add another propositional variable in goal to
Π′ that is initially false, and change the goal s′⋆ from last
to in goal . This means that every plan for Π′ has to in-
clude an occurrence of the new action penalize = 〈last ∧
¬in goal , in goal〉 as its last step. The cost function of the
action penalize now simply determines the penalty value
penalty(π) based on which soft trajectory constraints ϕ ∈ Φ
are violated by testing whether the corresponding tracking
variables τϕ encode accepting or non-accepting Büchi au-
tomata states in the current planning state. More formally,
cpenalize =

∑

ϕ∈Φ
[τϕ /∈ Qϕ

a ]wϕ where [τϕ /∈ Qϕ
a ] = 1 if

τϕ = q and q 6∈ Qϕ
a for some q ∈ Qϕ, and 0 otherwise.

Notice that the action penalize has state-dependent costs
that are not universally supported by planning systems.
However, those can be compiled away to state-independent

0 1

¬dirty

dirty

Figure 1: Büchi automaton for �¬dirty

costs, if this is desired (Geißer et al. 2015). Notice further
that determining the value [τϕ /∈ Qϕ

a ] is also simple. It can
either be rewritten as

∑

q∈Qϕ\Qϕ
a
[τϕ = q], where [τϕ = q]

is 1 if s(τϕ) = q, and 0 otherwise; alternatively, another
new propositional variable is violatedϕ can be added to the
planning task that is true iff the value of τϕ represents a non-
accepting state. Then cpenalize =

∑

ϕ∈Φ
[is violatedϕ]wϕ.

A natural modeling would treat is violatedϕ as a derived
variable, and would have axioms that express is violatedϕ
in terms of τϕ. We mention this latter possibility since it
makes the relation between our proposed compilation and
that of Keyder and Geffner (2009) obvious (cf. Remark 1
below).

In any case, it is clear that adding this action preserves the
original objective function.

Proposition 2. Let Π′ be the compiled task from Π. Then an
optimal plan for Π′ is also an optimal plan for Π (without
the penalize action).

Proof. From Proposition 1 we get that the compilation is
sound and complete. The objective function of the original
task is penalty(π) + cost(π). Up until the penalize action,
the objective function sums up all action costs, as the cost
functions for each action are not altered by the compilation.
The penalize action then adds a penalty for each soft trajec-
tory constraint that is not satisfied, resulting in an objective
function identical to the original objective function.

Example 1. Let a1 = 〈⊤, dirty〉 be an action and ϕ the
preference �¬dirty . We can then track the state in the au-
tomaton in Figure 1 by adding the conditional effect (τϕ =
0 ⊲ τϕ := 1) to action a1, as can be derived from Fig-
ure 2. Let a2 be another action that does not have dirty
among its effects. Then we need to add the conditional effect
(τϕ = 0 ∧ dirty ⊲ τϕ := 1) to a2 that transitions from state

0 to state 1 if dirty is true regardless of the effect of a2.1 The
partial cost function c for this preference is c = [τϕ = 1]wϕ

and is added to the cost of the penalize action. This addswϕ

to the total plan cost if B(ϕ) is in the non-accepting state 1.

An analysis of the penalize action shows that after apply-
ing the EVMDD compilation (Geißer et al. 2015), the result-
ing operations correspond to the operations collect , forgo,

1It is an invariant of this planning task that, whenever dirty is
true, τϕ is 1. Therefore, the effect condition τϕ = 0 ∧ dirty can
never be satisfied. However, detecting this, and then removing con-
ditional effects whose condition is inconsistent with an invariant,
and thus simplifying the constructed conditional effects, is beyond
the scope of this work.
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τϕ :=







1 : τϕ = 0 ∧ (dirty ∈ [eff]s ∨

(s |= dirty ∧ ¬dirty /∈ [eff]s))

1 : τϕ = 1

0 : τϕ = 0 ∧ (¬dirty ∈ [eff]s ∨

(s |= ¬dirty ∧ dirty /∈ [eff]s))

Figure 2: Derivation of conditional effects for τϕ from Fig-
ure 1, where s is the current state of the search

is violatedϕ1

. . .

is violatedϕn

0

0

0

wϕ1

1

0

0

wϕn−1

1

0

0

wϕn

1

end

collect ϕ1 forgo ϕ1

collect ϕn−1 forgo ϕn−1

collect ϕn forgo ϕn

Figure 3: EVMDD compilation of penalize action with de-
rived variables is violatedϕi

, which are true if τϕi
is in a

non-accepting state. Numbers on edges are partial costs (=
costs of compiled actions).

and end described in the compilation by Keyder and Geffner
(2009). This immediately implies that our approach general-
izes the soft trajectory constraint compilation by Keyder and
Geffner (2009) to support trajectory constraints.

Remark 1. We’ve seen that we can express the cost of the
penalize action as cpenalize =

∑

ϕ∈Φ
[is violatedϕ]wϕ. Ex-

pressed as an edge-valued multi-valued decision diagram
(EVMDD) (Geißer et al. 2015), cpenalize looks as depicted in
Figure 3 (without the red annotations). The EVMDD-based
action compilation of Geißer et al. (2015) now turns each
edge of the EVMDD into a new auxiliary action. These new
actions are exactly the end , collect , and forgo actions from
Keyder and Geffner (2009) (indicated as the red annota-
tions).

One limitation of this approach is that the achievement of
any soft trajectory constraint is only represented by the h-
value (up until the penalize action). A more desirable com-
pilation would provide the search with a more accurate g-
value, thus informing the search when a soft trajectory con-
straint is achieved. In the following section we will demon-
strate a possible solution to this problem.

General action penalty compilation

In this section we will show how the above approach can be
extended to provide the search with a more accurate g-value.
The main reason for the uninformedness in relation to the g-
value is the fact that any penalty is only applied in the very
last step of the search in the penalize action. However, while
tracking the soft trajectory constraint’s automaton B(ϕ), we
already have information about the current acceptance status
of each soft trajectory constraint. We will now show how this
information can be used to add penalties and rewards to the
individual actions changing the state of B(ϕ).

Whenever an action a changes the value of τϕ, thus transi-
tioning from one state q to another state q′ in B(ϕ), we add
a penalty or a reward depending on the type of transition.
When q is an accepting state and q′ a non-accepting state in
B(ϕ), we add a penalty to the action cost. If, on the other
hand, q′ is an accepting state and q is a non-accepting state,
we can add a reward. The partial cost function for transi-
tions in B(ϕ) then takes the form

∑

q∈Qϕ [τϕ = q]ωϕ(q, q
′),

where ωϕ(q, q
′) is a penalty or reward term and is added to

the cost function c of a. For transitions from accepting to
non-accepting states, we set ωϕ(q, q

′) to a positive penalty
term and for transitions from non-accepting to accepting
states, we set ωϕ(q, q

′) to a reward in the form of a negative
value. Similarly, the partial cost functions for each type of
transition can be formulated, setting ωϕ(q, q

′) accordingly.
For the actual value of ωϕ(q, q

′), we use the value from the
original soft trajectory’s weight wϕ. The total cost function
of each action is then the sum of the partial cost functions
plus the original action cost.

This way, we penalize actions resulting in a transition
from accepting to non-accepting states by giving them
higher costs, and reward actions that result in an accepting
state of B(ϕ) by applying negative costs. Note, that ωϕ(q, q

′)
only accounts once in the total cost, as we can never add
ωϕ(q, q

′) without subtracting it beforehand.

By construction, minimizing totalcost in the compiled
task Π′ amounts to the same as minimizing the totalcost of
the original task Π. One minor detail to take in to account is
if the initial state of B(ϕ) is in a non-accepting state, we need
to add a penalty to account for this. We do this by adding an
additional penalty to the penalize action.

The problem now is that we have introduced negative ac-
tion costs. As we can ensure that we do not have any nega-
tive cycles in our search, resulting in a total plan cost ≥ 0,
we can use planners that support negative action costs. Note
that having such negative-cost cycles would result in arbi-
trarily low totalcost , and the non-termination of the search,
as each node in the cycle can be reached by a yet cheaper
path. Currently, Fast Downward (Helmert 2006) with blind
heuristic supports negative action costs. However, for more
sophisticated heuristics, or planners not supporting negative
action costs, negative action costs need to be removed.

To remove negative action costs, we introduce a state tran-
sition cost (Table 1), where we specify the penalty/reward
for each possible transition type. This transition cost table
gives us greater control over the implications a state transi-
tion in B(ϕ) has towards fulfilling the soft trajectory con-
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Table 1: State Transition Costs

(a) Metric Preserving Costs

From
To

Accepting ¬ Accepting

Accepting 0 wϕ

¬ Accepting −wϕ 0

(b) Positively Shifted Costs

From
To

Accepting ¬ Accepting

Accepting wϕ 2wϕ

¬ Accepting 0 wϕ

(c) Adapted Positively Shifted Costs

From
To

Accepting ¬ Accepting

Accepting 0 2wϕ

¬ Accepting 0 wϕ

straint. For instance, by setting the penalty/reward ωϕ(q, q
′)

of a transition from an accepting state to another (or the
same) accepting state to ωϕ(q, q

′) = 0 and all other tran-
sitions to ωϕ(q, q

′) > 0, we can model the preference of
staying in an accepting state over all other possibilities. Ad-
ditionally, we can set the cost for leaving an accepting and
entering a non-accepting state higher as to penalize these ac-
tions.

The transition cost table (Table 1a) corresponds to the
cost function described above. Table 1b shows the cost func-
tion where the costs have been shifted by wϕ to remove
negative costs. As one can see this has the negative effect
of penalizing state transitions from accepting to accepting
states. Therefore, we introduce transition Table 1c, where
transitions from accepting to accepting sates are also not
penalized. Transitions leaving an accepting state, however,
are highly penalized, whereas remaining in a non-accepting
state is only penalized by a lower cost.

This cost function is informative regarding h and g values,
regardless of the actually used cost table, however the total
cost of the compiled task is greater than the original plans to-
tal cost totalcost(π′) ≥ totalcost(π), where π, π′ are plans
from Π and Π′ respectively. This is due to the fact that penal-
ties from staying in a non-accepting state are added multiple
times.

Experiments

We implemented our compilation into a recent version of
the Fast Downward planning system supporting state depen-
dent action costs. The evaluation was executed on a a subset
of the fifth International Planning Competition (IPC-5) plus
the Rovers domain from the IPC-3. We will now first dis-
cuss the results for the goal action penalty compilation, fol-
lowed by the general action penalty compilation, finalizing
with a discussion and comparison of the two approaches.
In the domain names, SP and QP stand for Simple Prefer-

ences and Qualitative Preferences, respectively. The differ-
ence in these being that simple preferences use goal state
preferences of the form (at end ϕ) only, and qualitative pref-
erences use more complex state trajectory constraints. As
the competition was for satisficing planning only, and many
instances were too hard for optimal planning, which we are
interested in, we generated additional simpler instances by
randomly sampling subsets of the soft trajectory constraints.
From each instance, we generated six new instances with
1%, 5%, 10%, 20%, 40%, and 100% of the soft trajectory
constraints. We did not alter the hard goals of the original
instances, which led to the exclusion of the openstacks do-
main, as finding optimal solutions for more than the very
simple instances proved to be too hard.

Goal action penalty compilation results

For the goal action penalty compilation, we used hblind, hmax,
and hM&S for the optimal track. For the satisficing bench-
mark, we used hadd and hFF with iterative eager greedy
search with three iterations. No significant differences where
found between the two heuristics in the satisficing bench-
mark, with a slightly better performance by hFF. In the re-
maining evaluation, we therefore only consider hFF.

As can be seen in Table 2, the performances varied over
the domains. This is a consequence of finding an optimal
solution to the hard goals even without considering the soft
trajectory constraints. The trucks domain did not execute on
the merge and shrink heuristic, as this heuristic does not sup-
port axioms, which are introduced by the translate step in the
Fast Downward planner.

As can be seen in Figure 4, the satisficing benchmark per-
formed rather well on the Rovers, Storage, and Trucks SP
domain, as their penalty is always close to zero. The quality
of the Trucks QP domain is slightly worse as fulfilling all
soft trajectory constraints becomes more difficult, the more
complex the instance is. For the pathways domain, we in-
creased the penalty for not achieving soft goals by a factor
of 10, as otherwise the optimal plan would be to ignore the
soft trajectory constraints. As this domain has no hard goals,
but soft trajectory constraints only, this would have resulted
in an empty plan. As can be seen in some cases this was not
sufficient and the resulting penalty is equal to the total cost,
indicating that no soft trajectory constraints where satisfied.
The storage domain also has no hard goals, but the penal-
ties where already high in comparison to the action costs,
requiring no alteration of the penalties.

General action penalty compilation results

Here we compare the results using the different configura-
tions from Table 1. The experimental setup is identical to
the above with the slight exception to configuration from
Table 1a where only hblind was used, as it requires negative
action costs. As can be seen in Table 3a, the increased in-
formedness of the general action compilation together with
the metric preserving cost function did not significantly in-
crease the amount of optimally solved instances. This is a
result of the relative uninformedness of the blind heuristic,
and the fact that the cost function needs to be evaluated for
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Domain hblind hmax hM&S

pathways SP 12.22% 18.33% 12.22%
rovers QP 18.33% 14.17% 16.67%
storage SP 33.33% 39.17% 32.50%
storage QP 25.49% 32.35% 24.51%
trucks SP 23.53% 15.29% na
trucks QP 19.83% 14.66% na

Table 2: Coverage of goal action penalty compilation of
the IPC-5 benchmark set with additional instances with ran-
domly sampled soft trajectory constraints, A* search for op-
timal solution.

Instance
0

50

100
Cost
Penalty

(a) Pathways SP

Instance
0

20

40

60 Cost
Penalty

(b) Rovers QP

Instance
0

20

40
Cost
Penalty

(c) Storage SP

Instance
0

20

40

60
Cost
Penalty

(d) Storage QP

Instance
0

25

50

75

100 Cost
Penalty

(e) Trucks SP

Instance
0

50

100

150 Cost
Penalty

(f) Trucks QP

Figure 4: Plan quality of the satisficing benchmarks, ordered
by total cost using goal action penalty compilation and hFF

heuristic

each action. As we currently use a relative unoptimized in-
ternal representation of the cost function, this significantly
increases the search time, leading to timeouts before a solu-
tion could be found.

As can be seen in Tables 3b and 3c, the coverage increased
significantly on these two cost compilations. This, however,
is an artifact of the introduced error, as all actions become

more expensive to execute. This results in the penalty for
not achieving the soft trajectory constraints to become rel-
atively low compared to the action costs. Thus, the empty
plan becomes the optimal plan where no hard goals are spec-
ified, and the shortest plan becomes the optimal plan where
hard goals are specified. This could be improved by a scaling
function, which increases the penalty for not achieving the
soft trajectory constraints and/or decreases the action costs.

Domain hblind hmax hM&S

pathways SP 18.00% na na
rovers QP 12.00% na na
storage SP 12.00% na na
storage QP 8.16% na na
trucks SP 16.15% na na
trucks QP 26.45% na na

(a) Metric Preserving Costs

Domain hblind hmax hM&S

pathways SP 36.67% 77.22% 7.22%
rovers QP 19.17% 11.67% 8.33%
storage SP 78.33% 78.33% 8.33%
storage QP 77.45% 76.47% 4.90%
trucks SP 23.53% 12.97% na
trucks QP 20.54% 8.93% na

(b) Positively Shifted Costs

Domain hblind hmax hM&S

pathways SP 36.67% 77.22% 7.78%
rovers QP 16.67% 15.00% 10.00%
storage SP 78.33% 78.33% 8.33%
storage QP 77.45% 77.45% 4.90%
trucks SP 23.53% 12.94% na
trucks QP 20.54% 12.50% na

(c) Adapted Positively Shifted Costs

Table 3: Coverage of general action penalty compilation
with the configurations from Table 1

Comparison to zero penalty compilation

Finally, we executed the same test set without a penalty
action cost on goal action penalty compilation with blind
heuristics for optimal solutions, and compared it to the above
results regarding the average fulfilled soft trajectory con-

Domain penalty no penalty

pathways SP 97.19% 46.10%
rovers QP 47.05% 20.20%
storage SP 99.50% 54.20%
storage QP 99.90% 48.40%
trucks SP 98.10% 75.20%
trucks QP 100.00% 100.00%

Table 4: Comparison of average fulfilled soft trajectory con-
straints with and without penalty cost, only regarding in-
stances for which a solution was found
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straints, as shown in Table 4. Here, no penalty corresponds
to the accidental fulfillment of the soft trajectory constraint,
as the search is not guided towards them. As can be seen,
the percentage of fulfilled soft trajectory constraints is sig-
nificantly higher with cost guidance. The trucks domain does
not show significant difference. This is a result of the overall
hardness of finding an optimal solution as can be seen in Fig-
ure 2, as instances for which a solution was found were also
easy to optimize towards their soft goals, whereas harder in-
stances where not solved at all. Harder instances where not
solved and thus not accounted for in Table 4.

Conclusion

In this paper, we introduced a method of compiling soft tra-
jectory constraints into actions with conditional effects and
state dependent action costs. For this, we created Büchi au-
tomata for each grounded soft trajectory constraint and mod-
ified the original planning task to track the state of each
automaton during the state trajectory of the current partial
plan. We then used state-dependent action costs to inform
the heuristic guiding the search towards an optimal solu-
tion considering the soft trajectory constraints. We then con-
ducted experiments using the IPC-5 benchmark set with ad-
ditional generated instances. We showed that this approach
enables classical planners to search for optimal solutions,
taking soft trajectory constraints into account, without alter-
ing the search algorithm or implementing special heuristics.

Future work

One issue we found was that some soft trajectory constraints
are simply not reachable or contradict hard goals. There-
fore, these soft trajectory constraints can be removed from
the search completely, and the penalty can be added directly
in the penalize action. We expect this to improve the overall
performance of our approach, as the effort needed to track
the states and calculate the costs is reduced.

Additionally, the cost function and automata tracking can
be simplified by applying optimizations on the generation of
the Büchi automata.

In the action penalty compilation, we introduced negative
action costs. In our setting, using the Fast Downward planner
(Helmert 2006), we were only able to use the blind heuristic,
as it does not fail on negative action costs. An analysis of
alternative heuristics concerning negative action costs could
significantly improve the performance of our approach.

Going beyond what is already supported by PDDL 3, con-
ditional preference networks (CP-nets) can express relations
between preferences (Baier and McIlraith 2008). We would
like to extend this notion to express relations between soft
goals in planning such that we can state things like if A then
B, where A is a fact that can become true and B is a soft
goal. For example, we could express the soft goal if in Paris,
visit the Eiffel Tower, where being in Paris may be a hard or
a soft goal, or even just a intermediate location, and visiting
the Eiffel Tower is not a hard goal but a soft goal. This in-
creases a planner’s capability of creating more user centric
plans, by incorporating these preferences into a planning in-
stance.

Acknowledgments. This work was partly supported by
BrainLinks-BrainTools, Cluster of Excellence funded by the
German Research Foundation (DFG, grant number EXC
1086). We thank the the anonymous reviewers for their in-
sightful comments, helping in improving the overall quality
of the paper.

References
Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. The MIT Press, 2008.

Jorge A. Baier and Sheila A. McIlraith. Planning with pref-
erences. AI Magazine, 29(4):25–36, 2008.

Jorge A. Baier, Fahiem Bacchus, and Sheila A. McIlraith. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence Journal (AIJ),
173(5–6):593–618, 2009.
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Abstract

Designing a planning domain is a cumbersome task
that requires time and expert knowledge. In order
to overcome this problem planning domain learning
techniques are used to create planning domains from
existing real-world processes. But like any data ob-
tained from a real-world application, data may be in-
complete or noisy. This paper presents PlanMiner-O2,
an algorithm that uses a classification algorithm, based
on inductive rule learning techniques, to learn action
models with discrete numerical values (represented as
action costs) from incomplete and noisy data. Starting
from plan traces with intermediate partially observ-
able states affected by noise, PlanMiner-O2 generates
valid PDDL planning domains that can be used cor-
rectly to solve planning problems. It was tested using
benchmark domains obtained from the International
Planning Competition and the results show that is able
to learn even with high levels of incompleteness and
noise, being competitive in error rate and time effi-
ciency with respect other state-of-art solutions.

1 Introduction
The task of defining an AI automated planning (AP)

domain is a lengthy process that requires a lot of time
and extensive knowledge of the problems that want to
be solved. This issue worsens depending on the com-
plexity of the world in which the planning domain
should be developed: in order to make the planning
domain able to work in a different array of situations,
the domain’s designer must take into account each one
of them. This lead to the definition of a planning do-
main being a hard task. To overcome this issue, one
approach that is recently receiving a lot of attention is
the use of planning domain learning techniques that
extract a planning domain from previously executed
plan traces.

In this paper, we present PlanMiner-O2: a new
planning domain learner that relies on the use of a
classification algorithm based on inductive rule learn-
ing. PlanMiner-O2 is able to learn action models from
incomplete and noisy information. The basis of our
approach is the use of a rule learning algorithm to
learn the fluents of the previous (pre-state) or subse-
quent (post-state) states associated to every action of
the planning domain and use them to create a plan-
ning domain. The main reasons to address this prob-
lem by inductive rule learning is that it improves the
interpretability of the models used to create the action

models as well as allows for the learning of logical
and numerical information. Another advantage of in-
ductive rule learning is that the models they produce
show explicitly the relationships between the vari-
ables involved in the problem. This extra information
can be used to guide the learning process.

Domain learning is a very broad subfield of Au-
tomated Planning with several solutions proposed
(Jiménez et al. 2012). In the literature, we can find so-
lutions as different as OBSERVER (Wang 1995) that
monitors executions of expert agents, TRAIL (Ben-
son 1996) that relies on an expert human teacher to
guide the learning process or EXPO (Gil 1994) that
starts from an initial incomplete domain and uses
plans executions to complete it. New approaches,
like LOCM (Cresswell et al. 2013), LC_M, NLOCM
(Gregory and Lindsay 2016) or NLOCMBF (Hayton
et al. 2016), rely on strategies such as using context-
free models and fit a series of constraints to create
valid models. As examples of domain learners that can
deal with incomplete information, we can find ARMS
(Yang et al. 2007) and LAMP (Zhuo et al. 2010). Both
generate sets of logic formulas to model domain’s
actions and select the best ones using a MAX-SAT
(ARMS) solver or a Marvok Net (LAMP). Among the
domain learners (Rodrigues et al. 2010; Pasula et al.
2007) that deal with noise in the input data, AMAN
(Zhuo and Kambhampati 2013) considers every in-
put plan trace as noisy and fits a collection of mod-
els from them. Other solutions (Mourao et al. 2012;
Halbritter and Geibel 2007; Asai and Fukunaga 2017)
use data mining techniques to guide the learning pro-
cess and can handle noise and incompleteness over
observed states. Finally, solutions like (Lanchas et al.
2007) apply regression techniques to deal with nu-
meric fluents.

Only a few of these solutions can handle noise
and/or incompleteness, the rest of them need complete
or noiseless information over observed states in or-
der to learn correctly. Those domain learners that deal
with both incompleteness and noise can’t learn plan-
ning domains with numerical information and they
generate black-box models hard to interpret by a hu-
man. Finally, some approaches that deal with numeric
fluents only deal with this kind of information leav-
ing aside core elements of planning models such as
logical fluents. A big drawback of these approaches
is that even if they can generate domains with low er-
ror rates, they usually don’t provide information about
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the learned domains’ validity. This information is cru-
cial to determine if a domain can be used and can be
easily tested with tools like(Howey and Long 2003b).
PlanMiner-O2’s main objective is to be able to learn
valid planning domain’s action models using incom-
plete and noisy observed states using the simplest ma-
chine learning models possible. The scope of the nu-
merical information learned is restricted to assigna-
tions, increments and decrements of numerical predi-
cates.

PlanMiner-O2 has been tested using data extracted
from problems solved using benchmark domains of
the International Planning Community. The data was
modified randomly with noise and incompleteness in
order to prove our hypothesis. The learned domains
were compared by measuring the difference between
them and the benchmark domains but also by testing
its problem-solving capabilities.

Next section will cover in detail every background
concept needed to understand how our solution works.
In section 3 our domain learner algorithm will be ex-
plained. Then, section 4 will contain the information
about our experiments and its results. Finally, in sec-
tion 5 the conclusions drawn from the results will be
discussed together with possible improvements of our
solution in the near future.

2 The Learning Problem
By considering the domain learning problem as a clas-
sification problem we reduce the problem to find a
collection of hypothesis that model a collection of
states of the world. In AP the world is represented
as a conjunction of fluents. A fluent is a statement
in the form of p(arg1, arg2, ..., argn) where p is a
logic predicate and argx an object of the world. Ob-
jects may have a type associated, and those types may
have a hierarchical relationship with other types. Each
fluent has a value associated: True or False in the case
of literal fluents or a numerical value in the case of
function fluents.

In the other hand, a planning domain can be seen as
a tuple < Ont,Act > where Ont is the ontology of
the world, the definition of the predicates and objects
of the world, and Act is a collection of PDDL actions.
In the same way, a PDDL planning action is a tuple
< Name, Par, Pre, Eff >, where Name is the ac-
tion’s name, Par are the parameters of the action, Pre
the preconditions that must be true to allow the exe-
cution of the action and Eff the effects of the action
in the world after being executed. An action whose
Par, Pre and Eff are not instantiated with world’s ob-
jects is called Action Model. This paper focuses on
the learning of deterministic action models. In these
action models, its preconditions and effects are unique
among the rest of the domain’s preconditions and ef-
fects. Finally, a plan is an ordered sequence of instan-
tiated actions whose execution modify the world to
achieve a given goal.

A Plan Trace (PT) is a plan with inter-
leaved states Sx between the plan’s actions Ax <
S0, A0, S1, A1, ..., Sn, An, Sn+1 > . Where S0 is the
initial state of the problem solved by this plan, Sn+1

is the goal state of that problem and the rest of states

Figure 1: Extract of a PT from a Zeno Travel problem.

are snapshots of the world in a given point during the
execution of the plan. Each action has an associated
prestate and poststate. The state Sx of an action Ax

is the prestate associated with the action and can be
seen as the world just before executing the action. In
the same way, the state Sx+1 is the poststate associ-
ated with Ax and is the state of the world just after
executing the action. Figure 1 shows an example of a
PT.

The world’s states of a PT are usually observed dur-
ing the execution of a given plan. This can lead to have
partially (incomplete) or wrongly (noisy) states ob-
served. Incompleteness occurs when some fluents of
the state (or the whole state) are not observed. Noise,
on the other hand, is a problem where the value of
a fluent is different of the value of the observed flu-
ent. Following the states shown in Figure 1 an incom-
plete version of state S0 would be (at p1 c2) ∧ (=
(fuel-level a1) 50)∧ (at a1 c2) an example of noise
over the same state.

3 PlanMiner-O2
PlanMiner-O2, the algorithm presented in this paper,
first extracts the actions of an input set of plan traces
with its associated prestates and poststates grouping
them by the action’s names. Then, the information of
the states associated with a given action is included
in a dataset, and after a preprocessing stage, and sent
to a classification algorithm in order to obtain a clas-
sification model. The process is repeated until every
action of the domain has been covered. The classifi-
cation models contain the information needed to dis-
cern between the pre-states and post-states of an ac-
tion and disassociates them. This disassociation helps
to extract the maximum information by obtaining the
tuples < attribute, value > that form both the pre-
states and post-states of the action. In the final stages
of PlanMiner-O2 this disassociation can be reversed
easily in order to create the PDDL action models
of the domain. Algorithm 1 shows an overview of
PlanMiner-O2 where PTs is the collection of input
plan traces. The main steps of PlanMiner-O2 are:

• EXTRACT_INFO. Extracts the information con-
tained in PTs generating a dataset for a given
action that contains the information of the pre-
states and post-states associated with action.

• PREPROCESS. Increases PlanMiner’s tolerance
to incompleteness and noise by applying an array
of techniques to the datasets (explained later).

• LEARN_RULES. This step uses a classification
algorithm that takes a Dataset and outputs a set
of rules for each class. Each of these rules model a
set of examples of the given class.
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Figure 2: Schema form of an action and its associated
states.

• COMBINE takes a set of rules and combines those
rules whose class is the same in a single rule. Fi-
nally, the output rules are post-processed in order
to create an action model.

Algorithm 1 Plan Miner algorithm overview.

Input: A collection of Plan Traces.
Output: A set of learned action models.

PlanMiner-O2(PTs)

1. ActM← {}

2. Foreach action in PTs, Do

(a) Dataset← EXTRACT_INFO(action, PTs)

(b) Dataset← PREPROCESS(Dataset)

(c) rules← LEARN_RULES(Dataset)

(d) ActM← ActM + COMBINE(rules)

3. Return ActM

EXTRACT_INFO creates a dataset for each dif-
ferent action in PTs. Given an action of the do-
main to be learned it extracts from the set of plan
traces PTs every pair < prestate, poststate > as-
sociated with it. An action in a PT consist in the
header of a PDDL action with its parameters in-
stantiated. Then, the procedure calculates the schema
form of every pair by taking each argument <
arg1, arg2, ..., argn > of the action and replacing the
i-th argument in every prestate’s and poststate’s fluent
in which it appears with a Parami token that repre-
sents a variable. Finally, every fluent in the state that
has not undergone at least one substitution is erased
from the state following a criterion of relevance (Yang
et al. 2007). A fluent is relevant if it shares anyone of
its parameters with the associated action’s parameters.
Figure 2 shows an example of the schema form of the
action board presented in Figure1 and its associated
states.

In order to use the information contained inside a
PT in a classification algorithm, datasets must be cre-
ated from the extracted states. Those datasets are com-
mon in machine learning and are described as size
n ∗ m matrices where n is the number of examples
of the dataset and m the number of attributes. In the
next pages, we are going to use planning terms instead
of machine learning term when referring to the learn-
ing data. So will lead to using the term "state" when
talking about a dataset’s example or "fluent" when re-
ferring to an attribute.

Fluent1 Fluent2 ... F luentm Class

V alue11 V alue12 ... V alue1m Class1
V alue21 V alue22 ... V alue2m Class2

... ... ... ... ...
V aluen1 V aluen2 ... V aluenm Classn

Fluentj are the elements which make up the state
Si, and V alueij the values of those fluents. V alueij
depends on the Fluentj type. Literal fluents values
can be True or False, while function fluents values
are a numerical value. Dataset class are prestate or
poststate depending on the relation of the state with
the given action. When representing states with a dif-
ferent number of fluents, the set of all attributes is cal-
culated as the union of the different sets of fluents of
each example. If a fluent doesn’t appear in an exam-
ple its value is set as a Missing Value. Dataset’s Miss-
ing Values (MV) are treated depending on the world
assumption made in the planning domain: When in-
terpreting the incompleteness of a state two interpre-
tations can be used: the Closed World Assumption
(CWA) or the Open World Assumption (OWA). CWA
interprets the world by considering that unobserved
fluents are false. Meanwhile, OWA considers that un-
observed fluents are missing, nor true or false, and
can’t be evaluated. PlanMiner-O2 follows the OWA
interpretation. By not considering the lack of infor-
mation as falsity, PlanMiner-O2 is able to accurately
produce planning domains.

F1 F2 F3 F4 Class

true 100 true MV Prestate

false 0 MV false Poststate

Example dataset using the data of Figure 2.
From left to right, Fx relate to: (at ?Y ?X),
(fuel-level ?Y ), (at ?X ?Z) and (in ?X ?Y ).

Before beginning the learning process, PREPRO-
CESS function cleans the dataset and adds new at-
tributes to it, helping the classification algorithm to
learn correctly. Noise reduction is realized over the
state’s information by applying various techniques.
These noise reduction techniques are applied differ-
ently depending on the type of the information con-
tained in the attribute. The cleaning process to at-
tributes with logical information is done by erasing
noisy and missing values following the next proce-
dure: On the one hand, noisy values are detected
by calculating the appearance frequency for each at-
tribute’s values in relation to the dataset’s classes. If
the frequency of a certain attribute’s value is lower
than a threshold it is replaced by an MV in the dataset.
Wrongly setting the threshold value will lead to the
learning algorithm to detect low appearance rate val-
ues as noise, affecting the learned domains by discard-
ing needed fluents in the action models. On the other
hand, those examples of the dataset whose attributes
only contains MVs are erased. This ensures that every
example in the dataset had at least one attribute with
useful information, minimizing noise problems.

PREPROCESS function add new attributes to each
example of the dataset. These new attributes are cal-
culated by selecting the different numerical fluents of
the dataset’s examples and computing the difference
between the fluent’s values of each associated prestate
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and poststate included in the dataset. These new val-
ues are added to the given post-state’s dataset row. If
there’s an MV in one of the states this difference can’t
be calculated.

LEARN_RULES uses the NSLV (New SLaVe)
(González and Pérez 2009) algorithm used to learn
the rules that model action’s states. NSLV is a clas-
sification algorithm based on inductive rule learning.
The rules created by NSLV use a weighted Disjunc-
tive Normal Form (DNF) model, following the struc-
ture detailed below:

IF C1 and C2 and . . . and Cm THEN Class is B

with weight w

where a condition Ci is a sentence Xh is A, with A
a label (or a set of labels) of the domain of the vari-
able Xn. Xn is an element of X the set of antecedent
variables of the rule, those antecedent correspond with
the attributes of the problem’s dataset. The domain of
the variables that correspond with logical fluents con-
tains only two labels to model "True" or "False", while
numerical variable’s domains contain a label for each
different value in the examples of the corresponding
variable. Finally, B is the value that represents a class
of a particular problem and w a measure of the quality
of the rule.

NSLV uses the Sequential Covering(Mitchell 1997)
(SC) strategy described in Algorithm 2, where E is
a collection of examples. The main steps of the SC
strategy used are:

• PERFORMANCE. Measures the difference in the
degree of completeness that causes the inclusion of
a given rule in the ruleset. In other words, it mea-
sures the number of new examples of E explained
by the addition of the rule in the collection of pre-
viously learned rules.

• LEARN_ONE_RULE. Uses a genetic
algorithm(GA) to select which tuples
< attribute, value > define the antecedent
of the rule that best fits a set of examples E. The
rule learned must cover at least one example of E.
The GA used is a steady state genetic algorithm
whose population size maintains constant: each
time an element is included in the population the
worst element of it is erased.

Starting from an empty ruleset, a new rule is ex-
tracted and added to it in each iteration. The exam-
ples covered by this new rule are penalized (step 3.b)
in order to guide the GA to learn rules that explain
new examples. Penalization is realized by marking the
examples instead of erasing them from the examples
set. Marked examples are avoided in the next itera-
tions of the learner, helping the algorithm to find a
new rule that explains new examples besides previ-
ously covered examples. This process ends when the
PERFORMANCE of an extracted rule is zero or less.

The criterion used to select the best rule is a key
element in NSLV. The criterion defined uses a multi-
criteria evaluation guided by a Lexicographical Evalu-
ation Function(LEF). The evaluation function’s differ-
ent criteria are ordered by their importance level. This

Algorithm 2 Sequential covering strategy of NSLV

Input: A set of examples and a fitness function.
Output: A learned ruleset.

SEQUENTIAL_COVERING (E, f )

1. Learned_rules← {}

2. Rule← LEARN_ONE_RULE (E, f )

3. While PERFORMANCE (Rule, E) > 0, Do

(a) Learned_rules← Learned_rules + Rule

(b) E← Penalize (Learned_rules, E)

(c) Rule← LEARN_ONE_RULE (E, f )

4. Return Learned_rules

order is essential to assure the rule’s accuracy and in-
terpretability level. The measures used are: complete-
ness, consistency and simplicity. Ordered by its im-
portance level.

NSLV is able to output two different types of DNF
rules: descriptive rules and predictive rules. Predic-
tive rules contain the minimum information needed
to classify an example, while descriptive rules contain
the minimum information needed to model an exam-
ple. In terms of information, the difference between
predictive and descriptive rules is that predictive rules
contain only the minimum information needed to se-
lect those examples that match the rule’s class. On
the other hand, descriptive rules contain every rele-
vant attribute of the set of examples covered by the
rule. PlanMiner-O2 uses descriptive rules to create
the domain’s actions models. Descriptive rules fil-
ter the dataset’s attributes giving only those tuples
< attribute, value > important to model a set of
examples, ignoring the rest. Another benefit of use
NSLV is that we can learn both numerical and logic
fluent together. This helps to use the classifier to find
relations between the different types of attributes.

COMBINE takes a ruleset and blends it into a sin-
gle rule. This ruleset is a subset of the ruleset gener-
ated using NSLV where every rule has the same class.
COMBINE is called until every class of the problem
has been covered. In a noise-free dataset, the number
of rules learned by NSLV is always 2, one for each dif-
ferent class (pre-states and post-states), so rules com-
bination is not necessary. COMBINE algorithm can
be seen in Algorithm 3

Then, COMBINE shorts the fluents by its associ-
ated numerical value and tries to insert, in order, each
one in a new rule with an empty antecedent. If there’s
no conflict between the rule and the fluent then the
fluent is added to the rule’s antecedent. A fluent can
create a conflict in the rule if there’s already a fluent
in the rule’s antecedent with the same predicate but
different value. If so, COMBINE procedure computes
the accuracy of the rule before and after substitute the
conflicting fluent with the new one, and then decides
about how to solve it.

EXTRACT_FLUENTS extracts each different flu-
ent contained in the rules’ antecedent and assigns
a numerical value to each fluent. This value is the
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Algorithm 3 Rule combination algorithm

Input: A collection of DNF rules and a dataset.
Output: A single DNF rule.

COMBINE(Ruleset, Dataset)

1. rule = {}

2. Fluents = EXTRACT_FLUENTS(Ruleset)

3. For each fluent in Fluents:

(a) If CONFLICTIVE(fluent, rule):

i. newrule = REPLACE(rule, fluent)

ii. If DIFF(rule, newrule, Dataset) > 0.05:

A. DEL_CONFLICT(rule, fluent)

(b) Else:

i. rulePre← fluent

4. Return rule

number of examples covered by the rule. If the flu-
ent was already extracted from a different rule’s an-
tecedent the number of examples covered is added to
the fluent’s associated numerical value. Finally, EX-
TRACT_FLUENTS sorts the fluents in descendent
order by its numerical value.

CONFLICTIVE function returns if there’s a con-
flict between a fluent and the rule. For example
if (at Param1 Param2) = false is in the an-
tecedent of rule it will create a conflict with the
fluent (at Param1 Param2) = true. If the dif-
ference between the accuracy changes of the new rule
and the old one is relevant enough, Replace function
is called, otherwise, DEL_CONFLICT is used. RE-
PLACE functions swaps the conflictive fluents in the
rule. Finally, DEL_CONFLICT erases the conflictive
fluent of the antecedent of the rule.

Once the rules are combined, COMBINE converts
the DNF rules to a PDDL action following a straight-
forward process:

• Action’s preconditions are taken directly from
the prestate class’ rule antecedent. Antecedent’s
attributes are translated directly into predicates
whose value is the attribute value.

• Action’s effects are extracted from the differ-
ence ∆(pre, post) between the prestate rule’s
antecedent and the poststate rule’s antecedent.
∆(pre, post) is defined as the set of changes that
must be done over pre in order to make it equal to
post

Numerical fluents are converted to a numer-
ical PDDL numerical precondition or effect by
taking the CRISP value associated with the set
assigned during the LEARN_RULES procedure.
COMBINE differentiates between the original nu-
merical attributes of the dataset and the new ones
added during the EXTRACT_INFO step. Artifi-
cially added numerical attributes are translated as
(increase/decrease (fluent) value) according to
its value.

Once the whole learning process has finished the
rest of the PDDL planning domain is created by sim-

ply adding the list of different types’ and parametrized
fluents extracted from PT to it. PlanMiner-O2 is able
to generate OWA and CWA action models. When cal-
culated the preconditions and effects for a certain ac-
tion, PlanMiner-O2 can generate them only deciding
to explicitly represent the negative fluents or not.

4 Experiments and Results
PlanMiner-O21 was tested using a collection domains
from the International Planning Competition IPC. The
objective of these experiments is to demonstrate that
PlanMiner-O2 is able to learn planning domain’s ac-
tion models with high levels of missing states’ infor-
mation and some levels of noise. In order to demon-
strate that PlanMiner-O2 can learn numerical infor-
mation, a number of benchmark domains can use
function fluents and action costs. These domains are
Driverlog, Satellite and Zenotravel. The details of the
domains used can be seen in Table 1. From each do-
main, 200 problems were set. The 80% of these prob-
lems were used as training problems and the 20% left
as test problems. Problems were solved using a goal
directed planner, not looking for optimal plans. The
experimental process used was defined as follows:

1. Training problems were solved using the hand-
crafted planning domain.

2. For each plan obtained in Step 1, a PT was created.

3. PTs were modified with noise or incompleteness if
applicable.

4. A new domain was learned from the collection of
PTs.

5. The learned domain and the original one were com-
pared and performance values were calculated.

6. Test problems are solved using the learned domain.

7. New plans generated in Step 6 were validated with
the original domain.

In order to ensure the results, a 10 fold cross-
validation was used. The final result is the average of
the results obtained in Steps 5 and 7 in each valida-
tion. Noise and incompleteness affect only to the PT’s
states and were included in the PT’s states randomly,
first, by changing the value of a given percentage of
fluents selected randomly and then, by erasing a given
percentage of fluents selected randomly. Noise was
also included by adding new possible fluents that can
not be found in the given states. The threshold value
used to discern between noise or not during the pre-
processing stage is set to 0.05%. The parameters of
NSLV’s genetic algorithm (population size, crossover
and mutation probabilities) are automatically gener-
ated by the classifier.

Performance is measured using 2 different criteri-
ons:

• Learned domain’s error rate.

• Learned domain’s validation rate with test prob-
lems.

1PlanMiner-O2 and experimental data used can be found
at https://github.com/Leontes/PlanMiner

http://ipc.icaps-conference.org/
https://github.com/Leontes/PlanMiner
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Problem |actions| |fluents| P̃L S̃L ˜CPUt
BlocksWorld 4 5 600 500 100

Depots 5 6 236 381 83

DriverLog 6 6 173 169 70

ZenoTravel 5 4 165 95 40

Satellite 5 8 91 178 37

Parking 4 5 57 200 98

Table 1: Benchmark Domains Characteristics(from
left to right): domain’s number of actions, domain’s
number of fluents, average number of actions in the
plans solved, average number of fluents in the plans’
states and average CPU time(in seconds) to learn a
domain.

The criterion used to measure the quality of the
learned domains is the domain’s error rate (Zhuo et al.
2010). Domain’s error rate is measured by comparing
the learned domain with the original one. Domain’s

error is defined as

∑

a∈Actions

error(a)

|Actions| where Actions

is the set of Actions of a given domain. Action’s er-
ror rate, error(a), is computed by counting the num-
ber of missing or extra fluents in the learned action’s
preconditions and effects and dividing it between the
number of possible fluents in those preconditions and
effects. When counting fluents, we take into account
that two fluents are equally semantically rather than
syntactically.

The results showed in Figure 3 demonstrate that
our solution can model planning domains close to
the original handmade planning domains: error rates
fall below 4% even with high levels of incomplete-
ness. In fact, incompleteness affects little to the learn-
ing process. In the worst cases, domains’ error rate
doesn’t rise beyond 7% with high levels of incom-
pleteness and some levels of noise. Using complete
and noiseless plan traces, PlanMiner-O2 achieves eas-
ily zero error. In those cases where even with this
kind of plan traces PlanMiner-O2 learns domains with
some errors, the error is produced because PlanMiner-
O2 doesn’t use information of how the fluents relate
with others fluents provoking an overfitting of some
models of the states. This overfit is produced because
without this information, PlanMiner-O2 can’t discern
which fluents are redundant in a state. For example,
Satellite and Parking domains’ error rate in the exper-
iments without noise is produced by, in both cases,
the existence of a single fluent with a given value in
some preconditions. A human expert designing these
domains would have omitted these fluents because it
can be inferred using other fluents’ values.

The second measure of the quality of the learned
domains is the domain’s validity. Plan validation is
calculated using the set of test problems selected for
each domain. A domain is valid if every plan ob-
tained with it can be validated using the original do-
main. Plan validation is realized using VAL(Howey
and Long 2003a), an automatic validation tool used in
the IPC. Roughly, VAL takes a problem, a plan and
a planning domain and executes the plan’s actions in
order over the initial state defined in the problem us-
ing the action’s definition contained in the planning
domain. A plan is valid if the resultant state of apply-

Noise % 0% 5%

Incompleteness % 0% 10% 50% 90% 0% 10% 50% 90%

BlocksWorld X X X X X X X X

Depots X X X X X X X X

DriverLog X X X X X X X X

Satellite X X X X X X X X

ZenoTravel X X X X X X X X

Parking X X X X X X X X

Noise % 10% 20%

Incompleteness % 0% 10% 50% 90% 0% 10% 50% 90%

BlocksWorld X X X X X X X X
Depots X X X X X X X X
DriverLog X X X X X X X X
Satellite X X X X X X X X
ZenoTravel X X X X X X X X
Parking X X X X X X X X

Table 2: Domains validity matrix.

ing every plan’s action is equal to the problem’s goal
state.

PlanMiner-O2 learned domains’ validity calculated
using VAL can be seen in Table 2. These results
demonstrate that PlanMiner-O2 outputs valid domains
even with high levels of noise. Validity criterion is the
hardest one to meet because a single error in the ef-
fects can make a domain not valid. Validity is a binary
measure because during our test we encounter that if
a single problem couldn’t be validated with a given
domain any of the other problems couldn’t either. Re-
dundant or missing fluents in the preconditions can
be tolerated sometimes when measuring validity, but
in the effects, those errors lead to incorrect plans and
hence invalid domains. The accuracy rate of the rules
was calculated too as a secondary quality measure.
NSLV maintained an accuracy rate above the 90% of
success even with 10% noisy information during the
learning process. In the worst cases, accuracy never
fell below of the 60% of success.

Comparing our solution with other state of the art
solution of the bibliography like (Yang et al. 2007)
we can see that PlanMiner-O2 can learn planning do-
mains with lower error rates. Comparisons with other
approaches in the literature are difficult due to differ-
ences in the learning settings. But using the same test-
ing domains, PlanMiner-O2 learned domains show
lower rates even with some levels of noise in the input
data: with a 90% (the highest reported) of missing flu-
ents and no noise (this solution only deals with incom-
plete input data) the error rates of the domains learned
by (Yang et al. 2007) range from above 0.2 (Depots
domain) to less than 0.6 (Satellite). PlanMiner-O2 re-
sults are notably better even with some levels of noise.
Using another newer solution able to deal with both
noise and incompleteness to compare we get similar
results. The domains learned by (Mourao et al. 2012)
show an error rate ranging from above 0.04 (Zeno-
travel) to 0.1 (BlocksWorld, Depots, Driverlog) in the
worst cases (90% missing fluents and 5% noise). Our
learned domains’ error rates maintain below 0.016 in
every domain even with higher levels of noise. Fur-
thermore, our learning process is fast. Using a single
thread of an Intel Core i7-6700 CPU and a 16 GB
RAM the learning process took less than 4 minutes
with the hardest problem. With high levels of incom-
pleteness, processing time fell, in some cases, below
10 seconds.
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(b) 5% noise.
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(c) 10% noise.
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Figure 3: Learned domains error rates.

5 Conclusions and Future Work

In this paper, we have developed a new planning do-
main learner (PlanMiner-O2) that uses a data min-
ing classification algorithm to learn the domains’ ac-
tion models with logical and numerical information
from incomplete and noisy information. The results
obtained show that PlanMiner-O2 is able to learn ac-
tions models, even with high levels of incomplete-
ness and some levels of noise. In fact, experiments
showed that incompleteness affects little to the results
of PlanMiner-O2, even with low levels of noise. The
experiments carried out focus on the reduction of the
domain’s error but also in the test of the validity of the
domains solving a set of benchmark planning prob-
lems.

Our next steps will lead to improving the robust-
ness of PlanMiner-O2 when dealing with noise. As
said earlier, a single error in an action model’s ef-
fects can lead to making the whole domain invalid.
We want to focus on the reduction of the effect’s er-
ror rate in order to improve the validity of our learned
domains. As NSLV accuracy rate modelling states is
high enough to fit our expectations our focus will be
on the development some new pre-process procedure
to modify the information before sending it to NSLV
and some post-process procedure to manage its output
better.

In order to improve the capabilities of PlanMiner-
O2 to deal with more complex problems are going to
include the capability of dealing with continuous nu-
merical fluents in it. As NSLV is already able to deal
with this kind of information by using discrete sets our
work will focus on a procedure to extract and manage

correctly this kind of information before sending it to
the classification algorithm.

PlanMiner-O2 is the first of a new family of do-
mains learners we are going to develop. These new
domain learners aim to learn HTN planning domains
from real-world data. The PlanMiner-O2 algorithm is
the first solution that addresses part of this challenge.
Next versions will include new functionalities to deal
with real-world data or learn the hierarchical struc-
tures needed in HTN Planning.
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Abstract

Despite the progress in online planning, goal driven au-
tonomy, and opportunistic planning, agents still need
to be fed by carefully engineered models that are fine
tuned for particular applications. Approaches to goal-
directed behaviour tackle a change in the environment
by generating alternative goals to avoid failures or seize
opportunities. However, current approaches only ad-
dress unanticipated changes related to objects or ob-
ject types already defined in the planning task that is
being solved. Hence, agents lack autonomy because
they still rely on the prior knowledge of their design-
ers rather than their own percepts. This article de-
scribes a domain-independent approach that advances
the state of the art by extending the knowledge of a
planning task with relevant objects of new types. The
approach draws upon the use of automated planning
and ontologies to accommodate new acquired data that
trigger the formulation of goal opportunities inducing
a better-valued plan, thus bolstering the agent with
higher autonomy capabilities.

Introduction

Planning research has been mostly devoted to offline
planning with some incursions in online plan-repair
to address failures during the plan execution. Whilst
online planning has demonstrated its usefulness to
handle plan failures, unanticipated events that bring
about an opportunity for the task at hand has been
rarely studied. Goal-directed behaviour (GDB) is a
hallmark of intelligence widely used for high levels
of autonomy when the environment is dynamic, par-
tially observable, and open to new data (Vattam et
al. 2013). In GDB, the agent monitors the execu-
tion of the plan in the environment and it is capable
of formulating alternative goals on the fly (Cox 2007;
Dannenhauer and Muñoz-Avila 2013; Klenk, Molin-
eaux, and Aha 2013). One limitation of most of the
current GDB approaches is that goals are formulated
on the basis of objects that already exist in the agent
model. An exception to this can be found in (Cash-
more et al. 2017), an approach to opportunistic planning
which allows the agent to generate new goals involving
objects that are not present in its current model. Never-
theless, the new object must be of one of the predefined

classes (types) in the agent model. Hence, intelligent
agents still rely on the prior knowledge of their design-
ers rather than their own percepts, therefore they lack
autonomy (Russell and Norvig 2010).
The motivation of this work is to overcome the gen-

eral lack of research in GDB towards the formulation
of goal opportunities that stem from objects or object
classes that are unknown to the agent at design time.
Specifically, given a planning task and a plan (sequence
of actions) that solves the task, the process initiates
with the execution of such a plan. While executing the
plan, the external events received from the are classified
into three categories: events that confirm the correct
execution of the plan actions; events that bring about a
failure in the plan execution; or events that may induce
a new goal opportunity in the context of the planning
task and the plan. This paper puts the focus on the lat-
ter and proposes an approach to handle context-aware
open planning tasks.
Our contribution is a domain-independent approach

that extends the knowledge of a planning task with rel-
evant objects extracted from a collection of ontologies
that describe features of interest for the specific domain.
The approach draws upon the richness and expressiv-
ity of standard ontology representations, semantic mea-
sures and ontology alignment for accommodating the
new acquired objects into the planning task specifica-
tion. These new objects may subsequently trigger the
formulation of a goal that induces a better-valued plan.
Next section presents some basic notions on planning

and the following two sections outline the components
of our approach and the identification of new goal op-
portunities, respectively. Then, section Cases of study
presents an example of application of the ontology-
based approach and the last section concludes and out-
lines some future work.

Background

Consider a scenario of a repair agency in which a robot
located in a warehouse has the task of a one-day main-
tenance of the electronics and furniture items that are
received by the agency. The warehouse has three desig-
nated areas, a transit area for items that require main-
tenance, an inspection area for maintenance, and a stor-
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age area for items after maintenance. The scenario
is formulated as a planning task including a specified
set of different categories of electronics and furniture,
the operations that the agent is able to perform and
their durations (movement between the warehouse ar-
eas, maintenance, loading, and unloading). The plan-
ner solves this task and returns a plan which includes a
total repairing of four items: two items of type televi-
sion, one item of type refrigerator, and one item of type
sofa. During the plan execution, the repair agency re-
ceives a new item bosch ID3400 into the transit area
from a different delivery agent that is operating in the
same city. The new item type is found to be dishwasher,
not formerly considered in the planning task of the re-
pair agency. This may represent an opportunity if the
goal of repairing the new object can be aligned within
the modelling of the planning task of the agency and
triggers a plan that also fits the current goals.
A planning task is defined as Φ = 〈D, I〉, where D

is the domain of the task (e.g. repair agency) and
I is a particular problem instance (e.g. a one-day
maintenance). The elements that define the domain
are D = 〈T ,V,A〉: T is the set of object types (e.g.
types of items); V contains the set of boolean variables
of the form (p o1 . . . on), where p is a predicate sym-
bol, and arguments {oi}

n
i=1 are of types included in T

(e.g. (be ?robot ?area)); A is the available action
schemas with headers (a o1 . . . om), {oi}

m
i=1 are of types

included in T (e.g. (repair ?robot ?item)). On the
other hand, an instance is described by I = 〈O,S,G〉,
where O is the set of objects (e.g. items to be re-
paired); S is a full assignment of values to variables
in V that represent the current state of the problem
(|S| = |V| and initial values of V denote the initial state
of the task); and G is a partial assignment of values to
variables of V that represent the goals to be accom-
plished (e.g. set the variable (repaired sofa ID2005)
to true). The planner receives Φ as input and outputs a
plan π = 〈a1, . . . , an〉 composed of a sequence of ground
actions (e.g. (move av area transit area inspect)
(load av sofa) ...).

Overview of the approach

We first briefly introduce the plan monitoring and ex-
ecution simulator our approach relies on (Babli et al.
2016). The simulator takes Φ and π as input and en-
codes them into a timeline as a collection of chronologi-
cally ordered timed events that encapsulate the changes
to be expected in the subsequent states. The monitor-
ing process of the simulation system simulates:

• receiving exogenous events and adds them to the
timeline; exogenous events convey external informa-
tion received from other agents operating in the same
environment modifying the real world states in a dy-
namic manner

• the execution of the timed events, checking that con-
ditions of the plan actions are satisfied and the effects

happen when they should, thus validating and updat-
ing, respectively, the states of the world (timeline).

A sample of a timeline is shown in Figure 1, where
timed events appear in chronological order, with the
corresponding conditions to be satisfied and effects to
be applied at each time point.

Figure 1: A sample of a timeline

Dynamically simulating plan monitoring consists in
observing the state that results from executing the
plan actions in the environment and checking whether
the observed state S matches the expected state. This
operation creates a discrepancy set as the difference
between the two sets, which will comprise instantiated
variables that are found in the observed state but not in
the expected state and viceversa. After discarding the
variables of the discrepancy set that represent a failure,
the remaining variables denote a potentially achievable
goal opportunity. More specifically, the discrepancy
set will contain instantiated variables of the form
(p o1 . . . on) where ∃o ∈ {oi} /o 6∈ O. In our approach
the system requests the type t of the new object o
from the source agent that delivered it; however, other
advanced techniques can be used to identify the type of
the object such as image recognition using tensorflow in
deep learning, or finding the type (class) of the newly
received objects (individual) from other ontologies
e.g., Tourism ontologies in the context of Tourism.
We aimed to distinguish three cases, t ∈ T , literally
one of the existing types; t ≡ t′ ∈ T , the new type
is semantically equivalent to one of the existing types
although syntactically different; and t /∈ T a brand new
type. Examples for the three previous cases of discrep-
ancies in the repair agency domain is {(be sofa ID04
area transit), (be couch ID1400 area transit),
and (be bosch ID3400 area transit)}, where the
first object sofa ID04 is a new object that belongs to
the existing type sofa, the second object couch ID1400
is a new object of a type couch that is semantically
equivalent to the type sofa ∈ T , and the object
bosch ID3400 is a new object that belongs to the new
type dishwasher /∈ T . The first case is trivial, on the
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other hand, to be able to handle the second and third
cases, and in order to position the new type into T ,
generate new goals that includes o that will be handled
using A we designed the approach sketched in Figure
2 which works in Four stages:

Figure 2: The ontology-based Goal formulation model

Stage 1: Identification of similar ontologies.
First, we create an OWL ontological representation of
the types T of Φ, called nΦ, that will be the base onto-
logical representation for the rest of stages. Second, we
retrieve a set R of remote ontologies from on-line repos-
itories. Subsequently, we apply a vector space distance
similarity measure (VSM) to R and we obtain the set
R’, which contains the most similar ontologies to nΦ.

Stage 2: Positioning a new object. When the
information of a new object o (o /∈ O) is received in the
form of a variable (p o1 . . . o . . . on), the agent identifies
the type t of o from the source agent which delivered o.
In case that t ∈ T , (literally one of the existing type)
we simply add o to O. Otherwise, the system creates R′

t

as the set of ontologies out of R’ that contain t, and the
ontology of R′

t that most accurately models the seman-
tic knowledge of the application domain D is selected
using the semantic variance measure (we will refer to
this ontology as nt). The system attempts to position
t in nΦ via a semantic alignment with a neighbourhood
constraint between nΦ and nt. If the alignment is suc-
cessful, t is either identified as an existing type in T
(semantically equivalent although syntactically differ-
ent), and simply o is added to O, or t is found to be a
new type that is positioned in the hierarchy of types,
then t is added to T and o is added to O.

Stage 3: Creating the new variables. If the
new object o is successfully positioned in Φ, the next
step is to instantiate the required planning variables
V, besides (p o1 . . . o . . . on), that describe o. The sys-

tem automatically identifies the information required
for integrating o in Φ (to be handled with the same ac-
tion schemas) and adds it to S. There exist multiple
sources from which such information could be retrieved
autonomously such as Open Data platforms, ontologies,
or other agents with similar planning tasks.
Stage 4: Goal formulation. If the type t of object

o is a type or a sibling of a type that is involved in a goal
g ∈ G, then we formulate x candidate new goals that
involve the newly received object o, where x depends on
the possible permutations of objects in the goal predi-
cate; x = 1 if the goal has only o as a parameter such
as g = (q o) (e.g. g =(repaired bosch ID3400)).
The following section detail the OWL ontological rep-

resentation of the types, the identification of similar on-
tologies, the selection of the ontology with the highest
semantic insight, and the alignment with a neighbour-
hood constraint.

Ontology-based operations

In this section we detail the tasks required to include
new objects in the planning task specification.

OWL Ontological representation

OWL has been the World Wide Web Consortium rec-
ommendation since 2004 (Patel-Schneider, Hayes, and
Horrocks 2014). In this section, we explain the gener-
ation of nΦ, the ontological representation of the types
T of a planning task Φ. We used OWL API which is
an open source Java API and reference implementation
for creating, manipulating, and serialising OWL On-
tologies (Horridge and Bechhofer 2011). Throughout
this section we use snapshots from the GUI of Protégé
to show visual explanations of nΦ.
The OWL ontological representation consists of a set

C of concepts (OWL classes) that represent T and a set
of OWL annotation properties that describe C. A class
c ∈ C can have one or many annotation properties.

On the other hand, the Planning Domain Description
Language (PDDL) (Edelkamp and Hoffmann 2004) of-
fers the ability to express a type structure for the ob-
jects in a domain, typing the parameters that appear
in predicates and actions. Furthermore, types can be
expressed as forming a particular type hierarchy. For
each type in T , an OWL class is created in nΦ abiding
the exact hierarchy 1.
The left part of Figure 3 shows the types T of the

repair agency domain specified in PDDL and the right
part of the figure shows the corresponding C in nΦ. For
instance, the type sofa is represented as furniture::sofa.
We can observe the types of the planning task are ar-
ranged in a reasonable hierarchy and that the OWL rep-
resentation follows truthfully this hierarchy. Although
using real names of types that convey a semantic mean-
ing and having the types arranged in a reasonable hier-
archy do not affect the ontological representation, these

1The symbol :: is used to refer to a subclass, for instance,
ci::cj means cj is a subclass of ci.
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(:types - object

agent - object

electronics - object

furniture - object

location - object

robot - agent

cellphone - electronics

microwave_oven - electronics

refrigerator - electronics

television - electronics

bed - furniture

desk - furniture

sofa - furniture

table - furniture

inspection - location

storage - location

transit - location)

Figure 3: Representation of PDDL types

aspects are important to find similar ontologies to the
domain and for positioning a type in T . Nonetheless,
the dependency of using real names and a significant
type hierarchy in the system does not affect its domain-
independent nature.

Identifying similar ontologies

In ontology engineering, it is useful to know quickly if
two ontologies are close or remote before deciding to
match them (David and Euzenat 2008). In this step,
we measure the distance between nΦ and the ontologies
of R to filter out the unrelated ones and obtain R’. Fur-
thermore, we need to tackle the natural complication
that different people could model the same application
domain using different terms, or even in different lan-
guages; e.g., ontologies A and B in Figure 4 model the
repair agency domain using different terminology, and
ontologies C and D model a product delivery domain
also using different terminology.

Figure 4: Using different terms when modelling ontologies

For that purpose, we use ConceptNet as a standard
mean to describe the classes of the ontologies. Con-
ceptNet (Speer, Chin, and Havasi 2017) is a knowledge
graph that connects words and phrases of natural lan-

guage using labelled edges. Its knowledge is obtained
from various sources that combines expert-created re-
sources, crowd-sourcing, and games with a purpose.
ConceptNet utilises a closed class of 36 selected rela-
tions such as isA, usedFor, hasProperty, etc., with the
aim of representing relationships independently of the
language or the source of the terms it connects. There-
fore, we augment the classes of nΦ and of the ontolo-
gies of R with the relations and classes brought from
ConceptNet as OWL annotations. As a result, even
if the names of the classes are different, classes that
refer to the same concept will have annotations in com-
mon and will be found similar when measuring seman-
tic distances or when performing the alignment. Figure
5 shows a small portion of the forty eight annotations
attached to the class sofa.

Figure 5: Annotations sample assigned to csofa class

For measuring the distance between ontologies we de-
cided to look at the ontologies as a bag of terms and
apply ontology distance measures based on the Vector
Space Model (VSM) using cosine index with weighted
term frequency (TF). VSM has proven to obtain good
results compared to other distance measures and it is
computed largely faster, but it is not much robust to
lexical alterations (David and Euzenat 2008). However,
lexical alterations do not impact our approach because
the lexical information in each term of the ontology
comes not only from the local name of the term but also
from the OWL annotations imported from ConceptNet
relations and classes. We used OntoSim to compute the
distance, an independent Java API to compute similar-
ities between ontologies that provides a variety of dis-
tance measures. At this stage, the ontologies R’ with
the highest similarity with respect to nΦ are obtained.

Selecting the ontology with the highest
semantic insight

The system calculates R′
t, the set of ontologies from

R’ that contain the type t. The next step is to select
nt ∈ R′

t that best fits the planning task Φ. For this
purpose we decided to use semantic variance (SV) as
introduced in (Sánchez et al. 2015) (SV filter in Figure
2). SV is an intuitive and inherently semantic measure
to evaluate the accuracy of ontologies. Unlike ad hoc
methods, SV is a mathematically extension of the stan-
dard numerical variance to measure the semantic dis-
persion of the taxonomic structure of ontologies. The
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value of SV for an ontology n, which taxonomically
models a set of concepts C, is defined as the average of
the squared distance between each concept ci ∈ C and
the root node of n (Sánchez et al. 2015). The formula
to compute SV is shown below:

SV =

∑

ci∈C

d(ci, root)

|C|
where |C| is the cardinality of C excluding the root

node and d(ci, cj) is the distance between two concepts
ci and cj calculated as a function of the number of their
non-common ancestors divided by their total number of
ancestors:

d(ci, cj) = log2(1 +
|A(ci) ∪ A(cj)| − |A(ci) ∩ A(cj)|

|A(ci) ∪ A(cj)|
)

The semantic distance d aggregates features in a loga-
rithmic way, which better correlates with the non-linear
nature of semantic evidences, and more importantly,
variance does not depend on the cardinality of the on-
tology. We calculate the SV for each ontology in R′

t,
and select nt the one with the highest SV.

Alignment with neighbourhood constraint

The next step is to determine where to position the
class ct that corresponds to the new type t within the
hierarchy of concepts C of nφ. We perform an alignment
between C of nφ and the part of the taxonomic branch
of nt that includes ct, the parent class cparent(t), and the
siblings Csiblings(t). The alignment is the process of de-
termining correspondences between concepts in ontolo-
gies. For the alignment we used CIDER-CL introduced
in (Shvaiko et al. 2013), a schema-based ontology align-
ment system that compares the classes of two ontologies
using also VSM. The result of the alignment is an RDF
file that contains the degree of matching between two
classes. We distinguish two main cases:

• The class ct is found to be semantically equivalent
(albeit they are syntactically different) to an existing
type if ct matches one of the classes in nΦ with a
matching degree above a specified threshold. In this
case, we simply add the new object o to O.

• The matching degree of class ct with all the classes in
nΦ is below a certain threshold. In this case, we use
the neighbourhood constraint as suggested in (Doan
et al. 2003) where “two nodes match if nodes in their
neighbourhood also match”:

– if cparent(t) matches a class cx in nΦ, then we estab-
lish cx::ct in nΦ.

– if no match is achieved with the parent, we ap-
ply the neighbourhood constraint procedure that
matches C with Csiblings(t); if the degree of matching
the siblings exceeds a specified threshold, and the
matched classes are found to be under a common
parent in nΦ, then we list ct as a subclass of that
superclass in nΦ. If the alignment is successful, we
add t to T and o to O.

For instance, consider the ontologies A and B in Fig-
ure 4, C in A represents the classes of A, and C in
B represents the classes of B. An example of when
the new object type is found to be semantically equiv-
alent to an existing type is when the newly received
variable is (be LG ID6400 area transit); the new ob-
ject o is LG ID6400, of type t tv /∈ T , the alignment
finds that ctv in B matches ctelevision in A and sim-
ply LG ID6400 is added to O. An example of when
the new object type is positioned using the neigh-
bourhood constraint depending on the parent class is
when the newly received variable is (be bosch ID3400
area transit); the new object o is bosch ID3400,
of type t dishwasher /∈ T , the alignment finds that
cparent(dishwasher) is celectronic in B and it matches celectronic
in A; therefore, the system asserts celectronic::cdishwasher
in A, creates a new entry dishwasher - electronic
in T , and adds bosch ID3400 is to O. An example of
when the new object type is positioned using neigh-
bourhood constraint depending on siblings classes is
when the newly received variable is (be mirror ID202
area transit); the new object o is mirror ID202, of
type t mirror /∈ T , the alignment finds that cparent(mirror)

is cother in B and it does not matches any class in A;
however, cbed, ccouch, and ctable (the siblings Csiblings(mirror)

in B) matches cbed, csofa, and ctable, respectively in A,
therefore, the system asserts cfurniture::cmirror in A, cre-
ates a new entry mirror - furniture in T , and adds
mirror ID202 is to O.

Opportunity identification

Once the x candidate new goals are formulated as ex-
plained in Stage 4 of the overview of our approach, the
system generates Φ′ = Φ′

1, . . . , Φ
′
x (modified versions of

Φ), where the added information includes o, t, the infor-
mation of o, the discrepancy proposition, G′ = g′i ∪ G,
and the new current state S. We use a planner to solve
each Φ′

i ∈ Φ′ to know which g′i can be considered an
opportunity to Φ in the context of π. g′i is considered
an opportunity goal for Φ, when the planner is able to
generate a plan π′

i to solve Φ′
i that includes the new

goal plus the original set of goals. For the purpose of
simulating the execution of the plan we reutilised the
simulation system of the work in (Babli et al. 2016).

Cases of study

The aim of this section is to show the behaviour of our
system with a representative example. We have tested
the model with several application domains; tourism,
underwater installations maintenance, driverlog, trans-
port, and a repair agency.

For this paper we are going to consider the repair
agency Φ, with a warehouse that has three areas a tran-
sit area, an inspection area, and a storage area, a robot
av has the task of a one-day maintenance of several
electronics and furniture items that are received by the
agency, the robot is able to load one item at a time,
finally the end location of the robot must be at the
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• (:predicates

; a robot or an item is located at ?loc

(be ?locatable - (either robot electronics furniture)

?loc - location)

; controls when the robot is active

(active ?robot - robot)

; a robot is moving between locations

(moving ?robot - robot ?area1 ?area2 - location)

; an item requires repairing

(require_repair ?item - (either electronics furniture))

; an item has been repaired by a robot

(repaired ?item - (either electronics furniture))

; an item is loaded to a robot

(loaded ?item - (either electronics furniture) ?robot - robot)

; a robot is not carrying an item

(empty ?robot - robot)

; a repaired item is delivered to a storage area

(delivered ?item - (either electronics furniture)))

; move action between two locations

• (:durative-action move

:parameters(?robot - robot ?to - ?from - location)...)

; load item from a location into robot

(:durative-action load

:parameters(?robot - robot

?item - (either electronics furniture)

?location - location)...)

; unload item from robot to location

(:durative-action unload

:parameters(?robot - robot

?item - (either electronics furniture)

?location - location)...)

; repair item by a robot at an inspection area area

(:durative-action repair

:parameters(?robot - robot

?item - (either electronics furniture)

?inspection_area - inspection)...)

; dummy action

(:durative-action dummy

:parameters(?item - (either electronics furniture)

?storage_area - storage)...)

• (:goals (and

(repaired tv_ID101)

(repaired tv_ID02)

(repaired refrigerator_ID03)

(repaired sofa_ID04)

(delivered tv_ID101)

(delivered tv_ID02)

(delivered refrigerator_ID03)

(delivered sofa_ID04)

(be av area_storage)))

Figure 6: V, A, and G in repair agency Φ

storage area. Initially, the system has a set of electron-
ics and furniture categories T as shown in Figure 3, On
the other hand, V, A, and G are shown with comments
in Figure 6, respectively. The simulator that we are
using does not deal with conditional effects or derived
predicates, therefore we added a dummy action with a
zero duration that asserts that an item is delivered if it
is repaired and it is at the storage area.

The information of S includes the three areas
of the warehouse (area transit), (area inspect),
and (area storage) the robot start location (be av
area storage), the robot state (empty av), the robot
operational hours between 10:00 and 23:00, the elec-
tronic and furniture items that require repairing and
their locations, and the durations of movement between
the warehouse areas, maintenance time, loading time,
and unloading time).
The plan to solve Φ (PLAN1 is shown in Figure

7) is calculated by the planner and consists of 36
actions; the robot av moves from its start location
(area storage) to (area transit), loads an item,
moves to (area inspect), unloads the item to be re-
paired, repairs the item, loads the item, moves to
(area storage), unloads the item, and the item is
delivered; the previous rotation (8+1 dummy) ap-
plies for each of the four items that require repairing
(shown in the goals in Figure 6); tv ID101, tv ID02,
refrigerator ID03, and sofa ID04.

0.0003: (MOVE AV AREA_STORAGE AREA_TRANSIT) [5.0000]

5.0005: (LOAD AV REFRIGERATOR_ID03 AREA_TRANSIT) [1.0000]

6.0008: (MOVE AV AREA_TRANSIT AREA_INSPECT) [5.0000]

11.0010: (UNLOAD AV REFRIGERATOR_ID03 AREA_INSPECT) [1.0000]

12.0013: (REPAIR AV REFRIGERATOR_ID03 AREA_INSPECT) [80.0000]

91.0015: (LOAD AV REFRIGERATOR_ID03 AREA_INSPECT) [1.0000]

92.0017: (MOVE AV AREA_INSPECT AREA_STORAGE) [5.0000]

97.0020: (UNLOAD AV REFRIGERATOR_ID03 AREA_STORAGE) [1.0000]

• 98.0023: (DUMMY REFRIGERATOR_ID03 AREA_STORAGE) [0.0000]

98.0025: (MOVE AV AREA_STORAGE AREA_TRANSIT) [5.0000]

103.0027: (LOAD AV SOFA_ID04 AREA_TRANSIT) [1.0000]

104.0030: (MOVE AV AREA_TRANSIT AREA_INSPECT) [5.0000]

109.0033: (UNLOAD AV SOFA_ID04 AREA_INSPECT) [1.0000]

110.0035: (REPAIR AV SOFA_ID04 AREA_INSPECT) [80.0000]

189.0038: (LOAD AV SOFA_ID04 AREA_INSPECT) [1.0000]

190.0040: (MOVE AV AREA_INSPECT AREA_STORAGE) [5.0000]

195.0043: (UNLOAD AV SOFA_ID04 AREA_STORAGE) [1.0000]

196.0045: (DUMMY SOFA_ID04 AREA_STORAGE) [0.0000]

196.0047: (MOVE AV AREA_STORAGE AREA_TRANSIT) [5.0000]

201.0050: (LOAD AV TV_ID101 AREA_TRANSIT) [1.0000]

202.0052: (MOVE AV AREA_TRANSIT AREA_INSPECT) [5.0000]

207.0055: (UNLOAD AV TV_ID101 AREA_INSPECT) [1.0000]

208.0058: (REPAIR AV TV_ID101 AREA_INSPECT) [80.0000]

287.0060: (LOAD AV TV_ID101 AREA_INSPECT) [1.0000]

288.0063: (MOVE AV AREA_INSPECT AREA_STORAGE) [5.0000]

293.0065: (UNLOAD AV TV_ID101 AREA_STORAGE) [1.0000]

294.0067: (DUMMY TV_ID101 AREA_STORAGE) [0.0000]

294.0070: (MOVE AV AREA_STORAGE AREA_TRANSIT) [5.0000]

299.0073: (LOAD AV TV_ID02 AREA_TRANSIT) [1.0000]

300.0075: (MOVE AV AREA_TRANSIT AREA_INSPECT) [5.0000]

305.0078: (UNLOAD AV TV_ID02 AREA_INSPECT) [1.0000]

306.0080: (REPAIR AV TV_ID02 AREA_INSPECT) [80.0000]

385.0082: (LOAD AV TV_ID02 AREA_INSPECT) [1.0000]

386.0085: (MOVE AV AREA_INSPECT AREA_STORAGE) [5.0000]

391.0088: (UNLOAD AV TV_ID02 AREA_STORAGE) [1.0000]

392.0090: (DUMMY TV_ID02 AREA_STORAGE) [0.0000]

Figure 7: PLAN1

For the purpose of simulating the execution of the
plan we reutilised the simulation system of our previ-
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Figure 8: Several remote ontologies

ous work (Babli et al. 2016). The simulator creates
a timeline (as shown in Figure 1) and starts PLAN1
execution simulation. Let us assume that after repair-
ing and delivering the item refrigerator ID03 (after
the ninth action in PLAN1, Figure 7), a new infor-
mation is received from a different delivery agent (be
bosch ID3400 area transit), that includes a new ob-
ject o bosch ID3400 /∈ O. The system requests the
type of o and find t dishwasher /∈ T . The sys-
tem creates nΦ (shown in Figure 8 A), then it ac-
cesses several ontologies available in online-repositories
R’ = {B,C,D,E,F} (shown in Figure 8).

The ontologies are augmented using ConceptNet.
VSM distance is calculated between A, and each on-
tology in R’, the distances are respectively: 0.01, 0.01,
0.52, 0.87, and 0.81. R’ = {D,E,F} is recognised as
the set of most similar ontologies. The system tries to
find dishwasher in R’ and creates R′

t = {E,F}, the
set of ontologies out of R’ that contain dishwasher.
The SV distance is measured to find whether E or F
describes more accurately the semantics of the applica-
tion domain, the values are respectively 0.24 and 0.16;
therefore, nt = E. Next, the system attempts to posi-
tion cdishwasher in A by aligning A and E. The system
finds that cparent(dishwasher) in E is celectronic and it matches
the class celectronic in A; therefore celectronic::cdishwasher
inside A A new entry dishwasher - electronic is
added to T , and bosch ID3400 is added to O. The
information required for integrating bosch ID3400 in
Φ is automatically identified, requested, and added
to S. Since dishwasher is a sibling of a type that
is involved in a goal g ∈ G thus, the system for-
mulates new g′1 = (repaired bosch ID3400), g′2 =
(delivered bosch ID3400) and G′ = g′1 ∪ g′2 ∪ G. Fi-
nally the system updates S with the current state at the
time the new information was received. The planner is
called to generate a new plan (PLAN2 shown in Figure
9); allowing the robot to repair and deliver the original

set of items plus the new item. The simulation contin-

0.0003: (MOVE AV AREA_STORAGE AREA_TRANSIT) [5.0000]

5.0005: (LOAD AV SOFA_ID04 AREA_TRANSIT) [1.0000]

6.0008: (MOVE AV AREA_TRANSIT AREA_INSPECT) [5.0000]

11.0010: (UNLOAD AV SOFA_ID04 AREA_INSPECT) [1.0000]

12.0013: (REPAIR AV SOFA_ID04 AREA_INSPECT) [80.0000]

91.0015: (LOAD AV SOFA_ID04 AREA_INSPECT) [1.0000]

92.0017: (MOVE AV AREA_INSPECT AREA_STORAGE) [5.0000]

97.0020: (UNLOAD AV SOFA_ID04 AREA_STORAGE) [1.0000]

98.0023: (DUMMY SOFA_ID04 AREA_STORAGE) [0.0000]

98.0025: (MOVE AV AREA_STORAGE AREA_TRANSIT) [5.0000]

103.0027: (LOAD AV TV_ID101 AREA_TRANSIT) [1.0000]

104.0030: (MOVE AV AREA_TRANSIT AREA_INSPECT) [5.0000]

109.0033: (UNLOAD AV TV_ID101 AREA_INSPECT) [1.0000]

110.0035: (REPAIR AV TV_ID101 AREA_INSPECT) [80.0000]

189.0038: (LOAD AV TV_ID101 AREA_INSPECT) [1.0000]

190.0040: (MOVE AV AREA_INSPECT AREA_STORAGE) [5.0000]

195.0043: (UNLOAD AV TV_ID101 AREA_STORAGE) [1.0000]

196.0045: (DUMMY TV_ID101 AREA_STORAGE) [0.0000]

196.0047: (MOVE AV AREA_STORAGE AREA_TRANSIT) [5.0000]

201.0050: (LOAD AV BOSCH_3400 AREA_TRANSIT) [1.0000]

202.0052: (MOVE AV AREA_TRANSIT AREA_INSPECT) [5.0000]

207.0055: (UNLOAD AV BOSCH_3400 AREA_INSPECT) [1.0000]

208.0058: (REPAIR AV BOSCH_3400 AREA_INSPECT) [80.0000]

287.0060: (LOAD AV BOSCH_3400 AREA_INSPECT) [1.0000]

288.0063: (MOVE AV AREA_INSPECT AREA_STORAGE) [5.0000]

293.0065: (UNLOAD AV BOSCH_3400 AREA_STORAGE) [1.0000]

294.0067: (DUMMY BOSCH_3400 AREA_STORAGE) [0.0000]

294.0070: (MOVE AV AREA_STORAGE AREA_TRANSIT) [5.0000]

299.0073: (LOAD AV TV_ID02 AREA_TRANSIT) [1.0000]

300.0075: (MOVE AV AREA_TRANSIT AREA_INSPECT) [5.0000]

305.0078: (UNLOAD AV TV_ID02 AREA_INSPECT) [1.0000]

• 306.0080: (REPAIR AV TV_ID02 AREA_INSPECT) [80.0000]

385.0082: (LOAD AV TV_ID02 AREA_INSPECT) [1.0000]

386.0085: (MOVE AV AREA_INSPECT AREA_STORAGE) [5.0000]

391.0088: (UNLOAD AV TV_ID02 AREA_STORAGE) [1.0000]

392.0090: (DUMMY TV_ID02 AREA_STORAGE) [0.0000]

Figure 9: PLAN2
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ues. After the robot has repaired tv ID02, a new infor-
mation is received (be mirror ID510 area transit),
that includes a new object o mirror ID510 /∈ O. The
system requests the type of o and find t Mirror /∈ T .
Similarly, and depending on the siblings using the
neighbourhood constraint during the alignment, the
system deals with the new information and extends the
knowledge of the planning task, a new plan is obtained
(PLAN3 shown in Figure 10), and the simulation con-
tinues. At the end of the day, the robot ends up in
repairing six items instead of four.

0.0003: (LOAD AV TV_ID02 AREA_INSPECT) [1.0000]

1.0005: (MOVE AV AREA_INSPECT AREA_STORAGE) [5.0000]

6.0008: (UNLOAD AV TV_ID02 AREA_STORAGE) [1.0000]

7.0033: (DUMMY TV_ID02 AREA_STORAGE) [0.0000]

7.0010: (MOVE AV AREA_STORAGE AREA_TRANSIT) [5.0000]

12.0013: (LOAD AV MIRROR_ID510 AREA_TRANSIT) [1.0000]

13.0015: (MOVE AV AREA_TRANSIT AREA_INSPECT) [5.0000]

18.0018: (UNLOAD AV MIRROR_ID510 AREA_INSPECT) [1.0000]

19.0020: (REPAIR AV MIRROR_ID510 AREA_INSPECT) [80.0000]

98.0023: (LOAD AV MIRROR_ID510 AREA_INSPECT) [1.0000]

99.0025: (MOVE AV AREA_INSPECT AREA_STORAGE) [5.0000]

104.0027: (UNLOAD AV MIRROR_ID510 AREA_STORAGE) [1.0000]

105.0030: (DUMMY MIRROR_ID510 AREA_STORAGE) [0.0000]

Figure 10: PLAN3

Conclusion

Context and context awareness are crucial for any in-
telligent agent that operates in a dynamic environ-
ment. To develop context-aware ambient intelligence
planning service, suitable context models and reason-
ing approaches are necessary. In this paper we have
presented a domain-independent approach that may be
considered as a context model and a first step towards
a context aware ambient intelligent planning service.
Our approach bolsters an autonomous agent with the
capability of extending its planning task to accommo-
date new information on the fly; to learn information
about the planning task and to introduce relating infor-
mation such as new objects whether of existing types
or more importantly new types during the execution of
the initial plan that solves the original planning task,
that in turn may trigger the formulation of new goals
and produce new plans to achieve the new goals in ad-
dition to the original set of goals. On the other hand,
for future work we intend to focus on two aspects, the
first aspect is related to goal directed behaviour, more
specifically the goal reasoning approaches rather than
goal generation, to endow the system with the ability to
perform goal reasoning and management instead of del-
egating that task to a planner; and the second aspect
is to investigate how integrating deep learning image
recognition with the simulation system, ontologies, and
planning would scale, and to check whether it is viable
for a real time application.
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Abstract

In this work we take a first look at domain model acquisi-
tion in planning domains with numeric constraints. We begin
by constructing a typology of the numeric constraints repre-
sented in numeric domains of the third International Planning
Competition (IPC). We then propose a numeric constraint
representation that can capture several of these types. Our ap-
proach assumes that any condition is constructed by bound-
ing a linear formula over the preceding ground actions. For
example, driving a truck may rely on there being sufficient
fuel. This can be modelled as a bound on the sum over the
specific move actions that have been made in the plan. There
are a large number of potential numeric constraints and as
such we have proposed a heuristic layered approach to ex-
ploring the space. The implementation is still ongoing, but we
present initial results for several forms of numeric constraint.
This supports a discussion of the key issues surrounding our
approach and the problem in general.

Introduction

Modelling is considered to be a bottleneck in the process of
tackling combinatorial problems, due to the skills required
to develop these models. Model generation is a crucial pro-
cess within the planning community and modelling support
tools have been developed to aid domain modellers, for ex-
ample, the GIPO (Simpson, Kitchin, and McCluskey 2007),
itSIMPLE (Vaquero et al. 2007) and KIWI (Wickler, Chrpa,
and McCluskey 2014) systems. Another avenue of research
to aid in the modelling process is based on learning mod-
els from example solutions: namely that of domain model
acquisition, which is the core topic of this work.

Domain model acquisition has been applied across a
range of research and application areas. For example within
the business process community (Hoffmann, Weber, and
Kraft 2012) and space applications (Frank et al. 2011). An
extended version of the LOCM domain model acquisition
system (Cresswell, McCluskey, and West 2009) has also
been used to help in the development of a puzzle game
(Ersen and Sariel 2015) based on spatio-temporal reason-
ing. Web Service Composition is another area in which do-
main model acquisition techniques have been used (Walsh
and Littman 2008). However, there is relatively little work
in the area of domain model acquisition that targets the nu-
meric fragment of PDDL, which is perhaps surprising given

that many commercial and industrial applications of auto-
mated planning technology rely on numeric state variables.
For example, in constructing policies for the use of bat-
teries (Fox, Long, and Magazzeni 2011), the construction
of machine tool calibration plans (Parkinson et al. 2012)
and spacecraft orbit planning (Surovik and Scheeres 2015).
Within both board games and video games, numeric models
are crucial in order to encode scoring systems, resource use,
etc. Within interactive narrative settings, numeric variables
represent varied structures, such as strength of relationships
in social networks (Porteous, Charles, and Cavazza 2013;
2015) and the level of tension (Porteous et al. 2011) within
a certain scene.

In recent work an approach for distributing plan cost
amongst its contributing action costs has been pre-
sented (Gregory and Lindsay 2016). This has extended do-
main acquisition tools with the ability to identify the aspects
of the planning model that are involved in accumulating cost
during planning. However, numeric state variables are also
used to capture numeric constraints, such as resource use,
which play an important role in capturing an accurate model.

In this work we investigate how numeric constraints can
be identified and used to extend the domain definition with
the numeric variables that are necessary to represent them.
The space of possible constraints is of course large and
therefore we have exploited observations from benchmark
models (those encoded for third IPC, in this case) combined
with a layered heuristic approach, based on (Gregory and
Lindsay 2016), in order to guide the exploration.

The paper is structured as follows: we present a back-
ground in domain model acquisition; we present a typology
for number constraints of benchmark domains and develop a
template for numeric constraints. We present a heuristic ap-
proach for exploring the space; finally we describe the cur-
rent implementation, we present some initial results, outline
the related and future work and conclude.

Background

Domain model acquisition is the problem of learning a for-
mal domain model of a system from some form of input
data. The domain model acquisition system that we intro-
duce in this paper assumes the LOCM family of algorithms
and the generated structures that they create. In order to
describe these algorithms, and also our own, we introduce
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the Gripper domain as a running example. In this problem
domain a robot moves between two rooms picking up and
dropping off balls. The robot is typically constrained in how
many balls can be carried. Although this constraint was orig-
inally encoded using a collection of gripper objects, it can
naturally be encoded using a numeric constraint.

The Family of LOCM Algorithms

LOCM (Cresswell, McCluskey, and West 2009) is a system
for learning domain models from example action sequences.
Its distinguishing feature is that it uses no other informa-
tion besides the action sequences, i.e., no information about
types, predicates, initial or final states. This is possible be-
cause it is based on restricting assumptions about the form
of the domain model.

The domain model construction has two aspects: Firstly,
the action sequences are analysed to obtain a simple state
machine for each type. The sequences of transitions expe-
rienced by individual objects are tracked through example
plan sequences and the objects that are observed performing
the same transitions are grouped into types. A finite state
machine is generated for each type, which captures the tran-
sitions for that type. E.g., for a ball in Gripper, the follow-
ing machine is revealed, comprising two transitions and two
states.

ball-1 ball-2
pick.1

drop.1

Secondly, the action sequences are further analysed to es-
tablish whether a given state for a given type has a tempo-
rary association with another object. If so, the state is quali-
fied with a parameter which records the association. For the
Gripper balls, they have an association with a room in one
state, and a robot in the other state.

ball-1
[room]

ball-2
[robot]

pick.1

drop.1

It is then possible for the learned model to be translated
into the STRIPS fragment of PDDL. Each state is repre-
sented by a PDDL predicate having its associated object as
first argument, with further arguments formed from state pa-
rameters. Operators are constructed from the transitions and
their parameters, using the binding constraints discovered
between action parameters and state parameters.

The LOCM2 system (Cresswell and Gregory 2011) gen-
eralises the approach and allows types to be represented by
multiple state machines, each containing a subset of the full
transition set for the type. The LOP system (Gregory and
Cresswell 2015) learns static relations by comparing optimal
input plans with the optimal plans found using the induced
domain model of LOCM2. Assuming that LOCM2 has de-
tected the dynamics of the problem correctly, then if the in-
duced plan is shorter, then this provides evidence to support
the hypothesis that some static relation has gone undetected.

NLOCM (Gregory and Lindsay 2016) is a domain model
acquisition system for domains with action costs. As well as

example plans, the system also requires the final plan costs
as input. The approach then creates a hypothesis of how the
cost was accumulated from action costs and how these costs
can be attributed to specific sets of parameters. The param-
eter sets are defined as templates, which each represent a
possible parameter combination for an operator that might
have a value associated with it.

Definition 1. A template, TO, for an operator, O, from the
set of all the operators, O, is defined as:

TO ⊆ P(args(O)) (O ∈ O)

Similarly, we define TA = TO, where A is an instantiating
action of operator O.

For example, the template {2,3} for a move action, e.g.,
(move ?r0 ?r1), defines a collection of features for each
combination of rooms that can be traversed between, e.g.,
(move room1 room2). Here the symbol ‘ ’ indicates a wild-
card in the template that matches any instantiation. NLOCM
both identifies a selection of templates that must be active
to explain the cost and identifies the costs that each feature
contributes to the plan costs (such as the cost for moving
between room1 and room2).

In this work we aim to identify the specific language fea-
tures in a domain that cause numeric effects and the con-
ditions that act on those effects. We therefore will use tem-
plates as a means of indicating a feature that contributes to
a numeric variable, and we also use them as constraint tem-
plates, which capture the important parameters for the con-
straint.

Numeric Constraints

The space of possible numeric constraints is very large and
in this section we identify a restricted subset that still al-
lows us to explore many numeric constraints. To start the
section, we present an illustrative example of the use of a
numeric constraint in the Gripper domain. In order to best
choose an appropriate subset, we have surveyed the domains
from the third IPC and developed a typology of the numeric
constraints represented. After discussing this we present the
representation that defines the subset of numeric constraints
that we have focussed on in this work.

A Numeric Constraint in the Gripper Domain

As an example, consider a general two room Gripper do-
main, where a robot transfers balls between two rooms. It is
common that there is a restriction on the number of balls that
can be held by the robot. One way of encoding this is to use
a numeric variable and maintain the count through careful
manipulation in the effects of actions. For example, the drop
action is extended with the following effect:

(increase (held-balls-count ?r) (-1))

The pick action is then constrained by exploiting the value
maintained in this variable, through the precondition:

(> (upper-problem-limit) (+ (held-balls-count ?r) 1))
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Capacity limit Notes

Satellite limited data capacity
Zeno-travel max capacity for zooming
Rover data capacity to store photo
Settlers limited capacity for resources
UMT2 weight and volume constraints

Fuel Notes

Satellite slew time
Zeno-travel zoom and fly
Rover charge of rover
Settlers e.g., coal for train

Static Notes

UMT2 dimension constraints

Table 1: A typology of numeric constraints for the third IPC
domain models.

Typology of Numeric Constraints

The numeric constraints from domains of the third
IPC (Long and Fox 2003) can be broadly grouped into ca-
pacity limits and fuel constraints. Table 1 categorises the do-
mains: Rovers, Satellite, Settlers, UMT and Zeno-travel, by
the types of numeric constraint that they contain. Although
there are numeric versions of Driverlog, the numeric vari-
ables are only used for accumulating cost and not as part of
any constraint.

Capacity constraints are either constraints that limit an ob-
ject, o’s, accumulation of a certain relationship (e.g., a robot
can only pick up 2 balls), or they are constraints that limit
what o can do once it has been loaded (e.g., the robot can
move and carry 1 ball, but not 2 balls). A variable is typ-
ically used to monitor the current load of the object. The
value added, v, when the relationship is made between o
and some other object o′ is usually a function of o′, such
as weight (or simply a counter, as in the Gripper example).
The object, o, is associated with a capacity and any action
that would lead to the variable having a larger value than the
capacity is not permitted. When the relationship is broken
then the variable is decremented by v.

Fuel constraints represent the depletion of finite resources
and limit the number of certain transitions that occur in the
plan (at least without refuelling). For example, a truck may
only be able to carry n units of fuel, limiting its transitions
around a map. This sort of constraint typically acts on a tran-
sition where an object, o, transfers a relationship with an ob-
ject, o′ for the same type of relationship with an alternative
object, o′′. The amount of resource used by the action will
commonly depend on a property of the pair (o′, o′′). For ex-
ample, the amount of fuel consumed by a truck traversing
between two locations might depend on the distance of the
objects. In Zeno-travel the amount of fuel also depends on
the mode of travel used, e.g., the zoom action uses more fuel
than the fly action.

We have also included static numeric constraints, such as
height, or width constraints, which can be represented in
LOP as static facts and are not explored further.

Plan steps vr0 vr1

s0 0 0
a1: (pick b1 r0 l1)

s1 1 0
a2: (pick b2 r1 l2)

s2 1 1
a3: (move r0 l2 l1)

s3 1 1
a4: (drop b2 r1 l1)

s4 1 0

Table 2: An illustration of two numeric state variables being
maintained during planning.

A Model of Numeric Constraints

In this work we focus on a formalism for numeric constraints
that allows us to capture an interesting subset of the con-
straints from the third IPC. We assume that all of the con-
straints can be represented as a bound on a (possibly pa-
rameterised) numeric variable, such as (< (held-balls-count
r0) 2). Furthermore, we assume that for each numeric con-
straint, a collection of action costs can be defined and that
the value of the numeric variable is the sum of the costs for
the applied actions.

In the Gripper example, the held-balls-count variable can
be calculated using the operator costs: 1 for pick operators,
and -1 for drop operators. Notice that in the case of a pa-
rameterised constraint a connection is needed so that a spe-
cific numeric variable is only effected by the relevant action
costs. E.g., Table 2 demonstrates how these values can be
maintained, using vr0 for held-balls-count for robot r0 and
vr1 for r1. This will be made more precise in the following
section.

At this stage it is helpful to consider the value of the vari-
able in terms of counts of contributing terms (i.e., as a linear
function). For some plan fragment we can count the number
of times a certain feature matches in the plan. A cost can then
be associated with each feature. For example, in the Gripper
example, we can say that:

(held-balls-count ?r) = 1× (pick ?r )+−1× (drop ?r )

These features therefore match to pick and drop plan steps
that are applied to the relevant robot. This value can then
be used in order to constrain the valid actions by select-
ing a bound that separates the valid values, where an ac-
tion should be applicable, from invalid values. An exam-
ple of a constraint for the pick operator in Gripper is: (>
(upper-problem-limit) (+ (held-balls-count ?r) 1)),1 where
held-balls-count are a set of numeric variables that main-
tains a count of the number of balls that are being held for
each robot. The numeric constant upper-problem-limit cap-
tures the upper bound of the function and defines how many
balls can be held. Of course in general the cost and upper
bound may be parameterised. The valuation is maintained

1Notice that the upper bound is set assuming that the numeric
effect of the current action has been applied. This is very typical
and is therefore assumed in our model.
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v?r = vr0 , . . .

Template

View

Options
pick:?r7!pick:?r

pick:?r7!move:?r

Action

Costs

pick:?r7!drop:?r

pick ?r

C(pick )=1

C(move )=0
C(drop )=-1

Variables

Constraint

Figure 1: The constraint template: (pick ?r ), indicates that
the pick operator is constrained and that the constraint is de-
fined in terms of individual robots. As such a set of variables:
vr0 , . . . , maintain the current valuation for each robot, ri.
The view options make a mapping between the robot vari-
able of the pick operator to variables of the other operators.
There is only 1 such mapping for robots in this domain. Fi-
nally a set of action costs are defined (only operator costs in
this example). E.g., each time a drop action is applied then
the relevant numeric variable is determined through the pa-
rameter mapping and the cost (-1) is added.

depending on those matching instantiations of the action pa-
rameters.

This model allows us to explore capacity constraints and
some fuel type constraints (only a limited form of refuelling
can be captured and considering richer representations has
been left for future work).

Selecting Numeric Constraints

In this section we describe our approach for exploring the
space of possible numeric constraints. We begin by defin-
ing the input data that our approach relies on and then de-
fine the space of numeric constraints that we explore in this
work. We define the metric that we use to select between ex-
planations and define an ordered exploration of increasingly
more complex explanations. The final part presents the sim-
ple loop that we use in order to incrementally build a collec-
tion of numeric constraints from the presented approach that
only identifies single constraints.

The Space of Numeric Constraints

Our representation of numeric constraints has four elements:
a constraint template and their associated numeric variables,
the upper bounds for the variables, the costs associated with
each feature (an instantiated template used for cost) and a
mapping between the constraint template and the features.
Figure 1 presents an example of the main components of
a numeric constraint in the Gripper domain. The constraint
template, denoted τNC, determines the operator that is con-
strained and the parameters of the action that are involved.
In the Gripper example, the constraint template, τNC is
pick{1}, which is defined for the robot parameter of the pick
action.

π1 =(pick r0 b1)

vr0 = 0
...

vrn = 0

v{1}+ = C(pick{1})
vr0+ = 1

s0 s1

...
vr0 = 1

vrn = 0

r0

b2
b1

b1

b2

r0

Figure 2: An illustration of the maintenance of a variable
for each tuple of the control template (in this case: pick{1}).
Each variable, vri , records the number of balls that the robot
ri is holding. The view option links the first variable of the
pick action to the parameter of the numeric variable. The
evaluation of C(pick{1}) == 1 increments the variable to
maintain a count of the number of balls being held.

An important aspect of the approach is in defining a sup-
porting numeric variable, which is effected by the relevant
operators so that it maintains the valuation of the desired
function over the preceding plan fragment. This variable is
then compared to the accepted upper bound value for the
function. An example of a constraint for the pick operator in
Gripper is: (< (held-balls-count ?r) (upper-problem-limit)),
where held-balls-count are a set of numeric variables that
each maintain a count of the number of balls that are being
held for each robot. The numeric constant upper-problem-
limit captures the upper bound of the function and in this
case, it is the same for all robots. This constraint is illus-
trated for upper-problem-limit ==1 in Figure 3.

The templates and their sets of features are similar to
those in (Gregory and Lindsay 2016) and they capture the
values associated with the active ground templates. For ex-
ample, in the Gripper domain, the following feature values
might be defined: C(pick )=1 and C(drop )=-1. If the
pick feature is active then one is added to the relevant vari-
able each time a pick action is applied (see Figure 2). In
the case of the drop feature, then 1 is removed each time a
drop action is applied. In a more complex domain, the robot
might be limited by the total weight of the balls that it could
carry and features parameterised by the ball could be used
to encode the ball’s weight, e.g., C(pick b1 )=30.

In order to connect the templates used to accumulate cost,
τ , with a constraint template, τNC, we define the set of view
options: VOτNC,τ , which define all mappings between the
two templates (ignoring incompatible types). This dictates
the parts of the plan step that should match before the plan
step is deemed relevant for τNC. If a variable is expected
to maintain a count for a specific object then it should only
match with plan actions that describe this object in certain
transitions. For example, consider a constraint on the num-
ber of entrances to a room and the number of balls dropped
in the room. In order to correctly accumulate the correct fea-
tures requires careful matching of the parameters between
the variable used to maintain the function’s evaluation and
the relevant feature values.
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PRE:(vr0 < 1) 7

s0 s1

vr0 = 1vr0 = 0

π1 =(pick r0 b1) π2 =(pick r0 b2)

PRE:(vr0 < 1) 3b2
b1

b1

b2

r0r0

Figure 3: An illustration of how the control template (in this
case: pick{1}) uses the maintained variables (e.g., vr0 ) in
order to constrain the applicability of actions. The robot can
only pick up one ball at a time (i.e., a precondition of vr0 <
1) and therefore the action π2 is not applicable.

For a particular constraint, we can calculate the evalua-
tion of the function at each plan step. This is computed as
the linear function of the active and relevant feature counts,
which we denote, Cπ(i, τ), multiplied by their associated
value, Wπi,τ :

Fπ(i) =
∑

τ

Cπ(i, τ)×Wπi,τ

If we assume a finite number of possible values for Wπi,τ

then the set of all possible constraints can be enumerated.
This is a large set and some of these constraints will be
meaningless and others less desirable. The rest of this sec-
tion describes how we have selected useful constraints and
organised our exploration of the space.

Input Data Our approach relies on a set of positive ex-
ample plans, Π+ and a set of negative example plans, Π−.
In this work we assume that the plans are each generated
for the same initial state, which allows us to determine the
appropriate bound for a constraint using a set of example
plans, rather than just one example plan. Each plan in the
negative examples, π− ∈ Π−, provides a valid action se-
quence, up to the last step. In fact, for each negative exam-
ple, a0, ..., an = π−, we add the plan fragment a0, ..., an−1

to the positive examples. This can potentially lead to a more
accurate constraint by not underestimating the bound.

Useful Numeric Constraints The selection of useful con-
straints relies on Π+ and Π−, the sets of positive and nega-
tive examples. The positive examples are used in order to es-
tablish an upper bound for the variable (that is the valuation
of Fπ(i), for plan step i, which is highest amongst all rele-
vant plan steps in the plans of Π+) during valid transitions.
2 By its definition, all positive examples must be explained
by any generated constraint.

A negative example is covered by a feature costing when
the final plan index matches the condition-template and the
constraint variable is higher than the upper bound. As each
plan in the negative examples minus its final action is added
to the positive examples, there is no opportunity for the se-
quence being regarded as a negative example before its end.

2It interesting to note that the variable may in fact become larger
than this upper bound. The upper bound captures the highest value
that is observed at a plan step that satisfies the condition-template.

Optimisation Function

We use a tiered evaluation function to first promote the func-
tional generality of the explanation and then a cascade of
tie-breaking, preferring less complex explanations:

1. Maximise: # covered negative examples

2. Minimise: sum of active template costs

3. Minimise: # of features used

4. Minimise: sum over feature weight magnitudes

The first tier selects the explanations that maximise the
number of negative plans whose evaluation is higher than the
upper bound calculated for the positive examples. The first
tie-breaking tier breaks ties on the complexity of the active
templates required in the explanation. This follows (Gregory
and Lindsay 2016) and is based on the arity of the template.
We then select explanations with lower numbers of non-zero
feature costs in the explanation. The final tier promotes ex-
planations that are expressed with smaller magnitudes.

Layered Exploration of the Space of Constraints

The space of all constraints that we have defined is large.
In order to reduce the size of the learning task, we propose
to shape the exploration through this space by iteratively ex-
tending the complexity of the constraints that we consider. In
order to support a more organised exploration of the space,
we have focussed on feature costs at the operator level. For
example, this allows allocating a cost of 1 to move actions
and not distinguishing between possible differences in cost
between different robots. We are also so far focusing on con-
straint templates that have a single parameter.

Given the large search space, it is prudent to exploit any
additional structure where it can be of benefit. One specific
way this is done is by exploiting typical properties of con-
straint formulation in the context of the transition system in-
ferred by LOCM. Structures, generated as part of the LOCM
domain inference process, have been exploited in the context
of learning functions of accumulating action costs (Gregory
and Lindsay 2016). In that work, the use of state parame-
ters provides insight into useful subsets of the parameters
that could be relevant for allocating action costs. However,
monotonic accumulation is not as common when describing
numerical constraints and instead there is commonly a bal-
ance of increasing and decreasing effects as resources are
claimed and released. In this context we can exploit differ-
ent structures that are generated by LOCM. In particular, in
several layers we will only allow certain transitions from an
object’s FSM (see the background section). The layers are
described here:

1. Operator based constraint templates. E.g., appropriate
for capturing capacity constraints in the Gripper domain
when there is only 1 robot.

2. Single object focussed constraint templates and a fo-
cussed subset of the object’s FSM features. At this layer a
constraint template can be learned for a single object (e.g.,
a robot) and only transitions that change that object’s FSM
state, or the FSM state parameters can be part of the con-
straint. For example, a parameter (the room) is changed



67

robot-1
[room]

move.1

ball-1
[room]

ball-2
[robot]

pick.1

drop.1

Figure 4: The reduced FSMs for Gripper, illustrating only
the transitions that change the state of the objects.

Algorithm 1 GROWCONSTRAINT: a method for incremen-
tally growing a numeric constraint.

1: procedure GROWCONSTRAINT(L,Π+,Π−)
2: constraint=[]
3: for layeri ∈ L do
4: repeat
5: notchanged=true
6: exp = findBestExplanation(layeri,Π

+,Π−)
7: if len(exp.covered) > 0 then
8: notchanged=false
9: constraint.add(exp)

10: Π
−.removeAll(exp.covered)

11: end if
12: until notchanged
13: end for
14: return removeSubsumedExplanations(constraint)
15: end procedure

when a robot is moved and therefore the move 1 template
can be allocated cost. However, dropping a ball does not
effect the robot’s state and therefore cannot be allocated
cost.3 The reduced systems are presented in Figure 4 for
the Gripper domain.

3. Collation of objects that have shared parameter. At this
layer we acknowledge that many constraints act across
sets of objects that each share a relationship with a sin-
gle object. For example, a robot exists as a parameter in
the space of each ball that is held by the robot. The ac-
tive features at this layer are those that either add, remove
or maintain the parameter in each of the objects that can
achieve the parameter.

4. Single object focussed constraint templates and FSM fea-
tures. At this layer all of the object’s FSM features are
active and can be used in the definition of a constraint.

We have implemented layers 1,2 and 4 and have used
these in the evaluation. Although layer 3 is more complex
than layer 4, we predict it will have fewer instantiations.

Incrementally Growing the Constraint

In this work we have adopted a simple approach in order to
construct a set of numeric constraints that cover as many of
the negative examples as possible. The pseudo-code is pre-
sented in Algorithm 1. The inputs are a list of layers (L) and

3The intention of layer 2 is that the object’s that are impacted by
a change should record its cost, which we expect will help reduce
redundancy. For example, in the case of dropping a ball, it is more
natural that this cost relates to the ball and not the robot. Indeed
this is often the case, e.g., weight or size.

the positive and negative training examples (Π+ and Π−).
The procedure loops through the layers through increasing
complexity. At each layer a best explanation for the exam-
ples is created. While the proposed explanations can still
cover negative examples (the explanation returned, exp has
a list of the negative examples that it covers) then the proce-
dure remains at the same layer, removing the covered exam-
ples after each new constraint is added. Once no more con-
straints can be found at a layer then the procedure continues
to the next layer.

A final step is used to clean out some overfitting con-
straints made in the less expressive layers. We start with
the constraints created for the more expressive layers and
then we only add those constraints from previous layers that
explain examples that have not been explained by the con-
straints in the layers above. This approach removes some oc-
currences where partial explanations are generated at layers
that cannot explain the constraint completely.

Initial Evaluation
An initial prototype was developed that has allowed us to test
the proposed approach on the layers 1,2 and 4 of the layered
strategy presented above. At each tier all of the possible con-
straints are enumerated and the best constraint selected, us-
ing the presented scoring function. The covered negative ex-
amples are removed and the process repeated until no more
examples can be explained, where the next tier is attempted.
For this evaluation we have constrained all features to have
costs within certain small bounds.

We have tested the approach on simple versions of the
Zeno-travel domain and a transportation domain. The trans-
portation domain involves redistributing packages using
trucks and captures a capacity constraint, as well as con-
straint on the number of exits from a location (i.e., the
Mystery domain encoding of fuel). In Zeno-travel, airplanes
transport passengers between cities, traversing by either fly-
ing or zooming. The domain defines constraints on flying
and zooming in terms of fuel and also only allows zoom-
ing when there are a small number of occupants. The former
constraint distinguishes between the amount of fuel used by
each of the operators.

Two sets of examples: positive and negative, were gen-
erated for each domain. The negative examples were gener-
ated by performing a 20 step random walk, a0, ..., a19, in the
partial model (the model without the numeric constraints).
Each step of the walk was then simulated using the com-
plete model. In this way the index of the first inapplicable
action, ai, was identified and the fragment, a0, ..., ai was
then used as a negative example. This acts in place of an ac-
tion sequence validator. Positive examples are random walks
generated using the complete model. 50 positive and 50 neg-
ative examples were generated for each domain.

Table 3 presents counts of both possible combinations and
the number of explanations generated at each layer of com-
plexity. The table makes it clear how important it is to ex-
ploit the leverage of structures that are more likely to be used
for capturing numeric constraints. In particular, consider the
different number of combinations generated in the case of
layers 2 and layers 4.
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Domain Range COMB(L1) EXP(L1) COMB(L2) EXP(L2) COMB(L4) EXP(L4) Ok

Trans -1,..,1 162 9 42 1 846 23 ✓

Trans -3,..,3 2058 147 210 3 21462 847 ✓

Trans -5,..,5 7986 605 506 5 125598 5472 ✓

Zeno -1,..,1 324 0 144 9 42444 1045 ✗

Zeno -3,..,3 9604 0 588 47 715596 5917 ✓

Zeno -5,..,5 58564 0 1452 123 10688172 96150 ✓

Table 3: The number of generated combinations, COMB(L) and explanations, EXP(L), for the three layers explored and differ-
ent feature domains (Range). The Ok column indicates that the constraints matched those of the domain.

Transportation

In the first layer an explanation is generated that constrains
the total number of move actions (in each move action 1 is
added to a numeric variable with no parameters). The upper
bound for this constraint sums the number of times all lo-
cations can be exited. In the second layer an explanation is
generated that constrains the number of a move actions that
a specific truck can perform. The bound given to this con-
straint is lower than the total number of possible moves and
therefore this constraint overfits the training data. However,
these constraints are both structurally valid and when cor-
rectly parameterised with a problem specific upper bound
they capture part of the fuel constraint.

In the fourth layer the system identified two constraints
that covered the negative examples. The first captured the
constraint on the number of times a location has been
left. It was represented by defining a numeric variable for
each location, which counts (+1) each time a move action
is applied with the location in the second parameter. The
costs were as follows: cost(move.3)=0, cost(drop.3)=0,
cost(move.2)=1 and cost(pickup.3)=0. This constraint
subsumes the constraints learned in the previous layers and
the system therefore removes them from the constraint and
retains this constraint.

The second learned constraint at this level captures the ca-
pacity constraint on the truck as a condition on the pickup
action. Each time a truck loads a package, a variable as-
sociated to the truck is incremented and each time a pack-
age is unloaded it is decremented, maintaining a count of
the number of packages on the truck. The cost allocations
were as follows: cost(pickup.2)=1, cost(drop.2)=-1 and
cost(move.1)=0.

Zeno-Travel

The approach correctly identified the constraints for the sim-
plified Zeno-travel domain. No constraints were found at the
first layer, but two were found at the second layer. These
constraints are similar: each captures the fuel constraint,
one for the zoom action and the other captures the con-
straint for fly. The active features for airplane objects (at
the second layer) are zoom.1 and fly.1. In each case the
approach allocates feature values of cost(zoom.1)=2 and
cost(fly.1)=1, correctly identifying that the zoom action
uses more fuel. The constraint identified for the zoom ac-
tion is presented in Figure 5. A numeric state variable (in
this case zoom-bound-accum) is created in order to maintain

(:action zoom
:parameters (?a1 - airplane ?c1 ?c2 - city)
:precondition (> (zoom-bound ?a1) (+ (zoom-bound-accum) 2) ..
:effect ... (increase (zoom-bound-accum) 2)..)

(:action fly
:parameters (?a1 - airplane ?c1 ?c2 - city)
:precondition ...
:effect ...(increase (zoom-bound-accum) 1)..)

Figure 5: PDDL fragments presenting the constraint identi-
fied for the zoom action, which captures the restriction on
fuel. The system was able to identify the increased fuel con-
sumption used by the zoom action.

the valuation of the function at each state. The learnt con-
straint is then represented using a precondition, which relies
on the maintained variable. This illustrates the potential for
redundancy in the approach. Each constraint is described in
isolation and we do not currently exploit the possibility of
sharing variables for several constraints.

In the fourth layer all of the transitions defined in the
airplane FSM are available, which are: zoom.1, fly.1, de-
bark.2 and board.2. The system learns a constraint for the
zoom action, which correctly captures that the zoom action
is only applicable when there are up to a maximum num-
ber on-board (i.e., with respect to a specific airplane). The
values are as follows: cost(zoom.1)=0, cost(fly.1)=0,
cost(debark.2)=-1 and cost(board.2)=1. This constraint
is interesting because the operator with the precondition
(zoom) is not involved in changing the numeric variable.

For the range {-1,..1} the system found an alternative ex-
planation for the input data. This is because the actual con-
straint was not expressible given the range.

Future Work

There are several key limitations of the presented work that
must be examined in order to better understand the nature of
this problem. Numeric state variables are used to encode dis-
tances, resource limits and other arbitrary values. However,
exploring features with large domains within a large space
of possible template choices is impractical and will lead to
overfitting. One possible connection that could be exploited
is between the feature’s contribution to a constraint and its
contribution towards the plan cost. For example, driving be-
tween A and B may use x units of fuel, but also contribute x
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to the total pollution of the plan. In this way the feature costs
discovered by NLOCM may also provide some indication of
feature values for constructing constraints.

We have assumed in this work that the part of the model
that can be represented by static relations is correctly dis-
covered by LOP. However, the identification of static rela-
tions in LOP is based on the assumption that it can explain
the missing constraints. We suspect that it may infer spu-
rious constraints when faced with input data that it cannot
correctly explain. In future work we will both investigate
this suspicion and if it is correct then investigate learning
the constraints together.

It is common that the current fuel level cannot be cap-
tured in a linear sum over the preceding consumption and
refuelling actions. The extension of the model with a single
reset (or refuel) feature, which has the effect of setting the
variable equal to zero would be a possible extension.

Perhaps the most important consideration is the input data
that we have used. In this work, the negative examples in-
dicate the actions that contain numeric constraints in their
preconditions, however, they do not provide much informa-
tion regarding the underlying cause for the failure or the ob-
jects and actions that have contributed. Currently example
sets must also all share a common initial state.The problem
is that if different initial states are used then different initial
values for the numeric state variable would be possible and
identifying a bound for it would be meaningless. It will be
important future work to examine alternative data sets in or-
der to best consider the trade-off between the quality of the
output and the effort of defining the input data.

Conclusion

In this work we have investigated the problem of identify-
ing numeric constraints in planning models. Our approach
attempts to identify functions that separate a given set of
good and bad plan fragments. The functions are defined in
terms of a linear sum over the preceding steps in the plan
fragment. In our evaluation we show that it is possible to
identify common numeric constraints, such as resource re-
strictions. However, there is a very large space of possible
numeric constraints, which this work only begins to explore.
In the future work we have outlined some of the more im-
portant open questions in this area.
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Abstract

For many years, the planning community has adopted the
mantra ‘physics not advice’; indicating that a planning model
should describe the properties of the problem, but should not
give advice on how to solve the problem. This is in con-
trast with other, more widely applied, search and optimiza-
tion technologies, such as Mixed-Integer Programming and
Constraint Programming as well as AI technologies, such as
Evolutionary Algorithms and Machine learning. As models
get more complex, solving planning problems becomes more
challenging, and it becomes important for us to understand
how to model problems so that they can be solved efficiently
by planners; in order to be able to apply planning in real life
applications. In this paper we focus on a particular common
pattern: the need for several effects to be applied sequentially
as the result of a single decision. This may occur, for exam-
ple, when an action starts a cascade of effects. In this paper,
we consider different ways of modelling this in PDDL, and
compare the efficiency of solving the problem using each of
these models in three state-of-the-art PDDL+ planners: SMT-
Plan+, OPTIC and DiNo. Our results show that the more intu-
itive model is less scalable on the first two, and that a model
ensuring fewer happenings is less scalable on the third. By
presenting this work we hope to encourage more research in
developing efficient planning models for expressive domains
in order to allow planning to be applied in a wider range of
applications.

Introduction

Many in the Domain Independent Planning community sub-
scribe to the philosophy ‘physics not advice’; that is, since
we are dealing with the design of planners that should cope
with any domain, when generating a testbed the domains
must not contain hints or assist the planner in solving a given
problem. In contrast, in many other fields of AI and opti-
mization the realization that no tool can perform well on
all domains (the No Free Lunch Theorem (NFL) (Wolpert
and Macready 1997)) has inspired much work to be car-
ried out in the area of selecting the proper search tool for
a given model, or modelling in a way that would facilitate
faster search with a given a tool. This area has received rel-
atively little attention in planning, and in particular we do
not yet have a good understanding of how modelling deci-
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sions affect the performance of the most expressive planning
systems: PDDL+ planners.

In this work we will discuss a simple example of match-
ing an expressive PDDL+ model to a search tool in planning
problems. The example we discuss is modelling a process
sequence: a number of processes which start one after the
other. Processes in PDDL+, as defined by (Fox and Long
2002), can be described as effects that act upon a variable
regardless of actions taken, as long as a set of predicates is
true. An example of a process is gravity acting on a falling
object, or a battery being charged by solar energy as the sun
rises. A process sequence may appear naturally in a domain,
however, one may also encounter such sequence when mod-
elling a series of effects.

Often in real life engineering domains one may come
across a series of continuous numeric effects acting one after
another upon a variable. This may happen due to an action
starting a cascade of such effects. For instance a rover trans-
mitting data back to base. The transmission itself has several
phases: linking, transmitting, awaiting confirmation, receiv-
ing confirmation data. All these phases have different con-
tinuous effects on battery usage, and therefore can be repre-
sented as a cascade of continuous numeric effects on the bat-
tery charge level. This may also apply to interval constraints
(Tran et al. 2017) and (Tierney et al. 2012).

Another reason for effect series may be a result of piece-
wise linearization of a non-linear domain (Denenberg and
Coles 2018; Cao et al. 2011). For instance, power landing
using rockets: A robot is landing and is under the force of
gravity, at any given point it may fire its engines to reduce
the velocity of the fall. The engine firing changes the ve-
locity exponentially while the gravity changes the velocity
polynomially. Mixing these functions may prove to be hard,
and therefore the user might chose to approximate each of
the non-linear effects as a sequence of piecewise linear con-
tinuous effects.

This paper discusses three different methods for mod-
elling sequences of continuous effects. One uses only feat-
uers of PDDL 2.1, clips and durative actions. Next, two
PDDL+ models are examined: The first of these two is an
intuitive one which might be created by an end user. The
second model is less intuitive, but ensures a smaller number
of happenings. We compare the perofrmance of these mod-
els empirically using three different state-of-the-art PDDL+
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planners: SMTPlan+ (Cashmore et al. 2016), OPTIC (Ben-
ton, Coles, and Coles 2012) and DiNo (Piotrowski et al.
2016). We present results indicating which is the most ef-
ficient model to use for each type of planner, and an analysis
of why each model is better suited to that type of planner.

Problem Definition

A PDDL+ planning problem (Fox and Long 2002) is a tuple
〈F,v,A,P,I,G〉1 where:

• F is a set of propositions (facts);

• v is a set of real numeric variables;

• A is a set of actions;

• P is a set of processes;

• I (⊆ F ) is the initial state;

• G (a conjunction of facts from F and numeric conditions
over v) is the goal.

Each action has three sets of preconditions which must
hold at the start of, at the end of, and throughout its execu-
tion respectively. Preconditions are conjunctions of proposi-
tions (or their negations) and numeric conditions (which for
our purposes we will assume can be represented in the form
w.v{>,≥, <,≤, =}c where (w is a vector of constants and
c is a constant)). Actions can have instantaneous effects at
their start or end, these can be propositions that are added or
deleted, or updates to numeric variables of the form v{+=, -
=, =}w.v + c where v ∈ v. In addition to this, actions can have
continuous numeric effects that happen throughout their du-
ration, most generally of the form dv/dt {+=, -=, =}w.v + c;
but in this work we focus on linear continuous change where
continuous effects are of the form dv/dt {+=, -=, =} c. Fi-
nally, actions have a duration constraint, defining a permis-
sible range from which the planner can select the duration of
the action.

Processes comprise a precondition and a set of continu-
ous numeric effects. They differ from actions in the seman-
tics of their execution: nominally actions model the activities
the planner can choose to take; whereas processes model ex-
ogenous happenings in the environment. If the preconditions
of an action are true in a given state, then the planner can
choose to apply that action in that state (or not to). In con-
trast, if the preconditions of a process are true in a given state
then that process will execute automatically, the planner has
no choice over this.

A solution to this problem is a plan: a sequence of actions
from A that transforms I into G.

Often in literature PDDL+ models are referred to as hy-
brid, meaning they mix continuous and instantaneous ef-
fects. This work does not explore the hybrid property of
PDDL+, rather, it aims at making use of the added expres-
siveness of processes.

1We exclude events from our definition as we do not use them
in this work

Running Example: Generator Domain

Throughout the remainder of the paper we use the well-
known generator domain as a running example. The objects
in this domain are a generator, which has a main tank with
a given capacity. Generating electricity consumes fuel from
the main tank. The generator can be refuelled using an aux-
iliary tank.

During the plan the Generator is required to work without
“choking”, that is, the level of fuel in the main tank must not
reach zero. When refuelling, the fuel must not spill, i.e. the
level of the fuel must not be greater than the capacity of the
main tank.

The consumption of fuel by the generator is assumed to be
linear. And thus modelled by a single action with a contin-
uous linear effect. Refuelling from an auxilliary tank is ap-
proximated by three piecewise linear sections as described in
Figure 1. These are the linear effects that become the effects
of individual actions or processes that must be sequencesd to
model the effect throughout the whole duration of refuelling.

t

f(t)

0 5 10 15 20

4

8

12

16

Figure 1: Linearized refuel

Modelling Sequences of Continuous Effects

We now consider the problem of modelling a sequence of
conditional effects that occur as a result of a single decision.
More formally, we have a physical effect E that acts con-
tinuously upon the variable v, and has an effect f (u) that is
defined such:

dv

dt
= f (u) =















a1 0 < u ≤ u1

a2 u1 < u ≤ u2

...
an un−1 < u ≤ un

(1)

where ai are a set of contributions to the rate of v, and uj are
a set of values of u. These contributions could be constant,
modelling a piecewise linear function (as those we consider
in this paper) or could themselves be functions over problem
variables. We present 3 different approaches to modelling
this type of effect in PDDL.
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Durative Action and Clip Model

It is possible to model sequences of continuous effects, in
PDDL 2.1, without the need to invoke PDDL+ processes.
In order to do this we make use of clips (Fox, Long, and
Halsey 2004). Clips are additional actions that are used to
bind together the execution of actions in order to ensure one
starts as soon as another finishes.

Figure 2 illustrates this compilation: each action Ai

has effect (increase v (* #t) ai). Additionally
Ai (i > 1) has start and end preconditions that are added at
the start, and deleted at the end of, Ci and Ci+1 respectively.
Finally, the start of Ai+1 (i < n) adds an end precondition
of ci. In this way, we can force Ai+1 to happen immedi-
ately after Ai ends. In our generator example, A1,A2 and
A3 would be actions, with appropriate durations, that when
sequenced model refuelling. Each has a continuous effect
on fuel corresponding to the respective slope in Figure 1.
Propositional preconditions and effects would enforce that
the actions must be applied in sequence, in this order.

A1

c1

A2

c2

A3

Figure 2: Clip and Durative Action Model

This representation has the advantage that it does not re-
quire a PDDL+ capable planner; although it still exhibits a
level of expressiveness captuerd by few planners. It is worth
noting that this representation requires a large number of ac-
tions to be added to the domain, over which the planner must
search.

Modelling as Process Sequences

An alternative is to use a set of PDDL+ processes to describe
the effects, as demonstrated in (Denenberg and Coles 2018).

The most intuitive way to model such a series of ef-
fects using a sequence of processes would be to define a
set of processes Pi, each defined on the interval ui−1 <
u ≤ ui, as shown in Figure 3 and visualized in Figure 4a.
In our generator example, the refuel action would be a
single action that sets a counter u to zero and has effect
(increase u (* #t) 1), with a start add/end delete
effect of some fact refuelling denoting that refuelling is
happening. The processes, with precondition f and their re-
spective u value ranges would then be responsible for updat-
ing the fuel level only during their respective ranges.2

It was discovered that many planners struggle with pro-
cesses defined in this fashion. Therefore, we suggest the
“stacking” of the processes. That is, instead of defining the
process on an interval, we defining a single condition and
incorporating the effect of process Pi to the effect of Pi+1

in the following manner:

2Note that this model is correct for the case where refuelling
with the same tank cannot self-overlap.

( : p r o c e s s P i
: p a r a m e t e r s ( )
: p r e c o n d i t i o n ( and

(< u u { i−1 } )
(>= u u i ) )

: e f f e c t ( i n c r e a s e v (∗ # t a i ) )
)

Figure 3: Intuitive Process

dv

dt
= F (u) =























A1 0 < u ≤ u1

A2 u1 < u
...
An un−1 < u
An+1 un < u

(2)

Where A1 = a1 and Ai = ai − Ai−1 for all i > 1. Only
a starting condition is defined for each process PFi. The
effect of the process PFi incorporates the new change ai
as well as the removal of the previous effect Ai−1. This is
visualized in Figure 4b and demonstrated in Figure 5. Again,
in our generator example we create a refuel action assigning
u to zero at the start, and with effect (increase u (*
#t) 1), the processes now start in sequence, but overlap,
all continuing until the end of the refuel action.

a1 a2 a3

(a) Intuitive Model

A1

A2 = a2 − A1

A3 = a3 − A2

(b) “Stacking” Model

Figure 4: Visualization of Processes Models

( : p r o c e s s PFi
: p a r a m e t e r s ( )
: p r e c o n d i t i o n (< u u { i−1 } )
: e f f e c t ( i n c r e a s e v (∗ # t A i ) )

)

( : p r o c e s s P F i p l u s o n e
: p a r a m e t e r s ( ? b − b a r )
: p r e c o n d i t i o n (< u u { i } )
: e f f e c t ( i n c r e a s e v (∗ # t A { i +1} ) )

)

Figure 5: Intuitive Process

Evaluation

In this section we examine two linearised versions of the
well known generator domain. The first, a symmetric do-
main, where there is no importance as to which tank is to be
used when. The second an asymmetric domain, in which the
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use of tank number one must precede that of number two and
so on. Using the PDDL 2.1 and the two PDDL+ models to
describe these versions resulted in six domains: Symmetric
and asymmetric Clips, symmetric and asymmetric intuitive
model domains and symmetric and asymmetric “stacking”
model domains.

On each domain four problems were tested: a generator
with one,two, three and four auxiliary tanks. The problem
files for all domains and problems are given in the Appendix.

The problems were tested on three state of the art plan-
ners: a PDDL+ implementation of OPTIC, SMTPlan+ and
DiNo.

The Clips models proved to be inefficient: SMTPlan+ and
DiNo timed out on all problems, both symmetric and asym-
metric. Only Optic was able to find a valid solution, and the
results are presented in Table 1 and Table 2.

The average results of the tests of the PDDL+ symmetri-
cal domain are summarized in Table 1, and the asymmetrical
in Table 2.

The results of the symmetric PDDL+ domains are as fol-
lows: In both OPTIC, SMTPlan+ the process “stacking”
model performed better than the intuitive model. Using the
process “stacking” model in the one tank problem proved
to be 85% faster than the intuitive model. Using SMTPlan+
the fast model was 98% faster in the two tank problem, while
OPTIC was unable to solve the intuitive model within 1000
seconds and timed out. STMPlan+ was able to solve the 3
tank problem within 769 secons.

DiNo was able to solve both PDDL+ models and scale
well. The difference between the intuitive and “stack-
ing model” was relatively small. Even though the process
“stacking” model ensures fewer happenings, DiNo scaled
slightly better while using the intuitive model.

number of tanks 1 2 3 4

Clips and Struts 0.07 14.16 TO TO

Intuitive 22.86 TO TO TO

Stacking 2.95 922.32 TO TO
OPTIC+

Processes
%diff 12.90 - - -

Intuitive 0.22 132.39 TO TO

Stacking 0.03 0.72 769.33 TOSMTPlan+
%diff 14.09 0.55 - -

Intuitive 3.02 4.04 5.52 7.43

Stacking 2.78 4.07 5.84 7.64DiNo
%diff 92.05 100.74 105.80 102.83

Table 1: Symmetric Generator Problem Test Results

number of tanks 1 2 3 4

Clips and Struts 0.07 14.06 TO TO

Intuitive 22.70 TO TO TO

Stacking 2.89 29.51 38.78 49.86
OPTIC+

Processes
%diff 12.72 - - -

Intuitive TO TO TO TO
SMTPlan+

Stacking 0.59 TO TO TO

Intuitive 2.57 3.58 Failed Failed
DiNo

Stacking 2.58 Failed Failed Failed

Table 2: Asymmetric Generator Problem Test Results

The results of the asymmetric PDDL+ domains are: OP-
TIC showed great improvement when using the “stacking”

model, SMTPlan+ operated better on the ”stacking“ model,
and was able to solve the porblem with one tank, though it
timed out on the rest of the problems. DiNo performed bet-
ter on the intuitive model. In addition, DiNo failed to run on
any of the “stacking” domains.

Discussion

The problems presented in the previous section implies that
the non-intuitive model is more efficient on two planners
while less efficient on the third regardless of whether the
domain is symmetric. In this section we will propose an ex-
planation for the observed performance.

OPTIC solves a planning problem by transforming dura-
tive actions (and processes), to snap actions. The search in
OPTIC is over happenings, which are either the application
of snap actions, or the decision to start or stop a process. If
a process has a precondition that is trivially false (for ex-
ample, a proposition (e.g. refuelling) is known to be false in
the state) then there is no need to make a search decision
about whether that process executes or not. However, when
a precondition is over a continuously changing variable (e.g.
(< u ui) where u is currently subject to continuous nu-
meric change), then the planner must make a search deci-
sion, whether to start or stop a process conditioning on it.
The plan for the intuitive model requires more happenings
(start refuel, start p1, end p1,start p2, end p2,start p3, end
p3, end refuel) all at different times. For the stacked model,
however, the plan: start refuel, start P1, start P2, start P3,
end refuel, with only 5 happenings, suffices as the planner
can deduce that as soon as it ends refuel all the processes
must end P1,P2 and P3 immediately, as one of their pre-
conditions refuelling has been deleted. This means that the
solution plan appears at a lower depth in the search tree.

A similar thing happens with the SMTPlan+. This plan-
ner uses a defined number of happenings, for each happen-
ing a set of Satisfiability Problem (SAT) equations is for-
mulated and solved. Because fewer happenings are required
to solve the stacked model (the processes can end at the
same happening as the refuel action), SMTPlan+ can solve
the problem with fewer happenings. Since SMTPlan+ by de-
fault starts with a small number of happenings and increases
this until it finds a solution; finding a solution with fewer
happenings means fewer SAT problems have to be proven
unsolvable to find a solution.

The DiNo planner generates states by discretization. The
states generated end up being comprised of a large amount of
happenings ǫ time units from one another. at each such hap-
pening the planner may chose to perform an instantaneous
action, start or end a durative action or process, or update
the variables using all the currently active effects. Therefore
the performance of this planner depends on the number of
time units the plan requires, and the user defined size of the
ǫ, rather than by the number of happenings required by the
domain. Furthermore, since the planner needs to update the
variables every ǫ time step, the more effects acting on a vari-
able the more calculations would be required. This is why
the “stacking” model scales slightly worse in this planner.
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Conclusions

This paper presented three models for each of two variants
for the same problem, and the performance of three plan-
ners on these models. The PDDL2.1 model proved to be in-
efficient on all three planners. Two of the planners showed
high sensitivity to the type of PDDL+ model, and the third,
showed slightly better scalability with one domain over the
other. Had this been a real life problem, the engineer solv-
ing it would have been required to either chose the planning
tools to fit his problem, or to model the problem in a manner
that would allow the problem to be solved within reasonable
time. This is a clear demonstration of the need to research
modelling in planning. In addition to emphasizing the need
to study the matching of models to planners, this work also
introduces a means of modelling a cascade of effects.

Modelling a cascade of effects in PDDL+ as a sequence of
processes was explored: Two models proposed were tested
on three planners in symmetrical and asymmetrical repre-
sentation. Future work must include additional PDDL+ ca-
pable planners. In addition, the domains used here were lin-
ear, in the sense the effects were of linear change. Since the
contribution of the model was in reducing the number of
happenings, we do not expect a non-linear effect to show
significantly different behaviour scalability wise. However,
future tests will include planners performance on such non-
linear domains.

Since the use of processes on intervals are slow in plan-
ners that depend on the amount of happenings, it might be
useful to create a preprocessing tool for these planners, such
that would parse a domain and identify the intuitive, yet less
efficient model, and replace it with the “stacking” model
suggested in this paper.
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Appendix

(define (problem run-generator2)
(:domain generator2)
(:objects gen - generator tank1 tank2 tank3 -

tank)
(:init
;(= (fuelLevel gen) 990) ; 1 tank
;(= (fuelLevel gen) 970) ; 2 tanks
(= (fuelLevel gen) 955) ; 3 tanks
;(= (fuelLevel gen) 940) ; 4 tanks
(= (capacity gen) 1000)
(available tank1)
(= (reftime tank1) 0)
(available tank2)
(= (reftime tank2) 0)
(available tank3)
(= (reftime tank3) 0) )
(:goal (generator-ran))
)

Figure 6: Symmetric Problems

(define (domain generator2)
(:requirements :fluents :durative-actions

:duration-inequalities :adl :typing)
(:types generator tank)
(:predicates (refueling ?g - generator) (

generator-ran) (available ?t - tank))
(:functions (fuelLevel ?g - generator) (capacity

?g - generator) (reftime ?t - tank) )

(:durative-action generate
:parameters (?g - generator)
:duration (= ?duration 1000)
:condition (over all (>= (fuelLevel ?g) 0))
:effect (and ( decrease (fuelLevel ?g) (* #t 1))

(at end (generator-ran)) ) )

(:durative-action refuel
:parameters (?g - generator ?t - tank)
:duration (= ?duration 20)
:condition (and ;(at start (not (refueling ?g)) )

(at start (available ?t))
(over all (< (fuelLevel ?g) (capacity ?g))))
:effect (and (at start (refueling ?g))

(in rease (reftime ?t) (* #t 1))
(at start (not (available ?t)))
(at end (not (refueling ?g))) ) )

(:process refueling1
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:parameters (?g - generator ?t - tank)
:precondition (and (refueling ?g)

(>= (reftime ?t) 5)
(< (reftime ?t) 10) )

:effect ( increase (fuelLevel ?g) (* #t 0.5)) )

(:process refueling2
:parameters (?g - generator ?t - tank)
:precondition (and (refueling ?g)

(>= (reftime ?t) 10)
(< (reftime ?t) 15) )

:effect ( increase (fuelLevel ?g) (* #t 1.0)) )

(:process refueling3
:parameters (?g - generator ?t - tank)
:precondition (and (refueling ?g)

(>= (reftime ?t) 15) )
:effect ( increase (fuelLevel ?g) (* #t 1.5)) ) )

Figure 7: Symmetric Intuitive Model Domain

(define (domain generator2)
(:requirements :fluents :durative-actions

:duration-inequalities :adl :typing)
(:types generator tank)
(:predicates (refueling ?g - generator) (

generator-ran) (available ?t - tank))
(:functions (fuelLevel ?g - generator) (capacity

?g - generator) (reftime ?t - tank) )

(:durative-action generate
:parameters (?g - generator)
:duration (= ?duration 1000)
:condition (over all (>= (fuelLevel ?g) 0))
:effect (and ( decrease (fuelLevel ?g) (* #t 1))

(at end (generator-ran)) ) )

(:durative-action refuel
:parameters (?g - generator ?t - tank)
:duration (= ?duration 20)
:condition (and ;(at start (not (refueling ?g)) )

(at start (available ?t))
(over all (< (fuelLevel ?g) (capacity ?g)

)))
:effect (and (at start (refueling ?g))

( increase (reftime ?t) (* #t 1))
(at start (not (available ?t)))
(at end (not (refueling ?g))) ) )

(:process refueling1
:parameters (?g - generator ?t - tank)
:precondition (and (refueling ?g)

(>= (reftime ?t) 5)
;(< (reftime ?t) 10)
)

:effect ( increase (fuelLevel ?g) (* #t 0.5)) )

(:process refueling2
:parameters (?g - generator ?t - tank)
:precondition (and (refueling ?g)

(>= (reftime ?t) 10)
;(< (reftime ?t) 15)
)

:effect (
increase (fuelLevel ?g) (* #t 0.5));1.0))

)

(:process refueling3
:parameters (?g - generator ?t - tank)
:precondition (and (refueling ?g)

(>= (reftime ?t) 15)
:effect (

increase (fuelLevel ?g) (* #t 0.5));1.5))
) )

Figure 8: Symmetric Process “Stacking” Model Domain

(define (domain generator2)
(:requirements :fluents :durative-actions

:duration-inequalities :adl :typing)

(:types generator tank)
(:predicates (refueling ?g - generator) (

generator-ran) (available ?t - tank) (s0 ?t -
tank) (s1 ?t - tank) (s2 ?t - tank) (s3 ?t -
tank) (c01 ?t - tank) (c12 ?t - tank) (c23 ?
t - tank))

(:functions (fuelLevel ?g - generator) (capacity
?g - generator) (reftime ?t - tank) )

(:durative-action generate
:parameters (?g - generator)
:duration (= ?duration 1000)
:condition (over all (>= (fuelLevel ?g) 0))
:effect (and ( decrease (fuelLevel ?g) (* #t 1))
(at end (generator-ran)) ) )

(:durative-action refuel
:parameters (?g - generator ?t - tank)
:duration (= ?duration 20)
:condition (and (at start (available ?t))
(over all (< (fuelLevel ?g) (capacity ?g)))
(at end (s3 ?t)) )
:effect (and (at start (refueling ?g))
(at start (not (available ?t)))
(at start (s0 ?t))
(at end (not (refueling ?g))) ) )

(:durative-action strt-refueling1
:parameters (?g - generator ?t - tank)
:duration (= ?duration 5)
:condition (and (at start (c01 ?t))
(at end (c12 ?t)) )
:effect (and (

increase (fuelLevel ?g) (* #t 0.5))
(at start (s1 ?t))
(at end (not(s1 ?t))) ) )

(:durative-action strt-refueling2
:parameters (?g - generator ?t - tank)
:duration (= ?duration 5)
:condition (and (at start (c12 ?t))
(at end (c23 ?t)) )
:effect (and ( increase (fuelLevel ?g) (* #t 1))
(at start (s2 ?t))
(at end (not (s2 ?t))) ) )

(:durative-action strt-refueling3
:parameters (?g - generator ?t - tank)
:duration (= ?duration 5)
:condition (and (at start (c23 ?t)) )
:effect (and (

increase (fuelLevel ?g) (* #t 1.5))
(at start (s3 ?t)) ) )

(:durative-action clp01
:parameters (?g - generator ?t - tank)
:duration (= ?duration 0.15)
:condition (and (at start (s0 ?t))
(at end (s1 ?t)) )
:effect (and (at start (c01 ?t))
(at end (not (c01 ?t))) ) )

(:durative-action clp12
:parameters (?g - generator ?t - tank)
:duration (= ?duration 0.15)
:condition (and (at start (s1 ?t))
(at end (s2 ?t)) )
:effect (and (at start (c12 ?t))
(at end (not (c12 ?t))) ) )

(:durative-action clp23
:parameters (?g - generator ?t - tank)
:duration (= ?duration 0.15)
:condition (and (at start (s2 ?t))
(at end (s3 ?t)) )
:effect (and (at start (c23 ?t))
(at end (not (c23 ?t))) ) ) )

Figure 9: Symmetric Clips Domain
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(define (problem run-generator2)
(:domain generator2)
(:objects gen - generator tank1 tank2 tank3 -

tank) ;
;(:objects gen - generator tank1 tank2 - tank)
;(:objects gen - generator tank1 - tank)
(:init
;(= (fuelLevel gen) 990) ; 1 tank
;(= (fuelLevel gen) 970) ; 2 tanks
(= (fuelLevel gen) 955) ; 3 tanks
;(= (fuelLevel gen) 940) ; 4 tanks
(= (capacity gen) 1000)
(= (last-used gen) 0)
(available tank1)
(= (reftime tank1) 0)
(= (tanknum tank1) 1)
(available tank2)
(= (reftime tank2) 0)
(= (tanknum tank2) 2)
(available tank3)
(= (reftime tank3) 0)
(= (tanknum tank3) 3)
)
(:goal (generator-ran))
)

Figure 10: Asymmetric Problems

(define (domain generator2)
(:requirements :fluents :durative-actions

:duration-inequalities :adl :typing)
(:types generator tank)
(:predicates (refueling ?g - generator) (

generator-ran) (available ?t - tank))
(:functions (fuelLevel ?g - generator) (capacity

?g - generator) (reftime ?t - tank) (
last-used ?g - generator) (tanknum ?t - tank)
)

(:durative-action generate
:parameters (?g - generator)
:duration (= ?duration 1000)
:condition (over all (>= (fuelLevel ?g) 0))
:effect (and ( decrease (fuelLevel ?g) (* #t 1))

(at end (generator-ran)) ) )

(:durative-action refuel
:parameters (?g - generator ?t - tank)
:duration (= ?duration 20)
:condition (and (at

start (= (last-used ?g) (- (tanknum ?t) 1) ))
(at start (available ?t))
(over all (< (fuelLevel ?g) (capacity ?g)

)))
:effect (and (at start (refueling ?g))

( increase (reftime ?t) (* #t 1))
(at start (not (available ?t)))
(at end (not (refueling ?g)))
(at end (assign (last-used ?g) (tanknum

?t))) ) )

(:process refueling1
:parameters (?g - generator ?t - tank)
:precondition (and (refueling ?g)

(>= (reftime ?t) 5)
(< (reftime ?t) 10) )

:effect ( increase (fuelLevel ?g) (* #t 0.5)) )

(:process refueling2
:parameters (?g - generator ?t - tank)
:precondition (and (refueling ?g)

(>= (reftime ?t) 10)
(< (reftime ?t) 15) )

:effect ( increase (fuelLevel ?g) (* #t 1.0)) )

(:process refueling3
:parameters (?g - generator ?t - tank)
:precondition (and (refueling ?g)

(>= (reftime ?t) 15)

:effect ( increase (fuelLevel ?g) (* #t 1.5)) ) )

Figure 11: Asymmetric Intuitive Model Domain

(define (domain generator2)
(:requirements :fluents :durative-actions

:duration-inequalities :adl :typing)
(:types generator tank)
(:predicates (refueling ?g - generator) (

generator-ran) (available ?t - tank))
(:functions (fuelLevel ?g - generator) (capacity

?g - generator) (reftime ?t - tank) (
last-used ?g - generator) (tanknum ?t - tank)
)

(:durative-action generate
:parameters (?g - generator)
:duration (= ?duration 1000)
:condition (over all (>= (fuelLevel ?g) 0))
:effect (and ( decrease (fuelLevel ?g) (* #t 1))

(at end (generator-ran)) ) )

(:durative-action refuel
:parameters (?g - generator ?t - tank)
:duration (= ?duration 20)
:condition (and ;(at start (not (refueling ?g)) )

(at start (= (last-used ?g) (- (tanknum
?t) 1) ))

(at start (available ?t))
(over all (< (fuelLevel ?g) (capacity ?g)

)))
:effect (and (at start (refueling ?g))
( increase (reftime ?t) (* #t 1))

(at start (not (available ?t)))
(at end (not (refueling ?g)))
(at end (assign (last-used ?g) (tanknum

?t))) ) )

(:process refueling1
:parameters (?g - generator ?t - tank)
:precondition (and (refueling ?g)

(>= (reftime ?t) 5)
;(< (reftime ?t) 10)
)

:effect ( increase (fuelLevel ?g) (* #t 0.5)) )

(:process refueling2
:parameters (?g - generator ?t - tank)
:precondition (and (refueling ?g)

(>= (reftime ?t) 10)
;(< (reftime ?t) 15)
)

:effect (
increase (fuelLevel ?g) (* #t 0.5));1.0))

)

(:process refueling3
:parameters (?g - generator ?t - tank)
:precondition (and (refueling ?g)
(>= (reftime ?t) 15) )
:effect (

increase (fuelLevel ?g) (* #t 0.5));1.5))
) )

Figure 12: Asymmetric Process “Stacking” Model Domain

(define (domain generator2)
(:requirements :fluents :durative-actions

:duration-inequalities :adl :typing)
(:types generator tank)
(:predicates (refueling ?g - generator) (

generator-ran) (available ?t - tank)
(s0 ?t - tank) (s1 ?t - tank) (s2 ?t - tank) (s3

?t - tank) (c01 ?t - tank)
(c12 ?t - tank) (c23 ?t - tank) )
(:functions (fuelLevel ?g - generator) (capacity

?g - generator)
(last-used ?g - generator) (tanknum ?t - tank))
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(:durative-action generate
:parameters (?g - generator)
:duration (= ?duration 1000)
:condition (over all (>= (fuelLevel ?g) 0))
:effect (and ( decrease (fuelLevel ?g) (* #t 1))

(at end (generator-ran)) ) )

(:durative-action refuel
:parameters (?g - generator ?t - tank)
:duration (= ?duration 20)
:condition (and
(at start (available ?t))

(at start (= (last-used ?g) (- (tanknum
?t) 1) ))

(over all (< (fuelLevel ?g) (capacity ?g)
))

(at end (s3 ?t)) )
:effect (and (at start (refueling ?g))

(at start (not (available ?t)))
(at start (s0 ?t))
(at end (not (refueling ?g)))
(at end (assign (last-used ?g) (tanknum

?t))) ) )

(:durative-action strt-refueling1
:parameters (?g - generator ?t - tank)
:duration (= ?duration 5)
:condition (and (at start (c01 ?t))

(at end (c12 ?t)) )
:effect (and (

increase (fuelLevel ?g) (* #t 0.5))
(at start (s1 ?t))
(at end (not(s1 ?t))) ) )

(:durative-action strt-refueling2
:parameters (?g - generator ?t - tank)
:duration (= ?duration 5)
:condition (and (at start (c12 ?t))

(at end (c23 ?t)) )
:effect (and ( increase (fuelLevel ?g) (* #t 1))

(at start (s2 ?t))
(at end (not (s2 ?t))) ) )

(:durative-action strt-refueling3
:parameters (?g - generator ?t - tank)
:duration (= ?duration 5)
:condition (and (at start (c23 ?t)) )
:effect (and (

increase (fuelLevel ?g) (* #t 1.5))
(at start (s3 ?t)) ) )

(:durative-action clp01
:parameters (?g - generator ?t - tank)
:duration (= ?duration 0.15)
:condition (and (at start (s0 ?t))

(at end (s1 ?t)) )
:effect (and (at start (c01 ?t))

(at end (not (c01 ?t))) ) )

(:durative-action clp12
:parameters (?g - generator ?t - tank)
:duration (= ?duration 0.15)
:condition (and (at start (s1 ?t))

(at end (s2 ?t)) )
:effect (and (at start (c12 ?t))

(at end (not (c12 ?t))) ) )

(:durative-action clp23
:parameters (?g - generator ?t - tank)
:duration (= ?duration 0.15)
:condition (and (at start (s2 ?t))

(at end (s3 ?t)) )
:effect (and (at start (c23 ?t))

(at end (not (c23 ?t))) ) ) )

Figure 13: Asymmetric Clips Domain
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Abstract

The paper describes support for use of PDDL as a mod-
elling language in solving real problems. The support is
embodied in a Visual Studio plug-in and is being used
by engineers in the construction of domain models used
in plan-based automation.

1 Introduction

Planning is a venerable branch of AI research, with
roots extending back to the 1960s. Despite a few no-
table successes (Rajan et al. 2000; Chien et al. 2005;
Nau et al. 2005; Muscettola et al. 1998), applications of
planning have been slow to emerge. However, after 60
years of development, planning is beginning to find an
audience: as automation and robotic control is becom-
ing increasingly capable, the role of planning as a way
to extend from the limits of scripted actions towards
adaptable long-horizon goal-directed activity. It is in-
teresting to begin to see non-academic positions being
advertised that explicitly request expertise in planning
and in modelling for planning. As planning emerges
from the laboratories and code benches of academic re-
searchers into practical roles, it is pressing to consider
the extent to which academic research has successfully
anticipated the needs of practitioners and what might
need to be done to promote additional tools to make
the existing research ideas practially useful.
In this paper we briefly outline some of the lessons

learned in experiences in promoting PDDL and plan-
ning as tools for modelling and solving planning prob-
lems, exposing the technology to a wider user base
with a very different starting point and motivation to
the usual research or student audiences encountered by
academics. We also discuss some of the tools we have
started to develop to support and enhance the experi-
ence of such users in making planners practically valu-
able for real problem solving.

2 PDDL as a Practitioners’ Language

A significant motivation for a large part of research
in planning has been to identify and distill the ac-
tivity of problem-solving, apparently exhibited by hu-
mans, that is independent of the particular domain

to which it is applied. This has led to the idea of a
completely domain-independent planner being parame-
terised for problem-solving in specific domains by sup-
plying a declarative description of the activities that are
possible in those domains. This idea focussed into the
means to compare different planning systems, ensur-
ing a clearer separation between the planning capabil-
ity and the domain descriptions that fuelled it, through
a standardised modelling language: Planning Domain
Definition Language (PDDL) (McDermott 2000).

PDDL was conceived as an academic tool for re-
searchers and was heavily based on Lisp (McDermott’s
preferred programming language). Its original speci-
fication attempted to support comparison of both the
STRIPS-style planners and also of hierarchical plan-
ners. The latter ambitious objective failed — largely
because hierarchical planning systems use rich and com-
plex modelling languages that are essentially planning-
programming languages (see the language used by
SHOP (Au et al. 2011) for example), and it is much
harder to achieve a consensus on what form such a lan-
guage should take (compare the language of SHOP with
that of ASPEN (Chien 2012), for example). As a result,
this part of PDDL did not take root, but the declara-
tive action-centred STRIPS-inspired core quickly led to
an explosion in the field of propositional planning and
the performance of such planners.

Although propositional STRIPS planning remains
the most active sub-field of planner development, many
in the research community have argued that practical
planning systems must offer expressive power to rep-
resent temporal and metric problems. PDDL2.1 (Fox
and Long 2003) was a direct response to this perceived
need in order to make planning relevant and useful to
a wider community.

Other variants of PDDL (PDDL+ (Fox and Long
2006), PDDL2.2 (Edelkamp and Hoffmann 2004) and
PDDL3 (Gerevini et al. 2009)) are all attempts to ex-
tend the expressive power of the language to capture
aspects of problems that are motivated by realistic ex-
amples. These include the addition of processes, events
(both triggered and timed) and trajectory constraints.
Nevertheless, there has been consistent criticism of
PDDL as a poorly conceived language for practition-
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ers, making modelling both difficult and non-intuitive
and often dismissed as relevant only to the planning
competition series.
The authors’ experience is based on having intro-

duced PDDL-based planning as a tool for problem-
solving in an industrial context. Having exposed the
language and paradigm to an audience of engineers in-
terested only in the use of the tools in solving their prob-
lems, we have direct experience of how easily PDDL
can be learned and used as a tool for modelling real-
istic problems and how effectively it supports users in
harnessing planners.

3 Planning as a Research Subject

versus Planning as a Users’ Tool

As academic researchers in planning, the main focus of
interest tends to be in extending the capabilities and
functionality of planners. The research community is
typically rather uninterested in work that focuses on
the use of planning in particular applications other than
as a motivation for further extension of capabilities of
planners. This focus is reflected in the courses that are
taught on planning, which spend great effort on the way
that planners do their job but almost no time on the
task of building models for planners to exploit. It is an
interesting and challenging change of mindset to move
from teaching a course on how to automate planning to
teaching a course on how to use planners to do planning.
The audience for such material is not concerned with
how the planner does its job, but with how to harness
the planner to do the jobs they care about.
We have now taught a series of short (3 day) courses

on modelling for planning to engineers with no prior
experience of planning or, in general, of AI modelling.
Many of the participants are software engineers, but
by no means all of them. Most are familiar with Mat-
lab as a tool for modelling and programming, but few
have used optimisation modelling tools such as linear
programming.
Our course has been based on an action-centred mod-

elling paradigm, using PDDL as the language (with no
wrapper and no apology) and a few planners to illus-
trate the range of capabilities that the users can expect.
Our courses start with a basic introduction to what we
mean by a plan, how such a thing can be useful in solv-
ing problems that are more familiar to the audience,
and then move into exposure of PDDL. We start with
propositional models, using simple examples and ask-
ing the participants to change existing models to add
new actions, or new object types, to achieve more in-
teresting behaviour. The participants end the first day
by building a larger model of a domain from a blank
sheet start. The second day sees the introduction of
numbers, then simple time and some effort is spent in
showing the implications of modelling on concurrency
and the ways that invariants, initial and end conditions
all impact on the behaviour of the planner. On the
third day we move on to more complex temporal mod-

els and illustrate the use of continuous change models.
By the conclusion, participants are confidently building
models that involve actions that interact with contin-
uous process effects embedded in durative actions. An
important aspect of the course is an intensive hands-on
experience with a large number of exercises, in which
the tutors spend time discussing answers and problems
with participants.
From the outset, it was clear that the support for

modellers, as opposed to planning researchers, is far
from sophisticated. Even the few tools that exist are
limited by being research systems, incomplete, brittle
and difficult to deploy to the multitude of environments
different participants favour. Much of the research soft-
ware will deploy in a Linux environment, but prove dif-
ficult to transfer to a Windows environment, or to Ma-
cOS. We collected the tools we believed would be most
useful, based on our own experiences in modelling do-
mains for application, and ensured that these could be
provided as binaries for Windows and Linux (MacOs
support has not yet been pursued as far). In particu-
lar, obviously planners themselves (and there are very
few planners that offer robust support for a wide range
of the PDDL language), the validator, VAL (Howey,
Long, and Fox 2004), and a parser with limited error
checking. We have found that these tools provide an ad-
equate basis for participants who have some experience
at working with software tools and with technical ma-
terial. However, most participants find the lack of good
editing support an irritation in trying to develop their
models and this has led us to spend effort in improving
this area, which we discuss in the next section.
Our experience in teaching these courses has been

very positive — participants enjoy the experience and
we have had success in encouraging a group of users
who are starting to make use of planners as one of the
techniques they turn to in problem solving. Our most
recent version of the course was recorded and has sub-
sequently been used for online training without direct
participation of the lecturers. Applications of planning
are developing within the company and there is grow-
ing need for skilled modellers as well as the software
integration experts who can aid in harnessing the plans
to successful exploitation.
Amongst the lessons we have learned in teaching

these courses is the importance of spending time on
the subtleties of temporal models. There are common
mistakes that we have now observed in the construc-
tion of temporal models. An example is the natural
tendency to extend propopsitional models in temporal
models by setting preconditions at the start of durative
actions and effects at the end, with no consideration of
the interactions between the bodies of these actions and
the starts or ends of other actions. This often leads to
unexpected exploitation of concurrency by the planner,
using actions in unintended patterns. Understanding
the need to change object states at the start of actions,
while the objects are locked to their role in a durative
action, and then releasing them at the end is an idiom
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that we have learned to discuss in more detail. Another
common trait in early modelling is the use of positive
effects and the neglect of negative effects: it is common
to see models that only have positive effects of actions.
This can lead to successful construction of plans from
nominal initial states, but peculiar failures when the
planner is asked to replan from an intermediate state.
Exposing this has led us to explore additional tools to
support modelling, discussed below.

3.1 ICKEPS: A Community Perspective

The ICKEPS community has explored the challenges
of domain modelling for planning (not only in PDDL).
The 5th competition ran most recently (chr ) and led
the organizers, Chrpa et al, to observe the facts that
most participants did not use tools other than standard
text editors for modelling and that tools do not support
collaboration. They also noted the small community
of participants relative to the research community that
hosts it. In our view, the latter observation is a con-
sequence of the separation of concerns between build-
ing and using planners and our own experiences have
demonstrated the significance of this distinction. The
first of their observations appears to point to the limi-
tations of existing tools and, we believe, is addressed in
part by the tool we describe in Section 4.
Collaborative domain construction remains a chal-

lenging issue and one that is of interest to us. At
Schlumberger, engineers have constructed and maintain
what we believe to be one of the largest PDDL domain
models developed, containing more than 4000 lines of
PDDL code describing hundreds of action schemas.
This is maintained by a team of several authors, un-
der strict version control. Collaborative development
is restricted to discussion and pair coding, rather than
simultaneous editing of common files.

4 Tools for PDDL Editing and

Validating

Although there have been efforts amongst the research
community to provide tools to support modelling (Va-
quero et al. 2013; Muise 2016; Simpson et al. 2000), we
have found that these tools do not support the mod-
elling we are most interested in: PDDL temporal and
metric domains. Furthermore, these tools do not at-
tempt to exploit integration into the environments that
most programmers are familiar with. As part of the
development of better support for the modellers, Dole-
jsi has constructed a VS Code plug-in to aid PDDL
domain construction.1

The plug-in offers the basic support one might ex-
pect: syntax highlighting, parse-error reporting, auto-
completion and template generation (for domains, ac-
tions, durative actions and problem files). The plug-in
is sensitive to the structure of the PDDL domain: it
offers hover functionality to report comments from the

1https://marketplace.visualstudio.com/items?
itemName=jan-dolejsi.pddl.

Figure 1: Plan visualisation

Figure 2: Improving plan quality in output from POPF

context of the definition (of types, predicates and func-
tions) automatic navigation between instances of types,
predicates and functions and auto-completion of these
symbols.
As noted above, practical modelling for real problems

demands temporal and metric modelling and this tool
supports these features of PDDL as first-class features.
This makes the tool a practical and valuable way for
modellers to build and maintain sophisticated models of
real domains. Prior editors have offered strong support
for propositional planning, but very little for temporal
domain modelling.
The plug-in also allows a planner to be hooked into

the environment, so that it can be run directly from
within VS Code showing console output. A feature
of this is that the plan is shown as a Gantt-chart-like
structure (Figure 1) in a new window within the envi-
ronment, showing the actions along a timeline, and also
showing swim-lanes of activities for each of the objects
used in the plan and plots of the values of numeric state
variables across the timeline of the plan. It is straight-
forward to configure the plug-in to work with different
planners, to work with command line flags to the plan-
ners and to manage the output to show the plans in the
visualisation (Figure 2 shows the sequence of improving
plan quality values for output generated using POPF in
OPTIC mode).
The tool supports structured initialisation of initial
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Figure 3: Initialising structured initial state facts

state facts for situations where symmetric predicates or
functions are required, or where an ordered sequence of
objects must be specified through a next predicate or
similar (Figure 3).

4.1 VAL and related tools

VAL continues to be a fundamental tool supporting
modelling: the ability to use manually constructed
plans as tests for the capabilities expressed in the do-
main model allows the user to confirm that plans ex-
pected to be valid are actually valid plans in the model,
and also to see the trajectories of states visited by plans
from the planner in order to understand how unantici-
pated plans might be falsely supported by a model. We
have extended functionality in VAL to include incre-
mental stepping through the plan programmatically, so
that it is possible to then extract intermediate states in
PDDL format, to be used as the initial state for plan-
ning problems in intermediate states. This function also
supports the ability to generate and then perturb inter-
mediate states to test replanning functionality.
This functionality is available through VS Code, al-

lowing automatic stepping through a plan, extraction
of intermediate states and replanning from those states.
Additional information from VAL is used to construct
graphs of numeric values of state variables throughout
a plan, in order to track values of these variables and
see how they change over time.

5 Conclusion

The authors have been jointly introducing and promot-
ing planning technology for problem solving as a tool
across multiple segments of their host industry. There
has been successful adoption of planning for a variety of
purposes (which we will report in due course). Support
for modelling is a crucial part of ensuring the success-
ful adoption of the technology and we have learned,
in giving courses on modelling, some of the important
differences between communicating the modelling skills
required to capture particular domain features and pre-
senting the planning techniques that allow planners to
plan with these features.
We have put together a collection of tools to help

developers build models, using PDDL. We have found
that PDDL is far from a barrier to modelling — in
fact, it is largely as intuitive and accessible as had been

hoped and envisaged by those who contributed to the
series of extensions and modifications of the language.
The important gap in the tool suite has been an editor
support tool that works within the environment most
familiar to developers and this has been created and
is now a technically supported tool for the community
to use. The plug-in has so far been installed well over
1000 times and we anticipate its continuing growth and
extension to further capability. Provision and develop-
ment of these tools is a key ingredient in accelerating
the adoption of planning as a standard tool for regular
problem-solving.
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