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Abstract

Transportation accounts for nearly a third of greenhouse
gas emissions in the United States. Increasing urbanization
and the expansion of transportation services provide fertile
ground for developing assistants for personalized transporta-
tion decision-making that improves overall efficiency and
user satisfaction. In this paper we describe COPTER, a frame-
work that models all transportation options to reduce city-
wide energy consumption and congestion by suggesting alter-
native, energy-saving routes that are accepted by individuals.
To accomplish this, our approach begins with human stud-
ies to develop a user model and identify requirements for our
planning system. Next, drawing on existing research, we cre-
ated a novel personalized, multi-modal, collaborative plan-
ning system to explore the tradeoff between user acceptance
of routes and energy savings. Our combination of single user
planning and cooperative planning supports running multiple
solvers in parallel to support anytime performance. Finally,
we present a simulation study in the Los Angeles area demon-
strating a 9% reduction in delay and a 4% reduction in fuel
consumption with only 4% of travelers changing behavior.
We conclude with a discussion of our planned pilot deploy-
ment.

Transportation is one of the largest consumers of energy in
the world (29% of energy consumption in USA in 2016)1

and efficiency improvements in transportation are directly
measurable in terms of energy savings. Congestion in the
United States wastes 6.9 billion hours and 3.1 billion gal-
lons of fuel per year (Schrank et al. 2015). On the other
hand, areas of urban transportation networks are underuti-
lized even when other areas are congested. Meanwhile, new
transportation services are being created by public and pri-
vate entities including bike share, car share, ride hailing,
and dynamic carpooling to complement the private vehicle
and public transit currently used for most trips. To facilitate
decision-making, "smart cities" companies are developing
mobility marketplaces to aggregate these offerings into sin-
gle markets similar to what Travelocity does for air travel.

This combination of a large decision space and energy
inefficiencies produces a compelling area to apply AI for
social good. Our goal is to develop technology that influ-
ences travelers to make decisions that reduce the energy con-
sumption of the entire system. COPTER (Collaborative Op-
timization and Planning for Transportation Energy Reduc-

1U.S. Energy Information Administration, eia.gov

tion) extends AI techniques from route planning to identify
multi-modal plans and draws on human-centered AI work
to model influence in transportation decision-making. The
contributions of this paper include:

• A formulation of transportation influence problem.
• An approach to understanding transportation decision-

making.
• Four desiderata for AI planning and optimization to sup-

port transportation decision-making: helpful, informative,
multi-modal, and personal.

• A time-dependent, collaborative, multi-modal with per-
sonalized cost over multiple agents AI planning system
that accounts for system-wide energy consumption.

The rest of this paper is organized as follows. First, we dis-
cuss how our technology would interact with existing ser-
vices. Then, we outline our approach for understanding the
requirements for influencing human transportation decision-
making. Next, we describe how our COPTER combines pre-
vious AI planning research and defines new problems in col-
laborative planning. Finally, we present a simulation study
over the Los Angeles region that demonstrates the potential
savings in time and energy. We close with a discussion of
our pilot deployment.

Influencing Traveling Behavior with COPTER
Transportation services are changing with ride hail com-
panies (e.g., Lyft), commuter shuttles (e.g., Chariot), app-
mediated carpooling (e.g., Waze Rider), public/private bike
share companies (e.g., GoBike), car sharing (e.g., Zipcar),
and personal travel options including electric bikes and
skateboards all supplementing the established modes of
walking, public transit, and personal vehicles. New appli-
cations like SkedGo’s TripGo and Daimler’s Moovel pro-
vide a unified view of these urban transportation offerings
along with single point of payment. This emerging commer-
cial landscape provides a rich set of research challenges in-
cluding questions around efficient allocation of transporta-
tion resources and fairness.

Figure 1 outlines the key components of the COPTER
system. COPTER’s user model predicts future travel needs
of individuals as well as their resources and preferences.
From the aggregate demand, the planner identifies alterna-
tive routes for each user, including carpools and vanpools
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Figure 1: The COPTER architecture delivers personalized
route recommendations to users that minimize the expected
energy consumption across the system and tracks users to
improve user models as well as provide real time updates to
changing network conditions.

involving multiple individuals. The route that will lead to the
largest expected energy reduction is sent as a recommenda-
tion through a phone application prior to the traveler’s de-
parture. COPTER will monitor users’ travel to collect feed-
back to improve the user model for future interactions and
provide real-time responses to changing transportation con-
ditions. At present, we have identified system desiderata and
implemented the AI planning system.

Uncovering AI System Desiderata
The transportation mode and route people pick for their trips
determines not only their energy costs, but also impacts en-
ergy consumption across the network. This choice is modu-
lated by several factors, including among others the distance
they have to travel, accessibility of various transportation
modes, income, and the purpose of undertaking a trip (which
might necessitate transporting other people or things). To
convince an individual to make a more sustainable trans-
portation decision for a trip, it is important to understand
how she typically makes decisions and present an alterna-
tive that still satisfies her needs. Below, we describe our in-
sights from in-person interviews and an in-depth survey. We,
then, derive desiderata for AI solutions to influence people’s
transportation decisions.

Interviews
We interviewed 20 people (7 women, 13 men) in the age
range 21-79 (mean 37.5, standard deviation 16.8) in Los
Angeles. Participants varied in terms of their commute flex-
ibility with 9 participants in highly flexible occupations, 4
in medium, and 7 in low flexibility with respect to arrival
and departure times. All the participants reported to be liv-
ing within a mile of a bus stop. 8 people expressed a strict
preference for driving regardless of the context they under-
took the trip in. 2 people expressed a preference for working
from home and driving for non-work related trips. 4 peo-
ple expressed a clear preference for taking public transit, 3
for walking/biking, 2 for a ride service or carpool, and 1 for
driving/biking.

The variety in people’s preferences strongly suggests that
any good solution to the problem of recommending more
sustainable travel behaviors overall would need to consider
a variety of alternate modes. Several people talked about
the cognitive load of planning a trip which especially af-
fects the decision of choosing a sustainable mode: “I cer-
tainly see congestion over on the Sepulveda parallel to the
405. Very, very, heavy. Puts almost an extra hour on the bus
trip, but I don’t really know what the solution is. They’ve
already widened the 405”. Many brought up cost and time
trade-off they must make: “Mainly, I can’t think any other
way. Well, taxi. That would be prohibitively expensive.”,
“It’s really time convenience and cost are the things that
we would...”, “The first issue I think would be efficiency, the
time of route”. Most importantly, they expressed that they
would be open to alternative ways to make their trip if a
good alternative was suggested without them having to in-
vest time thinking about it: “If you were to tell me there was
a different way, I would probably take it. If you were to say
this is a better way to travel or more efficient way, then yeah
I would be open to that.”, “So, as much information as you
can take into account, I would be in favor of using that...I
want as much intel as possible.”, “if there’s a new mapping
service out that would be more efficient or would expedite
the rate at which I got somewhere”.

Survey
The diversity in preference and context uncovered in our in-
terviews informed our design of a survey to identify what
variables and what relationships between them to include in
our user model. The survey covered 112 self-reported bi-
nary, categorical and scalar variables including public trans-
portation availability and proximity, availability of other
transportation modes, typical commute modes, commute
constraints, other reasons for travel, reasons for transport
mode choices, conditions that might change mode choices
and preferred activities engaged in while traveling and more.

We deployed the survey via Qualtrics2 to 677 participants
from urban areas. After eliminating responses that were
completed in less than a reasonable threshold time, included
straightlining, or contained contradictory responses, we ob-
tained 235 responses (128 women & 106 men; age 18-79,
mean 46.51, sd 13.5) for analysis. Participants engaged in

2https://www.qualtrics.com/
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broad range of transportation behaviors including individ-
uals who used the following modes more than 50% of the
previous weeks travel: walking, driving, bus, train, taxi, car-
pool, bicycle and motorcycle. We performed multi-variate
multiple linear regression and chi-square analysis focusing
on four categories of factors that impact people’s transporta-
tion decisions:

• Personal, static context: This context includes factors
related to a person’s job, lifestyle, experience etc. This
context does not change from day to day. We found that
distance of residence from work as well as the time it
takes to travel that distance significantly influences a per-
son’s overall mode usage. Additionally, other considera-
tions such as health, ability to work en route, being able
to avoid congestion, low risk of being late, reliability of
return, and parking are important for mode choice.

• Situational, static context: This captures the characteris-
tics of the transportation network a person is embedded in
including availability of transportation resources such as
a car, bicycle, etc. This does not change from day to day.
Not surprisingly, our findings show that distance from
transit stops and frequency of transit is correlated posi-
tively with choosing public transit for travel. Similarly,
having bicycle-friendly routes is postively correlated with
choosing sustainable transportation modes.

• Dynamic context: This captures aspects of a person’s
lifestyle, weather, transportation network that vary from
day to day. Our analysis suggests that weather, purpose
of the trip, and availability of parking at the destina-
tion greatly impact mode choice. Particularly, pleasant
weather increases the likelihood of walking and biking.
Shopping reduces the chances a person would use sustain-
able modes. An outing where alcohol is expected greatly
reduces the likelihood of driving and increases use of
ride sharing services. Limited parking greatly reduces the
chances that a person will drive.

• Personality: Following recent work that suggests that
personality may be inferred from online behavior (Kosin-
ski, Stillwell, and Graepel 2013) and may influence
transportation choices (Johansson, Heldt, and Johansson
2006), we also included three standard personality scales:
TIPI (Gosling, Rentfrow, and Swann 2003), responsibility
for events in their lives 3, and susceptibility to persuasion
(Cialdini 2001). We did not find any significant impact of
aspects of personality on mode choice.

Desiderata
Based on our interview data and survey analysis, we pro-
pose that an AI solution for influencing people to take more
sustainable modes must:

D1 Be helpful: Our interviews emphasize that COPTER
should reduce human cognitive effort by presenting a
well-defined, specific plan from source to destination. It
should account for departure and arrival times of public
transit as well as congestion of roads.

3http://ipip.ori.org/

D2 Be informative: COPTER should make explicit the
tradeoffs that people are concerned about. Interview data
suggests it should indicate the cost and duration of the
trip. It may also indicate congestion level, energy ex-
pended, etc based on what a person thinks is important
for them.

D3 Be multi-modal: Given the diversity of modes indicated
in the survey, COPTER should plan over a variety of sus-
tainable modes including ride sharing and carpools in-
stead of limiting choices to a few public transit options.

D4 Be personal: Our survey data suggested it should take
into account a person’s specific context and preferences
in finding a suitable transportation plan. More specifi-
cally, it should represent and plan for a person’s personal
static, situational static, and dynamic context as described
above.

In the following sections, we propose how AI planning ap-
proaches can be incorporated in a transportation planning
system such as they meet the desiderata identified here.

Energy Efficient Collaborative Routing
Efficient routing in transportation networks has been an im-
portant domain for algorithm development, starting with Di-
jkstra’s algorithm (Dijkstra 1959) and continuing with meth-
ods to exploit additional precomputation and heuristics that
now enable today’s planners to route journeys for continent-
size networks while guaranteeing an optimal solutions in
fractions of seconds (Bast et al. 2016).

To meet the above desiderata, our planning system must
exhibit the follow properties:
• Time-dependent multi-modal network [D1, D2, D3].

We consider our network to be composed from mul-
tiple transportation networks, where some of them are
time-dependent (buses, trains), and some of them time-
independent (walking, biking). The time dependency has
two dimensions, one is represented by scheduling con-
straints (there is a set of times when we can take cer-
tain mode of transport such as bus or a train). Second di-
mension of time-dependency is the variability of travel
times by time of the day (e.g. congestions related de-
lays). The time-dependency of transportation networks
becomes an easy extension when we look only for the ear-
liest arrival times and there are no situations when leaving
later would lead to arriving sooner (first in, first out). Ex-
tensions relaxing this assumption use waiting constraints
(Dean 2004), but are not considered at this time. To pro-
vide multi-modal recommendations, we use the standard
approach of merging multiple transportation networks
(Dibbelt, Pajor, and Wagner 2015).

• Personalized cost-function [D4]. We consider each trav-
eler to have different preferences for various transporta-
tion modes and to have different resources at his or her
disposal (e.g., having a car, bike, electric skate-board)
(Liu, Fritz, and Klenk 2018).

• Collaboration [D3]. Typical solutions either consider
travelers in isolation or abstract all travelers into traffic
flows. Instead, COPTER reasons about journeys where
users actively interact with each other and agents outside
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of the system, by means such as carpooling and vanpool-
ing and choosing to decrease congestion on the road. Sig-
nificant research effort has been invested in computing ef-
ficient collaborative plans in carpooling (Bit-Monnot et al.
2013) or vanpooling (Kaan and Olinick 2013), our frame-
work is designed to integrate these approaches as oppor-
tunistic ad hoc solvers.

• Energy Optimization [D2]. Looking at the overall trans-
portation system of all travelers and assuming we can
control some of them, we focus on reducing the energy
consumption of that whole system. While the energy con-
sumption of transportation networks has been analyzed
in isolation for some of the networks (Muñoz and Laval
2006), to our knowledge, we are the first to collaboratively
optimize energy consumption in the context of a large
multi-modal network, where the trade-offs in energy con-
sumption between different transportation decisions can
be precisely evaluated.

COPTER’s planning component first creates individual
plans and then incorporates anytime search over possible
collaboration options provided by ad hoc solvers. Once the
collaboration opportunities are depleted, or we run out of
time, we select the combination of options that minimizes
energy across the system. The following sections establish
the formal description of the problem.

Representation
We use the standard transportation network representation
as a directed graph G = (V,E), where V is a set of nodes
and E ⊆ V × V is a set of directed edges. We denote the
set of all modalities as

∑
and we define a labeling function

lbl : E →
∑

that associates a mode with every edge of a
graph. We assume a representation of time T and a set of
users U .

While some of the edges in the graph are time-dependent
(buses, trains), others are not dependent (e.g., walking, bik-
ing). We capture the difference in a function start : U ×
E × T → T , which for a particular time identifies the next
time when we can start the traversing of an edge by certain
user. For a time-independent edge the function start pro-
vides the same time it is given. For a time-dependent edge,
it provides the next earliest time in the schedule associated
with the edge.

For convenience we define three more functions dur :
U ×E×T → T , which for a given time identifies the dura-
tion of traversing an edge by a user. ene : U ×E × T → R,
which for a given time identifies the expected energy in kWh
for traversing an edge by a user. cst : U×E×T → R, which
for a given time gives the user specific cost of traversing an
edge. ene, cst and dur functions are similar in capturing
the conditions of a particular edge of the network at partic-
ular time (e.g., congestion, weather conditions). For conve-
nience, we encapsulate the 5-tuple of functions (lbl, start,
dur, ene, cst) as Υ.

Our construction of the multi-modal transportation graph
is similar to previous work (Bast et al. 2016), we attach the
modality labels only to the edges - considering any node we
enter to have exactly the modality corresponding to the edge
we used to enter the node. We further capture the time de-

pendency within the start function, which uses schedules
kept at the time dependent edges.

Multi-Modal Planning Problem
People have various constraints on how, when, and for how
much money they would like to accomplish their travels.
To achieve the "be personal" requirement, each user has a
set of hard constraints that must be satisfied and the soft
constraints that impact the cost calculations on each edge.
The hard constraints consist of a temporal constraint, defin-
ing the acceptable temporal window of the trip, and a path-
restriction constraint, where we model the resources avail-
able to the user (e.g., has bike, car, electric skate-board, ...),
including the capabilities of particular transportation ser-
vices (e.g., bike fits in the train, but not in the bus). The
mode sequence constraints are represented using a language
that accept only trips that conform with the resources and
capabilities. For a user u we denote the language as L(u),
an example language for a traveler who either uses a bike or
a car and walks can be w∗(d+|b+)w∗.

Formally, we have described the multi-modal planning
graph and we further call a sequence of connected edges
in the graph to be a path in the graph. Using the edge la-
beling function we can project the sequence of edges into
a sequence of labels forming a word w from the alpha-
bet

∑
and we associate a language L with each user in

U . Intuitively, we are only interested in plans represented
by word w for a user u if and only if w is recognized by
language L(u). For example, if we imagine three modal-
ities

∑
= {w = walk, d = drive, b = bike}, then a lan-

guage L(u) = w∗(d+|b+)w∗ would describe the personal
transportation constraint when the user u can walk for any
amount of time (edges), then either take a bike or take a car
and ride or drive for any amount of time, and finally walk
for any amount of time to achieve its destination. We are
supporting only the regular languages and given Kleen’s the-
orem (Kleene and Beeson 2009) we know that we can con-
struct a finite state machine (FSM) for any regular language.

Having a multi-modal graph G = (V,E), we represent
a demand for transporting user u ∈ U from his original
location v ∈ V starting at a certain time ts ∈ T to his
destination w ∈ V before a certain deadline te ∈ T . We
call the 6-tuple r = (L(u), u, v, w, ts, te) a planning request
and we define the Multi-modal Planning Problem (MPP) as
(G,Υ, r), where G is a graph, Υ is a set of functions and r
is a planning request.

We say that a plan π = ((e1, t1), ..., (en, tn)) is a solution
of the problem (G,Υ, (L(u), u, v, w, ts, te)) if and only if
the following holds:

• All the temporal constraints are satisfied.
ts ≤ t1 + dur(u, e1, start(u, e1, ts)) ≤
t2 + dur(u, e2, start(u, e2, t2)) ≤ ... ≤
tn + dur(u, en, start(u, en, tn)) ≤ te

• The edges connect the origin with the destination. e1 =
(v0, v1), e2 = (v1, v2), ..., en = (vn−1, vn) ∧ (v0 = v) ∧
(vn = w)

• the word wo created by a concatenation of label of the
edges in the plan π is accepted by the language L(u).
wo = lbl(e1) · lbl(e2) · ... · lbl(en) ∧ wo ∈ L(u)
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Given a problem (G,Υ, r) and a plan π we define several
features we are going to evaluate:

• enem(π) =
∑
lbl(e)=m ene(u, e, t), total energy spent in

modality m by user u4

• cstm(π) =
∑
lbl(e)=m cst(u, e, t), total monetary cost

spent in modality m by user u

• durm(π) =
∑
lbl(e)=m dur(u, e, t), total time spent in

modality m by user u

We denote a vector of all the trip features as ~f(π) =
(enewalk(π), .., enedrive(π), cstwalk(π), .., cstdrive(π),
durwalk(π), .., durdrive(π)). For a problem (G,Υ, r) and
a solution π and a vector of weights ~θ, we define the cost
of solution as cost(π) = ~θ · ~f(π), in other words, the cost
of the plan π is a sum of its weighted features. Further, we
denote optimal plan as π∗ = arg minπ∈Π cost(π). Finding
an optimal plan π∗ is a shortest-path problem.

A "shortest-path problem" in a graph is standard prob-
lem in computer science, solved by a number of well-known
algorithms. We use the A* algorithm upon the transporta-
tion graph, where the costs of all edges are computed dur-
ing search. As search nodes are expanded, COPTER ensures
that the partial path meets the mode constraints guaranteeing
that the final plan is accepted by the language L(u). Similar
approach of encoding the path restrictions is known as User-
Constrained Multi-Modal Route Planning (Dibbelt, Pajor,
and Wagner 2015). Our implementation is complete, using
several standard heuristics for lower/upper bounding of the
search space. We can imagine that the vector of weights ~θ
represents a simplified personal preferential model of the
user of the transportation system. Using linear weighting of
the modal edges in the transportation network is a robust and
computationally efficient relaxation, although the personal-
ized decision making in transportation is a multi-criteria op-
timization problem, which is a subject of study in the future
work.

Collaborative Planning Opportunities
While MPP considers the users independently, collaborative
planning looks at several users at once and optimizes the
cost of achieving all of their goals with a shared pool of re-
sources. COPTER supports combining multiple collabora-
tive planning algorithms. Common collaborative examples
are (1) carpooling, where a driver diverges from her path to
pick-up and drop-off multiple passengers, (2) vanpooling,
where a dedicated driver picks-up larger number of passen-
gers and distributes them to their destinations, and (3) pop-
up commuter buses that pickup and drop off employees at
central locations following dynamic schedules.

We consider collaborative planning to be an opportunis-
tic extension of MPP. Having a selection of solvers that can
generate collaborative plans for subsets of users, we can
evaluate those cooperative plans and compare them not only
against the MPP solutions but also against those produced by

4Our train energy model computes energy based on the dynam-
ics of the train along with its total weight. Thus, additional passen-
gers increase the energy consumption (Wang and Rakha 2017).

different solvers. The opportunism of our approach controls
the unavoidable combinatorial explosion of choosing sub-
sets of collaborating users from a very large set (hundreds
of thousands of requests). The typical selection process in-
cludes spatiotemporal clustering (e.g., grouping users who
live and work near each other with similar schedules).

Let us define a solver S : Rn → Πn, that takes a set of
requests and generate a set of plans that may include some
collaborative component (i.e. some part of the trip is shared
by multiple users). Given a set of requests R, graph G, a set
of functions Υ and a set of solvers S1, ..., Sn the approach
for integration of multiple solvers can be described in fol-
lowing steps:

1. P ← ∅, we start from an empty set of plans.
2. ∀Si ∈ S1, .., Sn : generate(R,G,Υ, Si, P ), we generate

a set of plans using all available solvers - those are the col-
laborative solvers such as carpooling and vanpooling col-
laborative solvers and also the multi-modal shortest paths
solver of MPP for individual users.

3. P ∗ = arg minp⊆P cost(∪x∈px) such that | ∪x∈p x| =
|R|. We choose the combination of plans with minimal
total cost.

We start from an empty set of plans, then we indepen-
dently run all the solvers in parallel until they finish gener-
ating new options or a predefined deadline. Finally, we take
all the options and select a combination of them P ∗ with
the minimal cost, such that each user is represented exactly
once; this is also known as the minimum exact cover prob-
lem (Cover and Thomas 1991). Figure 2 illustrates how the
transportation options are evaluated against each other. The
combinatorial explosion of choosing subsets of collaborat-
ing users does not allow an exhaustive generation for real-
world scale. As a result, we cannot ensure the optimality of
chosen plans.

Currently, the plans generated by solvers at step 2 are not
taking into account congestion impacts of plans from differ-
ent solvers - i.e. n-th MPP plan is taking into consideretion
previous n−1 plans, however, carpooling solver is not taking
into consideration congestion contribution of MPP plans.

Evaluation
We are evaluating the potential impact of COPTER in simu-
lation and through an upcoming deployment.

Simulation Study
By combining COPTER with a state-of-the-art microsimu-
lation model (Elbery et al. 2017), we are able to measure
the potential impact of COPTER technology. Our study area
(shown in Figure 3) covers the Los Angeles region from 7am
until 12pm on a typical weekday. We expect COPTER will
reduce the fuel consumption across the study area. The mi-
crosimulation model represents all 2.9 million vehicles that
travel across the region’s arterials and freeways during the
time period with a departure time and origin and destina-
tion. This simulation includes the 940,641 passengers trav-
eling on public transit and supports walking and biking.

Recall COPTER’s expected use case is in influencing a
subset of the population to make transportation decisions
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Figure 2: Collaborative planning example combines plans
from different solvers. B can either take A or C as a passen-
ger, or use a vanpool together with C. Similarly, D can take
C or F as passengers. To transport everyone to their destina-
tions, the only solution is B driving A, D driving C and both
E and F taking public transport.

Figure 3: Los Angeles simulation study area

Table 1: Potential improvements in efficiency of the Los An-
geles transportation network using COPTER with 10% par-
ticipation and only 4% accepting alternatives.

Baseline Control Change
Fuel (L) 3,682,998 3,536,777 -4%

Power (kWh) 94,175.7 94,224.9 0.05%
Delay (min/trip) 9.7 8.5 -9%

that improve the efficiency of the overall network. There-
fore, we randomly selected 10% of the driving population as
our controlled traveler group. For each controlled traveler,
we create the temporal constraints for the trip as follows: ts
equal to the trip’s departure time and te equal ts plus 1.3
multiplied by the duration of the trip. The simulation runs
in close to real time. Controlled traveler demand requests
appear in the system 30 minutes before the earliest depar-
ture time. COPTER’s planner constructs collaborative plans
for each controlled traveler. For this study, we assume a cost
model that weights the time in each mode equally and incor-
porates the energy costs associated with travel. At five min-
utes before the earliest departure, we commit the traveler to
the plan. We compare the energy consumption and time lost
due to traffic across the entire network against a baseline in
which all of the controlled travelers drive alone.

Table 1 summarizes the potential impacts. COPTER re-
duced fuel consumption by 4% with a minor increase in
electrical energy consumption due to extra rail passengers.
In addition to the energy impacts, COPTER alleviates con-
gestion with the average delay per auto trip drops from 9.7
minutes to 8.5 minutes in the controlled condition. This
translates into saving almost 7 years across all of the travel-
ers. Looking at the differences between the controlled routes
and the original routes, only 4% of travelers altered behav-
ior with the overwhelming majority of them (98%) forming
into two person carpools. The remainder changed modes to
transit, walking, biking, or multi-modal trips.

Future Deployment

While the simulation study illustrates the potential impact
of COPTER technology, it is necessary to refine the results
by measuring the likelihood of user acceptance of the sug-
gested routes and gather data about the users’ cost function.
Existing research focuses on either the amount of incentive
required to get people to change behavior (Zhao, Xiong,
and Zhang 2018) or how to accomplish long-term behavior
change (Castellani et al. 2016). To understand if information
alone can affect behavior in single interactions, we have a
planned pilot deployment of the COPTER technology using
the TripGo mobile application. In this pilot, we will explore
two hypotheses: (1) personalized cost based recommenda-
tions are more likely to be accepted than random alterna-
tives or simple time-based alternatives, and (2) messaging
that matches people’s susceptibility to persuasion increases
the likelihood of message acceptance. The pilot will last two
weeks in April 2018 with route recommendations appearing
in the TripGo app.
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Discussion
COPTER presents a new application of AI for social good
focused on reducing congestion and improving the effi-
ciency of transportation networks. We surveyed people’s
transportation decision-making to identify that users would
benefit from personal, helpful, informative, multi-modal rec-
ommendations. Therefore, we developed COPTER to pro-
vide real-time personal transportation recommendations tak-
ing into account unique resources and costs for users. Our
simulation study demonstrates the substantial impact this
technology could have in improving transportation and re-
ducing emissions at a regional level. Our future work in-
cludes a pilot deployment and incorporating learning to im-
prove the user model through user interactions.
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Abstract
In this work we present a novel approach to solving concur-
rent multiagent planning problems in which several agents act
in parallel. Our approach relies on a compilation from con-
current multiagent planning to classical planning, allowing us
to use an off-the-shelf classical planner to solve the original
multiagent problem. The solution can be directly interpreted
as a concurrent plan that satisfies a given set of concurrency
constraints, while avoiding the exponential blowup associated
with concurrent actions. Theoretically, we show that the com-
pilation is sound and complete. Empirically, we show that our
compilation can solve challenging multiagent planning prob-
lems that require concurrent actions.

Introduction
Research in multiagent planning has seen a lot of progress
in recent years, in part due to the first competition of dis-
tributed and multiagent planners, CoDMAP-15 (Komenda,
Stolba, and Kovacs 2016). Many recent multiagent plan-
ners are based on the MA-STRIPS formalism (Brafman
and Domshlak 2008), and can be loosely classified into
one of two categories: centralized, in which agents have
full information and share the goal, and distributed, in
which agents have partial information and individual goals.
In CoDMAP-15, the most successful centralized plan-
ners were ADP (Crosby, Rovatsos, and Petrick 2013),
MAP-LAPKT (Muise, Lipovetzky, and Ramirez 2015) and
CMAP (Borrajo 2013), while prominent distributed plan-
ners included PSM (Tozicka, Jakubuv, and Komenda 2014),
MAPlan (Stolba, Fiser, and Komenda 2016) and MH-
FMAP (Torreño, Onaindia, and Sapena 2014).

Although establishing a common set of multiagent bench-
mark domains was a major step forward, the domains from
the centralized track of CoDMAP-15 can all be solved using
sequential plans in which one agent acts at a time. In con-
trast, there are many applications that require agents to act
in parallel; examples include shared journey planning, robot
coordination tasks such as RoboCupSoccer (Nardi et al.
2014) and RoboCupRescue (Sheh, Schwertfeger, and Visser
2016), and real-time strategy games, to name a few.

In this paper we consider the problem of concurrent cen-
tralized multi-agent planning in which agents can act in par-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

allel at each time step. This problem is challenging for dif-
ferent reasons: the number of concurrent actions is worst-
case exponential in the number of agents, and restrictions are
needed to ensure that concurrent actions are well-formed.
Usually, these restrictions take the form of concurrency con-
straints (Boutilier and Brafman 2001; Crosby 2013), which
can model both the case when two actions must occur in par-
allel, and the case when two actions cannot occur in parallel.

Although some planners from CoDMAP-15 (CMAP,
MAPlan and MH-FMAP) can produce concurrent plans,
there are few that can reliably handle more complex concur-
rency constraints. A notable exception is the work of Crosby,
Jonsson, and Rovatsos (2014), who associate concurrency
constraints with the objects of a multiagent planning prob-
lem and transform the problem into a sequential, single-
agent problem that can be solved using a classical planner.

Brafman and Zoran (2014) extended the distributed
forward-search planner MAFS (Nissim and Brafman 2014)
to support concurrency constraints while preserving privacy.
In MAFS, each agent maintains its own search space, and
has a queue for expanded states (closed list) and another for
states to be expanded (open list). When a state s is expanded,
the agent uses its own operators only; thus, two agents ex-
panding the same state will generate different successors.
Messages are exchanged between agents in order to inform
each other about the expansion of relevant states. Conse-
quently, agents explore the search space together while pre-
serving privacy. Maliah, Brafman, and Shani (2017) pro-
posed MAFBS, which extended MAFS to use forward and
backward messages. This new approach reduced the number
of messages required and also resulted in an increase in the
privacy of agents.

In this paper we describe a planner that can handle
arbitrary concurrency constraints, as originally proposed
by Boutilier and Brafman (2001). Our approach is similar
to that of Crosby, Jonsson, and Rovatsos (2014) in that we
transform a multiagent planning problem into a single-agent
problem that is significantly easier to solve, while avoiding
the exponential blowup associated with concurrent actions.
However, the concurrency constraints of Boutilier and Braf-
man are significantly more expressive than those of Crosby,
Jonsson, and Rovatsos, enabling us to solve multiagent prob-
lems with more complex interactions (e.g. effects that de-
pend on the concurrent actions of other agents). We show
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that our planner is sound and complete, and perform experi-
ments in several concurrent multiagent planning domains to
evaluate its performance.

The remainder of this paper is structured as follows. We
first introduce the different planning formalisms that are
needed to describe our planner. Next, we describe the com-
pilation from multiagent planning to single-agent planning
that our planner employs. We then present the results of ex-
periments with our planner in several domains that require
agents to act in parallel. Finally, we relate our planner to ex-
isting work in the literature, and conclude with a discussion.

Background
In this section we describe the planning formalisms that we
use in the paper: classical planning, concurrent planning,
and concurrent multiagent planning.

Classical Planning
We consider the fragment of classical planning with condi-
tional effects and negative conditions and goals. Given a set
of fluents F , a literal l is a valuation of a fluent in F , where
l = f denotes that l assigns true to f ∈ F , and l = ¬f
that l assigns false to f . A set of literals L is well-defined if
it does not assign conflicting values to any fluent, i.e. if L
does not contain both f and ¬f for some fluent f ∈ F . Let
L(F ) be the set of well-defined literal sets on F , i.e. the set
of all partial assignments of values to fluents. Given a literal
set L ∈ L(F ), let ¬L = {¬l : l ∈ L} be the complement of
L. We also define the projection L|X of a literal set L onto a
subset of fluents X ⊆ F .

A state s ∈ L(F ) is a well-defined literal set such that
|s| = |F |, i.e. a total assignment of values to fluents. Explic-
itly including negative literals ¬f in states simplifies subse-
quent definitions, but we often abuse notation by defining a
state s only in terms of the fluents that are true in s, as is
common in classical planning.

A classical planning problem is a tuple Π = 〈F,A, I,G〉,
where F is a set of fluents, A is a set of actions, I ∈ L(F )
is an initial state, and G ∈ L(F ) is a goal condition (usu-
ally satisfied by multiple states). Each action a ∈ A has
a precondition pre(a) ∈ L(F ) and a set of conditional ef-
fects cond(a). Each conditional effect C B E ∈ cond(a) is
composed of two literal sets C ∈ L(F ) (the condition) and
E ∈ L(F ) (the effect).

An action a ∈ A is applicable in state s if and only if
pre(a) ⊆ s, and the resulting (triggered) effect is given by

eff(s, a) =
⋃

CBE∈cond(a),C⊆s

E,

i.e. effects whose conditions hold in s. We assume that
eff(s, a) is a well-defined literal set in L(F ) for each state-
action pair (s, a). The result of applying a in s is a new state
θ(s, a) = (s \ ¬eff(s, a))∪ eff(s, a). It is straightforward to
show that if s and eff(s, a) are in L(F ), then so is θ(s, a).

Given a planning problem Π, a plan is an action se-
quence π = 〈a1, . . . , an〉 that induces a state sequence
〈s0, s1, . . . , sn〉 such that s0 = I and, for each i such that
1 ≤ i ≤ n, action ai is applicable in si−1 and generates

the successor state si = θ(si−1, ai). The plan π solves Π
if and only if G ⊆ sn, i.e. if the goal condition is satisfied
following the application of π in I .

Concurrent Planning
Concurrent planning is the extension of classical planning
that allows actions to be applied in parallel, forming con-
current or joint actions. Given a classical planning prob-
lem Π = 〈F,A, I,G〉, an unconstrained concurrent plan-
ning problem is given by Πconc =

〈
F, 2A, I, G

〉
, where the

action set 2A is given by the power set of the original action
set A. The aim is to find a concurrent plan πconc that solves
Πconc by applying a sequence of concurrent actions in 2A.

To ensure that joint actions have well-defined effects, re-
searchers often impose concurrency constraints that model
whether two atomic actions must or cannot be done concur-
rently. For example, in PDDL 2.1 (Fox and Long 2003), two
actions a1 and a2 cannot be applied concurrently if a1 has
an effect on a fluent f and a2 has a precondition or effect on
f . Crosby (2013) defines concurrency constraints on actions
that have the same object in their preconditions or effects.

We adopt a formulation of concurrency constraints due
to Boutilier and Brafman (2001), later extended by Ko-
vacs (2012). The idea is to extend preconditions and condi-
tional effects with actions in addition to fluents. We overload
notation and let each a ∈ A denote a propositional variable.
If a1 has a precondition a2, then a1 is only applicable if a2
is concurrent with a1. If a1 has a precondition ¬a2, then a1
is only applicable if a2 is not concurrent with a1.

We extend the notation for classical planning as follows.
By viewing A as a set of propositional variables, we can
model a subset of atomic actions in 2A as a well-defined lit-
eral set b ∈ L(A) such that |b| = |A|, analogous to how
states are formed from fluents. The subset includes those
actions that appear as positive literals in b, while negative
literals denote those actions that are not part of the subset.

For a given atomic action a ∈ A, the precondition
pre(a) ∈ L(F ∪ A) and any condition C ∈ L(F ∪ A) of
a conditional effect C B E ∈ cond(a) are extended to in-
clude actions in addition to fluents. Each effect E ∈ L(F )
of a conditional effect C B E ∈ cond(a) is exclusively on
fluents as before. Given a state s and a set of actions that are
concurrent with a, represented by a literal set b ∈ L(A), a
is applicable if and only if pre(a) ⊆ s ∪ b, and the resulting
effect is given by

eff(s ∪ b, a) =
⋃

CBE∈cond(a),C⊆s∪b

E,

i.e. effects whose conditions hold in s ∪ b.
We can now define the semantics of a joint action b ∈

2A. Concretely, b satisfies the concurrency constraints if and
only if pre(a)|A ⊆ b \ {a} for each a ∈ b. If b is applicable,
its precondition and effect are defined as the union of the
preconditions and effects of the constituent atomic actions:

pre(b) =
⋃
a∈b

pre(a)|F ,

eff(s, b) =
⋃
a∈b

eff(s ∪ b \ {a}, a), ∀s.
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As before, we assume that eff(s, b) is a well-defined literal
set inL(F ) for each pair of state s and applicable joint action
b.

Concurrent Multiagent Planning
In concurrent multiagent planning, each atomic action be-
longs to an agent. We consider the problem of centralized
multiagent planning in which agents share the goal.

A concurrent multiagent planning problem (CMAP) is a
tuple Π =

〈
N,F,

{
Ai
}n
i=1

, I, G
〉
, where N = {1, . . . , n}

is a set of agents and Ai is the set of atomic actions of agent
i ∈ N . This is identical to the standard definition of mul-
tiagent planning problems (Brafman and Domshlak 2008),
with the only difference being that the actions include con-
currency constraints as defined in the previous section. The
fluent set F , initial state I and goal condition G are defined
as before.

A CMAP implicitly defines a negative concurrency con-
straint on each pair of atomic actions (a1, a2) ⊆ Ai that be-
long to the same agent i. Consequently, each agent can con-
tribute at most one atomic action to each joint action. These
concurrency constraints are not included in action defini-
tions.

To illustrate CMAPs, we use the TABLEMOVER domain
(Boutilier and Brafman 2001), in which two agents move
blocks between rooms. There are two possible strategies:

1. Pick up blocks and carry them using their arms.
2. Put blocks on a table, carry the table together to another

room, and tip the table to make the blocks fall down.
Figure 1 shows the definition of the lift-side action in the

notation of Kovacs (2012), which is used by agent ?a to lift
side ?s of the table. The precondition is that the side must
be down (i.e. on the floor) and the agent cannot be hold-
ing anything. Moreover, the precondition also states that no
other agent ?a2 can lower side ?s2 at the same time. When
the action is applied, ?s is no longer down but up, and ?a is
busy lifting ?s. The action also has a conditional effect (rep-
resented by the when clause): if some side ?s2 is not lifted
by any agent ?a2, then all blocks on the table fall to the floor.

Note that the action lift-side is defined using forall quan-
tifiers. In practice, such quantifiers are compiled away, such
that the resulting actions have quantifier-free preconditions
and effects, as in our definition of actions.

Compilations for CMAPs
Let Π =

〈
N,F,

{
Ai
}n
i=1

, I, G
〉

be a CMAP, and let A =

A1∪· · ·∪An be the set of atomic actions of Π. A straightfor-
ward approach to solving Π is to define a concurrent plan-
ning problem Πconc = 〈F,B, I,G〉 and apply a classical
planner to solve Πconc. If B ⊆ 2A is exactly the subset of
joint actions that satisfy the concurrency constraints of the
actions in Π, this approach is both sound and complete.

However, even though the joint action set B might be
much smaller than 2A, it is still worst-case exponential in
the number of agents. Most classical planners ground the ac-
tions, and ifB is too large, they often do not make it past pre-
processing. Moreover, to generate the set B we would typ-

(:action lift-side
:agent ?a - agent
:parameters (?s - side)
:precondition
(and (at-side ?a ?s)

(down ?s) (handempty ?a)
(forall (?a2 - agent ?s2 - side)
(not (lower-side ?a2 ?s2))))

:effect
(and (not (down ?s)) (lifting ?a ?s)

(up ?s) (not (handempty ?a ?s))
(forall
(?b - block ?r - room ?s2 - side)
(when
(and (inroom Table ?r)

(on-table ?b) (down ?s2)
(forall (?a2 - agent)

(not (lift-side ?a2 ?s2))))
(and (on-floor ?b) (inroom ?b ?r)

(not (on-table ?b)))))))

Figure 1: Definition of the TABLEMOVER action lift-side us-
ing the notation of Kovacs (2012) (concurrency constraints
in bold).

ically have to iterate over all joint actions, and test whether
each action satisfies the concurrency constraints of atomic
actions.

Here we describe an alternative approach to solving a
CMAP Π. The idea is to model each joint action b =
{a1, . . . , ak} using multiple atomic actions: one set of ac-
tions for selecting a1, . . . , ak, one set of actions for ap-
plying a1, . . . , ak, and one set of actions for resetting
a1, . . . , ak. The result is a classical planning problem Π′ =
〈F ′, A′, I ′, G′〉 such that the size of the action set A′ is lin-
ear in |A|, the number of atomic actions of agents.

Simulating a joint action b using a sequence of atomic ac-
tions 〈a1, . . . , ak〉 is problematic for the following reason:
when applying an atomic action ai, we may not yet know
which atomic actions will be applied by other agents. Since
those other actions may be part of the precondition and con-
ditional effects of ai, it becomes difficult to ensure that the
concurrency constraints of ai are correctly enforced.

Our approach is to divide the simulation of a joint action b
into three phases: selection, application, and reset. In the se-
lection phase, we use an auxiliary fluent active-ai to model
that the atomic action ai has been selected. In the applica-
tion phase, since the selection of atomic actions is known,
we can substitute each action ai in preconditions and condi-
tional effects with the auxiliary fluent active-ai. In the reset
phase, various auxiliary fluents are reset.

Note that this compilation takes into account the multia-
gent nature of the problem. Each agent can apply at most one
atomic action per time step, and agents collaborate to form
joint actions whose constituent atomic actions are compati-
ble and/or inapplicable on their own.

We proceed to define the components of the compilation.

Fluents
We describe the fluents in PDDL format, i.e. each fluent is
instantiated by assigning objects to predicates.
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The set of fluents F ′ ⊇ F includes all original fluents in
F , plus the following auxiliary fluents:
• Fluents free, select, apply and reset modeling the phase.
• For each agent i, fluents free-agent(i), busy-agent(i) and

done-agent(i) that model the agent state: free to select an
action, selected an action, and applied the action.

• For each action ai ∈ Ai in the action set of agent i, a
fluent active-ai which models that ai has been selected.
We use Fact to denote the subset of fluents of this type.

By simple inspection, the total number of fluents in F ′ is
given by |F ′| = |F |+4+3n+

∑
i∈N

∣∣Ai
∣∣ = O(|F |+ |A|).

The initial state I ′ of the compilation Π′ is given by

I ′ = I ∪ {free} ∪ {free-agent(i) : i ∈ N},

i.e. the initial state on fluents in F is I , we are not simulating
any joint action, and all agents are free to select actions. The
goal condition is given byG′ = G∪{free}, i.e. the goal con-
dition G has to hold at the end of a joint action simulation.

Actions
For a literal set L ∈ L(F ∪ A), let L|A/Fact denote the
projection of L onto A, followed by a substitution of the
actions in A with the corresponding fluents in Fact. Note
that both L|F and L|A/Fact are literal sets on fluents in F ′,
i.e. the dependence on actions in A is removed.

The first four actions in the set A′ allow us to switch be-
tween simulation phases, and are defined as follows:

select-phase: pre = {free},
cond = {∅B {¬free, select}}.

apply-phase: pre = {select},
cond = {∅B {¬select, apply}}.

reset-phase: pre = {apply},
cond = {∅B {¬apply, reset}}.

finish: pre = {reset, free-agent(i) : i ∈ N},
cond = {∅B {¬reset, free}}.

For each action ai ∈ Ai in the action set of agent i, we
define three new actions in A′: select-ai, do-ai and end-ai.
These actions represent the three steps that an agent must
perform during the simulation of a joint action.

The action select-ai causes i to select action ai during the
selection phase, and is defined as follows:

pre = {select, free-agent(i)} ∪ pre(ai)|F ,

cond = {∅B {busy-agent(i),¬free-agent(i), active-ai}}.

The precondition ensures that we are in the selection phase,
that i is free to select an action, and that the precondition of
ai holds on fluents in F . The effect prevents i from selecting
another action, and marks ai as selected.

The action do-ai applies the effect of ai in the application
phase, and is defined as follows:

pre = {apply, busy-agent(i), active-ai} ∪ pre(ai)|A/Fact,

cond = {∅B {done-agent(i),¬busy-agent(i)}}
∪ {C|F ∪ C|A/Fact B E : C B E ∈ cond(ai)}.

a1

a2

b1

r1 r2

s1 s2Table

Figure 2: Initial state of a simple TABLEMOVER instance.

The precondition ensures that we are in the application
phase, that ai was previously selected, and that all concur-
rency constraints in the precondition of ai hold. The effect is
to apply all conditional effects of ai, where each condition
C|F ∪C|A/Fact is generated fromC by substituting each ac-
tion bj ∈ A with active-bj . Agent i is also marked as done
to prevent ai from being applied a second time.

The action end-ai resets auxiliary fluents to their original
value, and is defined as follows:

pre = {reset, done-agent(i), active-ai},
cond = {∅B {free-agent(i),¬done-agent(i),¬active-ai}}.

The precondition ensures that we are in the reset phase
and that ai was previously selected and applied (due to
done-agent(i)). The effect is to make agent i free to select
actions again, and to mark ai as no longer selected.

Again, by inspection we can see that the total number of
actions in A′ is given by |A′| = 4 + 3

∑
i |Ai| = O(|A|).

Properties
Figure 2 shows an example instance of TABLEMOVER in
which the goal is for agents a1 and a2 to move block b1
from room r1 to room r2. An example concurrent plan that
solves this instance is defined as follows:
1 (to-table a1 r1 s2)(pickup-floor a2 b1 r1)
2 (putdown-table a2 b1 r1)
3 (to-table a2 r1 s1)
4 (lift-side a1 s2)(lift-side a2 s1)
5 (move-table a1 r1 r2 s2)(move-table a2 r1 r2 s1)
6 (lower-side a1 s2)

In this plan, agent a2 first puts the block on the table, and
then a1 and a2 concurrently lift each side of the table and
move the table to room r2. Finally, a1 lowers its side of the
table, causing the table to tip and the block to fall to the floor.

The following sequence of classical actions in A′ can be
used to simulate the first joint action of the concurrent plan:
1 (select-phase )
2 (select-to-table a1 r1 s2)
3 (select-pickup-floor a2 b1 r1)
4 (apply-phase )
5 (do-pickup-floor a2 b1 r1)
6 (do-to-table a1 r1 s2)
7 (reset-phase )
8 (end-to-table a1 r1 s2)
9 (end-pickup-floor a2 b1 r1)

10 (finish )

We show that the compilation is both sound and complete.
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Theorem 1 (Soundness). A classical plan π′ that solves Π′

can be transformed into a concurrent plan π that solves Π.

Proof. When fluent free is true, the only applicable action
is select-phase. The only way to make free true again is to
cycle through the three phases and end with the finish action.

During the selection phase, a subset of actions a1, . . . , ak
are selected, causing the corresponding agents to be busy.
Because of the precondition free-agent(i) of the finish ac-
tion, each selected action ai has to be applied in the ap-
plication phase, and reset in the reset phase. The resulting
simulated joint action is given by b = {a1, . . . , ak}.

The precondition of b holds since the precondition of each
ai on fluents in F is checked in the selection phase, during
which no fluents in F change values. The concurrency con-
straints of ai are checked in the application phase when all
actions have already been selected. This also ensures that the
conditional effects of ai are correctly applied. Finally, aux-
iliary fluents are cleaned in the reset phase. Hence the joint
action b satisfies all concurrency constraints and is correctly
simulated by the corresponding action subsequence of π′.

Let π be the concurrent plan composed of the sequence
of joint actions simulated by the plan π′. Since π′ solves Π′,
the goal condition G holds at the end of π′, implying that G
also holds at the end of π. This implies that π solves Π.

Theorem 2 (Completeness). A concurrent plan π that
solves Π corresponds to a classical plan π′ that solves Π′.

Proof. Let b = {a1, . . . , ak} be a joint action of the con-
current plan π. We can use a sequence of actions in A′ to
simulate b by selecting, applying and resetting each action
among a1, . . . , ak. Since b is part of π, its precondition and
concurrency constraints have to hold, implying that the pre-
condition and concurrency constraints of each atomic action
hold. Hence the action sequence is applicable and results in
the same effect as b. By concatenating such action sequences
for each joint action of π, we obtain a plan π′. Since π solves
Π, the goal condition G holds at the end of π, implying that
G holds at the end of π′. This implies that π′ solves Π′.

Extensions

The basic compilation checks concurrency constraints in the
application phase. Here we describe an extension that checks
negative concurrency constraints in the selection phase, al-
lowing a classical planner to identify inadmissible joint ac-
tions as early as possible, reducing the branching factor.

Assume that action ai has a negative concurrency con-
straint ¬aj . As before, we can simulate this constraint using
the fluent ¬active-aj . However, aj may be selected after ai
in the selection phase, in which case ¬active-aj holds when
selecting ai. To prevent inadmissible joint actions from be-
ing selected, we introduce additional fluents in the set F ′:

• For each action ai ∈ Ai in the action set of agent i, a flu-
ent req-neg-ai which indicates that ai cannot be selected.

We now redefine the action select-ai as follows:

pre = {select, free-agent(i),¬req-neg-ai} ∪ pre(ai)|F

∪ {¬active-bj : ¬bj ∈ pre(ai)},
cond = {∅B {busy-agent(i),¬free-agent(i), active-ai}}

∪ {∅B {req-neg-bj : ¬bj ∈ pre(ai)}}.

To select ai, req-neg-ai has to be false. For each negative
concurrency constraint¬bj of ai, action select-ai adds fluent
req-neg-bj , preventing bj from being selected after ai.

With this extension, we only need to check positive con-
currency constraints (i.e. required concurrency) in the appli-
cation phase. We also redefine end-ai such that fluents of
type req-neg-ai are reset in the cleanup phase, using the op-
posite effect of select-ai. The initial state and goal condition
do not change since the new fluents are always false while
no joint action is simulated.

The second extension is to impose a bound C on
the number of atomic actions selected in the selection
phase, resulting in a classical planning problem Π′C =
〈F ′C , A′C , I ′C , G′C〉. The fluent set F ′C ⊇ F ′ extends F ′ with
fluents count(j), 0 ≤ j ≤ C. Counter parameters are added
to the select and reset actions so that they can respectively
increment and decrement the value of the counter. Crucially,
no select action is applicable when j = C, preventing us
from selecting more than C actions. The benefit is to reduce
the branching factor by disallowing joint actions with more
than C atomic actions.

We leave the following proposition without proof:

Proposition 3. The compilation Π′C that includes both pro-
posed extensions is sound.

Note that the compilation Π′C is not complete. For in-
stance, consider a concurrent multiagent plan that contains
a joint action involving 4 atomic actions. If C < 4, then
the concurrent multiagent plan cannot be converted into an
equivalent classical plan without exceeding the bound C.

Experimental Results
We tested our compilations in two different sets of domains:
centralized multiagent domains from the CoDMAP-15 com-
petition, and four domains (MAZE, TABLEMOVER, WORK-
SHOP and BOXPUSHING) that require concurrency1.

In each domain, we used three variants of our compi-
lations: unbounded joint action size, and joint action size
bounded by C = 2 and C = 4. In all variants, we used the
extension that identifies negative concurrency constraints in
the selection phase. The resulting classical planning prob-
lems were then solved using Fast Downward (Helmert 2006)
in the LAMA setting (Richter and Westphal 2010).

All experiments ran on Intel Xeon E5-2673 v4 @ 2.3GHz
processors. They had a time limit of 30 minutes and a mem-
ory limit of 8 GB.

1The code of the compilation and the domains are available at
https://github.com/aig-upf/universal-pddl-parser-multiagent.
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CoDMAP Domains
Although the centralized multiagent benchmark domains of
CoDMAP involve multiple agents, none of these domains
require concurrency between agents, i.e. their instances can
be solved by sequences of atomic actions. Instead, the pur-
pose of CoDMAP was to solve problems involving privacy
over predicates, constants and objects.

As our approach and CoDMAP planners differ in their
purpose, we decided to compare the former against the clas-
sical planner it uses to solve the compilation (Fast Down-
ward). Since CoDMAP domains can be sequentially solved,
Fast Downward can be directly applied on them. Further-
more, we will be able to see how the results of solving
a problem sequentially compare to the results if the same
problem is solved when concurrency is allowed. In addition,
the coverage of Fast Downward is almost as high as the win-
ner of the centralized track at CoDMAP-15, ADP (Crosby,
Rovatsos, and Petrick 2013), which solved 222 instances.

We compare the results of our compilation with those ob-
tained by running Fast Downward (FD) directly on the given
instances. We wanted to test the following hypotheses:

1. Using our compilations it is possible to solve approxi-
mately the same number of instances as a classical planner
that ignores the multiagent nature of the problem.

2. The plans resulting from solving the compiled problems
are implicitly more compressed since atomic actions are
grouped into joint actions.
The domains forming this set of experiments were man-

ually modified to add the appropriate negative concurrency
constraints. Otherwise, the instances would violate our as-
sumption that the triggered effect eff(s, b) of a joint action
is well-defined, producing invalid plans. For instance, an
atomic action adding a fluent f and another action deleting
f could have been part of the same joint action. Therefore,
note that the complexity of the tasks increases with respect
to the original tasks that had no concurrency constraints.

Table 1 shows the results for this set of experiments. There
are four different metrics:
• Coverage: number of instances solved.
• Time: average number of seconds taken to find a solution.
• Plan length: number of actions in the plan, corresponding

to the number of joint actions for our compilations.
• #Actions: total number of actions instantiated by FD.

From the table, we observe that the planner with the
largest coverage is FD (219, 91.25%). The compilation with
the largest coverage is the variant whose joint action size is
bounded by 2 (158, 65.83%), followed by the unbounded
variant (143, 59.58%) and the variant whose bound is set
to 4 (140, 58.3%). Thus, although all variants solve less in-
stances, they are not far from the results obtained by FD for
many domains. As expected, when concurrency is not re-
quired to solve a MAP, the auxiliary fluents and additional
copies of actions (corresponding to the three phases of a
joint action simulation) introduced by our compilations do
not pay off in solution efficiency, resulting in a smaller cov-
erage and a larger time to solve the compiled instances.

Regarding plan length, the compilations always result in
shorter solutions than FD. Since FD outputs a sequential
plan with no joint actions, it has no way of compressing the
plans, unlike the compilations in which atomic actions are
grouped into joint actions.

As stated in the previous section, the number of actions
of the compilation with unbounded joint action size is ap-
proximately 3|A|, and the number of actions of the compi-
lation with joint action size bounded by C is approximately
(C + 1)|A|, which is reflected quite well in the number of
instantiated actions (results vary somewhat because of the
reachability tests performed by FD during grounding).

Domains with Required Concurrency
In this section, we first give a brief description of the do-
mains that were included in the experiments, and the other
algorithms that were used for comparison.

The MAZE domain (Crosby 2014) consists of a grid of
interconnected locations. Each agent in the maze must move
from an initial location to a target location. The connection
between two adjacent locations can be one of the following:

• Door: can only be traversed by one agent at a time. Some
are initially locked, and are unlocked by pushing a specific
switch, placed anywhere in the maze.

• Bridge: can be crossed by multiple agents at once, but is
destroyed after the first crossing.

• Boat: can only be used by two or more agents in the same
direction.

The WORKSHOP domain is a new domain in which the
objective is to perform inventory in a high-security storage
facility. It has the following characteristics:

• To open a door, one agent has to press a switch while an-
other agent simultaneously turns a key.

• To do inventory on a pallet, one agent has to use a fork-
lift to lift the pallet while another agent examines it (for
security reasons, labels are located underneath pallets).

• There are also actions for picking up a key, entering or
exiting a forklift, moving an agent, and driving a forklift.

The BOXPUSHING domain (Brafman and Zoran 2014)
consists in a grid of interconnected locations. Agents must
push the boxes from one location to another. A different
number of agents is needed depending on the box size: one
for small boxes, two for mediums, and three for large boxes.

The algorithm that we use for comparison is that
of Crosby, Jonsson, and Rovatsos (2014) (which we refer
to as CJR), who define concurrency constraints in the form
of affordances on subsets of objects. For example, the affor-
dance on the subset of objects {location, boat} in the MAZE
domain is [2,∞], representing that at least two agents have
to row the boat between the same two locations at once.
Even though their algorithm cannot handle the concurrency
constraints of CMAPs, the MAZE and WORKSHOP domains
can be reformulated using their concurrency constraints.

The concurrency constraints of CJR are not as expressive
as those of Kovacs because:

ICAPS Proceedings of the 6th Workshop on Distributed and Multi-Agent Planning (DMAP-2018)

13



Domain N Coverage Time (s.) Plan length # Actions
2 4 ∞ FD 2 4 ∞ FD 2 4 ∞ FD 2 4 ∞ FD

BLOCKSWORLD 20 7 2 4 20 759.5 - - 0.2 32.1 - - 32.8 6848 12323 4110 1270
DEPOT 20 13 10 9 17 202.9 246.4 223.9 58.3 30.6 15.7 14.9 44.0 10100 18176 6061 2007
DRIVERLOG 20 18 17 18 20 67.3 58.8 73.7 26.1 21.1 20.5 25.2 35.6 38416 69145 23051 7386
ELEVATORS08 20 9 8 10 20 13.8 12.5 9.5 0.2 31.0 30.3 36.4 65.1 10779 19399 6469 2155
LOGISTICS00 20 20 20 20 20 1.9 2.9 212.1 0.0 30.3 28.0 30.1 50.2 1781 3202 1070 318
ROVERS 20 20 20 19 20 45.2 75.2 20.9 0.1 46.5 47.4 42.9 56.8 18314 32962 10990 2609
SATELLITES 20 19 17 19 20 82.8 128.0 32.2 1.0 32.6 35.5 34.2 55.9 45106 81188 27065 8122
SOKOBAN 20 0 0 0 18 - - - 32.3 - - - 54.1 3319 5970 1993 663
TAXI 20 20 20 20 20 1.3 2.6 0.7 0.0 14.8 14.7 14.7 18.7 544 975 328 108
WIRELESS 20 2 2 2 4 - - - - - - - - 15644 28156 9388 3128
WOODWORKING08 20 14 8 4 20 290.0 256.0 - 0.9 22.4 11.4 - 46.1 17406 31327 10445 3447
ZENOTRAVEL 20 16 16 18 20 87.2 125.6 164.8 1.5 23.6 24.1 34.2 46.9 67586 121652 40553 13502
Total 240 158 140 143 219

Table 1: Summary of results for CoDMAP domains. Planners “2” and “4” are compilations having joint action size bounded by
2 and 4 respectively, while “∞” is the variant with unbounded joint action size. “FD” is Fast Downward directly applied to the
given instances (no compilation involved). N is number of instances; time and length are averages over all instances solved, for
all planners that solved at least 5 instances. The total number of actions is an average over all instances.

• Actions cannot be used in conditional effects, so their al-
gorithm cannot solve instances of TABLEMOVER.

• To represent concurrency constraints on multiple action
templates in PDDL, they have to be defined on the same
subset of objects. In contrast, the constraints of Kovacs
can be defined on arbitrary pairs of actions.

Furthermore, CJR does not separate the atomic action se-
lection from the atomic action application. This is a big
problem since one of the atomic actions can delete the pre-
condition of other atomic actions, thus canceling the for-
mation of the joint action. For example, in the MAZE do-
main, the action for crossing a bridge requires that the bridge
exists, and destroys the bridge as an effect. Therefore, as
this approach does not separate the selection from the ap-
plication, this action can be done just by one agent at a
time (and not by infinite agents as the problem states). The
same occurs in the BOXPUSHING domain. Instances where a
medium or a large box must be moved cannot be solved with
this approach because the first agent to “push” the box will
move it. Thus, the box location precondition for the other
agent(s) does not hold, so the box is not moved in the end.

As for our compilations, we used Fast Downward in the
LAMA 2011 setting to solve the instances produced by CJR.

Another algorithm we could have used for comparison is
MAFS (Brafman and Zoran 2014). Unlike our approach and
Crosby, Jonsson, and Rovatsos’s, it is a distributed approach
that preserves privacy and that has been shown to work in the
BOXPUSHING domain. However, we have not tested it as we
have not had access to the code to perform experiments.

Table 2 shows the results for the four domains. To provide
an idea of how each planner behaves as a function of the
number of agents, the table shows for each domain the same
metrics for different numbers of agents. In the case of BOX-
PUSHING with three agents, as the version with the bound
set to 2 cannot solve instances with large boxes, there are
separate results for the cases where the number such boxes
is 0, and the cases where it is greater than 0.

In terms of coverage, the unbounded compilation (∞) per-

forms the best (93, 69.92%). The variant bounded to 2 and
the variant bounded to 4 have similar coverage: 82 (61.65%)
and 89 (66.92%) respectively. The former is clearly affected
by the fact it cannot solve the instances requiring the concur-
rent action of 3 agents in the BOXPUSHING domain. Finally,
CJR is the approach with the worst coverage (17, 12.78%).
It performs reasonably well in MAZE in spite of its limita-
tion regarding the action for crossing a bridge. On the other
hand, its results are not very good in WORKSHOP, and it
cannot solve instances from the TABLEMOVER and BOX-
PUSHING domains. Furthermore, the higher the number of
agents, the worse the coverage becomes because problems
are harder to solve (the number of available actions grows).

Regarding execution time, the unbounded compilation
and the compilation bounded to 2 are the fastest. The higher
the number of agents, the longer it takes to compute a plan.

In the case of plan length (i.e. number of joint actions),
we observe that the plans obtained with our approach are
shorter than the ones obtained with CJR. CJR obtains worse
results because it explicitly builds joint actions only if their
constituent joint actions are associated with a concurrency
constraint. Thus, any action that appears out of a joint action,
can be considered as a joint action of size 1. In contrast, our
approach allows to combine atomic actions arbitrarily, so it
already compresses the solution while planning.

In summary, it is not clear which variant is the best since
they highly depend on the problem. In general, the version
bounded to 2 works well, but it is useless if concurrency is
required between 3 or more agents. The version bounded to
4 has a similar coverage to the unbounded one, but mainly
because there are not instances requiring concurrency be-
tween more than 4 agents. Thus, we believe that the un-
bounded option is the most convenient since its performance
is not far from the best in all domains, and it is more general.

Finally, we have performed preliminary scalability re-
sults in the BOXPUSHING domain. In these experiments we
checked the results when n ∈ {1, . . . , 10} agents are re-
quired to move a box from a room r1 to a neighbor room
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Domain N Coverage Time (s.) Plan length # Actions
2 4 ∞ CJR 2 4 ∞ CJR 2 4 ∞ CJR 2 4 ∞ CJR

MAZE 20 13 8 6 11 351.9 435.2 144.4 192.8 47.2 22.0 11.7 77.3 41723 69368 27900 156886
a = 10 10 8 6 5 7 243.6 564.8 169.1 225.5 48.3 25.0 12.2 79.6 39909 67417 26155 119374
a = 15 10 5 2 1 4 525.2 - - - 45.4 - - - 43989 71807 30080 194397
TABLEMOVER 24 15 12 15 - 263.3 336.5 341.0 - 58.7 59.0 61.5 - 7487 13127 4667 -
a = 2 12 10 10 11 - 103.8 226.4 214.6 - 63.5 62.0 64.5 - 3450 6154 2098 -
a = 4 12 5 2 4 - 558.2 - - - 49.0 - - - 11524 20100 7236 -
WORKSHOP 20 15 13 13 6 132.3 298.6 51.8 629.0 35.7 37.0 32.5 63.5 18002 31000 11502 5425
a = 4 10 8 8 8 5 42.1 261.6 36.6 587.3 37.3 43.9 37.3 65.8 7772 13621 4847 2351
a = 8 10 7 5 5 1 235.5 357.8 76.0 - 33.9 26.0 24.8 - 28231 48378 18157 8499
BOXPUSHING 69 39 56 59 - 26.8 79.9 63.9 - 9.4 11.0 10.2 - 3075 5360 1932 -
a = 2 21 21 21 21 - 14.1 15.6 16.2 - 10.5 10.6 10.3 - 2099 3775 1261 -
a = 3 48 18 35 38 - 41.5 118.5 90.2 - 8.2 11.2 10.2 - 3502 6054 2226 -

l = 0 21 18 17 18 - 41.5 64.7 53.3 - 8.2 8.3 8.3 - 3373 5887 2116 -
l > 0 27 - 18 20 - - 169.2 123.5 - - 13.9 12.0 - 3602 6184 2312 -

Table 2: Summary of results for domains requiring concurrency. Planners “2” and “4” are compilations having joint action size
bounded by 2 and 4 respectively, while “∞” is the variant with unbounded joint action size. CJR is the compilation proposed
by Crosby, Jonsson, and Rovatsos (2014). a is the number of agents, N is number of instances; time and length are averages
over all instances solved, for all planners that solved at least 5 instances. For BOXPUSHING, l is the number of large boxes. The
total number of actions is an average over all instances (solutions are not required to get this metric).

r2. As n grows, the time required by FD for grounding in-
creases due to the memory requirements. For n = 6, FD
needs 6 seconds to find a solution; for n = 7, it needs 110
seconds; and for n > 7 it surpasses the memory limit.

Related Work
Several other authors consider the problem of concurrent
multiagent planning. Boutilier and Brafman (2001) describe
a partial-order planning algorithm for solving MAPs with
concurrent actions, based on their formulation of concur-
rency constraints, but do not present any experimental re-
sults. CMAP (Borrajo 2013) produces an initial sequential
plan for solving a MAP, but performs a post-processing step
to compress the sequential plan into a concurrent plan.

Jonsson and Rovatsos (2011) present a best-response ap-
proach for MAPs with concurrent actions, where each agent
attempts to improve its own part of a concurrent plan while
the actions of all other agents are fixed. However, their
approach only serves to improve an existing concurrent
plan, and is unable to compute an initial concurrent plan.
FMAP (Torreño, Onaindia, and Sapena 2014) is a partial-
order planner that also allows agents to execute actions in
parallel, but the authors do not present experimental results
for MAP domains that require concurrency.

The planner of Crosby, Jonsson, and Rovatsos (2014) is
similar to ours in that it also converts CMAPs into classical
planning problems. The authors only present results from
the MAZE domain, and concurrency constraints are defined
as affordances on object sets that appear as arguments of
actions. These concurrency constraints are not as flexible as
those of Boutilier and Brafman (2001), since the latter can
model any arbitrary concurrency constraint between pairs of
actions, as well as unidirectional constraints that only affect
one of the two actions. Moreover, affordances are not used
to define concurrency constraints in conditional effects.

Brafman and Zoran (2014) extended the MA-STRIPS
modeling language to support concurrency constraints, and
the MAFS multiagent distributed planner to solve this kind
of problems while preserving privacy. They examined the
scalability of their approach in the BOXPUSHING domain.

Compilations from multiagent to classical planning have
also been considered by other authors. Muise, Lipovetzky,
and Ramirez (2015) proposed a transformation to respect
privacy among agents. The resulting classical planning prob-
lem was then solved using a centralized classical planner as
in our approach. Besides, compilations to classical planning
have also been used in temporal planning, obtaining state-of-
the-art results in many of the International Planning Compe-
tition domains (Jiménez, Jonsson, and Palacios 2015).

Conclusion
This work makes several contributions to concurrent plan-
ning. A common framework is introduced for different plan-
ning forms. We focused on the relation between concurrent
and multiagent planning. We proposed a sound and com-
plete method for compiling CMAPs into classical planning
problems. The method does not need an exponential num-
ber of actions to represent the problem; instead, the number
of resulting actions is linear in the description of the CMAP
while respecting explicit concurrency constraints.

In future work, it would be interesting to explore strate-
gies for encouraging concurrent actions that involve several
agents (i.e. strategies for finding shorter concurrent plans).
Furthermore, privacy preserving is a central topic on multi-
agent planning; thus, this approach could be combined with
suitable privacy-preserving mechanisms in the future.
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Abstract

In non-cooperative multi-agent systems, agents might want
to prevent the opponents from achieving their goals. One al-
ternative to solve this task would be using counterplanning
to generate a plan that allows an agent to block other’s to
reach their goals. In this paper, we introduce a fully auto-
mated domain-independent approach for counterplanning. It
combines; goal recognition to infer an opponent’s goal; land-
marks’ computation to identify subgoals that can be used to
block opponents’ goals achievement; and classical automated
planning to generate plans that prevent the opponent’s goals
achievement. Experimental results in several domains show
the benefits of our novel approach.

Introduction
In non-cooperative multi-agent systems, agents might want
to prevent the opponents from achieving their goals. This
task has been named counterplanning (Carbonell 1981). Ex-
amples of non-cooperative multi-agent domains where this
approach can provide great benefits are police controls, cy-
ber security, or real-time strategy games, where this ability
has been identified as one of the major challenges for Artifi-
cial Intelligence (Ontañón et al. 2013). Most previous coun-
terplanning approaches are based on domain-dependent so-
lutions, such as rule-based systems (Carbonell 1978; Rowe
2003), or Hierarchical Task Networks (HTN) (Willmott et
al. 2001).

Recently, there has been increasing interest in the study
and generation of agents capable of reasoning about their
own and opponents’ goals as well as their environment (Cox
2007). Some works follow the Goal-Driven Autonomy
(GDA) process, which integrates a diverse set of AI compo-
nents such as HTN planning or explanation generation (Mo-
lineaux, Klenk, and Aha 2010; Weber, Mateas, and Jhala
2010). Other works combine goal recognition and reason-
ing on actions, applying those techniques in domains such as
identifying terrorist activity (Jarvis, Lunt, and Myers 2005),
air combat (Borck et al. 2015), real-time strategy games (Ka-
banza et al. 2010), or cyber security (Boddy et al. 2005;
Edelkamp et al. 2009; Sarraute, Buffet, and Hoffmann 2012;
Obes, Sarraute, and Richarte 2013; Hoffmann 2015). Again,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

these approaches are domain-dependent. On the goal recog-
nition side, they use plan (Kabanza et al. 2010), rules (Car-
bonell 1978) or behavior (Borck et al. 2015) libraries to
detect their opponent’s goals. On the action reasoning
side, they use stored policies (Carbonell 1981), ask for hu-
man guidance following a mixed-initiative paradigm (Jarvis,
Lunt, and Myers 2005), or require heavy knowledge engi-
neering processes such as HTN based approaches (Willmott
et al. 2001).

In this paper we present a fully automatic domain-
independent approach for counterplanning. This approach
is based on: goal recognition, landmarks, and classical auto-
mated planning. Goal recognition aims to infer an agent’s
plan or goals from a set of observations. In general, the
observed agent can be cooperative or competitive. We use
this technique to infer an opponent’s goals. Fact land-
marks are propositions that must be true in all valid solu-
tion plans (Hoffmann, Porteous, and Sebastia 2004). We use
landmarks to identify subgoals that can be used to block the
opponent’s goal achievement. Classical automated planning
aims to generate a sequence of actions, namely a plan, which
achieves some goals from an initial state. We use it to gen-
erate plans that prevent the opponent’s goal achievement.

The main idea of this novel approach is to: (1) quickly
identify the actual opponent’s goal g using planning-based
goal recognition techniques; (2) compute the set of land-
marks involved in the achievement of g; (3) select a coun-
terplanning landmark, which is the first landmark where
the opponent could be blocked; and (4) generate a plan
to achieve the counterplanning landmark, and therefore to
block the opponent’s goal achievement. This approach
shows how an opponent can be effectively blocked in dif-
ferent non-cooperative domains.

The rest of the paper is organized as follows. In the
next section we review the basic notions of classical plan-
ning, goal recognition, and landmarks. Then we intro-
duce our fully automatic domain-independent counterplan-
ning approach, which includes the quick detection of goals
using goal recognition, and the landmark’s computation to
identify relevant counterplanning landmarks. Finally we
present an empirical study and discuss future work.
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Background
Automated Planning
Automated Planning is the task of choosing and organizing a
sequence of actions such that, when applied in a given initial
state, it results in a goal state (Ghallab, Nau, and Traverso
2004). Formally, a single-agent STRIPS planning task can
be defined as a tuple Π = 〈F,A, I,G〉, where F is a set
of propositions, A is a set of instantiated actions, I ⊆ F is
an initial state, and G ⊆ F is a set of goals. Each action
a ∈ A is described by a set of preconditions (pre(a)), which
represent literals that must be true in a state to execute an
action, and a set of effects (eff(a)), which are the literals
that are added (add(a) effects) or removed (del(a) effects)
from the state after the action execution. The definition of
each action might also include a cost c(a) (the default cost
is one). The execution of an action a in a state s is defined
by a function γ such that γ(s, a) = (s \ del(a)) ∪ add(a)
if pre(a)⊆ s, and s otherwise (it cannot be applied). The
output of a planning task is a sequence of actions, called a
plan, π = (a1, . . . , an). The execution of a plan π in a state
s can be defined as:

Γ(s, π) =

{
Γ(γ(s, a1), (a2, . . . , an)) if π 6= ∅
s if π = ∅

A plan π is valid if G ⊆ Γ(I, π). The plan cost is com-
monly defined as c(π) =

∑
ai∈π c(ai). We will use the

function PLANNER(Π) to refer to an algorithm that com-
putes a plan π from a planning task Π.

Goal Recognition
Goal Recognition is the task of inferring another agent’s
goals through the observation of its interactions with the en-
vironment. The problem has captured the attention of sev-
eral computer science communities (Albrecht et al. 1997;
Geib and Goldman 2009; Sukthankar et al. 2014). Among
them, planning-based goal recognition approaches have
been shown to be a valid domain-independent alternative
to infer agents’ goals (Ramı́rez and Geffner 2009; 2010;
2011; Pattison and Long 2010; E-Martı́n, R-Moreno, and
Smith 2015; Vered and Kaminka 2017; Pereira, Oren, and
Meneguzzi 2017). Ramı́rez and Geffner [2010] developed
an approach that assumes observations are actions, and for-
mally defined a planning-based goal recognition problem as:

Definition 1 (Goal Recognition Problem) A goal recogni-
tion problem is a tuple T = 〈P,G, O, Pr〉 where P =
〈F,A, I〉 is a planning domain and initial conditions, G is
the set of possible goals G, G ⊆ F , O = (o1, ...., om) is an
observation sequence with each oi being an action inA, and
Pr is a prior probability distribution over the goals in G.

The solution to a goal recognition problem is a prob-
ability distribution over the set of goals G ∈ G giv-
ing the relative likelihood of each goal. In this work we
assume that Pr is uniform. We will use the function
RECOGNIZEGOALS(F,A, I,G, O) to refer to an algorithm
that solves the goal recognition problem. This function re-
turns a list of tuples in the form of 〈goal, probability〉 for
each goal in G.

Landmarks
In Automated Planning, landmarks were initially defined as
sets of propositions that have to be true at some time in ev-
ery solution plan (Hoffmann, Porteous, and Sebastia 2004).
Formally:

Definition 2 (Fact Landmark) Given a planning task Π =
〈F,A, I,G〉, a formula LΠ ∈ F is a fact landmark of Π iff
LΠ is true in some state along all valid plans executions that
achieve G from I .

This definition was later extended to include action land-
marks (Richter and Westphal 2010). We will use the func-
tion EXTRACTLANDMARKS(F,A, I,G) to refer to an algo-
rithm that computes a set of landmarks LΠ from a planning
task Π.

Domain-Independent Counterplanning
We first formalize the two actors involved in a counterplan-
ning problem as planning agents.

Definition 3 (Seeking agent) A seeking agent φ is an
agent that has an associated planning task Πφ =
〈Fφ, Aφ, Iφ, Gφ〉, and pursues its goal Gφ by following a
plan πφ computed from Πφ.

Definition 4 (Preventing agent) A preventing agent α is
an agent that has an associated planning task Πα =
〈Fα, Aα, Iα, Gα〉.
Gα is initialized to ∅. Then, Algorithm 1 (described later)

computes a set of goals to be used for the counter-planning
task. There can be varied relations between Πφ and Πα,
and the information that one agent has from the other. For
instance, the actions that both agents can perform could be
the same Aφ = Aα, or totally different Aφ ∩Aα = ∅. They
could also have different or equal observations of the world.
In this work, we make the following assumptions:

• φ’s model is known by α except for its goal Gφ. In most
real-world domains that we have selected for potential ap-
plications (e.g. police control, cyber security, strategy
games, . . . ), both Fφ, Iφ, and Aφ can be assumed to be
known;

• as in most literature on goal reasoning, α knows a set of
potential goals, Gφ ⊆ 2Fφ , φ could be trying to achieve;

• deterministic action outcomes and full observability of
those actions by α;

• both agents can follow optimal or suboptimal strategies to
reach their goals;

• both agents stick to their plans. In other words, they do
not replan or change their goals during execution; and

• the temporal duration of an action ai ∈ A is determined
by its cost c(ai).1

Since both agents operate in a common environment, the
execution of their actions affects the shared environment.
Therefore, we assume any state of the environment s can be
defined in terms of the set of propositions Fe (s ⊆ Fe), such

1In this paper, we assume unit action costs.
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that Fφ ∪ Fα ⊆ Fe. Additionally, some propositions must
be in Fφ∩Fα, i.e. they will be observable and modifiable by
both agents. The individual execution of actions by any of
the two agents in Fe will be based on the respective action
sets. Hence, the execution of an action a (a ∈ Aφ ∪ Aα) in
a state s is defined using the previous γ(s, a). Furthermore,
the joint execution of one action per agent in the same time
step t can be defined as follows.

Definition 5 (Joint execution of two actions) Given two
actions aφ ∈ Aφ and aα ∈ Aα and an environment state
s ⊆ Fe, the joint execution of both actions at a time step t
results in a new state given by

γφ,α(s, aφ, aα) =

{
γ(γ(s, aα), aφ) if aφ not mutex with aα
γ(s, aα) otherwise

Similarly, the joint execution of two plans Γφ,α(s, πφ, πα)
can be defined by the iteration of the joint execution of ac-
tions of those plans using γφ,α(s, aφ, aα). For simplicity, in
this paper we assume that the preventing agent always exe-
cutes its action first when two actions are mutex. We define
two mutex actions as follows.

Definition 6 (Mutex actions) Two actions ax, ay executed
at a time step t are mutex if any literal in eff(ax) deletes
(adds) any literal in pre(ay) or if any literal in eff(ax) deletes
(adds) a literal that is added (deleted) in eff(ay).

Using these definitions, we can now formally describe a
counterplanning task.

Definition 7 (Counterplanning task) A counterplanning
task is defined by a tuple CP = 〈Πφ,Πα,Gφ, Oφ〉 where
Πφ is the planning task of φ, Πα is the planning task
for the preventing agent, Gφ is the set of sets of goals
that φ can potentially pursue, and Oφ = (o1, . . . , om)
is a set of observations by α of the execution of a plan
πφ = (o1, . . . , om, am+1, . . . , ak) that solves Πφ.2

We assume that φ generates a plan πφ to solve its planning
task Πφ prior to counterplanning, and that plan (as well as its
corresponding goals) is unknown for α. Then, at some time
step m of the execution of πφ (where m can range from 1
to k, the length of πφ), given all observed actions from the
execution of πφ, α has to infer the φ agent goals (from Gφ)
and generate a solution to a counterplanning task, namely a
counterplan.

Definition 8 (Counterplan) Given φ agent plan πφ =
(am+1, . . . , ak), a plan πα = (a1, . . . , an) is a valid coun-
terplan for πφ = (am+1, . . . , ak) if the joint execution of
πα and πφ does not allow φ to achieve the goals in Gφ;
Gφ 6⊆ Γφ,α(s, πφ, πα).

Our approach to solve counterplanning tasks assumes that
α can delete (or add in the case of negated literals) some
proposition that φ needs in order to achieve its goals. There
could be different definitions for needed literals. We use
planning landmarks in this work. Therefore, we impose two
constraints: the seeking agent φ and the preventing agent

2We have changed the notation oi for aj in the πφ plan to dif-
ferentiate between observations and future actions.

α share some propositions, Fφ ∩ Fα 6= ∅; and at least one
action a in α model, a ∈ Aα, must delete (add) at least one
of φ’s plan landmarks.

Algorithm 1 shows the high-level algorithm used to solve
a counterplanning task from the perspective of α. The algo-
rithm first solves a goal recognition problem using RECOG-
NIZEGOALS given a planning domain, initial conditions, a
set of candidate goals Gφ, and a set of observationsOφ. It re-
turns Tφ, a probability distribution over the set of candidate
goals set Gφ in the form of tuples 〈goal, probability〉. Then,
the initial state of φ, Iφ, is updated with the given observa-
tions by advancing the state from the initial Iφ and applying
all actions corresponding to the observations in Oφ. Next,
we select the set of most probable goals’ sets G′φ from Tφ.
For each goal g ∈ G′φ, we extract the landmarks of the new
φ planning task using EXTRACTLANDMARKS. This com-
putation will return the set of common landmarks among
all the most probable sets of goals, LΠφ . Figure 1 shows
an example of that computation in a navigation domain. If
there are not common landmarks, the counterplanning task
cannot be performed. Otherwise, the algorithm selects the
set of counterplanning landmarks LΠφ,Πα in EXTRACTCP-
LANDMARKS. This process will be explained in detail later.
As before, if there are not counterplanning landmarks, the
counterplanning task cannot be performed. Otherwise, one
of the landmarks in LΠφ,Πα is negated and returned as the
preventing agent’s goalGα in SELECTGOAL. Finally, a plan
πα is computed to achieve that goal such that it prevents φ
from achieving its goals. In the next section we discuss how
we select Gα from LΠφ .

Algorithm 1 DOMAIN-INDEPENDENT COUNTERPLAN-
NING

Inputs: Πφ,Πα,Gφ, Oφ
Outputs: πα

1: Tφ ← RECOGNIZEGOALS(Fφ, Aφ, Iφ,Gφ, Oφ)
2: Iφ ←UPDATE(Iφ, Aφ, Oφ)
3: LΠφ ← Fφ
4: G′φ ← goal(arg maxt∈Tφ probability(t))
5: πα ← ∅
6: for g ∈ G′φ do
7: LΠφ ← LΠφ∩ EXTRACTLANDMARKS(Fφ, Aφ, Iφ, g)
8: if LΠφ 6= ∅ then
9: LΠφ,Πα ←EXTRACTCPLANDMARKS(Πφ,Πα,LΠφ)

10: if LΠφ,Πα 6= ∅ then
11: Gα ←SELECTGOAL(Πφ,Πα,LΠφ,Πα)
12: Iα =UPDATE(Iα, Aα, Oφ)
13: πα ← PLANNER(Πα = (Fα, Aα, Iα, Gα))
14: return πα

Selecting goals from landmarks
Given a set of common landmarks LΠφ , two questions
arises: (1) how many of those fact landmarks could be
deleted (added) by α’s model of the world (domain), so φ
cannot achieve them?; and (2) within those facts that α can
delete (add), which one should it become its goal Gα to ef-
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Figure 1: Navigation example. The green node illustrates the cur-
rent position of the agent. The rest of the nodes represent a possible
goal. The red node indicates a common landmark among the re-
maining goals after observing an action (moving to the right). The
blue node refers to the actual goal of the seeking agent.

fectively stop φ from achieving its goal? The first question
brings us to the following definition:

Definition 9 Counterplanning landmark Given the set of
fact landmarks from Πφ, LΠφ , a landmark li ∈ LΠφ is a
counterplanning landmark for α if ∃a ∈ Aα with li ∈ eff(a).
If li is a positive literal, li must be in del(a). If li is a nega-
tive literal, li must be in add(a).

All the fact landmarks that comply with this condi-
tion are added to the counterplanning landmarks set of
both agents LΠφ,Πα . We will refer to this process as
EXTRACTCPLANDMARKS(Πφ,Πα,LΠφ).

The second question requires further analysis. Given the
definition of a fact landmark, α only has to delete (add) a fact
landmark of Πφ to prevent the seeking agent from achieving
its goal. The problem therefore turns into selecting a single
goal from LΠφ,Πα to become the next goal for α, Gα. In
most counterplanning domains, the earlier we discover the
opponent’s intentions (and thus stop him/her from achieving
its goal), the better. This is a common characteristic in: (1)
cyber security domains where we want to detect an intruder
as soon as possible; (2) real-time strategy games where we
want to defeat our enemy in the shortest possible time; or
(3) a medical domain where we want to prevent the disease
from spreading at the earliest time. Thus, this type of prob-
lems presents some temporal aspects that we need to take
into account. In particular, it is not useful for α to pursue
a counterplanning fact landmark that φ is going to achieve
before α can avoid it. We define this temporal subproblem
as finding the First Counterplanning Landmark, FCL. Algo-
rithm 2 shows the high-level algorithm used to find it. For
each counterplanning landmark li, an optimal plan is com-
puted for φ and α. It is done optimally to ensure that the
returned values correspond to the shortest time (cost) when
both agents could reach that subgoal.

If the cost (duration) of achieving ¬li by α solving Πα is
smaller than the cost (duration) of achieving li by φ, solving
Πφ, and there is no other landmark lj with smaller cost, then

¬li becomes FCL. In other words, li is the first landmark in
Πφ that α can achieve before φ. Therefore, the new Gα will
be the negated FCL, since we want α to avoid φ achieving
FCL. As a reminder, we are performing a one-step counter-
planning episode. If φ performs some actions to re-achieve
FCL or change its goals, then we assume α would have to
start a new counterplanning episode.

Algorithm 2 SELECT GOAL

Inputs: Πφ,Πα,LΠφ,Πα
Outputs: FCL

1: FCL← ∅
2: FCLCost← 0
3: for li in LΠφ,Πα do
4: πφ ← PLANNER(Πφ = 〈Fφ, Aφ, Iφ, li〉)
5: πα ← PLANNER(Πα = 〈Fα, Aα, Iα, {¬li}〉)
6: if c(πφ) >= c(πα) then
7: if c(πφ) < FCLCost then
8: FCLCost← c(πφ)
9: FCL← ¬li

10: return FCL

Example
To illustrate our approach, let us consider a simple domain
where a terrorist has committed an attack in the center of a
city. Figure 2 shows the road network for this problem. The
city police (α) knows that the terrorist (φ) wants to leave the
city by either G1 (airport), G2 (train station), or G3 (bus
terminal); so, Gφ = {G1, G2, G3}. The police has con-
trol over some cameras located at key points around the city
(represented as nodes in Figure 2). The police actions con-
sist of stopping the terrorist by setting a control at any of
those points (Aα). So, the police wants to: (1) quickly know
where the terrorist wants to go (G′φ); and (2) stop him/her
as soon as possible to avoid panic breaking out. When the
cameras observe that the terrorist is at L1 (O1 = a1 ∈ Aφ),
the police guesses that his/her goal is to reach G1 (G′φ) by
doing goal recognition. The police only has resources to set
one control. It knows that the terrorist must pass through L1,
L2 and L3 to reach the airport. Although these four spots
are counterplanning landmarks LΠφ,Πα , the police can only
set the control at L2, L3 and G1 before the terrorist reaches
those places. Finally, the police goal Gα will be to set the
control at L2 since it is the FCL; i.e. the first spot where the
terrorist can be effectively stopped.

Experiments and Evaluation
We empirically evaluate our approach on the new previ-
ously described TERRORIST domain as well as in other do-
mains usually used in goal recognition works such as LO-
GISTICS, EASY IPC GRID, BLOCKS, and INTRUSION DE-
TECTION. Each domain and problem conforms Πφ. Ad-
ditionally, in order to perform counterplanning, for each
domain we have generated a new counterplanning domain,
which defines the planning task Πα for α. The classical do-
main and the counterplanning domain comply with the re-
quirements mentioned in Section .

ICAPS Proceedings of the 6th Workshop on Distributed and Multi-Agent Planning (DMAP-2018)

20



HSP*f LAMA Greedy LAMA
Domain |Gφ| |πφ| |πα| |LΠφ | %Obs Q Qt E Pe Q Qt E Pe Q Qt E Pe

LOGISTICS 6 9.4 1 12.3

10 0.6 4.2 0.7 0.3 0.6 5.0 0.7 0.3 0.6 2.6 0.6 0.2
30 0.6 7.5 0.7 0.4 0.6 10.7 0.7 0.4 0.7 2.6 0.8 0.4
50 0.7 10.0 0.8 0.5 0.7 16.3 0.8 0.5 0.7 2.7 0.8 0.5
70 0.9 14.3 0.6 0.8 0.9 28.8 0.6 0.8 0.9 2.8 0.7 0.8

TERRORIST

4 3.8 1 3.8

10 0.5 3.8 0.6 0.5 0.6 2.8 0.6 0.5 0.6 2.6 0.6 0.5
30 0.6 4.0 0.8 0.7 0.6 2.9 0.8 0.7 0.6 2.8 0.8 0.7
50 0.6 5.0 0.8 0.8 0.6 3.0 0.8 0.8 0.6 2.9 0.8 0.8
70 0.9 5.1 0.9 1.0 0.9 3.3 0.9 1.0 0.9 3.0 0.9 1.0

10 5.6 1 4.1

10 0.3 283.2 0.5 0.5 0.3 211.4 0.5 0.5 0.3 210.4 0.5 0.5
30 0.5 287.2 0.6 0.8 0.4 235.0 0.6 0.8 0.4 227.3 0.6 0.8
50 0.6 307.1 0.4 0.8 0.6 248.6 0.4 0.8 0.6 269.6 0.4 0.8
70 0.6 325.8 0.4 1.0 0.6 321.1 0.4 1.0 0.6 322.7 0.4 1.0

INTRUSION
DETECTION 6 4.3 1 4.8

10 1.0 0.5 1.0 0.4 1.0 1.0 1.0 0.4 1.0 0.7 1.0 0.4
30 1.0 0.4 1.0 0.7 1.0 1.0 1.0 0.7 1.0 0.7 1.0 0.7
50 1.0 0.4 1.0 0.7 1.0 1.0 1.0 0.7 1.0 1.0 1.0 0.7
70 1.0 0.3 1.0 0.9 1.0 0.8 1.0 0.9 1.0 1.0 1.0 0.9

BLOCKS 10 8.6 1 17.6

10 0.2 836.6 0.4 0.2 0.2 482.1 0.4 0.2 0.2 155.3 0.4 0.2
30 0.3 910.7 0.6 0.5 0.3 531.9 0.6 0.5 0.3 175.3 0.6 0.5
50 0.5 980.3 0.8 0.5 0.5 602.7 0.8 0.5 0.6 195.8 0.9 0.6
70 0.8 1070.3 0.7 0.8 0.8 655.3 0.7 0.8 0.8 207.8 0.7 0.7

EASY
IPC GRID 4 12.6 4.5 6.3

10 0.3 5.6 0.1 1.0 0.3 1.9 0.1 1.0 0.1 1.7 0.1 0.8
30 0.3 7.3 0.3 0.6 0.3 2.0 0.3 0.6 0.3 2.0 0.4 0.78
50 0.1 9.8 0.3 0.7 0.1 2.8 0.3 0.7 0.1 2.5 0.4 0.8
70 0.3 15.3 0.0 ∞ 0.3 3.5 0.0 ∞ 0.3 3.1 0.0 ∞

Table 1: Comparison of the counterplanning approach in five domains using optimal and approximated goal recognition methods. Figures
shown are all averages over the set of problems as explained in the text. The metrics measured are: size of Gφ, length of plans for each
agent, number of landmarks |LΠφ |, percentage of observations, goal recognition accuracy Q and its time Qt, counterplanning accuracy E
and penalty value Pe.

Figure 2: Terrorist capture domain. The red circle represents the
initial position of the terrorist. Green circles represent his/her pos-
sible goals. Arrow a1 indicates the terrorist first observed action.
L1, L2 and L3 refer to the landmark points that the terrorist has to
pass through in order to reach G1.

For each classical domain, we generate 10 random prob-
lems for φ. All the problems have the same number of ob-
jects. However, each problem has a different actual goal for
φ, which is hidden for α. Their details are explained below.

• LOGISTICS. φ can deliver any package to any destination.
It can do it by driving either trucks or planes. α can break
a truck or a plane to interrupt the delivery.

• TERRORIST. φmay want to get to any point in the map. It
can do it by navigating through points that are connected.
α can set a control at a point so that they can arrest φ.

• INTRUSION DETECTION. φ may want to perform a set of
attacks to a pool of computers. It can do it by performing
hacking actions like delete logs or gain root access. α can
perform administration actions like encrypt the informa-
tion or change the root password to a computer to prevent
φ from conducting its attack.

• BLOCKS. φ may want to put any of block on top of an-
other. It can do it by picking up and stacking blocks that
are not painted. α can paint a block so φ can not pick it
up and preventing it from achieving its goal.

• EASY IPC GRID. φ may want to get to any cell in the
grid. It can do it by navigating through cells without door
or, if it has the right key, by opening them. α can navigate
through those cells without needing a key, and can steal
the key or change the lock of a door to block φ’s plan.

The set of candidate goals Gφ always consists of a 20% of
all the possible goals in each problem. Therefore, bigger Gφ
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sets for the same domain mean bigger problems. In partic-
ular, for the TERRORIST domain with a problem map of 20
nodes, Gφ consists of 4 random destinations; when the map
has 50 nodes, Gφ consists of 10 possible destinations. The
hidden goal, i.e., the current goal of φ, Gφ, that is unknown
to α, is always on Gφ.

The set of observed actions was taken to be a subset of
the plan solution πφ, ranging from 10% of the actions, up
to 70% of the actions. We did not include tests where the
observed sequence is higher than 70% because our counter-
planning approach degrades rapidly. The reason for this is
that the number of counterplanning landmarks decreases as
the number of observed actions increases.

Our fully automatic domain-independent counterplanning
approach works with any combination of goal recogni-
tion and classical planning approaches. For purposes of
these tests, we have selected the following configuration
of goal recognition techniques and planners. For the goal
recognition part of our counterplanning technique, we have
tested the aforementioned domains and problems using the
Ramı́rez and Geffner [2010] approach with different plan-
ners. The planners are HSP*f (Haslum 2008), an opti-
mal planner; and LAMA (Richter, Westphal, and Helmert
2011), a satisficing planner. LAMA is used in two modes:
as a greedy planner that stops after the first plan is found
GREEDY LAMA; and as an anytime planner that reports the
best plan found in a given time window LAMA. The plan-
ning times for all the planners were set to 1800 seconds. In
all the domains πφ is computed using GREEDY LAMA. For
optimal plan computations of FCL, we use HSP*f . All the
experiments were ran on a Ubuntu machine with Intel Core
2 Quad Q8400 running at 2.66 GHz.

Table 1 summarizes the experimental results. For each
planner, each row shows average performance over the 10
problems in each domain. Each column represents different
measures of quality and performance:

• |Gφ|: number of goals in the candidate goal’s set.

• |πφ|, |πα|: average plan length cost for each agent.

• |LΠφ |: number of landmarks of the seeking agent plan-
ning task.

• %Obs: percentage of the actions of πφ in Oφ. Higher
percentages of observations mean that more actions of φ’s
plan have already been observed by α and, thus, executed
by φ.

• Q: fraction of times that the actual goal Gφ was found
to be the most likely goal G′φ. In our experiments, if
G′φ consist of more than one goal, we select the one with
more counterplanning landmarks as the most likely goal.
Ideally, Q = 1.

• Qt: average time in seconds taken for solving the goal
recognition problems.

• E: fraction of times that α executing πα succeeds in stop-
ping φ in achieving its goals. Ideally, E = 1.

• Pe: penalty value computed as the number of steps in πφ
that are successfully performed divided by the length of
πφ. This penalty value represents the cost paid by πα at

each time step that has not stopped πφ. Lower values of
Pe indicate better performance, ideally Pe = 0.

As we can see in all the domains, the higher percentage
of observations, the higher Q values, as expected. The goal
recognition task becomes easier as more actions have been
observed (as reported in other goal recognition works). Re-
gardingE, the fraction of times that α blocks φ achieving its
goals is clearly related to Q. Guessing the opponent’s goal
right usually involves more opportunities to block it. This
is the case of INTRUSION DETECTION, where our counter-
planning approach performs well. However, there are some
cases in which we can badly guess φ’s goal and still block its
goal achievement (Q value is lower than E). This happens
when our analysis of the goal recognition process identifies
a common landmark (to stop φ’s plan), but selects a wrong
goal as in some BLOCKS instances.

The value of E is also closely related to the percentage of
observations. Lower percentage values allow α to find many
landmarks where to effectively block φ. On the other hand,
if most of the actions in πφ have already been observed (i.e.
executed by the seeking agent), there will be just a few coun-
terplanning landmarks to prevent φ from achieving its goal.
This is also connected with the penalty values Pe. Lower
percentage of observations imply that, if the opponent can
be blocked, it could be done farther from the goal than if
50% or more of the plan has already been observed.

The number of landmarks of φ’s planning task affects the
counterplanning results. Domains with a higher number of
landmarks will have a higher number of potential counter-
planning landmarks where to block the opponent. The ex-
periments confirm this aspect: domains such as LOGISTICS
and BLOCKS are more likely to have more landmarks and
the penalty values are smaller than in the other domains
which just have a few landmarks.

Regarding planners’ performance, GREEDY LAMA seems
to achieve the best overall results both in terms of qual-
ity (Q,E, Pe) and time (Qt). Since LAMA is an anytime
planner, sometimes it takes more time to complete the goal
recognition process than the optimal planner HSP*f . How-
ever, all planners scale poorly to bigger problem instances
where Gφ increases. This entails worse goal recognition
performance Q and, therefore, worse counterplanning per-
formance E and P . We could speed-up our technique by
computing plan cost estimations instead of actual plans in
order to improve the performance. That would allow its use
in real-time environments.

Summarizing, the best scenario for our counterplanning
technique (highE values and low Pe values) would be when
the preventing agent guesses the seeker’s actual goal (Q =
1) with a low percentage of observed actions (very soon) and
there is a high number of landmarks in the seeker’s planning
task which the preventing agent can delete (add).

Conclusions and Future Work
We have presented a novel fully automatic domain-
independent approach for counterplanning, which is based
on classical planning techniques. We have formally defined
the counterplanning task involving two planning agents: an
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agent that seeks to achieve some goals; and an agent that
tries to prevent its opponent from achieving its goals. To
successfully block an agent in a domain-independent way,
we: (1) recognize the opponent’s goals by observing its per-
formed actions; (2) identify the counterplanning landmarks
of its planning task; and (3) generate a sequence of actions
to block its goal achievement process as soon as possible.
Results show the benefits of our approach on preventing the
opponent from achieving its goals in several domains. Its
performance depends on the ability of the preventing agent
to quickly infer the hidden goal, and the number of land-
marks of the seeker’s planning task.

In this work, we assume we are given the candidate goals
for the goal recognition process (as in the usual literature on
goal recognition). Future work would consist on relaxing
this assumption and consider Fφ as Gφ. We also assume unit
action costs. In future work, we would generalize our ap-
proach by considering non-unit action costs. Additionally, a
natural extension to this work would be to assume a seeking
agent capable of changing his/her plans and goals. It seems
to be also possible to extend our approach to deal with noisy
observations and uncertainty on the seeking agent’s behav-
ior.
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Abstract

Mars caves are promising targets for planetary science and
human shelter. Exploring these environments would pose sev-
eral challenges, including limited communication, lack of
sunlight, limited vehicles lifetime that would not allow hu-
mans in the loop, and a totally unknown environment. Mis-
sion to these underground environments would required lev-
els of autonomy, coordination and collaboration never been
deployed before in rovers. In this paper we propose a multi-
rover coordination algorithm and experimental framework for
cave exploration missions. We describe preliminary experi-
mental results with this coordination algorithm in a realistic
simulated cave. We analyze rover coordination performance
in different environmental settings and provide insights on
potential opportunities for enhanced autonomy with AI plan-
ning and scheduling.

1. Introduction
Exploration of planetary caves is becoming an active re-
search topic in the planetary science community and a
promising scientific target for autonomous robotic explor-
ers. Mars in particular offers exciting opportunities for (1)
human settlements, (2) understanding the planet’s evolu-
tion, and (3) the search of extraterrestrial life. Caves present
the most mission effective habitat alternative for future hu-
man exploration, offering a stable, UV-shielding, meteoric-
shielding environment (Boston et al. 2003), as well as access
to minerals, gases and ice. Equally important, caves may
preserve valuable information about the planet’s history and
evolution. Specifically, they offer stable physio-chemical en-
vironments, trapped volatiles, secondary mineral precipita-
tion and microbial growth, which are expected to preserve
bio-signatures and provide a record of past climate (Boston
et al. 2005; 2004). Moreover, caves can potentially host wa-
ter deposits which, through interaction with volcanic heat
and minerals, could have created a favorable environment
to microbial life preservation. What makes planetary caves
even more attractive is that they are quite abundant. Mars for
example has more than 2000 cave-related features identified,
commonly associated with lava tubes, which provides a va-
riety of promising targets for future exploration missions.

Robotic exploration missions on Mars would provide
unique science opportunities for the cognitive and robotics
communities, however, they present several challenges.

c© 2018, California Institute of Technology. U.S. Government
sponsorship acknowledged.

Communicating with a rover into any of these caves and
transmitting science data out is in itself a hard technical
problem. Without a link to the surface, a rover would not
be able to go far into the cave without losing contact with a
base station. Moreover, because sunlight is not available in
the cave, a mission is likely to last only a few days since the
rovers will rely exclusively on battery power. Given limited
communication, power and mission duration (just days), it
is impractical to wait for humans’ commands and feedback
like in current Mars operations. For example, current MSL
operations requires humans in the loop to plan sequences of
actions for each sol based on downlinked data (Gaines et al.
2016). Those challenges alone require rovers far more au-
tonomous than the existing surface rovers, for their environ-
ment is quite unknown and their communication with Earth
is extremely limited, if at all.

Autonomy in multi-rover coordination is a key mission
enabler that would help rovers to map and explore as much
of the cave as efficiently as possible. With their very lim-
ited lifetime, rovers cannot wait for large parts of each day
to receive directions from ground/Earth. The need for such
multi-asset coordination was identified in recent studies in
Mars cave exploration (Dubowsky et al. 2005; Kesner et
al. 2007; Husain et al. 2013; Thangavelautham et al. 2014)
and in Mars surface exploration (Clement and Barrett 2003;
Yliniemi, Agogino, and Tumer 2014). The AI community
has recently started to look into coordination techniques to
map and explore Mars cave environments (Husain et al.
2013). One traditional approach would be to use a central-
ized task allocation and communication architecture to co-
ordinate the rovers during exploration (Chien et al. 2000;
Clement, Durfee, and Barrett 2007). However, this approach
becomes unfeasible in a realistic cave environment due to
intermittent, unreliable communication, as well as the high
cost of communication power associated with the central-
ized scheme. Some existing work explores distributed tech-
niques to coordinate vehicles to maintain connectivity be-
tween a base robot and a mobile explorer at all times in more
controlled environments (auf der Heide and Schneider 2008;
Stump, Jadbabaie, and Kumar 2008). These approaches can
be leveraged to address subsurface missions, but they would
need to be contextualized to environments with high likeli-
hood of connectivity loss between rovers (sometimes done
proactively by rovers to increase science utility) and un-
known density and geometry of obstacles. Research on
multi-rover coordination under these challenging constraints
is in its infancy.

In this work, we propose a multi-rover coordination strat-
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egy for cave exploration that aims to send rovers as deep
into the cave as possible while also maximizing science data
sent out to a surface base station. The proposed Dynamic
Zonal Relay with Sneakernet Relay Algorithm is a two step
algorithm. The first phase of the algorithm (Dynamic Zonal)
drives each rover to a designated zone along the length of the
cave, while maintaining communication distance between
neighboring rovers. Each rover only takes science data in
its designated zone and transmits it to the neighboring rover
in the direction of the base station. Once at the end of its
zone, the rover stops and becomes a relay point. The dy-
namic part of this algorithm is that if a rover is no longer
operable, the other rovers would re-distribute the zones to
maintain communication and characterization of the envi-
ronment. The next step of the algorithm (Sneakernet Relay)
would allow the rovers to acquire science data further in the
cave by driving beyond the communication distance (inten-
tional communication lost) and driving between neighbor-
ing rovers to relay the data out of the cave. We implement
a simulation framework that (1) allows different multi-rover
mission configurations, as well as (2) supports the measure-
ment, evaluation, visualization and analysis of rover perfor-
mance. We present preliminary results on the rovers and al-
gorithm performance in a realistic simulated cave environ-
ment and rover configuration, including power and com-
munication constraints, and science instruments and navi-
gation system specification. The results provide initial in-
sights to future mission design space, direction for algorithm
improvements, as well as interesting opportunities for task
planning and scheduling that would improve rover coordi-
nation, operation, communication and science return.

This paper is organized as follows. We first describe the
multi-rover coordination problem for Mars cave exploration
we address in this work and the particular elements of the
mission. We then present the Dynamic Zonal Relay with
Sneakernet Relay Algorithm in more detail. Next, we pro-
vide experimental results from a set of simulated Mars Cave
exploration scenarios, in which a team of four rovers explore
a realistic-size cave with varying obstacle densities. We an-
alyze the performance of the coordination algorithms with
respect to a score based on cave coverage transmitted out of
the cave, mission life span, distribution of energy and time
spent in different rover activities. Finally, we discuss the re-
sults, potential roles for AI planners and schedulers, as well
as future directions.

2. Example Problem Definition
Among the several mission challenges related to deploying
and controlling a set of rovers in a Mars cave, in this work we
focus on the hypothetical problem of autonomously coordi-
nating multiple rovers to (1) map and characterize a Martian
cave as far into the cave as possible from the entrance, and
(2) to transmit as much science data collected by the rovers’
instruments as possible out of the cave to a lander (base sta-
tion), which will then take care of transmitting it to scientists
on Earth. Figure 1 illustrate a Martian lave tube structure,
with the lander positioned at the entrance and a set of sci-
ence rovers exploring the cave interiors. We provide more
details and constraints on the cave environment and rover
platform in what follows.

2.1 Cave Environment
In this paper we focus on Martian caves associated with lava
tubes. Due to Mars’ lower gravity, Martian lava tubes are

Figure 1: Illustration of a hypothetical multi-rover coordina-
tion problem in Mars cave exploration. Rovers not to scale.
Credit: Figure adapted from the Wikimedia Commons, Lon-
gitudinal cross-section of a martian lava tube with skylight.

much larger than Earth lava tubes. Herein we target caves
that are approximately 100 meters wide and potentially hun-
dreds of meters deep, with a skylight entrance formed from a
collapsed cave ceiling as illustrated in Figure 1. We assume
that the terrain in the interior of the cave is unknown a priori.

Cave walls are a quite interesting science target for
NASA/JPL scientists. They can provide critical constraints
on lava temperature and cooling history, leading to insights
into Martian magmatic processes and differentiation. Thus,
in our coordination problem the rovers should try to safely
remain as close to the walls as possible to characterize wall
properties and facets.

2.2 Conceptual Autonomous Rovers
We consider a set of homogenous rovers that are assumed to
be successfully deployed at the bottom of the cave through
the skylight entrance. The problem of deploying the rovers
into the cave, although interesting, is not in the scope of this
work. The focus is in the exploration and coordination prob-
lem while in the cave where communication is limited.

The rovers are equipped with a battery module, mobility
components, a communication component (antennas), and
a science component with a set of key science instruments.
Those components allow each rover to perform the follow-
ing actions:
• Ping (communication component): a rover can send a

ping to all rovers within communication range to detect
the vehicles around it. Rovers (including the base rover) in
the communication range respond with their position and
status update. A ping process has a specific duration (e.g.,
2 seconds) and also a power consumption rate known a
priori. Communication range and ping duration are pro-
vided in the antenna specs.

• Drive (mobility components): to navigate the environ-
ment safely, each rover is able to detect obstacles within a
radius (e.g. 5 meters) in 360 degrees. The cave map is
stored during exploration - given that the focus of this
work is not on mapping and localization per se, we as-
sume that the knowledge about the map and coverage be-
comes available to all the rovers as they explore the cave.
The velocity of the vehicle and power consumption during
driving is known and given by the mobility specification.

• Science (science component): each rover has the same set
of science instruments partitioned in three categories: pri-
mary instruments, secondary instruments, and periodic
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instruments. Each one of these instruments has its own
specs for power consumption, data volume generated by
each reading and the sensing duration.

• Transfer (communication component): transfer is a col-
laboration task in which the sender first sends a transfer
request to a target/receiver rover. The receiver then in-
forms the sender when it is available to receive data. Once
that confirmation is received, the sender transfers the data
to the target rover. When the data is successfully trans-
ferred, the receiving rover sends a confirmation and the
task is completed. The duration of the actual data transfer
between two rovers (lander and/or science rover) is deter-
mined by the antenna specs, the data volume and the dis-
tance from each other (bandwidth). The bandwidth can
be modeled with an arbitrary function (see Discussion).
For the simulations presented in this paper, we model
bandwidth as a step-wise function of distance between
communicating vehicles. For example between 0-5 me-
ters rovers can transfer data at 11.0 Mbps, between 5-10
meters at 5.5 Mbps, between 10-15 meters at 2.0 Mbps,
and between 15-25 meters at 1.0 Mbps. Power consum-
mation rates are also known and are constant during com-
munication, regardless of distance.
In additional to the above action specification, we list be-

low some of the key assumptions on the exploration prob-
lem:

1. All actions consume energy from the battery component,
which is a limited resource. If the battery drains out, the
rover becomes non-operational.

2. We consider a constant hotel load that represents the en-
ergy consumption to keep the rover operational. We frame
any cognitive process (e.g., decision making, path plan-
ning computation) as part of this constant consumption.

3. Each rover can only execute one action at a time, except
sending and responding to pings. In the science case, only
one instrument can be used at a time.

4. Communication model does not consider the shape, tex-
ture, material of the cave or proximity to walls. (This is ac-
tually already being incorporated in our models, but will
be left for future publications.)

5. Communication is possible only up to a fixed distance be-
tween rovers, where the lander has a longer fixed range.

6. Rover can fail during exploration, which means that the
coordination has to account for reconfiguration.

7. In this work we are not modeling acceleration or slippage
in the motion model.

8. Finally, each rover does have a memory component for
data science storage, but the memory capacity is large
enough to handle days or weeks worth of data.

3. Approach
We propose a multi-rover coordination strategy for cave ex-
ploration that aims to send rovers as deep into the cave as
possible while also maximizing data sent out to a surface
base station.

The rovers explore the cave using the Dynamic Zonal Re-
lay with Sneakernet Relay Algorithm, which is a two phase
algorithm, starting with (1) Dynamic Zonal Relay and ex-
panding with (2) Sneakernet Relay. One of the main aspects
of this algorithm is the use of spatial zones to determine the

state of the rover. Each zone is a distinct section of the cave
based on distance from the lander, as shown in Figure 2.

Figure 2: Zones based on the distance from the conceptual
lander or base station (left). Nominal state transitions for the
Dynamic Zonal Relay phase (right).

3.1 Dynamic Zonal Relay
The first phase, Dynamic Zonal Relay, assigns the rovers to
designated, adjacent zones that keep the rovers within com-
munication range of their immediate neighbors. The algo-
rithm is dynamic in that if any rover becomes inactive (i.e.,
no longer communicating due to some kind of failure or run-
ning out of battery), the other rovers dynamically readjusts
the zone assignments.

While driving to its assigned zone, the rover maintains
a safe communication distance with its neighboring rovers
and relays any science data that has been transferred to it to
its neighbor in the direction of the lander. When in its zone,
the rover moves along the length of the cave, continuing to
maintain communication distance, while characterizing the
cave. The rover sends acquired science data to the neighbor-
ing rover closest to the lander. Once at the end of its zone, the
rover becomes a relay point. In this state, the rover transfers
any remaining science data that it has collected, as well as
any science data that has been transferred to it, to its neigh-
bor closest to the lander.

A diagram of the nominal state transitions for the Dy-
namic Zonal Relay phase is shown in Figure 2. The diagram
also shows that the rovers perform periodic pings to the other
rovers to share status information, such as position, and to
keep track of which rovers are still active.

In the case that a rover becomes inactive, the surrounding
rovers readjust depending on their position relative to the
inactive rover. Rovers closer to the lander would not need
to adjust their zones; however, they need to be made aware
of the new configuration. Rovers deeper into the cave need
to adjust their zone closer to the other rovers to re-establish
a continuous line of communication across all rovers. Since
the rovers do not know how much science data the inactive
rover was able to acquire and transfer out of its zone (if it
was already characterizing its zone), all rovers that moves
into a new zone re-characterize the entire zone.

3.2 Sneakernet Relay
Once all of the data that was collected during the Dynamic
Zonal phase has been passed to the lander, the rovers tran-
sition to the Sneakernet Relay phase. During this phase, the
rover furthest into the cave is designated as the lead rover
(e.g., Rover4 in a team of four rovers) and the others are des-
ignated as relayers (e.g., Rover1, Rover2 and Rover3 in the
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team of four rovers). The lead rover is now tasked with char-
acterizing the next zone, which means that one of the relay-
ers is no longer in communication range of one of its neigh-
bors, meaning that it must sneakernet. Increased sneakernet
distance is assigned in order, starting with the rover closest
to the lander (e.g., Rover1 in our example), as the lead rover
characterizes more zones.

The sneakernetting process is composed of cycles, where
a sneakernet cycle consists of each rover incrementally in-
creasing its sneakernetting distance. A cycle is further bro-
ken down into stages that are repeated with each assignment
of increased distance: (1) extension/replacement and charac-
terization, (2) relay, and (3) confirmation. Except at the be-
ginning of the Sneakernet Relay phase, stage (1) and stage
(3) occur simultaneously. Figure 3 helps to illustrate the evo-
lution of the Sneakernet Relay phase, with line 1 showing
the positions of the rovers for a three rover mission configu-
ration at the end of the Dynamic Zonal Relay phase.

The beginning of a cycle is triggered by the rover closest
to the lander (Rover1) beginning the extension/replacement
and characterization stage, as shown in Figure 3 line 2. The
initiator of this stage (in this case, the rover closest to the
lander) moves forward to the relay position of its neighbor.
This triggers the neighbor rover to move forward to the relay
position of the rover in front of it, and so on, until the lead
rover. When the lead rover is triggered, it moves forward
and characterizes the next section of the cave, which is the
same distance as that of the relay distance of the previous
rover (the distance between the leader’s neighbor and the
neighbor’s neighbor).

When the lead rover has finished collecting new data (line
3), the relay stage is initiated. The lead rover begins by mov-
ing within communication range of the rover following it
and transferring all of its data. After the transfer, the trans-
ferring rover remains where it is while the receiving rover
moves to communication range of its neighbor in the direc-
tion of the lander and transfers all of the data, and so on, until
the rover closest to the lander transfers all of the data out of
the cave. In Figure 3, line 4 shows the first rover requiring to
move in order to transfer the data to the lander.

The transfer of all of the data to the lander triggers the
next stage, confirmation. The rover closest to the lander now
moves back to its neighbor inside the cave, confirms that the
transfer was successful, and returns to its previous relay po-
sition (line 5). The next rover then moves deeper into the
cave to its neighbor and reports the confirmation and returns
to its relay position, and so on for all of the rovers until the
confirmation reaches the lead rover. During this stage, the
next rover to initiate extension moves to its next relay posi-
tion during the confirmation process, triggering all rovers to
move deeper into the cave as a cascading sequence of exten-
sion and confirmation, such as on line 6. In line 7, we see the
lead rover moving ahead and characterizing a zone the same
distance as that of the relay distance of the previous rover
(distance between Rover2 and Rover1, as described previ-
ously, requiring the lead rover to sneakernet on line 8.

The remainder of Figure 3 shows the repetition of these
stages, until line 13, which shows the positions of the rovers
after the second cycle is initiated by the first rover (Rover1).

To remain robust to rover failures during the Sneakernet
Relay phase when the rovers are no longer in communica-
tion range, the rovers rely on timeouts to estimate how long
they should wait for a neighbor to initiate the next phase.
If a timeout is reached, they will try to find its neighbor in
the direction of the lander to re-establish the relay chain. If

a relayer reaches a timeout waiting for its peer deeper in the
cave, it will then act as the leader.

Figure 3: The movement of the rovers during the Sneakernet
Relay phase of the algorithm for the first cycle.

4. Experiments in Simulation
The Dynamic Zonal Relay with Sneakernet Relay Algorithm
was tested in a simulation framework using the Robot Op-
erating System (ROS) to model the communication between
the rovers as well as to model the different rover compo-
nents (e.g. the science instruments, driving and navigation,
etc.) and the cave.

A configuration with four rovers (Rover1 through Rover4)
and a base station was used, as illustrated in Figure 1, for
the experiments. This configuration is based on preliminary
cost and payload analysis of similar classes of missions. The
cave model used is a model of the Cassone Cave (Santa-
gata), scaled approximately twelve times so that the width is
around 70 m, which is shown in Figure 4. The cave model
is made up of approximately 350,000 triangular facets, with
an average size 1.16 m2.

Each rover is assumed to have an identical suite of instru-
ments, partitioned in the three aforementioned categories:
primary, consisting of a LiDAR to characterize the walls,
facets and structure of the cave; secondary, including a color
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camera and a spectrometer; and periodic instruments, in-
cluding a thermometer, radiation detector, and hygrometer.
Primary and secondary instruments are used based on move-
ment of the rover, whereas the periodic instruments are used
based on a regular, timed cadence (in this case, every 60
minutes). A summary of the assumed instrument parameters
is shown in Table 1.

Table 1: Assumed Instrument parameters
Power Data Sensing
(Watts) Volume Duration

(Mb) (s)
LiDAR 10.0 1344 5.0

Color Camera 5.0 150.0 1.0
Spectrometer 10.0 14.4 660.0
Thermometer 1.0 0.0008 5.0

Radiation Detector 1.0 0.0008 5.0
Hygrometer 2.0 0.0008 5.0

The communication range was limited to 25 meters be-
tween rovers and 75 meters to the lander. Pings to commu-
nicate position and status were performed once per minute.
The assumed power for communication was 4.0 Watts.

In this work we incorporate a simple approach for rover
navigation and selection of the region to be explored in the
cave. Each rover computes its path through the cave map us-
ing the A* algorithm, where Rover1 through Rover3 move
toward the rovers ahead of them, while the leader, Rover4,
uses a frontier detection algorithm (Yamauchi 1997) to move
towards unexplored regions of the map into the cave. In this
experiment, rovers traverse the environment at 0.005 m/s
and a 5-meter range is used for obstacle detection and map-
ping. It is assumed that driving requires 14.0 Watts of power.

We also model a hotel load (the amount of power required
for a rover to remain operational, such as basic heating and
health monitoring) of 5.0 Watts.

Figure 4: Simulated cave front and top views. Model of
the Cassone Cave (Santagata), scaled approximately twelve
times.

To test a perfect scenario where the cave has no obsta-
cles and the rovers are able to function until they run out
of energy, one experiment was performed with zero obsta-
cles in the cave and no random dying of the rovers. Two
further experiments were performed, again with rovers able
to function until they run out of energy, with random obsta-
cle densities of 10% and 20% to show how the simulation
can evaluate the success of a mission where there are rocks
and debris throughout the cave. In order to show the robust-
ness of the algorithm to loss of rovers, another experiment
was run with zero obstacles and a random chance of rovers
dying during the run.

As a comparison, an experiment was performed with a
single rover using the Dynamic Zonal Relay with Sneakernet
Relay algorithm, where the rover extends by a single zone
(in this case 20 m) at each step. No obstacles were used for
this experiment.

To evaluate the different runs, a scoring function based on
the cave characterization data transferred out of the cave was
used. For remote instruments (such as cameras), the score,
sremote, is the area of the triangular facets covered in the
cave model based on the position of the rover, the field of
view of the instrument, and any restrictions on far and near
clip planes or normal angle of the facet, which is summa-
rized in Eq. 1 for a data acquisition instance datai.

sremote(datai) =
∑

cave facets, f

area(f), if f visible (1)

For in-situ instruments (e.g. temperature sensors), the
score, sin−situ, depends on both position and time of the
data. For these types of measurements, the value of the data
decreases if it is taken at almost the same position and time,
therefore the score is a function that decays based on the
position and time of any previously taken data of that type.
Given a max time of T before a facet can receive a full score
again, sin−situ is determined by Eq. 2 for a data acquisition
instance datai.

sin−situ(datai) =
∑

cave facets, f

area(f) ∗ d, if f visible, (2)

where,

d =

{
1 if f last measured > T seconds ago
e−(T−∆t)/T otherwise

and visibility is based on a sphere with a fixed radius instead
of a field of view and clip planes.

This results in a total score, score, defined by Eq. 3, where
only data that is transferred out of the cave is scored.

score =
∑

remote data acquisitions, i

sremote(datai)

+
∑

in-situ data acquisitions, j

sin−situ(dataj)
(3)

5. Simulation Results
In what follows we present the results from the single rover
and the multi-rover experiments using the simulator. A com-
parison of the results are shown in Table 2.

5.1 Single Rover
The single rover was able to explore up to 100 meters into
the cave; however it was only able to transfer data from up
to 80 meters. This can be seen from Figure 5, which shows
the depth into the cave that the rover travelled with respect
to time; the rover was not able to make it back close enough
to the lander after characterizing up to 100 meters to transfer
its most recently collected data (i.e., data collected between
80-100 meters).

The percentage of time that the rover spent performing
different activities is show in Figure 6, which demonstrates
that the amount of time required to drive and transfer the data
is quite significant, especially with respect to the amount of
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Table 2: Comparison of simulated experiments

Max Lifetime Max Transferred Score Data Volume Data Volume Rover Death Death Time (days)
(days) Data Distance (m) Transferred (GB) Un-Transferred (GB)

Single Rover 1.59 80 1122.76 4.70 1.39
0% Obstacles 2.99 100 3828.27 6.44 1.02

10% Obstacles 3.00 100 4285.45 6.76 1.39
20% Obstacles 3.41 45 3347.68 4.34 0.0000077
Random Death 2.69 75 2452.43 5.20 2.41 Rover4, Rover1 0.19, 1.94

time spent acquiring the data (labeled “Science”). However,
when looking at the percentage of energy required, Figure
7, the transfers make less of an impact, whereas driving con-
tinues to have the greatest impact.
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Figure 5: Simulated depth of the rover into the cave (y posi-
tion) with respect to time.
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Figure 6: Percentage of time spent on different activities.
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Figure 7: Percentage of energy required to perform different
activities.

5.2 Four Rovers
Figure 8 shows an example of the motion of the rovers ex-
panding and sneakernetting in the four rover configuration
with zero obstacles and no random death.

The percent breakdown of activities in terms of time is
displayed in Figure 9, where it is shown that transferring
data (either receiving or sending) takes a large portion of a
rover’s time, increasing for the rovers closer to the lander.
In fact, comparing Figure 6 and Figure 9, Rover1 spends ap-
proximately as much time transferring as the single rover.
However, the largest amount of time is spent performing
“other” activities, which includes pings and idle time. Un-
like in the single rover scenario, with multiple rovers there
are times that the state transition of a rover depends on the
actions and states of the surrounding rovers, meaning that
the rover must wait idly, which is why the Other time is so
high in Figure 9 compared to Figure 6.

Figure 10 shows the energy distribution for the four
rovers. Like the single rover scenario, in terms of specific
activities, driving takes the most amount of energy. How-
ever, in the multi-rover scenario, each rover spends much
less energy performing science activities, with Rover4 using
the most energy on science, as expected since it character-
ized more zones. Although a small percentage of the overall
energy required by the rovers, in Figure 10, it can be seen
that it is not an insignificant source of energy usage.
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Figure 8: Simulated depth of the rovers into the cave (y posi-
tion) with respect to time for a four rover sneakernet config-
uration with zero obstacles and no chance of random death.
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Figure 9: Percentage of time spent on different activities for
the four rovers and the lander in the simulation.
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Figure 10: Percentage of energy required to perform differ-
ent activities for the four rovers and the lander in the simu-
lation.
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Figure 11: Paths of the rovers with 0% obstacle density
(left), 10% obstacle density (center) and 20% obstacle den-
sity (right) with no random rover death.

Figure 12: a) Simulated depth of the rover into the cave (y
position) with respect to time. The arrows point out times
and locations of rover deaths. b) Paths of the rovers in the
random dying rovers experiment.

With more obstacles, the paths of the rovers, shown in
Figure 11 for 0%, 10%, and 20% obstacle densities and no
random death, become less straight and aligned with the
cave wall. In fact, with 20% obstacle density, the rovers are
not able to find a path that stretches beyond 45 meters into
the cave, and the rovers begin exploring farther from the
cave wall. This means that Rover4 (the leader) never reaches
its zone and does not take any primary or secondary data.

The experiment with random rover death shows a scenario
where Rover4 dies just before Rover3, its immediate fol-
lower, finishes characterizing its zone, and Rover1 dies after
the first transfer of the first sneakernet expansion data. From
Figure 12 (a), we see that Rover3 seemlessly becomes the
new leader and leads the way during the algorithm’s Sneak-
ernet Relay phase. As shown in Figure 3, Rover3 expands
by its neighbors relay distance.

We also see a timeout begin in Figure 12 with Rover2.
When Rover2 sneakernets back toward Rover1 to relay the
data, it is not able to locate Rover1, therefore Rover2 waits at
the location it last saw Rover1 for a timeout duration (which
in this scenario, Rover2 does not live long enough to finish).
Although there are only three rovers, they are able to col-
lect data beyond 100 meters, but are only able to live long
enough to transfer out data up to 75 meters into the cave.

Figure 12 (b) shows the paths of the rovers for the experi-
ment with random rover deaths, which looks very much like
the 0% obstacle paths in Figure 11, as expected.

6. Discussion
The simulation shows that a single rover can successfully
characterize up to 80 meters along a cave wall (given no ob-
stacles) if it does not encounter any problems before running
out of battery; however, this is a large assumption given the
unknown environment of the cave. The sneakernet results
with randomly dying rovers shows the robustness of the Dy-
namic Zonal Relay with Sneakernet Relay algorithm to rover
loss. Furthermore, with the survival of all rovers for the du-
ration of the battery charge, science data from deeper into
the cave can be transferred out to the lander than in the sin-
gle rover case.

Although the experiment with 20% obstacle density
showed the rovers unable to reach as deep into the cave
as other scenarios, it is interesting to note the large score.
This is due to the fact that as the rovers move farther away
from the cave wall, the field of view of the remote instru-
ments is able to capture a larger section of the cave model
facets. This shows an interesting trade-off that can be made
between remaining close to the wall, and therefore charac-
terizing smaller features of the cave and reaching deeper dis-
tances, versus moving away from the wall and characterizing
larger sections.

In our exploration approach, the sequencing of science
actions is predefined based on scientist team inputs. Nev-
ertheless, an automated and opportunistic sequencing of sci-
ence actions could provide a higher science utility. Onboard
data analysis and science goals and instrument prioritization
techniques are described in (Chien et al. 2016). Castano et
al. (2007) describes the Onboard Autonomous Science In-
vestigation System (OASIS), an autonomous system that is
capable of analyzing imagery to generate new science tasks
for execution both in simulation and on a test rover. Wet-
tergreen et al. (2014) shows the capability of autonomous
sample location selection and adaptive path planning on a
rover in a deployment to the Atacama Desert. Woods et
al. (2009) demonstrates the feasability of autonomous op-
portunistic science with autonomous instrument placement
for contact science. All of these algorithms and techniques
would support desirable autonomous behavior. Moreover,
our proposed approach has room for improvement with re-
spect to the rovers responsible for relaying data. More op-
portunistic decision making approaches would allow relay-
ers to potentially perform additional science tasks while also
managing the task of relaying data out of the cave.

Coordination of data transfer is also an opportunity for
cognitive systems. As opposed to waiting for a target rover
to be available to receive data, a scheduling system could
support a more efficient data transfer coordination between
rovers (Clement and Barrett 2003) - assuming they can share
their status and activities. The communication model and re-
spective ranges have a great impact on this coordination.
We are working on incorporating a stochastic communica-
tion model in which bandwidth degrades as a function of
distance and does not have a hard constraint on the max-
imum distance (e.g., 25-meter max range). That provides
opportunities for rovers to establish a comm link in greater
distance and provides options to route data science out of
the cave through different rovers. A more realistic package
management during communication would make the rout-
ing problem even more interesting, in which science data
could be partitioned into smaller pieces and sent to different
rovers over time depending on bandwidth variations. Here
we assume that data packages would be able to be prop-
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erly combined at the target asset (e.g., lander or an orbiter).
Such stochastic models would also create scenarios in which
rovers are physically close but with a poor or unexisting
communication link.

7. Conclusion
In this paper we proposed a multi-rover coordination algo-
rithm for Mars Cave exploration. A simulation framework
was created to evaluate the performance of the algorithm
and to study mission configurations to explore design op-
tions for future missions to underground cavities in other
planets and moons. We utilized realistic cave settings and ve-
hicle specs to generate an initial evaluation of the feasibility
of the multi-rover approach for science data collection. We
also discussed opportunities for AI planning and scheduling
techniques to augment rover autonomy and efficiency with
respect to science utility.

This is an ongoing research project with several promising
immediate next steps and future directions. In the short-term
we will investigate the impact on rover performance when
increasing action concurrency. More specifically, in the sim-
ulation we will allow rovers to transfer data while navigating
the environment and doing science. We will also incorporate
data routing techniques with the aforementioned stochastic
communication model we are integrating. We are also inter-
ested in augmenting the proposed algorithm to help rovers
to better coordinate data transfer and to balance data relay
and science tasks.
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Abstract

The paper proposes Dynamic Multi Robot-Routing (DMRR),
as a continuous adaptation of the multi-robot target allocation
process (MRTA) to new discovered targets. There are few
works addressing dynamic target allocation. Existing meth-
ods are lacking the continuous integration of new targets, han-
dling its progressive effects, but also lacking dynamicity sup-
port (e.g. parallel allocations, participation of new robots).
The present paper proposes a framework for dynamically
adapting the existing robot missions to new discovered tar-
gets. Missions accumulate targets continuously, so the case
of a saturation bound for the mission costs is also considered.
Dynamic saturation-based auctioning (DSAT) is proposed for
allocating targets, providing lower time complexities (due to
parallelism in allocation). Comparison is made with algo-
rithms ranging from greedy to auction-based methods with
provable sub-optimality. The algorithms are tested on exhaus-
tive sets of inputs, with random configurations of targets (for
DMRR with and without a mission saturation bound). The re-
sults for DSAT show that it outperforms state-of-the-art meth-
ods, like standard sequential single-item auctioning (SSI) or
SSI with regret clearing.

1 Introduction
As robot missions have become reality, a growing num-
ber of applications requires teams of mobile robots to au-
tonomously accomplish missions incorporating task groups.
Multi-robot Task Allocation (MRTA) has been widely stud-
ied in collaborative multi-robot planning, and generally for
multi-agent coordination. Key applications include search
and rescue operations (Wei, Hindriks, and Jonker 2016;
Beck et al. 2016), multi-robot exploration (Tovey et al. 2005)
or patrolling (Pippin, Christensen, and Weiss 2013). As un-
derlined by an extensive MRTA survey of 2015 (Khamis,
Hussein, and Elmogy 2015), despite the large number of pa-
pers in the task allocation domain, there is only few work
concerning subjects such as dynamic task allocation or allo-
cation of complex tasks in multi-robot systems.

In practice, targets are found progressively and robots
carry missions that evolve in time. Therefore, a recent chal-
lenging problem is how to dynamically and efficiently adapt
the robots and their work to new targets, in order to let robots

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Robots deployed for executing missions on targets
and for progressive target discovery. Targets are represented
by the black dots and missions by the cyclic paths. Robots
move on these paths between their allocated targets.

continue or extend their missions (while keeping the envis-
aged objectives).

Multi-robot routing (MRR) (Lagoudakis et al. 2005) has
often been the main testbed for MRTA scenarios, being at
base part of the location routing problems (Toth and Vigo
2014). The MRR problem assumes a set of static targets and
robots with known locations. The goal is then to assign the
targets to the robots while optimizing an objective function.
Under typically considered objectives, MRR is a difficult
combinatorial optimization problem – NP-hard (Lagoudakis
et al. 2005) – therefore heuristics have been studied in or-
der to provide solutions, though not optimal, but in feasible
time. For the rest of the paper, as in MRTA literature, target
allocation and task allocation are used interchangeably.

Solving MRR problems has been addressed using market-
based approaches like combinatorial, parallel or sequen-
tial auctions (Koenig et al. 2006; Koenig, Keskinocak, and
Tovey 2010), but also through other optimization based tech-
niques, mainly TSP-based optimizations (Mosteo, Montano,
and Lagoudakis 2009; 2008). Lately, approaches were pro-
posed for combining auctions with methods such as clus-
tering (Heap and Pagnucco 2011; Elango, Nachiappan, and
Tiwari 2011) or matroid theory techniques (Williams, Gas-
parri, and Ulivi 2017). Aspects of dynamic task allocation
have been envisaged by few works. These include the con-
sideration of dynamic clusters in auctions (Heap and Pag-
nucco 2012), the re-auctioning of uninitiated tasks (Nan-
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janath and Gini 2010) (both presuming delays, e.g. caused
by communication loss or dynamic obstacles), or more re-
cently, prediction methods for search and rescue opera-
tions (Wei, Hindriks, and Jonker 2016). However, these ap-
proaches are lacking support for dynamic target allocation
(like the use of parallel allocations). The algorithms require
numerous allocation rounds to finish, trading off time com-
plexities for solution quality. This does not cope with dy-
namic allocation needs, like repeated algorithm execution.
Also, existing methods do not handle effects of continuous
growths of the sets of targets (e.g. a robot may have its mis-
sions saturated, due to resource constraints).

This paper proposes Dynamic Multi-Robot Routing
(DMRR) as an incremental dynamic adaptation of the MRR
process to new targets. DMRR assumes that targets are con-
tinuously discovered by a group of exploration robots, and
then integrated in the missions of the working robots (see
Figure 1). Hence, robot missions continuously grow in size.
No prior information is considered regarding target loca-
tions, since the environment is presumed to be dynamic,
with a high degree of uncertainty.

After presenting the background and related work (Sec-
tion 2), a framework is proposed around DMRR, which for-
malizes the problem, contains a mathematical model and
complexity proofs (Section 3). The MRR objectives are re-
defined for the dynamic case, while asymptotic objectives
and target coverage maximization are envisaged as well
(DMRR remains NP-hard, under the MRR objectives). Be-
cause of the continuous mission growth, missions may get
saturated, so resource limitation is taken into account in a
version of DMRR, called DMRR-Sat. This problem assumes
a so-called mission saturation bound (i.e. a bound for the
mission cost). Consequently, proofs for DMRR-Sat hardness
are provided.

Finally, Section 4 proposes dynamic saturation-based
auctioning (DSAT) for allocation of the new discovered tar-
gets at each time step. DSAT encapsulates an auctioning
algorithm introduced here as inverse-SSI. It combines ele-
ments of parallel and sequential auctions, providing better
time complexities than state-of-the-art solutions. The algo-
rithm is described along with its complexity analysis and
experiments compare the DSAT and inverse-SSI with state-
of-the-art auction algorithms such as standard single-item
auctions (SSI (Lagoudakis et al. 2005)) or SSI with regret
clearing (Zheng et al. 2008). Computations are performed
for an extensive set of scenarios (Section 5). We discuss em-
pirical results, showing that DSAT and inverse-SSI perform
better than existing state-of-the-art methods.

2 Background and Related Work
Multi-robot routing considers a set of mobile robots R and
static targets T , whose locations are known in the two-
dimensional plane. A cost is considered for traveling be-
tween two locations on the map and all robots can commu-
nicate between them without errors.

Definition 2.1 (MRR). The multi-robot routing problem
(Lagoudakis et al. 2005) consists in finding allocations of
targets T to robots R (and paths to visit these targets), such

that a team objective function is optimized.

MRR has been the standard testbed for multi-robot task
allocation problems. Originally part of the vehicle routing
problems, VRP (Pillac et al. 2013), MRR differs from VRP
on at least two fundamental things. First, it does not rely on a
predefined path graph (but considers movement between any
two locations in the area). Second, for the dynamic case, tar-
gets might not be discarded after one visit, but remain part
of the robot mission. Hence, the problem objective is depen-
dent on the whole mission, not only on the robot’s current
position. Throughout this paper, like in usual MRTA termi-
nology, task allocation is equally referred as target alloca-
tion (in literature, this often depends on the context). Task
is used more to emphasize the action (which may have an
ending time), and it can be seen as a treatment of a target.

Taxonomies regarding MRTA (Gerkey and Matarić 2004;
Korsah, Stentz, and Dias 2013) have been widely used
to classify task allocation problems. Thereby, (Gerkey and
Matarić 2004) classifies MRTA problems into categories:
single-task (ST) or multi-task (MT) robots, single-robot
(SR) or multi-robot (MR) tasks, instantaneous assignment
(IA), or time-extended assignment (TA) (w.r.t. the target al-
location). MRR, as well as dynamic MRR, proposed in this
paper, are part of the MT-SR taxonomy, since a task can be
assigned to only one robot at a time. However, MRR has of-
ten been treated in IA scenarios, whereas DMRR is rather
TA, since the process is dynamic and communication is lim-
ited, so the assignation of targets is done in time.

A more recent taxonomy (Korsah, Stentz, and Dias 2013)
classifies MRTA problems also based on the dependen-
cies between tasks or robots: no-dependencies (ND), inter-
schedule dependencies (ID), cross dependencies (XD) and
complex dependencies (CD). DMRR falls into the ID class,
along with other well-known NP-hard problems like m-
TSP1 or MRR, since the cost of treating a target (e.g. time,
travel distance) depends on the other targets treated before.

To our knowledge, so far no work considered target allo-
cation for ongoing evolving missions, nor offered a frame-
work which correlates the target discovery and the dynamic
adaptation to these new targets. Paper (Tardioli et al. 2010)
offers a framework treating three problems simultaneously:
multi-task allocation, cooperative navigation while main-
taining the multi-hop robot network connected, and ensur-
ing link quality for real-time communication. However, this
considers robot clusters may be assigned to one task (i.e.
MR tasks), and the task allocation plan is performed w.r.t.
the connectivity maintenance constraint.

In the last years, MRTA techniques have been used for on-
line planning in scenarios such as warehouse commissioning
problems (Claes et al. 2017) or search and rescue operations
with uncertainty of tasks (introduced as UMRTA) (Beck et
al. 2016), where the information about the tasks relies on
probability distributions.

Solving MRTA problems has been addressed mainly us-
ing market-based techniques and optimization-based ap-
proaches. Market-based techniques use the concept of auc-
tions (Koenig, Keskinocak, and Tovey 2010; Lagoudakis et

1Multiple Traveling Salesman Problem, NP-hard
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al. 2004; Choi, Brunet, and How 2009), considered state-
of-the-art decentralized solutions in MRTA. The auctions
require that robots can communicate and use their own in-
formation to bid for a task they may probably execute. The
negotiation process chooses a winner robot, which the task
is assigned to. Optimization-based techniques include deter-
ministic and stochastic methods such as clustering (Janati et
al. 2017), graph search (Kartal et al. 2016), or trajectory-
based optimizations (Mosteo, Montano, and Lagoudakis
2009; 2008). Recently, auctions were combined with tech-
niques such as clustering (Heap and Pagnucco 2011; Elango,
Nachiappan, and Tiwari 2011), or matroid theory techniques
(Williams, Gasparri, and Ulivi 2017).

Auction-based methods for MRR solving include com-
binatorial, sequential or parallel auctions (Koenig, Ke-
skinocak, and Tovey 2010). Combinatorial auctions require
exponential amounts of time to compute solutions which
minimize the objective. For this, robots bid on all possible
combinations of targets. Parallel auctions allocate the targets
in linear time single-round auctions, robots bidding for every
target only. Sequential single-item auctions (SSI (Koenig et
al. 2006)) are a trade-off between combinatorial and parallel
auctions, providing in a reasonable time results with guaran-
teed sub-optimality. Lately, parallel simulations of SSI auc-
tions have been studied (Kishimoto and Nagano 2016). Im-
provements of SSI auctions include SSI auctions with roll-
outs, bundle-bids or regret clearing (Koenig, Keskinocak,
and Tovey 2010). In comparison with standard SSI, these
auction methods trade-off between better running time and
solution quality.

Dynamic task allocation gained attention in the last years,
though few works emerged. For example, in search and res-
cue operations has been addressed with prediction methods
(Wei, Hindriks, and Jonker 2016) executed by single-task
robots. However, dynamicity consists in interleaving explo-
ration with target retrieval, and the problem is part of the
ST-SR-TA taxonomy (one target per robot).

Late results for MRR include the work of (Heap and Pag-
nucco 2011), which lets robots sequentially bid on task clus-
ters rather than one task at a time. Clusters are formed be-
fore the auction, using k-means clustering, and the empir-
ical results consist in lower team costs than SSI auctions
(Koenig et al. 2006) (in a similar runtime). As improvement
for dynamic allocation, (Heap and Pagnucco 2012) performs
cluster-based reallocation once a robot finished one of its
allocated tasks. It extends the previous work of sequential
single-cluster auctions (SCC) (Heap and Pagnucco 2011),
and combines it with ideas of repeated auctioning for post-
initial allocation (Nanjanath and Gini 2010). The latter al-
gorithm allows robots to exchange tasks if this improves the
overall team objective. The re-plan is performed after every
treatment of a task and the empirical results show the final
allocation is close to optimal. However, dynamicity is re-
lated only to possible delays, caused by communication loss
or dynamic obstacles.

K-means clustering with auctions has been proposed in
(Elango, Nachiappan, and Tiwari 2011), for balancing the
task allocation among all robots. This technique searches to
evenly distribute work loads between robots, and however

diverges from typical goals of MRR auction methods. None
of the previous approaches considers the existence of targets
in ongoing missions when beginning the actual allocation,
nor any dynamic adaptation of robot missions to new dis-
covered targets. Algorithms require many iterations for allo-
cation (usually one for every target), not always appropriate
for dynamic repetitive allocations.

3 Dynamic Multi-Robot Routing (DMRR)
The following definition extends the multi-robot routing
(MRR) problem of (Lagoudakis et al. 2005), to evolving
missions (growing groups of targets). It introduces Dynamic
Multi-Robot Routing (DMRR) as a continuous adaptation of
MRR to new targets discovered in time. For this, time steps
are denoted by the superscript t throughout all the paper.

3.1 DMRR Definition
Let F=R∪E be a finite fleet composed of robots
R={r1, r2, . . . , rn} executing missions on their
own set of static targets (Tri ) and robots E ex-
ploring the environment for target discovery. Let
T={t1, t2, . . . , tm}=∪iTri be the set of total targets
under missions and TE={tm+1, tm+2, . . . , tm+p} be the set
of new discovered targets. The locations of robots R, targets
TE and T are known. Finally, let cij be the cost of moving
between two locations i and j in both directions (can be
related to measures like energy, distance, travel time, etc.).

Definition 3.1 (DMRR). The objective of DMRR (at every
time new targets TE are discovered) is to find an alloca-
tion of targets T∪TE to the robots in R∪S (with S⊆E) and
paths to treat these targets s.t. an objective function is opti-
mized.

After each allocation, targets from TE become part of
T , since they are allocated to robot missions. Robots from
E can pass to R, in time: at a given time step, allocations
can be made for Rt+1=Rt∪S, where S⊆Et, while explo-
ration robots become Et+1=Et\S. Until becoming part of
R, robots that explore are simply used for updating the set
of discovered targets (TE). Hence, these robots’ positions
are not priori necessary, if not being subject to allocation.
Throughout the paper, the equivalent time dependent nota-
tions are Rt, Et, T t

ri , T
t and T t

E ; for readability, these are
used only when emphasizing time is necessary.

Using the notations of MRR(Lagoudakis et al. 2005), the
team objective is written as follows: at any moment in time,

min
A

f(g(r1, A1), g(r2, A2), . . . , g(rn, An)); (1)

consequently, let the asymptotic objective be defined as:

lim
t→∞

min
At

f(g(r1, A
t
1), g(r2, A

t
2), . . . , g(rn, A

t
n)) = opt ,

(2)
where f and g measure the performances of the whole

team and of each robot, respectively. At={At
1, A

t
2, . . . , A

t
n}

is a partition of the targets T t∪T t
E , where At

i is allocated
to robot ri, at moment t. Because the allocation process is
repetitive in time, the team objective can be optimized on the
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short term as well as on the long term (when t→∞). So the
limit opt represents an optimum which f may converge to.

The role of exploration robots is to provide positions of
new discovered targets, and to participate to missions when
necessary (for example, when the missions of robots R are
saturated, e.g. cannot include more targets). Unless explic-
itly stated otherwise, any robot subject to target allocation
refers to a mission robot (not exploration one).

The robot missions might not have an ending time, and
targets may be repeatedly visited. Therefore, when the robot
position is required, one may use the average of robot’s tar-
get positions (i.e. centroid of its target cluster). Nevertheless,
one may consider the robot is at the position of its last allo-
cated target (MRR assumption).

At moment t=0, there may be no targets under missions
(T 0=∅, which in fact corresponds to the actual MRR prob-
lem), or even no new targets (T 0=T 0

E=∅), if robots did not
start the exploration. Then, at any time step t, the set of new
targets TE can change, because of discovered targets, or be-
cause of dynamically allocated ones. Like this, targets from
TE always move to T , in time, after their allocation.

In literature, when addressing the MRR problem, several
objectives are usually considered, including:

MINSUM: Minimizing the sum of path costs over all robots.
MINMAX: Minimizing the maximum path cost over all
robots.

The path cost of a robot r is the cost of visiting all the
targets of a cluster S, and let it be denoted by c(r, S) (may
be related to energy, distance, time, etc.). Mission costs may
also include the time spent on treating targets. Therefore,
our discussion makes abstraction of the target treatment cost.
Typically for MRR problems, the above objectives concern
just the targets in the TE set only (so the costs c(ri, Ai), with
Ai⊆TE). For DMRR, At is a partition of the T t∪T t

E , so let
the same objectives be defined as follows: at any moment t,

MINSUMD : min
At

∑
i

c(ri, A
t
i), (3)

MINMAXD : min
At

max
i

c(ri, A
t
i), (4)

and the asymptotic objectives be defined as:

MINSUM∞ : lim
t→∞

min
At

∑
i

c(ri, A
t
i) = optMINSUM, (5)

MINMAX∞ : lim
t→∞

min
At

max
i

c(ri, A
t
i) = optMINMAX. (6)

The c(ri, Ai)’s represent the costs of executing robot mis-
sion ri on the targets Ai ⊆ T∪TE . The asymptotic objec-
tives consider what happens in time with these costs (after a
certain amount of steps or an undetermined period of time).
In particular, the sum or the average of the path costs may
converge towards an optimal value. Under the above objec-
tives, MRR is NP-hard (Lagoudakis et al. 2005), so DMRR
is hard to solve as well, being at least as complex as MRR.
Theorem 3.1. 1. There is no polynomial algorithm solv-
ing the DMRR, under any of the MINSUMD, MINMAXD,
MINSUM∞ or MINMAX∞ objectives (unless P=NP).

Proof. Consider that T 0=∅ and T 0
E contains the new dis-

covered targets. Solving DMRR for time step t=0 equals to
solving the MRR problem. So MRR reduces to DMRR.

3.2 DMRR with Saturation (DMRR-Sat)
In the context of dynamic adaptation, since the robot mis-
sion evolves, the tasks may not have an ending time (e.g. in
patrolling, robot execution does not finish). That is why, as
robot mission grows in size (e.g. costs of handling new tar-
gets), the mission can get saturated. The saturation can be
due to robot or target constraints (e.g. robot energy, target
visit frequency). The problem, namely DMRR-Sat, consid-
ers a saturation bound for each robot mission (in particular,
a bound for the path costs c(ri, Tri)). As a consequence, the
robots that explore (E) may become part of the robots that
treat the targets (R), e.g. when the already ongoing missions
get saturated.

Considering the reallocation of all existing targets every
time new targets are discovered is extremely time consuming
in practice, since the allocation input would be |T |, whereas
|T |�|TE |. In addition, it can break the ongoing missions
and their related constraints (e.g. for targets which depend
on continuous robot execution, like in patrolling), request-
ing resource consumption for reestablishing all missions.
Hence, in DMRR-Sat, only the targets T t

E are allocated at
time t.
Definition 3.2 (DMRR-Sat). Consider the setting of the
DMRR problem. Let Sat be a saturation bound for any robot
mission, of the same type as the cost function c. Consider
that exploration robots (E) can execute missions on tar-
gets from T t

E at any time t. The DMRR-Sat problem con-
sists in finding allocations of T t

E to R and robot paths that
optimize the team objective f , while respecting constraint
c(ri, T

t
ri) ≤ Sat, for every robot ri.

Since in DMRR-Sat the already allocated targets are not sub-
ject to new reallocations, in the objectives (1) and (2) func-
tion f becomes

f(g(r1, Tr1∪B1), g(r2, Tr2∪B2), . . . , g(rn, Trn∪Bn))

and for objectives (3), (4), (5) and (6), the costs be-
come c(ri, T

t
ri∪B

t
i ), where {Bi}i:1,n is a partition of TE

only. Let these objectives be denoted by MINSUMD−Sat,
MINMAXD−Sat, MINSUM∞−Sat and MINMAX∞−Sat.
For example, (3) becomes

MINSUMD−Sat : min
Bt

∑
i

c(ri, T
t
ri∪B

t
i ).

Because the missions can get saturated and the fleet F is
finite, an intuitive objective to consider is that robots in R
cover as many targets as possible (the MAXTAR objective).
The following objectives are considered for DMRR-Sat:
MINSUMD−Sat, MINMAXD−Sat,
MINSUM∞−Sat, MINMAX∞−Sat (after a certain amount
of steps),
MAXTAR: max

Bt

∑
t

∑
i

|T t
ri∪B

t
i |.

These objectives are subject to the mission saturation con-
straint c(ri, T t

ri) ≤ Sat.
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Theorem 3.2. There is no polynomial algorithm solving the
DMRR-Sat under the above objectives, unless P=NP.

Proof. The proof shows that DMRR reduces to DMRR-Sat.
Let T and TE be the sets of targets of DMRR problem
which needs to be solved. Consider a large enough satu-
ration bound, (e.g. greater than any c(ri, T∪TE) or even
Sat = ∞). At every time step of DMRR we solve DMRR-
Sat for T ′ = ∅ and T ′E = T∪TE , which gives the solution
for DMRR. Hence, reduction time is constant. Using Th.3.1,
the proof is complete (for the first four objectives).

For the MAXTAR objective, we show that the NP-
complete TSP reduces to DMRR-Sat. Let S be the set
of targets for the TSP problem. Let all the finite pre-
cision real values be scaled to integers. Consider the
interval [Left ,Right ]=[0,TSPsol ], where TSPsol is any
solution of TSP computed ad-hoc in O(|S|) time. Fix
Sat = b(Left + Right)/2c and solve DMRR-Sat for T=∅
and TE=S; if MAXTAR =|S| then Left←Sat, otherwise
Right←Sat. Continue the binary search until Left=Right ,
which is the actual TSP optimal solution. This takes
log(TSPsol) steps, so the reduction is linear in the size of
the input (and DMRR-Sat is NP-hard under MAXTAR).

MAXTAR considers that missions must integrate as many
targets as possible (intuitively speaking, robots should treat
the maximum number of tasks they can). This also min-
imizes the number of mission robots (|R|), resulting in
a maximization of the number of exploring robots (|E|),
which again motivates the objective.

4 Target Allocation Heuristics
Like stated in the related work section, auction-based meth-
ods represent the state-of-the-art decentralized solutions for
MRR problems. However, existing solutions do not handle
allocations of targets for missions that continuously grow
and get saturated. Before proposing the dynamic saturation-
based auction (DSAT), this section describes sequential and
parallel single-item auction methods, like SSI or PSI auc-
tioning. DSAT method combines advantages of sequential
and parallel single-item auctions, that are presented in what
follows.

4.1 Sequential and Parallel Auctions
Sequential Single-item Auction (SSI) In standard SSI

auctions (Koenig et al. 2006), every robot submits the low-
est bid among all targets it can bid on. Then, the lowest bid
is chosen among all robots, and the corresponding target is
acquired by that robot. Once a robot wins a target, it updates
its location to the one of the target just got. The auction con-
tinues until all the targets have been allocated.

Sequential Single-item Auction with Regret Clearing
(SSI-rc) SSI auctions with regret clearing (Zheng et al.
2008) use same mechanism as standard SSI, with one ex-
ception: the winner determination phase allocates the target
with the largest regret to the robot that made the smallest bid
on it. The regret of a target is the difference between its two
lowest bids. This time, the robots send the bids for all the
targets, in the bidding phase.

Ordered Single-item Auction (OSI) The auction-based
greedy approach introduced in (Schneider et al. 2015) as-
sumes the targets are placed in an ordered list. Each target is
offered to all robots, one in every auction round. The robot
with the smallest bid receives the target and in addition, it
updates its own location with the one of the target it just
won.

Parallel Single-item Auction (PSI) The method called
parallel single-item auction (Koenig et al. 2006) allocates
all the targets in one round. The robots submit all their bids,
and each target goes to the robot that made the smallest bid
on it. This is the fastest approach in terms of running times,
but the solution quality is usually the worst, since no path
cost is considered in the bidding.

4.2 Dynamic Saturation-based Auction (DSAT)
The coordination system that this paper proposes (DSAT
auctioning) combines benefits of sequential and parallel
single-item auctions. It allows both single or multiple tar-
get allocation in one auction round. DSAT allocation can
handle scenarios in which mission can continuously grow in
size, and targets can lose candidate robots due to high robot
mission costs. While trying to maximize the target coverage,
DSAT copes with ideas of parallel auctions (for achieving
better running times) and SSI auctions (for objectives such
as MINMAX or MINSUM).

At the beginning, all new targets are initially unallocated.
The locations of the new targets TE are known. For any mis-
sion robot r, its location is known, and it may be approxi-
mated based on the positions of its targets Tr. The location
of an exploration robot is required only if the auctioning de-
cides to form a new mission in the end, because of already
saturated ones. Robots bid on the targets with an estimated
allocation cost. This cost may usually consider the path cost
of robot’s already allocated targets. The cost can be an ap-
proximative or an optimal path cost. Usually, computing the
cost of the optimal path can be expensive (e.g. TSP solu-
tion). So the robot computes final path minimization when
the allocation is finished. Thereby, when bidding for a tar-
get t, an approximative path cost is computed by robot r :
c(r, Tr∪{t}) (usually computed as the sum of distances be-
tween allocated targets).

The auction computations can be run by each robot in-
dividually (decentralized), or centralized, by an auctioneer
robot. The auctioneer would then deliver the results after ev-
ery auction round. In the decentralized case, a robot listens
to the others and memorizes all the other robot bids. There-
fore, it can perform the rest of the computations and deter-
mine the winners by itself. Like this, all robots execute the
algorithm simultaneously and know which target has been
allocated to which robot. Because of the decentralized be-
havior, more messages are passed between robots, but this
avoids robots being dependent on an auctioneer.

DSAT Algorithm Description (Alg. 1) The algorithm
starts with robots submitting their bids for every target. A
robot submits a “not a candidate” bid if it estimates that in-
tegrating a target would result in its mission cost exceed-
ing the saturation bound. Upon the arrival of all robot bids,
the bid lists Bi={b1i , b2i , . . . , b

ki
i } are formed for every tar-
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Algorithm 1: DSAT-Auction(R,E, TE)
1 Input: R: the set of mission robots
2 E: the set of exploration robots
3 TE : the set of new discovered targets
4 Output: TE=∅: All targets are allocated
5 for each robot r ∈ R do
6 for each target t ∈ TE do
7 submit bid(r, t) if c(r, Tr∪{t}) ≤ Satr;
8 else submit “not a candidate”;

9 for each target ti ∈ TE do
10 form the bid list Bi;
11 sort(Bi);
12 group the ti’s by their |Bi| (nb. of candidate robots);
13 let k := maxi |Bi| and Gk := {ti ∈ TE |k = |Bi|}
14 while TE 6= ∅ and k ≥ 1 do
15 // one round of inverse SSI
16 T ′ := InverseSSI(Gk) (for targets with |Bi|=k);
17 TE := TE \ T ′;
18 update robot bids in every Bi (and update |Bi|);
19 regroup ti’s by their |Bi| and recompute k;
20 if k = 0 then
21 // form new missions for targets with |Bi| = 0
22 choose robots E′ ⊆ E for missions on TE ;
23 run DSAT-Auction(E′, E\E′, TE);

Algorithm 2: InverseSSI(Gk)

1 // sorted lists Bi={b1i , b2i , . . . , bki } are already formed
2 // Gk is the target group with |Bi| = k,∀ti ∈ Gk

3 G′k := Gk; Alloc := ∅;
4 while G′k 6= ∅ do
5 let ti ∈ G′k;
6 Q := {tj ∈ G′k | r(b1j ) = r(b1i )};
7 t := arg min

tj∈Q
b1j ;

8 Alloc ∪= {t}; R′ ∪= {r(t)};
9 Tr(t) ∪= {t}; G′k \= Q;

10 for each robot r ∈ R′ do
11 for each target t ∈ TE do
12 submit bid(r, t) if c(r, Tr∪{t}) ≤ Satr;
13 else submit “not a candidate”;

14 return Alloc;

get ti ∈ TE , and then they are sorted. This helps for faster
identification of the smallest bid of a target (b1i ) when robots
update their bids, at the end of an auction round.

DSAT auctioning continues with a clustering-like phase,
where targets are grouped based on the size of the Bi lists
(i.e. the number of their candidate robots; Lines 12 and
13). Then, the targets with the biggest number of candidate
robots are auctioned first (Line 13).

The winer determination and the new bidding phase are
performed in what is defined as inverse-SSI auction (and

explained below, in Algorithm 2). After one call of the
InverseSSI function (i.e. one round of inverse-SSI), the
new bids are received by all robots. Each robot then up-
dates the bids in the Bi lists (Line 18). Robots can submit
“not a candidate” bids, so targets can lose or gain candidate
robots. Thereby, the sizes of the candidate lists are updated,
so targets get regrouped while the maximum |Bi| is recom-
puted on the way (Line 19).

When the auction finishes, targets with zero candidates
are re-auctioned to form new missions. A set S of explo-
ration robots is selected from E (e.g. the closest robots to
TE centroid). These robots become the input set R in the
re-auctioning process. At the end, they might all be mission
robots (Rt+1=Rt∪S and Et+1=Et\S), unless there exists
a robot r ∈ S, with Tr=∅.

Inverse-SSI Auction (Alg. 2) The technique defined by
this paper as inverse-SSI auction is used as part of the dy-
namic saturation-based auction, but also as a standalone al-
gorithm. It consists of the robot bidding and winner determi-
nation phases. The mechanism is somehow an inverse of the
standard SSI auction reasoning. The bids are evaluated from
the target perspective and a conflict resolution is performed
for the targets which prefer the same robot. However, it dif-
fers from standard SSI by its parallelism, since inverse-SSI
permits allocating multiple targets in one round. For exam-
ple, it may be the case that all targets are allocated in one
auction round, or to the contrary, taking |T | rounds to com-
plete the auction.

Bidding Phase: The auctioning starts with all robots bid-
ding on all targets. In each of the next auction rounds, only
the robots which won in the previous round are submitting
their new bids (Line 10). The new bids take into account the
new cost of the robot missions, estimated upon the last target
allocation.

Winner Determination: Targets are grouped according to
the robot of their smallest bid: r(b1i ), where ti ∈ TE . This is
the robot that a target prefers, i.e. its first candidate. For tar-
gets which prefer the same robot (set Q, Line 6), the target
with the smallest bid is selected and allocated for that robot
(Line 7). After an allocation, all the targets in Q (Line 9) are
discarded from the current auction round. This is because the
robot they prefer changed its mission saturation value, after
the allocation. Its new bids are used to update the target bid
lists used in the next auction rounds.

As standalone algorithm, inverse-SSI is run on the set of
targets TE (main input parameter). It is then executed repeat-
edly (like standard SSI or SSI-rc), until no more allocations
can be made.

DSAT Auction Complexity If a number of |T | targets is
subject to allocation, then the auctioning process of DSAT
can finish in 1 up to |T | rounds, so the best and worst case
running times differ by a large amount of computations.
This means DSAT best case time complexity reduces to one
complete auction round O(|T ||R| log |R|), as explained be-
low, which outdoes best case complexities of SSI and SSI-rc
(O(|T ||R|+ |T |2) and O(|T |2 log |R|), respectively).

In the beginning, all robots bid on all targets, hence |R|2
messages are transmitted between robots. Then, at most
|T ||R| messages are sent for all the other rounds, since only
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the winning robots bid again. This gives a maximum of
|R|2 + |T ||R| messages for the whole DSAT auction (like
for standard SSI).

If an auctioneer is used (to centralize messages and com-
putations), the number of messages is decreased by a factor
of |R| (since no broadcast is needed among robots). Note
that if all robots submit their bids at the end of an inverse-
SSI round, then a total of |T ||R|2 messages are transmitted
(the equivalent of SSI with regret clearing).

In what follows, a denotes the number of rounds per-
formed by DSAT auction. The bidding lists Bi are formed
and sorted in |T ||R| log |R| steps (using MergeSort algo-
rithm, for example). Grouping the targets by their Bi size
takes |T | steps, so a total of a|T | for all DSAT rounds. To
complete the winner determination, one round of inverse-
SSI takes 2|T | time steps: selecting the targets which prefer
the same robot and obtaining the minimum of their bids. In
total, this requires a|T | steps until DSAT finishes.

Updating a bid of a robot in the Bi lists can be done in
time O(|T | log |R|), since the lists are sorted. For example,
binary search can be used for removing the old bid and in-
serting the new bid in the Bi’s. This is performed at most |T |
times during the whole auctioning, so the total complexity
is O(|T |2 log |R|). If required in the end of DSAT auction-
ing, exploration robots can be chosen randomly in constant
time. However, depending on the objective of the DMRR-
Sat, a polynomial-time heuristic can be used to compute an
approximative cost C of a mission on TE . Then, a number
of dC/Sate robots from E can be chosen (e.g. robots closest
to the TE centroid).

In conclusion, the worst case time complexity of the
whole DSAT algorithm is O(|T |2 log |R|) and a number of
|T ||R| + |R|2 messages are transmitted. This complexity
equals both SSI and SSI-rc auctions in terms of running
time, and the one of standard SSI for the number of trans-
mitted messages. One may note that the complexity of the
winner determination phase is linear in the number of bids
submitted: O(|T ||R|).

5 Experimental Results

Figure 2: The maximum mission cost among all robots, over
the number of targets discovered. No saturation bound is
considered (Sat =∞).

Figure 3: The maximum mission cost among all robots, for
a mission saturation bound of 80.

Figure 4: The number of covered targets in the area, for a
mission saturation bound of 80. Evolution of costs w.r.t. the
number of discovered targets.

Experiments are performed considering euclidean distances
in the 2D plane. The targets are randomly generated using
the uniform distribution, in an area of 100 × 100 units. The
robots bid for the targets, taking always into account the cost
of their mission. For simplicity, these costs are estimated
using the sum of the traveling paths (euclidean distances),
among the targets they own. The distances are computed
in the order in which targets get allocated to the robot. A
robot is allowed to bid for a target only if the approximated
cost of its integration does not exceed the mission saturation
bound. All the computations are performed for an extensive
set of 100 random configurations of the targets in the area.
All the metrics in this section are mean values obtained in
the computations. At the beginning, 4 robots are deployed
in the area. Targets are randomly generated, and robots start
the auction algorithm for target allocation. Every time new
targets are generated, the algorithms are run again. Due to
the saturation bound, not all targets can be covered. There-
fore, another 3 robots are added in the area, in time. This
happens once the targets can not be all covered by the allo-
cation (see Figure 4).

In the experiments, the performance of parallel single-
item auction (PSI) is extremely bad. Hence, because of the
big differences in the graphics, we leave it out and compare
the other five algorithms.

Figure 2 shows the results obtained for the MINMAXD

objective, when no saturation bound is considered. DSAT
and standalone inverse-SSI, which perform equally here,
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Figure 5: The behavior of the maximum mission cost w.r.t.
different saturation values. The number of fixed targets: 30.

Figure 6: The sum of all the mission costs of all robots, w.r.t.
number of discovered targets. Mission saturation bound: 80.

show lower mission costs than all the other algorithms. In
this case, all targets are covered by the robots. The mean of
MINMAXD for the 100 random target configurations shows
a difference of ≈ 50 units between SSI and DSAT. This
represents around 16% of the mission cost, DSAT outper-
forming all the other algorithms. Mission costs translate into
robot resource usage, hence resource consumption is opti-
mized among all robots. This result applies to DMRR and
consequently to MRR, since no saturation bound was con-
sidered. Figure 3 shows the resulting MINMAXD−Sat for
the same configurations, when a mission saturation bound
of 80 is considered. Because the costs are now bounded, the
values are more compact, and SSI, DSAT and inverse-SSI
have almost the same performance (with a slight advantage
for DSAT). The costs of OSI do not increase like before
(Figure 2), because of the saturation bound; however less
targets are covered by the algorithm (Figure 4). Mission sat-
urations reduce the target coverage percentage. In Figure 4,
SSI, inverse-SSI and DSAT outperform the other three al-
gorithms with a difference of 50% of covered targets. Here,
SSI and inverse-SSI cover the same number of targets.

When changing the saturation bound for the same config-
urations of targets, the allocations can oscillate, since new
bids are allowed to participate. Results in Figure 5 show that
DSAT and standalone inverse-SSI continue to outperform
standard SSI and SSI with regret clearing, with a difference
of ≈ 12% in the mission cost. This again results in lower
resource usage for the robot missions.

Figure 7: Convergence of the maximum mission cost
(MINMAX∞−Sat) towards the optimum (Sat=180). An ex-
haustive generation of targets is performed.

The sum of the mission costs obtained in the experiments
can be observed in Figure 6. DSAT has a slight advantage
in front of SSI and inverse-SSI (which perform equally),
but all three algorithms outperform SSI-rc by a percentage
of 5. For the MINMAX∞−Sat objective, Figure 7 shows
the convergence of the algorithms towards the optimum
optMINMAX=Sat=180, as new targets are discovered in time.
Experiments show that the maximum mission cost tends to
the considered optimum, as new targets appear in the area.

6 Conclusion
The present paper exposed the challenges of dynamic tar-
get allocation and the drawbacks of the existing literature.
It then proposed a framework which defines DMRR (Dy-
namic Multi-Robot Routing) and contains a mathematical
model, complexity results and proofs, but also a collateral
problem generated by the evolving missions which dynami-
cally grow (DMRR-Sat). Asymptotic objectives for DMRR
were also analyzed, even though assuming an undetermined
(or infinite) time period makes them impractical for exper-
iments. DSAT (Dynamic Saturation-based Auction) is pro-
posed as solution for dynamic target allocation and robot
coordination. It relies on a technique defined in the paper
as inverse-SSI, which stands for both sequential and paral-
lel allocations. Complexity analysis showed that DSAT and
inverse-SSI provide running times that overdo the existing
state-of-the-art, yet providing better solution qualities when
tested (for both DMRR and DMRR-Sat). The experimen-
tal results performed on exhaustive sets of inputs show that
DSAT and inverse-SSI outperform methods such as SSI or
SSI-rc, especially for objectives such as MINMAX or MIN-
SUM. These results apply also to classic MRR, since exper-
iments were performed as well for DMRR without a sat-
uration bound. Further work emerging from DMRR could
consider problems such as dynamic reallocation of targets
over time, dynamic reallocations with saturation bounds, or
dynamic clustering in target allocation.
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Abstract

QDec-POMDPs are a qualitative alternative to stochastic
Dec-POMDPs for goal-oriented planning in cooperative par-
tially observable multi-agent environments. Although QDec-
POMDPs share the same worst case complexity as Dec-
POMDPs, previous research has shown an ability to scale up
to larger domains while producing high quality plan trees. A
key difficulty in distributed execution is the need to construct
a joint plan tree branching on the combinations of observa-
tions of all agents. In this work, we suggest an iterative al-
gorithm, IMAP, that plans for one agent at a time, taking into
considerations collaboration constraints about action execu-
tion of previous agents, and generating new constraints for
the next agents. We explain how these constraints are gener-
ated and handled, and a backtracking mechanism for chang-
ing constraints that cannot be met. We provide experimental
results on multi-agent planning domains, showing our meth-
ods to scale to much larger problems with several collaborat-
ing agents and huge state spaces.

1 Introduction
In many real-world problems agents collaborate to achieve
joint goals. For example, disaster response teams typically
consist of multiple agents that have multiple tasks to per-
form, some of which require the cooperation of multiple
agents. In such domains, agents typically have partial in-
formation, as they can sense their immediate surroundings
only. As agents are often located in different positions and
may possess different sensing abilities, their runtime infor-
mation states differ. Sometimes, this can be overcome us-
ing communication, but communication infrastructure can
be damaged, or communication may be costly and should
be reasoned about explicitly.

In this setting it is common to plan for all agents jointly
using a central engine. The resulting policy, however, is ex-
ecuted by the agents in a decentralized manner, and agent
communication is performed only through explicit actions.

Decentralized POMDPs (Dec-POMDPs) offer a rich
model for capturing such multi-agent problems (Bernstein et
al. 2002), but Dec-POMDPs solvers have difficulty to scale
up beyond small toy problems. Qualitative Dec-POMDP

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(QDec-POMDP) were offered as an alternative model, re-
placing the quantitative probability distributions over possi-
ble states with qualitative sets of states (Brafman, Shani, and
Zilberstein 2013).

Although QDec-POMDPs share the same worst case
complexity class as Dec-POMDPs, Brafman et al. have
shown that a translation-based approach into contingent
planning managed to scale to model sizes that could not be
solved by Dec-POMDP algorithms. The policy for a QDec-
POMDP can be represented as a joint policy tree (or graph),
where nodes are labeled by joint actions of all agents, and
edges are labeled by the possible joint observations follow-
ing those actions. In a solution tree all the leaves correspond
to goal states. The policy tree hence has a huge branch-
ing factor, limiting the ability to scale up to larger prob-
lems. One can extract single agent local policy trees from
the joint policy tree, where each local tree has an exponen-
tially smaller branching factor. In this paper we focus on
deterministic QDec-POMDPs, where one can find solutions
with a finite depth.

In many problems interactions between cooperating
agents are limited to a number of key points. Each agent
may be able to achieve a set of tasks that require no coop-
eration, while assisting other agents only in several collab-
orative tasks. This is illustrated in the box pushing domain
(Figure 2), where light boxes can be pushed into place by
a single agent, but a heavy box can only be pushed by two
agents together.

In such cases, it may be useful to plan for each agent inde-
pendently, creating a single agent plan tree, branching only
on the observations of the specific agent. We suggest an it-
erative approach, which we call IMAP (iterative multi agent
planning) where the central planning engine plans for one
agent at a time. IMAP creates a local policy tree for each
agent, instead of a joint policy tree for all agents.

When planning for a single agent IMAP assumes that
other agents will be available to assist in required collab-
orations. These assumptions generate a set of conditional
constraints on the behavior of other agents, that must be con-
sidered when planning for these agents. When a constraint
cannot be satisfied, we backtrack to the agent that required
the constraint.

In addition, agents attempt to perform tasks at the low-
est cost, notifying all other agents of the cost for complet-
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ing subgoals. Agents that manage to complete some tasks
more cheaply, inform backward to previous agents, that re-
plan again ignoring these tasks. Thus, our approach also
contains a task allocation component that assigns tasks to
agents to reduce the overall cost for completing all tasks.

For solving single agent problems, we compile the multi-
agent QDec-POMDP into a single agent contingent planning
problem. We use an off-the-shelf offline contingent planner
(Komarnitsky and Shani 2016a) to generate a plan graph,
and then extract the conditional constraints from that plan
graph. Our method is sound, but incomplete, due to the
greedy nature of our iterative process. Still, it scales up to
very large QDec-POMDPs. We provide an empirical study,
focusing on scaling up analysis, showing how our approach
scales to very large domains, with multiple agents, many
order of magnitudes beyond domains solvable by previous
approaches.

2 Model Definition
We start with the basic definition of a flat-space QDec-
POMDP, followed by a factored definition motivated by con-
tingent planning model definitions (Bonet and Geffner 2014;
Brafman and Shani 2016).
Definition 1. A qualitative decentralized partially observ-
able Markov decision process (QDec-POMDP) is a tuple
Q = 〈I, S, b0, {Ai}, δ, {Ωi}, O,G〉 where
• I is a finite set of agents indexed 1, ...,m.
• S is a finite set of states.
• b0 ⊂ S is the set of states initially possible.
• Ai is a finite set of actions available to agent i and ~A =
⊗i∈IAi is the set of joint actions, where ~a = 〈a1, ..., am〉
denotes a particular joint action.

• δ : S × ~A→ 2S is a non-deterministic Markovian transi-
tion function. δ(s,~a) denotes the set of possible outcome
states after taking joint action ~a in state s.

• Ωi is a finite set of observations available to agent i and
~Ω = ⊗i∈IΩi is the set of joint observation, where ~o =
〈o1, ..., om〉 denotes a particular joint observation.

• ω : ~A× S → 2
~Ω is a non-deterministic observation func-

tion. ω(~a, s) denotes the set of possible joint observations
~o given that joint action ~a was taken and led to outcome
state s. Here s ∈ S, ~a ∈ ~A, ~o ∈ ~Ω.

• G ⊂ S is a set of goal states.

We do not assume here a finite horizon T , limiting the
maximal number of actions in each execution. We focus,
however, on deterministic outcomes and deterministic ob-
servations. In such cases a successful solution is acyclic,
and there is hence no need to bound the number of steps.
Extension to domains with non-deterministic outcomes with
a bounded horizon is simple, but extensions to infinite hori-
zon and non-deterministic outcomes is beyond the scope of
this paper. We assume a shared initial belief, like most Dec-
POMDP models.
Definition 2. A factored QDec-POMDP is a tuple
〈I, P, ~A,Pre,Eff ,Obs, b0, G〉 where I is a set of agents,
P is a set of propositions, ~A is a vector of individual ac-
tion sets, Pre is the precondition function, Eff is the effects

function, b0 is the set of initially possible states, and G is
a set (conjunction) of goal propositions. The state space S
consists of all truth assignments to P , and each state can be
viewed as a set of literals.

The precondition function Pre maps each individual ac-
tion ai ∈ Ai to its set of preconditions, i.e., a set of literals
that must hold whenever agent i executes ai. Preconditions
are local, i.e., defined over ai rather than ~a, because each
agent must ensure that the relevant preconditions hold prior
to executing its part of the joint action. We extend Pre to
be defined over joint actions {~a = 〈a1, .., am〉 : ai ∈ Ai}
(where m = |I|): Pre(〈a1, .., am〉) = ∪iPre(ai).

Brafman et al. (2013) define an effects function Eff map-
ping joint actions into a set of pairs (c, e) of conditional ef-
fects, where c is a conjunction of literals and e is a single
literal, such that if c holds before the execution of the ac-
tion e holds after its execution. Thus, effects are a function
of the joint action rather than of the local actions, as can be
expected, due to possible interactions between local actions.

We slightly refine these definitions to explicitly support
independent and collaborative actions. For each local ac-
tion ai of agent i we define a set of local conditional ef-
fects eff l(ai) = {(c, e)}. In addition, for each subset
of local actions of agents, {ai1 , ..., aik} of agents i1, ..., ik
we define another set of collaborative conditional effects
eff c({ai1 , ..., aik}) = {(c, e)}. When this set is empty, we
say that the local actions are independent, when the set is
not empty, we say that the subset of local actions are collab-
orative. We further require that collaborative subsets will be
minimal, in that for two subsets A1, A2 such that A1 ⊂ A2,
eff c(A

1) 6= eff c(A
2). While the effects of collaborative

actions are shared, the preconditions are not. Specifically,
when applying a collaborative action each agent must only
ensure that its own preconditions hold.

For every joint action ~a and agent i, Obs(~a, i) =
{p1, . . . , pk}, where p1, ..., pk are the propositions whose
value agent i observes after the joint execution of ~a. The
observation is private, i.e., each agent may observe different
aspects of the world. We assume that the observed value is
correct and corresponds to the post-action variable value.

While QDec-POMDPs allow for non-deterministic action
effects as well as non-deterministic observations, we focus
in this paper only on deterministic effects and observations,
and leave discussion of an extension of our methods to non-
determinism to future research. Additionally, our model
assumes a shared initial belief state, as most Dec-POMDP
models. The case where agents have different initial belief
states is very important, as it corresponds to the situation in
on-line planning, but is also challenging.

2.1 Policy Trees
We can represent the local plan of an agent i using a policy
tree τi, which is a tree with branching factor |Ω|. Each node
of the tree is labeled with an action and each branch is la-
beled with an observation. To execute the plan, each agent
performs the action at the root of the tree and then uses the
subtree labeled with the observation it obtains for future ac-
tion selection. If τi is a policy tree for agent i and oi is a
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possible observation for agent i, then τioi denotes the sub-
tree that corresponds to the branch labeled by oi.

An alternative to local trees is a global joint policy tree,
where nodes are labeled by joint actions and edges are la-
beled by joint observations. We argue that constructing
global trees directly is difficult, due to the need to consider
all possible observation combinations together, and suggest
an iterative construction of local policy trees as a more scal-
able approach.

Let ~τ = 〈τ1, τ2, · · · , τm〉 be a vector of policy trees.
We denote the joint action at the root of ~τ by ~a~τ , and for
an observation vector ~o = o1, . . . , om, we define ~τ~o =
〈τ1o1

, . . . τmom
〉. When executing a policy tree each agent i

maintains its own local belief bi — the set of possible states
given the observations that i has observed during the exe-
cution. Initially, all agents set bi = b0, but following the
different observations it is often the case that bi 6= bj for
two agents i and j. tr(~b, ~o,~a) denotes the set of local beliefs
after executing the joint action ~a and observing ~o starting
from the local beliefs ~b. To execute ~τ we first consider the
action ~a~τ in the context of the local beliefs. That is, each
agent i must validate that bi |= pre(aτi). If for some agent
j, bj 6|= pre(aτj ) then the execution is not valid. Each agent
i then executes aτi , observes oi, transitioning to one of the
subtrees τ ′i of τi with a new local belief b′i. We say that ~τ
is a valid set of policy trees if every possible execution for
~τ starting from b0 is valid. If the precondition of ~a~τ are met
at the initial local beliefs 〈b0, ..., b0〉, and for every possi-
ble joint observation ~o, executing ~τ~o in the new local belief
tr(~b,~a~τ , ~o) is valid.

A local policy tree τi is valid if there exists a valid vec-
tor ~τ of local policy trees containing τi. For example, a
local policy tree τi is not valid if for some t, for two dif-
ferent branches of τi of length t, a collaborative action with
some agent j appears in one branch but not in the other, and
agent j cannot distinguish between the two branches. That
is, some differentiating observations cannot be observed by
j.

A set of policy trees ~τ is called a joint policy if executing
the policy trees starting from the initial belief b0 results in a
valid execution. A joint policy is called a solution if for all
leaves in the tree

⋂
i bi |= G, i.e., the set of possible states

given the joint local beliefs of the agents satisfy the goal.

Example 1. We now illustrate the factored QDec-POMDP
model using a simple box pushing domain (Figure 1). In this
example there is a one dimensional grid of size 3, with cells
marked 1-3, and two agents, starting in cells 1 and 3. In each
cell there may be a box, which needs to be pushed upwards.
The left and right boxes are light, and a single agent may
push them alone. The middle box is heavy, and requires that
the two agents push it together.

We can hence define I = {1, 2} and P =
{AgentAt i,pos,BoxAtj,pos,Heavyj}where pos ∈ {1, 2, 3}
is a possible position in the grid, i ∈ {1, 2} is the agent in-
dex, and j ∈ {1, 2, 3} is a box index. In the initial state
each box may or may not be in its corresponding cell —
b0 = AgentAt1,1∧AgentAt2,3∧ (BoxAtj,j ∨¬BoxAtj,j)
for j = 1, 2, 3. There are therefore 8 possible initial states.

Figure 1: Illustration of Example 1 showing the box pushing
domain with 2 agents and a possible set of local plan trees
that produce a solution. Possible agent actions are sensing
a box at the current agent location (denoted SB), moving
(denoted by arrows), pushing a light box up alone (denoted
P ), jointly pushing a heavy box (denoted JointPush), and
no-op.

The allowed actions for the agents are to move left
and right, to push a light box up, or jointly push a
heavy box up with the assistance of the other agent.
There are no preconditions for moving left and right,
i.e. Pre(Left) = Pre(Right) = ∅. For agent
i to push up a light box j, agent i must be in the
same place as the box. That is, Pre(PushUpi,j ) =
{AgentAt ′i,j¬Heavyj ,BoxAtj,j}. For the collaborative
joint push action the precondition is Pre(JointPushj ) =
{AgentAt1,j ,AgentAt2,j ,Heavyj ,BoxAtj,j}.

The moving actions transition the agent from one posi-
tion to the other, and are independent of the effects of other
agent actions, e.g., Right i = {(AgentAt i,1,¬AgentAt i,1 ∧
AgentAt i,2), (AgentAt i,2,¬AgentAt i,2 ∧ AgentAt i,3)}.
The only joint effect is for the JointPush action —
Eff (PushUp1,2, a2) where a2 is some other action, are
identical to the independent effects of action a2, while
Eff (PushUp1,2,PushUp2,2) = {(∅,¬BoxAt2,2)}, that is,
if and only if the two agents push the heavy box jointly, it
(unconditionally) gets moved out of the grid.

We define sensing actions for boxes — SenseBoxi,j , with
precondition Pre(SenseBoxi,j ) = AgentAti,j , no effects,
and Obs(SenseBoxi,j ) = BoxAtj,j . The goal is to move
all boxes out of the grid, i.e.,

∧
j ¬BoxAtj,j .

3 Iterative Construction of Policy Trees
We now describe our main contribution — a method to con-
struct satisfying policy trees iteratively, which we call IMAP,
for iterative multi agent planning. The first agent constructs
an independent policy tree using only its own independent
actions, and collaborative actions that it participates in, as-
suming that the other agents required to execute the collab-
orative actions will be available to assist. This single agent
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problem is solved by a contingent planner (Komarnitsky and
Shani 2016a), returning a policy tree.

After the single agent policy tree is computed, the agent
manipulates the tree to be a valid local policy tree in a
QDec-POMDP. Then, the agent extracts constraints for other
agents, encapsulating the assistance requirement of the com-
puted policy.

We now create a new single agent problem for the next
agent, containing the computed constraints. The next agent
attempts to solve this constrained problem. If the agent suc-
ceeds, it again extracts constraints and passes them on. If the
single agent contingent planning problem cannot be solved,
however, the agent reports the failure back, with additional
information, and the first agent must replan.

The process terminates when all agents agree on a set
of local policy trees that achieve the goal. Then, we run a
soundness check. The following subsections describe the
various parts of this algorithm. For ease of exposition, we
describe our methods below assuming time, or unit costs.
Our methods are directly applicable to the case of varying
costs.

A high level description of IMAP is presented in Algo-
rithm 1.

Algorithm 1: Iterative Planning for QDEC-POMDP

1 Input: QDec-POMDP 〈I, P, ~A, Pre,Eff,Obs, b0, G〉
2 Ac ← ∅ (collaborative action constraints)
3 i← 1 (current agent)
4 for each goal literal g, GT (g)←∞
5 while i < n do
6 τi ← solve 〈Pi, A

+
i , P rei, Effi, Obsi, b0, G〉

7 if τi is valid then
8 Align and order collaborative actions in τi
9 GT

i ← goal achievement times in τi
10 if ∃g ∈ G s.t. GT

i (g) < GT (g) then
11 GT (g)← GT

i (g)
12 j ← the earliest agent that achieved g s.t.

GT
i (g) < GT (g)

13 Undo all constraints by agents j .. i
14 i← j

15 for Collaborative action ac in τi at time t do
16 Add constraint on ac at time t to Ac

17 i← i+ 1
18 else
19 for constraint c in Ac by increasing time do
20 τ ← Solve 〈Pi, A

+
i , P rei, Effi, Obsi, b0, c〉

21 if τ is not valid then
22 cf ← c
23 t← earliest time that cf could be achieved

24 j ← the agent that introduced cf
25 notify j that cf can be achieved by time t
26 Undo all constraints by agents j .. i
27 i← j

3.1 Compilation to a Single Agent Problem
We now describe the creation of a single agent problem
for the first agent 1. The planning problems for the next
agents will be based on this compilation, adding constraints
which we later describe. Given a factored QDec-POMDP
〈I, P, ~A,Pre,Eff ,Obs, b0, G〉 we create for agent i a single
agent problem 〈Pi, A+

i ,Prei,Eff i,Obsi, b0, G〉. The ob-
servations Obsi, the initial belief b0 and the set of goals G
remain as in the multi agent problem.
A+
i is the set of single agent i, containing all the inde-

pendent actions in Ai, as well as all collaborative actions
that i participates in. That is, for each minimal subset
{aj1 , ..., ajk} such that Eff c({aj1 , ..., ajk}) 6= ∅ and there
exists l such that ajl ∈ Ai, we add a single agent action
a{j1,...,jk}. The created action has the same preconditions
as ajl — the component of agent i in the joint action. This
represents an assumption of agent i that the other agents that
participate in the collaborative action will fulfill the needed
precondition for the collaborative action to apply.

In addition, we identify a set P−i of non-constant propo-
sitions that none of the independent or collaborative actions
of agent i can achieve, yet appear in a precondition of an
action a ∈ A+

i or in the goal G. These are propositions
which may be required for achieving the goal, yet cannot
be produced by agent i. We remove all these propositions
from the problem description. This represents an assump-
tion of agent i that other agents will produce these proposi-
tions when needed.

We can now run a contingent planner on the compiled
problem and obtain a single agent policy tree τ .

3.2 Adjustments to the Policy Tree
It may not be possible to construct a joint policy using τ , as
we must ensure that all collaborating agents execute a col-
laborative action together. For example, consider the single
agent policy tree for agent 1 in Figure 2. This tree is a solu-
tion for the compiled problem, assuming that agent 2 would
assist in joint-push actions when needed. However, we can
observe that in the left branch, the collaborative joint push
action is at time t4, while in the right branch the joint push
is at time t3. To be able to assist at different times, agent 2
must know whether agent 1 is at the right or left branch.

To handle this, we force all the instances of a collaborative
action to occur at the same time in all branches, by adding
no-op actions (Figure 2 right), creating a leveled policy tree.

Leveling the collaborative actions may be difficult when
we have multiple collaborative actions in a branch. Given
two collaborative actions a1, a2, if a1 precedes a2 in all
branches, then we can level the execution time as before,
by first leveling the tree for a1, then leveling the tree for a2.
However, when a1 precedes a2 in one branch, and a2 pre-
cedes a1 in another branch, we cannot level both together.

There can be several ways to create a valid leveled pol-
icy tree. First, we can replan forcing the planner to decide
on one ordering of all collaborative actions. There can be
cases where this will make the problem unsolvable. We can
also condition the difference on an observed variable that all
collaborating agents can observe. We currently take the first
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Figure 2: Policy tree (left) and an adjusted tree (right) for the compiled contingent problem of agent 1 in the simple box pushing
domains. A no-op action (grayed) was inserted to level the JointPush action to be executed at time t4

approach, and fail if the planner cannot order all collabora-
tive actions in a consistent order of execution in all branches.

3.3 Extracting Constraints for Other Agents
Following the adjustments to the tree τ , resulting in tree τi
for agent i, we now extract a set of constraints on the pol-
icy tree of other agents. We can extract two types of con-
straints — collaborative action constraints and missing pre-
conditions constraints.

Collaborative Action Constraints For each collaborative
action ac executed at time t in policy tree τi, we add a con-
straint for all other agents that participate in ac to also ex-
ecute the action at time t. However, even though ac is ex-
ecuted always at time t, in some branches it might be that
ac is not executed at all. Consider the tree in Figure 2. In
two branches the agents do not jointly push the heavy box,
because it is already at the target position. Hence, the con-
straint to jointly push the heavy box applies only in branches
where the box is not initially at its target position.

The collaborative action constraints are hence conditional
constraints, conditioned on the value of some observed vari-
ables. The collaborative action ac must be executed only
in branches where the value of the observed variables con-
forms to the conditioned values. To identify these variables
we look at the set of branches Bac where ac was used, and
the set of branches B¬ac where ac was not used.

We identify the set of literals Pac that occur in all
branches in Bac prior to the execution of ac in that branch,
and the set of literals P¬ac that occur in all branches inB¬ac
throughout the branch execution. Then, Pac \ P¬ac defines
the difference between these branches. All agents that col-
laborate on ac must be able to observe the value of these
propositions. Otherwise, the collaborative action cannot be
soundly executed.

To employ the constraint in the single agent compiled
problem, we implement time into the contingent problems.
Although it is inconvenient to implement time into the
propositional, PDDL based, description that we use, in our
case we implement time only for a limited horizon, equiva-
lent to the depth d of the already computed tree. We set the
successor of time td to be t∞, and the successor of time t∞
to be also t∞, allowing other agents to plan beyond time d
if need be. We add a time parameter to all actions.

We now set the preconditions of all actions except ac at
time t to contain the conditioned variables values. That is, all
actions except ac can be executed at time t only in branches
that conform to the conditioned variable values, where ac
was not executed in the original tree τi. In the example
above, we add to the precondition of all actions at time t4 the
literal ¬BoxAt2,2. In order to execute any action other than
JointPushUp2,2 at time t4 the agent must first observe the
value of BoxAt2,2. Although it is not always the case, in
this example, the collaborative action JointPushUp2,2 has
a precondition BoxAt2,2, forcing the agent to observe the
value of BoxAt2,2 before time t4 in all branches.

3.4 Forward Progression and Backtracking
Given the constraints extracted from the adjusted policy tree
for agent i, we now create a new single agent planning prob-
lem for the next agent i+1. The planning problem augments
the definition in Section 3.1 with the collaborative action
and missing precondition constraints above. Constraints ir-
relevant to agent i + 1, such as missing preconditions that
i + 1 cannot achieve, or collaborative actions that do not
apply to i+ 1 are not added onto the single agent problem.

Agent i+ 1 now runs the contingent solver over the con-
structed single agent planning problem. If a solution is
found, then we again level the policy tree, extract additional
constraints, and create a new planning problem for the next
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Time t1 t2 t3 t4
Agent a1 a2 a1 a2

g1 = ¬BoxAt1,1 1 - 1 -
g2 = ¬BoxAt2,2 4 4 4 4
g3 = ¬BoxAt3,3 6 1 - 1

Table 1: Iterated improvements of goal completion time for
the simple box-pushing problem. Agent a1 plans alone,
achieving goals g1, g2, g3 at t1, t4, t6, respectively, and as-
suming that a2 will help pushing Box 2 at t4. Agent a2

manages helping pushing Box 2 and achieves g3 faster at t1,
therefore improving the overall plan and forcing a1 to re-
plan. Agent a1 plans without considering g3, and a2 replans
ignoring g1.

agent based on all constraints gathered thus far.
Although the original, multi-agent problem may have a

solution, the single agent problem of i+ 1 may not be solv-
able. For example, it may be that agent i added a constraint
for agent i+ 1 to be at position p at time t, but agent i+ 1 is
unable to reach p at the appropriate time. To understand why
the solver fails, we now plan again for each constraint for
agent i + 1, attempting to achieve the specified constraints
by reversed order of appearance. That is, we start remov-
ing constraints that occur later in the plan, until a solution
is found. This allows us to identify the first constraint c that
agent i+ 1 cannot achieve at the required time tc.

We now replan for agent i + 1 given all constraints prior
to c, where the goal is to achieve c at any time after tc. If
c cannot be achieved at any possible time after tc, then we
fail. Otherwise, the planner computes a plan that achieves all
constraints prior to c, and achieves c at time t′ at the latest.

We now identify the agent j < i + 1 that required the
constraint c, which agent i + 1 cannot fulfill in the given
time tc, and report back that the constraint c can be achieved
only at time t′ > tc. We now backtrack and replan for agent
j, with a constraint that c can only be achieved at t′ at the
earliest. All plans between j and i+ 1 are removed. That is,
if j manages to solve the problem, we move to agent j + 1
and continue.

3.5 Sub-Goal Assignment
While the above process can be used to solve the multi-agent
problem, it may produce inefficient plans. Consider, for ex-
ample, the policy tree generated in Figure 2. The agent pro-
duced a solution for pushing all 3 boxes. Obviously, how-
ever, it is more efficient to leave the rightmost box at position
3 for agent 2 to handle, as done in the local policy trees in
Figure 1. We now describe a mechanism that allows agent 1
to entrust the task of pushing the rightmost box to agent 2.

In addition to the constraints described in Section 3.3, we
extract from the policy tree of agent i for each goal literal
g ∈ G, the minimal time tg when g is achieved. We allow
other agents to acknowledge that g can be achieved by agent
i at time tg , by adding a conditional effect (timetg , g) to all
actions. That is, every action executed at time tg achieves g.

An agent j may, however, achieve g at a time t′ < tg . In
our running example, as shown in Table 1, agent 1 achieves

the goal ¬BoxAt3,3 at time 6. Agent 2 can help agent 1
in pushing the heavy box, and then wait for time 6, but a
shorter plan for agent 2 achieves ¬BoxAt3,3 at time 1, and
only then assist agent 1 with the heavy box, at which point
all goals have been achieved.

When progressing forward in the agent sequence we
maintain for each such goal g ∈ G only the earliest time
of achievement tg , and add the resulting conditional effects
when planning for all agents j > i. Once we successfully
finish planning for the last agent, we start again from the first
agent, this time allowing agents to use all the goal achieve-
ment conditional effect. Each agent uses only goal achieve-
ment effects created by other agents, to avoid a case where
agent i assigns goal g to agent j, while j assigns g to i, and
thus no agent actually achieves g.

This process may be repeated several times, because an
agent that earlier achieved g at time tg , may now be able
to achieve g at time t′ < tg , for example because it now
ignores other goals achieved more rapidly by other agents.
However, each time we start over it is because at least one
goal was achieved at an earlier time than in the previous it-
eration. Hence, this process must terminate eventually, and
we repeat this goal allocation replanning process until we
converge.

3.6 Ensuring Soundness
There can be several reasons why the above procedure may
not produce a sound, executable, plan. For example, it may
be that one agent consumes a precondition that another agent
relies on. One can simulate the joint policy for every possi-
ble initial state, effectively traversing the implicit joint pol-
icy tree, but this process is exponential.

We take instead an approximate approach. Each agent
collects from all other agents the effects of their actions at
each time step. Then, the agent checks whether the precon-
ditions of its local policy tree are not invalidated by the ac-
tions of other agents. This requires us to iterate only twice
over each local policy tree, once to collect the effects and
once to check that preconditions are not invalidated by other
agents.

Our soundness test is approximate because when an agent
produces an effect p in two different branches, at different
time steps t, t′, where t < t′, we assume that p is achieved at
time t in all branches. Thus, our soundness test is stronger
than needed, and it may be that a valid solution would be
discarded, but not vice versa.

If the test failed, then we report a failure. We leave a
deeper discussion of resolving such problems by introducing
additional constraints to future work.

4 Experimental Results
We now provide experimental results showing that our al-
gorithm can scale up to large QDec-POMDP problems. We
experiment with two domains — a variant of the well-known
box pushing problem (Seuken and Zilberstein 2007), and
an adaptation of the rovers domain (Stolba, Komenda, and
Kovacs 2016). All transitions and observations in both do-
mains are deterministic. We use CPOR (Komarnitsky and
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Table 2: Comparing IMAP to Dec-POMDP solvers over small, 1D, box pushing problems. |Ai| = 4, |Ωi| = 2. W is the grid
width, L and H denote the number of light and heavy boxes. E[C] is computed given a uniform initial belief and unit costs.
Planning is the number of single agent planning episodes.

Domain Compilation GMAA-ICE DICEPS JESP IMAP
W L H |S| |b0| Time E[C] Time E[C] Time E[C] Time E[C] Time E[C] Planning
2 2 0 16 4 12.8 1.5 0.22 1.5 16.18 1.5 0.78 1.5 7.23 4.6 2
3 2 0 36 4 25.5 1.5 0.58 1.5 18.19 1.5 1.67 1.5 6.28 4.87 2
3 2 1 70 8 50.3 4.5 × × 40.88 3.85 × × 37.07 4.06 2
5 2 1 200 8 164.6 6.5 × × 83.4 4.38 × × 41.84 12.24 4
5 4 1 800 32 × × × × × × × × 123.17 14.17 4

Shani 2016b) as the underlying planner, and Metric-FF as
the classical planner of CPOR. The experiments were run
on a Windows 10 64-bit machine, i5, 2.2GHz CPU, and
8GB RAM. Our method is implemented in C#, while Dec-
POMDP solvers were run on an Ubuntu virtual box on the
same machine.

Domains In the box pushing domain a set of boxes are
spread in a grid, and the agents must push each box to a des-
ignated location at the edge of the grid (the end of the col-
umn it appears in). Each box may be either in a pre-specified
location, or at its goal location to begin with. The agent must
be in the same location as the box in order to observe where
it is. Agents may move in the 4 primary directions, and can
push boxes to an upper cell, if they occupy the same location
as the box. Some boxes are heavy and must be pushed by
two agents jointly. The number of agent actions is hence 9,
and the number of observations is 2.

We also experiment with an adaptation of the multi-agent
rovers domain, where multiple rovers must collect together
measurements of soil, and rock. The agents navigate a
map of waypoints, and successful measurements can only
be taken at some waypoints, unknown initially to the agents.
When an agent is at a waypoint it can attempt a measure-
ment, which may be successful or not based on whether the
waypoint is appropriate for that measurement. Images of
rocks, and samples of soils can be collected by a single rover,
while rock samples require two rovers working jointly. Af-
ter collecting the measurements, the rovers must broadcast
them back to the ground station.

Comparison to Dec-POMDP Solvers Table 2 shows a
comparison between IMAP, exact (GMAA-ICE (Spaan,
Oliehoek, and Amato 2011)) and approximate (JESP (Nair
et al. 2003), DICEPS (Oliehoek, Kooij, and Vlassis 2008))
Dec-POMDP solvers on small box pushing domains. All
solvers were executed on various horizons until conver-
gence, and we report the result over the horizon with best
E[C] (computed assuming a uniform initial belief). In
all domains we used a 1D grid, and hence only 4 actions
per agent (observe-box, push, move-right, move-left). We
also compare to the compilation-based approach (Brafman,
Shani, and Zilberstein 2013). All solvers managed to solve
only very small problems, with a short horizon.

We acknowledge that this comparison is not entirely fair,
because Dec-POMDP solvers try to optimize solution qual-
ity, whereas we only seek a satisfying solution. Thus, Dec-

Table 3: IMAP on large domains. C is the number of re-
quired collaborations, T is the runtime (secs), M is the final
makespan, E[C] is the expected cost under a uniform distri-
bution, and P is the number of agent planning episodes.
|S| |I| |Ai| |Ω| |b0| C T M E[C] P

Box pushing
196 2 8 2 4 1 13.2 16 8 5
400 2 8 2 4 1 30 18 10.2 3

25000 5 8 3 8 1 56.2 13 6.82 12
1000 3 8 3 8 1 59 12 6.68 11
4000 3 8 5 32 2 247.1 19 11.6 9

Rovers
308 2 15 2 4 1 13.1 18 7.81 2
462 2 16 3 8 1 14.4 16 8.7 2
300 2 16 7 128 1 33.7 35 19.3 2

20250 3 15 5 32 1 37.1 12 5.5 3
1500 3 15 7 128 1 156.3 26 11.2 6
600 2 16 9 512 1 205.01 39 17.6 4

POMDP solvers may need to explore many more branches
of the search graph, at a much greater computational cost.
Furthermore, many Dec-POMDP solvers are naturally any-
time, and can possibly produce a good policy even when
stopped before termination. It may well be that solvers
may reach a satisfying policy, which is the goal in a QDec-
POMDP, well before they terminate their execution.

IMAP on Larger Problems Table 3 shows results over
large domains. We experimented with varying grid sizes,
number of agents, and different compositions of light and
heavy boxes . We report runtime (T, secs.), the expected cost
under a uniform distribution (E[C]), and the plan makespan
(M, maximal time to completion), as a measure of plan qual-
ity, and the total number of single agent planning episodes
(P). The difficulties in this domain are mainly due to the
number of collaborations, and the alternative goal assign-
ments.

The problem difficulty is defined, as before, by the num-
ber of agents and the size (number of waypoints), but also by
the uncertainty — the number of potential waypoints where
a measurement can be taken. While the number of states is
smaller, the number of actions, and the initial belief uncer-
tainty, are larger in this domain compared to the box pushing
problems. We can see here that the difficulty mostly stems
from the size of the initial belief, requiring more complex
single agent plan trees.
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Figure 3: Box pushing example for Table 4

As can be seen, IMAP scales well to problem sizes well
beyond the ability of current planners. The complexity of
the problem grows both with the state space size, as well as
the number of agents, the number of required collaborative
actions, and the initial uncertainty. The number of planning
episodes encapsulates both constraints that could not be met,
or plan improvements by later agents. Where the number of
planning episodes is identical to the number of agents, there
was no need to backtrack. The largest number of planning
episodes is 12, where 5 agents had to push 3 boxes, and
several agents suggested improvements to the initial plan,
requiring us to go back and forth. Still, this did not cause
the planner to take an exceptionally long time. The main
bottleneck of IMAP is the time required to compute a single
agent plan in the larger domains, not the number of replan-
ning episodes.

Figure 3 shows an example a box pushing domain with 3
agents and 2 boxes, box0 which is heavy, and box1 which
is light. Table 4 shows the execution of IMAP on this do-
main. Agent 1 wants to push box0 with agent 2 at time 4,
and then push box1 at time 14. Agent 2 reports that it can
only push box0 at time 7. Agent 1 now selects agent 3 for
collaboration. Agent 2, relieved of pushing box0 can push
box1 at time 5. Agent 1 confirms this plan improvement.
When reaching agent 3 it reports that it can help with box0

only at time 8. Agent 1 replans, and chooses collaboration
with agent 2, who cannot push box1 at time 5. Agent 3 now
reports that it can push box1 at time 4. All agents confirm
the new plan.

5 Discussion and Related Work
Our approach is well rooted in the multi-agent literature. It-
erating over the agents, focusing on one agent at a time is
used for reducing the complexity of considering a joint pol-
icy. For example, JESP (Nair et al. 2003) modifies the policy
of one agent, while keeping the policies of all other agents
fixed. The exponential complexity of considering all possi-
ble joint observations is not reduced, though, making scaling
up difficult, as can be seen in our experiments as well.

Similar approaches have been used in other multi agent
problems such as DCOP (Chapman et al. 2011), privacy pre-
serving planning (Borrajo 2013), and many more.

Focusing on interaction points between the agents is also
a well known idea. In Dec-POMDPs, (Spaan and Melo
2008) reduce the problem complexity by considering states
in which agents must interact, and states where they can act
independently. Similar intuitions were pursued by (Witwicki
and Durfee 2010) and (Oliehoek, Witwicki, and Kaelbling
2012), for decoupling the state space considering how agents
influence one another.

To resolve the dependencies, the AI community has sug-
gested that agents should enforce commitments (Jennings
1993): constraints on policies that must be adhered. In multi

Table 4: IMAP execution example. P denotes the planning
episode, BT denotes the reason for backtracking (F - con-
straint failure, I - goal improvement).

P 1 2 3 4 5 6 6 7 8 9 10 11 12
Agent 1 2 1 2 1 2 3 1 2 3 1 2 3

box0 4 × 4 4 4 4 × 7 7 7 7 7 7
box1 14 14 14 5 5 5 5 5 17 4 4 4 4

BT F I F I

agent planning, these commitments take a very similar role
and structure to what we do (Brafman and Domshlak 2008).

As such, the main contribution in this paper is in an ef-
ficient adaptation of these well known ideas into the new
QDec-POMDP framework, scaling well beyond the ability
of current exact and approximate Dec-POMDP solvers.

6 Conclusion
We presented IMAP — an iterative algorithm for multi-
agent planning for QDec-POMDPs, which iteratively plans
for a single agent. IMAP assumes that other agents will be
available to help the agent with collaborative actions, and
produces constraints to the other agents for the required col-
laborations. Later agents that cannot meet these constraints
results in backtracking. In addition, our algorithm allows for
later agents to improve the plans of the first agents, by taking
responsibility for some tasks, causing again backtracking.

We experiment with two types of domains, the well-
known box pushing domains and a new Dec-POMDP do-
main adapted from the multi-agent planning community. On
both domains, we have shown a scaling up ability well be-
yond the limitation of current Dec-POMDP planners.

In the future, we will experiment with more domains, fo-
cusing on other types of collaborations. E.g., we would ex-
plore cases where each agent completes a part of a task, but
there are no collaborative actions. We will also explore cases
where agents execute actions that interfere with other agents,
such as actions that consume a precondition required by an-
other agent. We believe that simple extensions of our ap-
proach will be able to handle such cases.

An important extension of our algorithm is for non-
deterministic actions, incurring loops. Our constraints must
be significantly modified to cope with loops.
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Abstract

We adapt a partial order reduction technique based on
stubborn sets to the setting of privacy-preserving multi-
agent planning. We proof that the presented approach
preserves optimality and show experimentally that it
can significantly improve search performance on some
domains.

Introduction
Recently, privacy preserving planning (Nissim and Brafman
2014) has become an increasingly popular multi-agent plan-
ning framework. It enables agents to engage in a coopera-
tive planning process in order to compute joint plans that
achieve mutual goals. Notably, the framework allows agents
to keep certain information private. There are many settings
in which this is of great importance. Consider, for instance,
research departments of different companies that want to
collaborate on a common project in order to mutually ben-
efit from each others’ competence. Exchanging proprietary
data could diminish the benefits of this endeavor.

Heuristic search is a particularly successful approach to
privacy-preserving planning. Specifically, multi-agent for-
ward search (MAFS) (Nissim and Brafman 2012) has
proven to be highly efficient, when coupled with good
heuristic functions (Štolba and Komenda 2014; Štolba,
Fišer, and Komenda 2015). However, when accurate heuris-
tic estimates are unavailable, the search space is often
searched exhaustively (e.g. when the search gets stuck on
a plateau). Even with almost perfect heuristic estimates,
search effort can scale exponentially (in the size of the plan-
ning task), when an optimal solution is sought (Helmert and
Röger 2008). In these cases, additional pruning techniques
that narrow down the number of state expansions, while pre-
serving optimality, can substantially improve the search per-
formance.

Partial order reduction (POR) techniques exploit that in-
dependent actions can be applied in an arbitrary order. Ide-
ally, search algorithms would consider only one such order,
thereby reducing the number of expanded states exponen-
tially. Partial order reduction based on stubborn sets (Val-
mari 1989) strives to achieve just that and has successfully
been applied to optimal (single agent) planning (Alkhazraji
et al. 2012; Wehrle et al. 2013). In this paper we adapt and

apply stubborn sets pruning to the privacy-preserving plan-
ning setting. The main challenge addressed is how to ac-
count for private information without losing completeness
or optimality. We show experimentally that the revised algo-
rithm can significantly improve search performance.

As a running example, we use a new domain, inspired by
a production site. The goal is to produce a set of products
with certain properties. The agents must process the prod-
ucts to establish their required properties. Each property has
a corresponding processing action, all of which are private
and independent of one another. A concrete example that
embodies this type of domain has the agents building per-
sonal computers according to a given set of orders. Each or-
der specifies an individual PC setup, i.e. the set of compo-
nents the PC should consist of. Many components, like hard
disc drives, physical drives, sound card, working memory,
etc., can independently be installed onto the mainboard.

Background
We consider multi-agent planning in a notational variant
of the privacy-preserving planning formalism (Nissim and
Brafman 2014). The formalism extends classical planning
with a notion of agents, their respective action sets, and a
privacy partition.
Definition 1 (Multi-agent planning task). A multi-agent
planning task is a tuple Π = 〈N,V, s0, s?, {Ai}i∈N 〉, where

• N = {1, 2, . . . , n} is a finite set of agents,
• V is a finite set of state variables. Each v ∈ V is associ-

ated with a domain Dv . A variable assignment is a func-
tion s with domain Ds ⊆ V , such that s(v) ∈ Dv for all
v ∈ Ds. A variable assignment defined for all variables in
V is called state.

• s0 is the initial state,
• s? is a variable assignment over V called the goal,
• Ai is a finite set of actions available to agent i. Each ac-

tion a = 〈pre(a), eff(a), c(a)〉 ∈ Ai consists of two vari-
able assignments over V called precondition pre(a) and
an effect eff(a), and a cost c(a) ∈ R+

0 . The set of all
actions is A =

⋃
i∈N Ai.

An action a is applicable in state s if s agrees with pre(a)
wherever pre(a) is defined. Application of action a in state
s yields the successor state a(s) which agrees with eff(a)
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where eff(a) is defined, and agrees with s, elsewhere. The
set of all applicable actions in state s is app(s). The solution
to a planning task is a sequence of actions π = (a1, . . . , ak)
such that a1 is applicable in s0, every subsequent action is
applicable in the state generated by its preceding action, and
ak(. . . (a1(s0)) . . . ) |= s?.

Multi-agent planning tasks can be conceived as “agent-
decoupled” classical planning tasks, and are solvable by
centralized classical planning systems like Fast Downward
(Helmert 2006). Some settings require agents to preserve
privacy during the planning process. By constraining the
agents to keep certain information on the planning task pri-
vate, the use of distributed planning techniques becomes
sensible. We now introduce the required notation to then
define the privacy-preserving extension to multi-agent plan-
ning.
Definition 2 (Projection). Let s be a variable assignment
over the set of variables V . The projection of s to V ′ ⊆ V is
a variable assignment s|V ′ that is defined on V ′ and agrees
with s wherever it is defined, i.e. s|V ′(v) = s(v), for all
v ∈ V ′.
Definition 3 (Action projection). The projection of an
action a to the set of variables V ′ is a|V ′ =
〈pre(a)|V ′ , eff(a)|V ′ , c(a)〉.

Consequentially, the projection of a set of actionsA to the
set of variables V ′ is defined as A|V ′ = {a|V ′ |a ∈ A}.
Definition 4 (Privacy partition). Let Π =
〈N,V, s0, s?, {Ai}i∈N 〉 be a multi-agent planning task. A
privacy partition is an indexed family of sets

P = {Pv}v∈V
that, for each variable v ∈ V , contains the set of agents
Pv ⊆ N that have access to v.

In this paper, we only consider privacy partitions where
all sets Pv, v ∈ V have a cardinality of either one or |N |.
Furthermore, if v ∈ Ds? then Pv = N . Thus, P partitions
the set of variables V into a set of public variables V pub,
known to all agents, and |N | sets of private variables V pri

j ,
each known to a single agent j ∈ N only:

• V pri
j = {v ∈ V | Pv = {j}}, for j ∈ N

• V pub = {v ∈ V | Pv = N}
Actions are partitioned into a set of public actions Apub

and sets of private actions Apri
j , accordingly:

• Apri
j = {a ∈ Aj | a = a|V pri

j
}, for j ∈ N

• Apub =
⋃

j∈N (Aj \Apri
j )

Definition 5 (Local view). Let Π = 〈N,V, s0, s?, {Ai}i∈N 〉
be a multi-agent planning task and P be a privacy partition
for Π. The local view of agent j on Π is defined as

Πj = 〈N,V j , sj0, s?, {A
j
i}i∈N 〉, where

• V j = V pub ∪ V pri
j ,

• sj0 = s0|V j , and

• Aj
i = (Ai \Apri

i )|V j for i 6= j, and Aj
j = Aj .

Definition 6 (Privacy preserving planning task). A privacy
preserving planning task is a tuple (Π,P) consisting of a
multi-agent planning task Π and a privacy partition P .

A multi-agent planning algorithm is weakly private if
each agent can only access its own local view on the plan-
ning task and the agents never exchange private informa-
tion with one another. A multi-agent planning algorithm is
strongly private if no agent can deduce private information
from the course of conversation (message history) between
the agents. Private information includes knowledge about
the existence or value of a variable private to another agent,
or an action model (Brafman 2015).

Multi-Agent Forward Search
Because agents can only access a factor (their local view)
of the original multi-agent planning task, cooperation with
other agents becomes a necessity.

Multi-Agent Forward Search (MAFS) (Nissim and Braf-
man 2014) is a general search scheme for privacy preserv-
ing multi-agent planning. Each agent conducts a best-first
search, maintaining its own open and closed list. Succes-
sors of expanded states are generated by using the agents’
own actions only. Whenever a state is generated for which
another agent has an applicable public action, a message
is sent to that agent. The message contains the full state,
heuristic score and g-value of the sending agent. Private
fluents of the state are encrypted such that only the rele-
vant agents can decrypt it. When agent i receives a mes-
sage m = 〈s, hj(s), gj(s)〉 of some other agent j, it checks
whether s is already in its open or closed list. If this is not
the case, agent i puts s on its open list. If agent i generated
state s previously with higher cost, then it puts s on its open
list again and assigns new costs gj(s) to it. When an agent
generates a goal state, it initiates a distributed plan extrac-
tion procedure by broadcasting the goal state in a message
to all agents.

Strong Stubborn Sets
Strong stubborn sets can be used within forward search algo-
rithms to potentially reduce the number of successor states
generated in each state expansion step. Instead of expand-
ing a state s by generating a successor state a(s) for each
applicable action a ∈ app(s), only a subset of actions
Tapp(s) ⊆ app(s) needs to be considered. Applicable ac-
tions that are not contained in Tapp(s) are said to be pruned.

In the following, we provide the definitions of action
dependencies, disjunctive action landmarks (Helmert and
Domshlak 2009), and necessary enabling sets, which are the
three crucial components for the computation of strong stub-
born sets.

Definition 7 (Action dependency). Let Π =
〈N,V, s0, s?, {Ai}i∈N 〉 be a multi-agent planning task, and
let a1, a2 ∈ A.

• a1 disables a2 if there exists a variable v ∈ V and facts
〈v, d1〉 ∈ eff(a1) and 〈v, d2〉 ∈ pre(a2) s.t. d1 6= d2.

• a1 and a2 conflict if there exists a variable v ∈ V and
facts 〈v, d1〉 ∈ eff(a1) and 〈v, d2〉 ∈ eff(a2) s.t. d1 6= d2.
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Algorithm 1: Strong stubborn set computation of agent
i for state s (incomplete)

Input: Π = 〈N,V, s0, s?, {Ai}i∈N 〉, state s
Result: strong stubborn set Ts ⊆ A

1 Ts ← Ls?
s for some DAL Ls?

s for s? in s
2 repeat
3 forall a ∈ Ts do
4 if a ∈ app(s) then
5 Ts ← Ts ∪ dep(a)
6 else
7 Ts ← Ts ∪Na

s for some NES Na
s

8 until Ts reaches a fixed-point
9 return Ts

• a1 and a2 are dependent if a1 disables a2, or a2 disables
a1, or a1 and a2 conflict. We write dep(a) for the set of
actions with which a is dependent.

Definition 8 (Disjunctive action landmark). A disjunctive
action landmark (DAL) for a set of facts F in state s is a set
of actions L such that every applicable action sequence that
starts in s and ends in s′ ⊇ F contains at least one action
a ∈ L.
Definition 9 (Necessary enabling set). A necessary enabling
set (NES) for action a /∈ app(s) in state s is a disjunctive
action landmark for pre(a) in s.

We can now give the definition of strong stubborn sets. It
is identical to the one used in classical single-agent planning
(Alkhazraji et al. 2012) except for the input data now being
a multi-agent planning problem.
Definition 10 (Strong stubborn set). Let Π be a multi-agent
planning task with actions A and goal s?, and let s be a
state of Π. A strong stubborn set (SSS) in s is an action set
Ts ⊆ A such that:

1. For each a ∈ Ts ∩ app(s), we have dep(a) ⊆ Ts.
2. For each a ∈ Ts \ app(s), we have Na

s ⊆ Ts for some
necessary enabling set Na

s of a in s.
3. Ts contains a disjunctive action landmark for s? in s.

The above definition of strong stubborn sets ensures that
for every plan π for the current state s, a permutation of π
exists which is not pruned. An algorithm to compute a strong
stubborn set for a state s is given in Algorithm 1. The state
expansion step of forward search algorithms can be modified
in the following way: before expanding state s, compute the
respective strong stubborn set Ts using Algorithm 1, then
expand s by applying the actions in Tapp(s) := Ts ∩ app(s)
only. As a consequence, states reached by actions in app(s)
but not in Ts are pruned.

Strong Stubborn Sets Revised
We now exemplify two ways in which the pruning of succes-
sor states based on strong stubborn sets, as defined above,
violates completeness when used in combination with a pri-
vacy preserving distributed planning approach, like MAFS.
We then propose two possible adaptations that make up for

Agent 1 Agent 2 Agent 1 Agent 2

(1) (2)

Figure 1: Two ways in which planning for the task of Exam-
ple 1 goes wrong. Agent 1’s action is represented by a solid
arrow, agent 2’s action by a dashed arrow. Dotted arrows rep-
resent state transmissions. Pruned actions are marked red.

the identified shortcomings and argue that the revised stub-
born set approach maintains the completeness property of
MAFS.

The first example fails despite the absence of private in-
formation. The second example fails because required infor-
mation is private to another agent.

Example 1. Let (Π,P) = (〈N,V, s0, s?, {A1, A2}〉,P) be
a privacy preserving planning task, with

00

10

01

11

Search space N = {1, 2}, V = {v0, v1}
P = {N,N}
s0 = {v0→ 0, v1→ 0}
s? = {v0→ 1, v1→ 1}
A1 = {a} with a = 〈v0→ 0, v0→ 1〉
A2 = {b } with b = 〈v1→ 0, v1→ 1〉

There is no private information (all variables are known
to both agents), hence, the agents’ public projections are
identical, i.e. Π1 = Π2 = Π. When expanding a state,
each agent independently applies stubborn set pruning (Al-
gorithm 1) to potentially reduce the number of generated
successor states. Ideally, the agents would either prune state
10 or state 01.

Because actions a and b are independent of one another
and both are applicable in the initial state, the respective
strong stubborn set contains either a or b (but not both), de-
pending on the choice of the initial disjunctive action land-
mark. When both agents choose the same DAL, they would
virtually agree on either pruning state 01 or state 10 (which
is the desired outcome). If the agents select different DALs,
however, this leads to the following undesirable outcomes,
depicted in Figure 1:

(1) The agents end up generating all states. This happens be-
cause both of them prune the other’s initial action. There-
fore, they generate different successor states, which they
then transmit to the respective other agent.

(2) The agents end up in a livelock, waiting for one another to
apply the first action (which they pruned) and to transmit
the resulting state (which never happens).

ICAPS Proceedings of the 6th Workshop on Distributed and Multi-Agent Planning (DMAP-2018)

53



In this example, planning fails because the agents do
not synchronize their pruning efforts, using different strong
stubborn sets, and prune “public” successor states, relevant
to the other agent. We can resolve this issue by enforcing that
the stubborn sets computed by each agent only include the
agent’s own actions. That way, the agents would not prune
their own public action in the initial state and therefore not
end up in a livelock. We will explain this in more detail fur-
ther below and continue by emphasizing another issue that
occurs when dealing with private information.

Example 2. Let (Π,P) = (〈N,V, s0, s?, {A1, A2}〉,P) be
a privacy preserving planning task, with

000

100

010

110 111 211

N = {1, 2}, V = {v0, v1, v2},P = {N,N, {2}}
s0 = {v0→ 0, v1→ 0, v2→ 0}
s? = {v0→ 2}
A1 = {a, b}, A2 = {c, d} with
a = 〈v0→ 0, v0→ 1〉, b = 〈v1→ 0, v1→ 1〉
c = 〈v0→ 1 ∧ v1→ 1v2→ 1〉, d = 〈v2→ 1, v0→ 2〉

Here, agent 1 can savely prune either action a or b in the
initial state, thereby avoiding either state 100 or 010, re-
spectively. This, however, does not work out, as both agents
are planning with their local view. Consider the local view
of agent 1:

N = {1, 2}, V 1 = {v0, v1}
s10 = {v0→ 0, v1→ 0}, s? = {v0→ 2}
A1

1 = {a, b}, A1
2 = {c|V 1 , d|V 1} with

a = 〈v0→ 0, v0→ 1〉, b = 〈v1→ 0, v1→ 1〉
c|V 1 = 〈v0→ 1 ∧ v1→ 1, ∅〉, d|V 1 = 〈∅, v0→ 2〉

To agent 1 there appears to be no connection between agent
2’s actions, i.e. c and d appear to be independent. Further-
more, action d appears to be applicable in the initial state.
Applying Algorithm 1 in s0 therefore yields the following
strong stubborn set Ts:

Ts = {d}
Hence:

Tapp(s0) = app(s0) ∩ Ts = {a, b} ∩ {d} = ∅

Since agent 1 has no action to apply in its initial state, no
goal can be reached and completeness is violated.

Initially, agent 1 computes a disjunctive action landmark
for the goal (Algorithm 1, line 1). The only action satisfy-
ing a goal condition is action d of agent 2. The stubborn
set therefore initially consists of action d only. According
to Algorithm 1 either the set of dependent actions dep(d)

Algorithm 2: Strong stubborn set computation of agent
i for state s (revised, complete)

Input: Π = 〈N,V, s0, s?, {Aj}j∈N 〉, state s
Result: strong stubborn set Ts ⊆ A

1 Ts ← {a ∈ Apub
i | a|V pub appl. in s}

2 repeat
3 forall a ∈ Ts do
4 if a ∈ app(s) then
5 Ts ← Ts ∪ (dep(a) ∩Ai)
6 else
7 Ts ← Ts ∪ (Na

s ∩Ai) for some NES Na
s

8 until Ts reaches a fixed-point
9 return Ts

has to be added to Ts (if d is applicable in s0) or a neces-
sary enabling set for d (if d is not applicable in s0). Neither
is possible for agent 1. Additionally, agent 1 cannot decide
correctly, whether action d is applicable in s0 or not. This
would require knowledge of private information not avail-
able to agent 1. In the example, agent 1 adds all dependent
actions instead of a necessary enabling set for d. Since ac-
tion d is not dependent on any other action in agent 1’s lo-
cal view, a fixed point is reached and the algorithm returns
Ts = {d}. Even if agent 1 could decide that action d was
not applicable in s0, he could not add a valid necessary en-
abling set for d. The only enabling action is c and it enables
a private precondition of d that is not visible to agent 1.
Hence, the NES would be empty. (As we have already seen,
computing the dependent actions is error prone for the same
reasons.)

Again, we observe that the inclusion of other agents’
(publicly projected) actions during the strong stubborn set
computation is problematic. For these actions, the agent can-
not compute disjunctive action landmarks or neccessary en-
abling sets correctly. Simply excluding other agents’ actions
from the stubborn set computation, as the solution to the first
example suggests, does not resolve the entire issue. In Ex-
ample 2, agent 1 has no action to satisfy a goal condition,
hence, the initial DAL would be empty when simply omit-
ting agent 2’s actions.

Having other agents’ actions in the stubborn sets is only a
superficial cause of failure, while the real problem is deeper.
The ultimate cause is that public actions, which are part of
a plan, are pruned. States created by public actions resem-
ble potential interaction points between the agents. An agent
cannot decide, whether these states are part of a plan leading
to a goal or not, because they have only partial knowledge
of the other agents’ actions. Consequently, we need to alter
the definition of strong stubborn sets in the context of pri-
vacy preserving planning. Instead of requiring the stubborn
sets for state s to contain a disjunctive action landmark for a
goal condition (Definition 10, point 3), we constrain them to
contain the set of all public actions that are reachable from
s by a (potentially empty) sequence of private actions. This
definition of strong stubborn sets ensures that for every se-
quence of actions π, starting in the current state s and end-
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ing with a public action, a permutation of π exists which is
not pruned. All successor states created by public actions are
therefore preserved. Furthermore, we can now savely restrict
the stubborn set computation to include only the agents’ own
actions.

Consider the following, revised definition of strong stub-
born sets:
Definition 11 (Strong stubborn set for privacy preserving
planning). Let (Π,P) be a privacy preserving planning task
and let s be a state of Π. A strong stubborn set for agent i in
s is an action set Ts ⊆ Ai such that:

1. For each a ∈ Ts ∩ app(s), we have dep(a) ∩Ai ⊆ Ts.
2. For each a ∈ Ts \ app(s), we have Na

s ∩ Ai ⊆ Ts for
some necessary enabling set Na

s of a in s.

3. Ts contains all actions a ∈ Apub
i , such that a|V pub is ap-

plicable in s.

Note how the first two constraints are only subtly differ-
ent from Definition 10 restricting the included actions to be-
long to agent i only, while the third constraint ensures that
all interaction points are preserved. Algorithm 2 computes
stubborn sets consistent with the above definition.

Consider Example 1 again. According to Algorithm 2
each agent initially adds its own public action (line 1). Since
they are both applicable in the initial state, all dependent ac-
tions are added in the next step (line 4, 5). There are none,
hence, the computation reaches a fixed point and the stub-
born sets are returned: T00 = {a} for agent 1 and T00 = {b}
for agent 2. We end up with case (1) depicted in Figure 1.
Similarly, in Example 2 agent 1 adds actions a and b to the
initial strong stubborn set. Since these two actions are both
applicable in the initial state and there are no dependent ac-
tions, the computation finishes returning T000 = {a, b}.

In both examples completeness is retained at the expense
of pruning capacity. Since an agent cannot savely prune pub-
lic actions, the pruning potential is restricted to permutations
of private action sequences. We now discuss some theoret-
ical properties of the presented stubborn set pruning tech-
nique.

Privacy
SSS for privacy preserving planning strives to reduce each
agents individual search space without introducing any ad-
ditional communication. It never transmits a state that is
not transmitted by the respective planning algorithm without
SSS pruning. We therefore believe that the presented tech-
nique is strongly privacy preserving.

Optimality
First, we define the terminology used in the proof.
Definition 12 (Public step). A public step in state s is a se-
quence of actions πa, where
• a is a public action of agent i and
• π is a minimal plan from s to pre(a), i.e. π[s] |= pre(a),

that consists of private actions of agent i only.
A plan π from s to pre(a) is minimal, if there is no subse-
quence π′′ of π that can be moved behind action a, such that
πa[s] = π′aπ′′[s], where π′ is the sequence π without π′′.

A public step can be thought of as a sort of “macro action”
that encapsulates the execution of private actions followed
by a single public action.
Definition 13 (Public state). A state s is called public state
if it is reachable from the initial state by a sequence of public
steps.

Lemma 1. Let (Π,P) be a privacy preserving planning
problem and π = (a1, a2, . . . , ak) be a solution to Π. Then,
there exists a permutation π′ = (a′1, a

′
2, . . . , a

′
k) of π, such

that for all pairs of consecutive public actions1 a′i, a
′
j in π′,

(a′i+1, a
′
i+2, . . . a

′
j) is a public step.

Proof. Let π = (a1, a2, . . . , ak) be a solution to Π, such that
every private action in π is followed by another action (pub-
lic or private) of the same agent. Only considering solutions
of this type preserves optimality and completeness (Nissim
and Brafman 2014). Assume that, between two consecutive
public actions ai and aj we have a sequence of actions (of
the same agent) πi..j = (ai+1, ai+2, . . . , aj) that is not a
public step. Then, there must be a subsequence in πi..j that
can be moved behind aj . By moving this subsequence be-
hind aj , just before the next sequence of actions of the same
agent, we create a permutation π′′ that is a legal plan. Re-
peating this process until all inconsistencies have been re-
moved yields a plan π′ that is a permutation of π and that
consists of public steps only.

Lemma 2. Restricting the successor generation to a SSS
(according to Def. 11) in every state is optimality preserving
for privacy preserving planning.

Proof. Let (Π,P) be a privacy preserving planning task.
The proof is by induction over k ∈ N, where Sk is the set
of public states that are reachable in at most k public steps
from the initial state and S′k is the set of public states that are
reachable in at most k public steps when stubborn set prun-
ing is applied. We show that Sk = S′k for all k. (It suffices to
consider public states instead of all possible states because
of Lemma 1.)

The initial state s0 is reachable by an empty sequence of
actions (zero public steps), therefore, S0 = {s0} = S′0.

Let the set of reachable states expand from Sk−1 to Sk ⊃
Sk−1. For each new state s∗ ∈ Sk \ Sk−1, a state s ∈ Sk−1
must exist from which s∗ is reachable, in a single public
step. Therefore, there must be a public state s ∈ Sk−1 and
a public step πa, such that πa[s] = s∗. Let i be the agent,
such that a ∈ Apub

i .
According to the induction hypothesis Sk−1 = S′k−1, it

holds that s ∈ S′k−1. We argue that SSS preserves a public
step (of agent i) σa, such that σa[s] = s∗. Observe that a
is included in Ts for agent i since a ∈ Apub

i and its public
projection a|V pub is applicable in s (Definition 11, point 3).

If a is applicable in s, i.e. a(s) = s∗, then s∗ ∈ S′k. If
a is not applicable in s, then a necessary enabling set for a
must be contained in Ts (Definition 11, point 2). That is, a

1By consecutive public actions we mean that there are no other
public actions between a′

i and a′
j . There might be private actions

in between, however.
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blind goalcount FF

Domain def sss def sss def sss

blocksworld 0 0 1 1 0 1
depot 2 2 6 4 0 0
driverlog 7 7 17 16 16 16
elevators 3 2 20 20 12 14
logistics 3 3 18 14 17 15
rovers 20 20 19 20 20 18
satellites 3 3 20 20 20 19
sokoban 2 0 2 4 7 7
taxi 6 8 11 13 2 2
wireless 0 0 0 0 2 1
woodworking 2 1 2 1 2 1
zenotravel 5 5 20 16 16 14

prod. site 0 20 11 20 8 20
Total 53 71 147 149 122 128

Table 1: Benchmark results.

disjunctive action landmark for pre(a) in s. The stubborn
sets generated for s according to Definition 11 correspond
to the stubborn sets generated for s according to Definition
10 when planning towards the goal s? = pre(a) with the
set of actions A = Ai. Since strong stubborn sets consistent
with Definition 10 are optimality and completeness preserv-
ing (Alkhazraji et al. 2012), a permutation σ of π must be
preserved, such that πa[s] = s∗ = σa[s]. Hence s∗ ∈ S′k.

Evaluation
The presented algorithms were implemented in a distributed
multi-agent planning system written in Go. Experiments
were run on a 2.6 Ghz Intel Xeon 8-core CPU. Each prob-
lem instance used a single core and 8 GB of RAM, shared
by all agents.

We experimented with the benchmarks from the
CoDMAP competition (Štolba, Komenda, and Kovacs 2015)
consisting of 12 domains with 20 problems each. Of the new
production site domain 20 problem instances of varying dif-
ficulty were included in the benchmarks. Planning time was
limited to 30 minutes per problem instance. Table 1 shows
coverage results for the tested configurations, while Figure
2 shows the running time for the production site instances.

Production site domain. While plain MAFS solves 0, 11
and 8 instances of the production site domain when using
the blind, goalcount and FF heuristic (Hoffmann and Nebel
2001) respectively, MAFS with stubborn set pruning solves
all 20 instances, independent of the heuristic used.

Blind MAFS resembles depth-first search and chains to-
gether random sequences of actions, most of which do not
lead to a goal. Due to the expansive search space, even the
easiest instances cannot be solved.

The goalcount and FF heuristics, on the other hand, both
guide MAFS towards states with as many subgoals satisfied

Figure 2: Runtime in seconds for increasingly difficult in-
stances of the production site domain. Both configurations
used the goalcount heuristic.

as possible. That way, the search focuses on one subgoal, or
product, after the other and the number of generated states
is reduced decisively. Although this behaviour seems to be
favourable, it has its own shortcomings. The heuristics can-
not differentiate between two states in which the same num-
ber of subgoals are satisfied, even if one state is significantly
closer to satisfying another subgoal than the other. The rea-
son for this is that the heuristics are computed based on each
agent’s local view. The public actions of other agents es-
tablish a subgoal (finish a product) with a cost of one and
appear to always be applicable, because their public projec-
tions do not include their private preconditions. Because of
this heuristic inaccuracy, states that satisfy a larger number
of subgoals but which do not lead to a goal are preferred to
states that lead to a goal but satisfy fewer subgoals. Process-
ing actions, for instance, cannot be undone. Therefore, if a
product is processed in a way not consistent with its goal re-
quirements, the agent cannot finish that product. The respec-
tive subgoal can then only be supplied by another agent. If
no agent can supply the subgoal, the search has to backtrack
to a state in which the faulty processing action has not been
applied yet.

This problem does not occur in the stubborn set pruning
variant. Counter-productive processing actions that prevent
a product from being finished are always pruned. These ac-
tions are independent of the other processing actions and
therefore may only be included in the stubborn set if they
establish a precondition of the public action that finishes the
product. Stubborn set pruning therefore effectively restricts
the search to consider only such states that can be extended
into a goal state. When FF or goalcount heuristic is used, the
stubborn set approach also focuses on one subgoal after the
other. The generated plans encourage the division of labor
between the agents, each creating a subset of the products,
rather than one agent creating them all. Furthermore, plans
are found very fast, as all parts of the search space that do
not progress towards a goal are pruned. Figure 2 highlights
this fact.
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CoDMAP domains. Regarding the CoDMAP domains,
the results are mixed. There are no major differences in cov-
erage between the strong stubborn set approach and regular
MAFS, although overall the latter configuration solves a few
problems more. We believe that this is due to the additional
computations required for computing the stubborn sets. In-
terestingly, these benchmarks seem not to benefit from the
stubborn sets based partial order reduction at all.

A possible explanation is that these domains already in-
ternalize a form of POR by decoupling the planning task in
such a way that each agent has their own individual respon-
sibilities. If in the production site domain each agent had a
single processing action only, there would be as good as no
pruning potential. This is exactly what we find in some of the
CoDMAP domains. The woodworking domain is a good ex-
ample of such an agent decoupling. Here, most of the agents
can only perform a single action.

Another explanation is that the pruning potential cannot
be exploited, because the agents compute their stubborn sets
independent of one another. Therefore, they might end up
generating more states than necessary, similar to the first
case of Figure 1. Investigating how to get the agents’ prun-
ing efforts more in sync seems to be worthwhile.

Conclusion
This paper provides a theoretical basis for stubborn sets
pruning in the context of privacy preserving planning. The
empirical results show that some domains significantly ben-
efit from partial order reduction. Although the production
site domain was created with partial order reduction in mind,
we believe that it models a specific situation that can also
occur within the search space of other domains. In this sit-
uation, the heuristics are blind or misleading and, in conse-
quence, the search exhaustively explores the affected parts
of the search space. When these parts consist of many inde-
pendent actions, then stubborn sets pruning can significantly
reduce the search effort.
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Štolba, M.; Fišer, D.; and Komenda, A. 2015. Admissi-
ble landmark heuristic for multi-agent planning. In Proc.
ICAPS.
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