
28th International Conference on
Automated Planning and Scheduling

June 24–29, 2018, Delft, the Netherlands

2018 - Delft

HSDIP 2018
Proceedings of the 10th Workshop on

Heuristics and Search for Domain-independent
Planning (HSDIP)

Edited by:

Guillem Francès, Daniel Gnad, Michael Katz, Nir Lipovetzky,
Christian Muise, Miquel Ramirez, and Silvan Sievers

Organization

Guillem Francès
University of Basel, Switzerland

Daniel Gnad
Saarland University, Germany

Michael Katz
IBM Research AI, NY, USA

Nir Lipovetzky
University of Melbourne, Australia

Christian Muise
IBM Research AI, Cambridge, MA, USA

Miquel Ramirez
University of Melbourne, Australia

Silvan Sievers
University of Basel, Switzerland

ii

Foreword

Planning as heuristic search remains among the dominating approaches to many variations of domain-independent planning,
including classical planning, temporal planning, planning under uncertainty and adversarial planning, for nearly two decades.
The research on both heuristics and search techniqes is thriving, now more than ever, as evidenced by both the quality and the
quantity of submissions on the topic to major AI conferences and workshops.

This workshop seeks to understand the underlying principles of current heuristics and search methods, their limitations,
ways for overcoming those limitations, as well as the synergy between heuristics and search. To this end, this workshop intends
to offer a discussion forum and a unique opportunity to showcase new and emerging ideas to leading researchers in the area.
Past workshops have featured novel methods that have grown and formed indispensable lines of research.

This year marks an important landmark, being the tenth workshop since the first workshop on Heuristics for Domain-
independent Planning (HDIP), which was held in 2007. HDIP was subsequently held in 2009 and 2011. With the fourth
workshop in 2012, the organizers sought to recognize the role of search algorithms by acknowledging search in the name of the
workshop, renaming it to the workshop on Heuristics and Search for Domain-independent Planning (HSDIP). The workshop
continued flourishing under the new name and has become an annual event at ICAPS.

Guillem Francès, Daniel Gnad, Michael Katz, Nir Lipovetzky, Christian Muise, Miquel Ramirez, and Silvan Sievers
June 2018

iii

Contents

Relaxed Modification Heuristics for Equi-Reward Utility Maximizing Design
Sarah Keren, Luis Pineda, Avigdor Gal, Erez Karpas and Shlomo Zilberstein 1

Analyzing Tie-Breaking Strategies for the A* Algorithm
Augusto B. Corrêa, André Grahl Pereira and Marcus Ritt 8

Completeness-Preserving Dominance Techniques for Satisficing Planning
Álvaro Torralba 15

Online Refinement of Cartesian Abstraction Heuristics
Rebecca Eifler and Maximilian Fickert 24

Accounting for Partial Observability in Stochastic Goal Recognition Design: Messing with the Marauder’s Map
Christabel Wayllace, Sarah Keren, William Yeoh, Avigdor Gal and Erez Karpas 33

Unchaining the Power of Partial Delete Relaxation, Part II: Finding Plans with Red-Black State Space Search
Maximilian Fickert, Daniel Gnad and Joerg Hoffmann 42

Relaxed Decision Diagrams for Cost-Optimal Classical Planning
Margarita Paz Castro, Chiara Piacentini, Andre Augusto Cire and Chris Beck 50

Application of MCTS in Atari Black-box Planning
Alexander Shleyfman, Alexander Tuisov and Carmel Domshlak 59

On Computational Complexity of Automorphism Groups in Classical Planning
Alexander Shleyfman 66

Representing General Numeric Uncertainty in Non-Deterministic Forwards Planning
Liana Marinescu and Andrew Coles 73

Reformulating Oversubscription Planning Tasks
Michael Katz, Vitaly Mirkis, Florian Pommerening and Dominik Winterer 81

iv

Relaxed Modification Heuristics for Equi-Reward Utility Maximizing Design

Sarah Keren†, Luis Pineda‡, Avigdor Gal†, Erez Karpas†, Shlomo Zilberstein‡
†Technion–Israel Institute of Technology

‡College of Information and Computer Sciences, University of Massachusetts Amherst
sarahn@campus.technion.ac.il, lpineda@cs.umass.edu∗

Abstract

Grounded in a stochastic setting, the objective of equi-reward
utility maximizing design (ER-UMD) is to find a valid mod-
ification sequence, from a given set of possible environment
modifications, which yields maximal agent utility. To effi-
ciently traverse the typically large space of possible modifica-
tion options, we use heuristic search and propose new heuris-
tics, which relax the design process so instead of computing
the value achieved by a single modification, we use a dom-
inating modification guaranteed to be at least as beneficial.
The proposed technique enables heuristic caching for simi-
lar nodes thereby saving computational overhead. We spec-
ify sufficient conditions under which this approach is guar-
anteed to produce admissible estimates and describe a range
of models that comply with these requirements. In addition,
we provide simple methods to automatically generate domi-
nating modifications. We evaluate our approach on a range of
settings for which our heuristic is admissible and compare its
efficiency with that of a previously suggested heuristic that
employs a relaxation of the environment and a compilation
from ER-UMD to planning.

Introduction
Equi-reward utility maximizing design (ER-UMD) (Keren
et al. 2017) involves redesigning stochastic environments
to maximize agent performance. The input of a ER-
UMD problem consists of a description of a stochastic envi-
ronment, a utility measure of the agents acting within it and
the possible ways to modify the environment. The objec-
tive is to find a modification sequence that maximizes agent
utility. The design process is viewed as a search in the of-
ten exponential space of possible modification sequences,
which motivates the use of heuristic estimations to guide the
search.

In this work we present the simplified-design heuristic,
which relaxes the modification process by mapping each
modification that is expanded during the search to a mod-
ification that dominates it, i.e., a modification guaranteed to
yield a value at least as high and use its value as estimation
of the value of the original modification.

To generate dominating modifications we propose two
approaches, namely modification relaxation and padding.

∗Last three authors email addresses: avigal@ie.technion.ac.il,
karpase@technion.ac.il, shlomo@cs.umass.edu

Modification relaxation consists of applying a hypotheti-
cal modification whose effect is potentially easier to com-
pute than the original modification. Padding appends to the
examined modification additional modifications. The com-
puted values of padded sequences are cached. When a modi-
fication is mapped to a previously encountered relaxed mod-
ification, the cached value is reused. Of course, both ap-
proaches can be combined with the potential benefit lying
in the ability to avoid redundant computations of irrelevant
sets of modifications, those that do not affect the agent’s ex-
pected utility.

For models with lifted modification representations we
provide a simple way to automatically generate dominat-
ing modifications. We then specify sufficient conditions un-
der which this approach is guaranteed to produce admissi-
ble heuristics, i.e., heuristics that over-estimate the value of
the original modification. In addition, we formulate and im-
plement a family of models that comply with these require-
ments and compare the efficiency of our proposed approach
with that of a previously suggested heuristic that employs
an environment relaxation and with a compilation from ER-
UMD to planning.

Example 1 To illustrate our simplified-design heuristic
consider Figure 1(left) where an adaptation of the Vacuum
cleaning robot domain suggested by Keren et al. (2017) is
portrayed. The setting includes a robot (depicted by a black
circle) that needs to collect, as quickly as possible, pieces
of dirt (depicted by stars) scattered in the room. The robot
needs to navigate around the furniture in the room, depicted
by shaded cells. Accounting for uncertainty, the robot may
slip when moving, ending up in a different location than in-
tended. To facilitate the robot’s task, the environment can
be modified by removing furniture or by placing high fric-
tion tiles to reduce the probability of slipping. The number
of allowed modifications is constrained by a design budget.

The simplified-design heuristic is implemented by parti-
tioning the environment into zones (Figure 1(center)). To
heuristically evaluate the impact of removing the piece of
furniture indicated by the arrow in Figure 1(right), we re-
move all furniture from the entire zone and use this value
as an (over) estimation of the single modification. When
considering the removal of another piece of furniture in the
same zone, the already computed value is reused.

1

Figure 1: An example ER-UMD problem

The main contributions of this work are threefold. First,
we propose a new class of heuristics for ER-UMD, called
simplified-design. Second, we identify conditions under
which this class of heuristics is admissible. Finally, we de-
scribe a concrete procedure to automatically generate such
heuristics. Our empirical evaluation demonstrates the bene-
fit of the proposed heuristic.

In the remaining of the paper we first overview the ER-
UMD framework and then describe our novel techniques for
solving the ER-UMD problem. Our empirical evaluation is
followed by a description of related work and concluding
remarks.

Background: Equi-Reward Utility
Maximizing Design as Heuristic Search

The equi-reward utility maximizing design (ER-UMD) prob-
lem, recently suggested by Keren et al. (2017), takes as in-
put an environment with stochastic action outcomes, a utility
measure of the agents that act in it, a set of allowed modifica-
tions, and a set of constraints. The aim is to find an optimal
sequence of modifications to apply to the environment for
maximizing the agent utility1 under the given constraints.

The ER-UMD framework considers stochastic environ-
ments defined by the quadruple ε = 〈S,A, f, s0〉 with a set
of states S, a set of actionsA, a stochastic transition function
f : S×A×S → [0, 1] specifying the probability f(s, a, s′)
of reaching state s′ after applying action a in s ∈ S, and an
initial state s0 ∈ S. We let E , SE and AE denote the set of
all environments, states and actions, respectively.

An ER-UMD model is a tuple ω = 〈ε0,R, γ,∆,F ,Φ〉
where, ε0 ∈ E is an initial environment,R : SE×AE×SE →
R is a Markovian and stationary reward function specifying
the reward r(s, a, s′) an agent gains from transitioning from
state s to s′ by the execution of a, and γ is a discount fac-
tor in (0, 1], representing the deprecation of agent rewards
over time. The set ∆ contains the atomic modifications a
system can apply. A modification sequence is an ordered
set of modifications ~δ = 〈δ1, . . . , δn〉 s.t. δi ∈ ∆ and ~∆
is the set of all such sequences. F : ∆ × E → E is a de-
terministic modification transition function, specifying the
result of applying a modification to an environment. Finally,
Φ : ~∆ × E → {0, 1} specifies allowed modification se-
quences in an environment.

1Whenever agent utility is expressed as cost, the objective is to
minimize expected cost.

The reward function R, discount factor γ and environ-
ment ε ∈ E represent an infinite horizon discounted re-
ward Markov decision process (MDP) (Bertsekas 1995)
〈S,A, f, s0,R, γ〉. We assume agents are optimal and let
V∗(ω) represent the discounted expected agent reward of
following an optimal policy from the initial state s0 in an
initial environment ε0. The objective is to find a legal mod-
ification sequence ~δ ∈ ~∆∗ to apply to ε0 that maximizes
V∗(ω~δ) under the constraints, where ω~δ is the ER-UMD that
results from applying ~δ to ε0.

Keren et al. (2017) propose to view the design process
as a search in the space of modification sequences and sug-
gest two methods for solving the ER-UMD problem. The
first, referred to as DesignComp, embeds the offline design
stage into the definition of the agent’s planning problem (i.e.
MDP description) which can be solved by any off-the-shelf
MDP solver. The second approach, namely the Best First
Design (BFD) algorithm, applies a heuristic search in the
space of modifications. To evaluate the value of a modifica-
tion sequence efficiently, the simplified-environment heuris-
tic was proposed, relaxing the environment using relaxation
approaches from the literature (e.g., delete relaxation that
ignores the negative outcomes of an action (Bonet et al.
1997)), before evaluating a modification on the relaxed en-
vironment.

The simplified-design Heuristic
To estimate the value of a modification we relax the design
process by mapping the modification to a modification that
dominates it, meaning it achieves a utility at least as high
as the original modification’s utility. This approach can be
exploited in two ways. First, if the value of the dominat-
ing modification is easier to compute, it can be used to es-
timate the value of the original modification. In addition,
we can cache the computed values and reuse them for each
encountered node (and corresponding modification) that is
dominated by the same relaxed modification.

After formally defining the simplified-design heuristic,
we characterize ER-UMD settings where relaxing mod-
ifications is easy to implement and in which our ap-
proach is guaranteed to yield admissible heuristic, i.e., over-
estimations of the expected value of the applied modifica-
tions.

We let εδ represent the environment that results from ap-
plying δ to ε, and let ~∆ and Eω represent all modification
sequences and environments in a ER-UMD model, respec-
tively.

2

Definition 1 (dominating modification) Given an ER-
UMD model ω = 〈ε0,R, γ,∆,F ,Φ〉, a modification
sequence δ′ dominates modification δ in ω if for every
ε ∈ Eω ,

V∗(ωδ) ≤ V∗(ωδ′)
where ωδ and ωδ

′
are the ER-UMD models that have εδ and

εδ
′

as their initial environments, respectively.

The simplified-design heuristic, denoted by hsimdes esti-
mates the value of applying a modification δ to ω by the
value of the dominating modification δ′.

hsimdes(ωδ)
def
= Vmax(ωδ

′
) (1)

Lemma 1 hsimdes is admissible in any ER-UMD model ω.

Proof: Immediate from the definition of dominance.

Admissibility of dominating modifications
The simplified-design heuristic creates dominating modifi-
cations using two main methods, namely relaxation and
padding.

Modification relaxation uses the dominance relation be-
tween modifications (Definition 1) to generate modifications
guaranteed to be at least as beneficial as the original ones.
Applying a relaxed modification is guaranteed to produce
admissible estimates since, by definition, the relaxed modi-
fication is guaranteed to return a value that is no lower than
the original modification. It is worth noting that the relaxed
modification is not necessarily applicable in reality, yet may
result in a model for which utility is calculated more effi-
ciently.

In Example 1, we can estimate the value of applying a
high friction tile that reduces the probability of slipping from
50% to 10%, by using the value of applying a relaxed hypo-
thetical modification that reduces the probability of slipping
to 0. Ignoring the probabilistic nature of the modified envi-
ronment potentially reduces the computational overhead of
the actual setting.

Another type of a dominating modification is created via
modification padding, which involves appending to the ex-
plored modification a sequence of modifications.

Definition 2 (padded modification) Given an ER-
UMD model ω = 〈ε0,R, γ,∆,F ,Φ〉, ~δ = 〈δ1, . . . , δn〉 is
a padded modification of δ ∈ ∆ in ω if ∃i 1 ≤ i ≤ n s.t.
δ = δi.

As opposed to modification relaxation, the benefit of ap-
plying modification padding does not lie in the ability to cre-
ate models that are necessarily easier to solve. Instead, this
approach potentially reduces the computational effort of the
search by avoiding redundant evaluations of modifications
that affect aspects of the model that have no impact on the
agent’s expected utility. Particularly, we can cache values
of previously computed nodes (and their padded sequences)
and reuse theses values for ‘similar’ nodes that represent
modifications that are mapped to the same padded sequence.

In Example 1, modification padding can be implemented
by estimating the value of removing a single piece of furni-
ture, by the value of removing all pieces of furniture from an
entire cell (a black rectangular in Figure 1(right)).

Naturally, both techniques can be combined by first ap-
plying a modification relaxation and then padding it with a
sequence of additional modifications. We call this a relaxed
padded modification, which definition is an immediate ex-
tension of definitions 1 and 2. Note that modification relax-
ation is a special case of relaxed modification padding when
the sequence appended to the modification is empty. Sim-
ilarly, modification padding is also a special case where a
modification δ is mapped to itself and then padded.

While using modification relaxation always yields ad-
missible estimates, padding sequences may under-estimate
the value of a modification. We show that when an ER-
UMD model is both independent (modification sequences
applied in any order yield the same result) and mono-
tonic (no modifications can reduce agent utility), sequence
padding never under-estimate a modification and can there-
fore be used to extract admissible estimates. Formally,

Definition 3 (monotonic model) An ER-UMD model ω is
monotonic if for every modification δ ∈∆

V∗(ω) ≤ V∗(ωδ)

Definition 4 (independent model) An ER-UMD model ω
is independent if for any modification sequence ~δ ∈ ~∆, and
modification sequence ~δ′ that is a permutation of ~δ,

V∗(ω~δ) = V∗(ω~δ′)

Lemma 2 Given a monotonic independent ER-UMD model
ω, a modification δ and a relaxed padded modification ~δ,

V∗(ωδ) ≤ V∗(ω~δ)
Proof: (sketch) Since the model is independent, we can ap-
ply the modifications in ~δ in any order. In particular, we can
first apply the modification in ~δ that dominates δ and get a
value that overestimates V∗(ωδ). Since the model is mono-
tonic applying the additional modifications in the sequence
are guaranteed to be at least as high as V∗(ωδ).

Corollary 1 The simplified-design heuristic is admissible
in any monotonic and independent ER-UMD model ω.

The proof for Corollary 1 is immediate from Lemma 2.

Automatic Dominating Modification Generation
We now show two examples of how dominating modifica-
tions can be automatically generated. First, to characterize
models where modification padding is easily implemented
we focus our attention on lifted modifications that represent
a set of parameters whose (grounded) instantiations define
single modifications. Each lifted modification δ(p1, . . . , pn)
is characterized by a set of parameters p1, . . . , pn and a set of
valid values dom(pi) for each parameter pi. A (grounded)

3

modification δ(v1, . . . , vn) is a valid assignment to all pa-
rameters s.t. vi ∈ dom(pi).

For lifted modifications, modification padding can be
implemented using parameterized padding by mapping a
grounded modification to a sequence of modifications that
share the same values on a set of lifted parameters. In
Example 1, the lifted representation of furniture removal
modifications is represented by ClearCell(x, y), where
parameters x and y denote the cell coordinates. The
value of the grounded modification ClearCell(1, 3) can
be (over)estimated by the value of applying the sequence
ClearCell(1, 1), ClearCell(1, 2), ClearCell(1, 3), etc.
This value is cached, so when modification ClearCell(1, 2)
is examined, it is mapped to the same padded sequence, and
the pre-computed value can be reused.

In models were the essence of modifications involve
changing the probability distribution of an action’s outcome,
we can automatically create a relaxation by creating a sepa-
rate action for each of the outcomes (known in the literature
as all outcome determinization (Yoon et al. 2007)). Con-
tinuing with Example 1, for a modification that adds high
friction tiles to reduce the probability of slipping from 50%
to 10%, applying all outcome determinization creates a hy-
pothetical dominating modification by allowing an agent to
choose between two deterministic actions, either slipping or
not.

Modifications for Independent Monotonic
ER-UMD models
To characterize monotonic and independent models where
modification padding can be used to produce admissible es-
timates, we define action addition modifications that add ap-
plicable actions to some states of the model. We then show
that ER-UMD models that allow only action addition modi-
fications are both independent and monotonic.

To formally define action addition modifications, we let
app(s, ε) ⊆ A represent the actions applicable in state s of
environment ε.

Definition 5 (action addition modification) A modifica-
tion δ is an action addition modification (ADM) if for any
environment ε ∈ E , εδ is identical to ε except that for every
state s ∈ S there exists a (possible empty) set of actions
As,δ s.t. app(s, εδ) = app(s, ε) ∪As,δ .

In Example 1, action addition is exemplified by en-
abling safe transitions between nearby states implemented
by adding to the model actions with a reduced probability of
slipping.

Lemma 3 An ER-UMD model with only action addition
modifications is independent and monotonic.

Proof: (sketch) Every action applicable in any state of the
original model is applicable in the modified one. The ex-
pected utility of the initial state cannot be reduced as a result
of applying a modification and is therefore monotonic. Fol-
lowing Definition 5, any two modifications δ, δ′ ∈ ∆ can
be applied in any order to yield the same set of applicable

actions. This can be applied for any pair of modifications in
a sequence, indicating that the model is independent.

It is worth noting that all modification used by Keren et al.
(2017), including those implemented as initial state modifi-
cations, were in fact action addition modifications since they
changed the initial state in such a way that enabled more ac-
tions in some of the states reachable from the initial state.
For example, removing a piece of furniture in Example 1 can
be modeled as enabling the movement to a previously occu-
pied cell. In general, however, not all initial state modifica-
tions are monotonic. For example, when we remove from
the initial state a fact that is a precondition of an action or
add a fact that is a negative precondition, we may cause an
action to become non-applicable and reduce utility.

Empirical Evaluation
Our empirical evaluation is dedicated to measuring the ef-
fectiveness of the proposed simplified-design heuristic on a
variety of independent monotonic ER-UMD models, com-
paring it to the previously suggested DesignComp com-
pilation and simplified-environment heuristic (Keren et al.
2017). We examined the benefits of using heuristic search
and caching for utility maximizing design and analyze the
role of different heuristics in solving the underlying MDPs.

We used a total of 20 instances from four PPDDL do-
mains (5 of each), adapted from Keren et al. (2017) that
included three stochastic shortest path MDPs with uniform
action cost domains from the probabilistic tracks of the
eighth International Planning Competition: Blocks World
(IPPC08/BLOCK), Exploding Blocks World (IPPC08/EX.
BLOCK), and Triangle Tire (IPPC08/TIRE). In addition, we
used the vacuum cleaning robot setting adapted from Keren
et al. (2017) and described in Example 1 (VACUUM). It is
worth noting that the VACUUM domain is tailored to test the
utility maximizing design setting and the ability to improve
upon an initial design. In all domains, agent utility is ex-
pressed as expected cost and constraints as a design budget.
For each domain, we used the modifications described by
Keren et al. (2017), implementing all of them as action ad-
dition modifications (see Section for a detailed explanation).
Accordingly, all the models we have tested are independent
and monotonic, which means that all our generated estima-
tions are admissible and therefore over-estimate V∗(ωδ) for
any model ω and modification δ.
Setup Evaluation was performed using optimal and sub-
optimal solvers within a time bound of five minutes. Each
instance was solved using the following approaches:
• BFS - an exhaustive breadth first search in the space of

modifications.
• DesignComp (Keren et al. 2017) (DC)- a compilation of

the design problem to a planning problem, which embeds
the design into the domain description.

• BFD (Keren et al. 2017) - Best First Design, a heuristic
best first search in the space of modifications. For this
approach we examined five heuristic approaches, the first
of which was presented by Keren et al. (2017) and the
other four are variations of the heuristic proposed in this
work.

4

BFS DC BFD rel-env BFD rel-mod BFD rel-combined BFD rel-proc BFD rel-combined-proc

V ∗ time nodes time nodes time nodes time nodes time nodes time nodes time nodes

BLOCKS

B=1 0.91 1.5 2709.4(95.2) 1.27 1624.2(559.4) 1.97 2709.4(95.2) 1.7 2709.4(95.2) 1.9 2709.4(95.2) 1.59 2611 (95.2,7.3) 1.7 2611 (95.2,7.3)
B=2 0.91 2.58 42854.5(2483.5) 2.55 24442.3(7440.2) 3.43 42854.5(2483.5) 3.01 42854.5(2483.5) 3.5 42854.5(2483.5) 2.67 40396.4(2483.5,25.4) 2.86 40396(2483.5,25.4)
B=3 0.91 37.6 441153.2(35901.4) 42.4 244523.5(67939.8) 59.48 441153.2(35901.4) 48.4 441153.2(35901.4) 58.46 441153.2(35901.4) 41.62 441153.2(35901.4,63.6) 35.8 441153.2(35901.4,63.6)

EX. BLOCKS

B=1 0.23 30.82 15724.4(41.4) 25.61 10839(118.6) 31.38 15724.4(41.4) 35.82 15724.4(41.4) 36.57 15724.4(41.4) 35.63 15720(41.4,7.6) 35.92 15720(41.4,7.6)
B=2 0.01 272.2 13171.9(458.7) 45.55 2794.5(819.5) 275.9 13171.9(458.7) 275.3 13171.9(458.7) 282.3 13171.9(458.7) 171.7 8812.4(427.7,25.8) 185.6 8812.4(427.7,25.8)
B=3 0.01 TO TO 17.09 6251.2(3541.4) TO TO TO TO TO TO 527.832 1452884(2498,63) 523.2 1452884(2498,63)

TIRE

B=1 0.86 0.9 2343.2(35.5) 0.5 1074.2(79) 1.4 2343.2(35.5) 1.4 2343.2(35.5) 1.4 2343.2(35.5) 1.4 2343.2(35.5,5.4) 0.9 2313(35.5,5.4)
B=2 0.83 0.58 14189.2(333.4) 0.38 6418.4(479.2) 0.67 14189.2(333.4) 0.61 14189.2(333.4) 0.62 14189.2(333.4) 0.6 14189.2(333.4,16.5) 0.6 14189.2(333.4,16.5)
B=3 0.81 2.4 54343.41(1741.2) 1.6 54343.41(1741.2) 2.5 54343.41(1741.2) 2.4 54343.41(1741.2) 2.4 54343.41(1741.2) 2.3 54343.41(1741.2,34.3) 2.3 54343.41(1741.2,34.3)

VACUUM

B=1 0.75 6.25 5553.2(14.3) 0.91 977.4(15) 7.43 5553.2(14.3) 7.8 5553.2(14.3) 7.8 5553.2(14.3) 6.7 5542(14.3,3.4) 7.3 5542(14.3,3.4)
B=2 0.67 18.24 15367.2(56.3) 4.68 3079.5(61.6) 23.68 15367.2(56.3) 19.04 15367.2(56.3) 31.93 15367.2(56.3) 18.59 15317.5(56.4,6) 25.5 15317.5(56.4,6)
B=3 0.56 43.48 29257.4(150.4) 21.36 7140(182.2) 66.87 29257.4(150.4) 33.8 29257.4(150.4) 73.26 29257.4(150.4) 33.08 29115.4(150.4,8.2) 47.86 29115.4(150.4,8.2)

Table 1: Running time and expanded node count for optimal solvers with hBAOD

BFS DC BFD rel-env BFD rel-mod BFD rel-combined BFD rel-proc BFD rel-combined-proc

V ∗ time nodes time nodes time nodes time nodes time nodes time nodes time nodes

BLOCKS

B=1 0.91 1.49 2487.4(95.2) 1.97 1938.5(938.5) 1.43 2487.4(95.2) 1.9 2487.4(95.2) 4.4 2487.4(95.2) 1.9 2399.2(95.2,7.4) 4.4 2399.2(95.2,7.4)
B=2 0.91 1.92 39425.4(2485.5) 1.89 27891.2(12867.4) 9.35 39425.4(2483.5) 3.4 39425(2483.5) 9.25 39425(2483.5) 4.2 36967(2483.5,25.4) 9.7 36967(2483.5,25.4)
B=3 0.91 27.88 406762.4(35901.4) 38.93 271487.2(114492.2) 117.4 406762.5(35901.4) 59.60 406762.6(35901.4) 127.93 406762.5(35901.4) 54.72 370924.7(35901.4,63.6) 131.35 370924.7(35901.4,63.6)

EX. BLOCKS

B=1 0.23 44.23 505293.2(41.4) 34.83 124678.4(1354) 46.9 505293.2(41.4) 47.89 505293.2(41.4) 46.72 505293.2(41.4) 50.63 505259.2(41.4,7.3) 49.6 505259.2(41.4,7.3)
B=2 0.01 344.32 3916380.5(458.4) 45.97 42741.6(9459.6) 348.8 3916380.5(458.4) 220.3 2551503.3(427.4) 231.4 2551503.3(427.4) 231.4 2551101.6(427.4,25.4) 225.5 2551101.6(427.4,25.4)
B=3 0.01 TO TO 43.2 59802.2(26763.4) TO TO TO TO TO TO TO TO TO TO

TIRE

B=1 0.86 1.4 2920.6(35.5) 0.7 2920.6(35.5) 1.2 2920.6(35.2) 1.2 2920.6(35.5) 1.5 2890.6(35.5) 1.2 2890.6(35.5,5.4) 1.5 2890.6(35.5,5.4)
B=2 0.83 0.63 17635.4(333.4) 0.4 17635.4(333.4) 0.84 17635.4(333.4) 0.72 17635.4(333.4) 0.96 17635.4(333.4) 0.7 17635.4 (333.4,16.5) 0.8 17635(333.4,16.5)
B=3 0.81 2.5 67464.2(1741.2) 1.7 31450.2(4702.2) 3.03 67464.2(1741.2) 2.7 67464.2(1741.2) 3.4 67464.2(1741.2) 2.7 65760.4(1741.2,37.3) 3.4 65760.4(1741.2,37.3)

VACUUM

B=1 0.75 7.91 6903.4(14.3) 9.02 1200.2(227.2) 14.71 6903.4(14.3) 17.67 6903.4(14.3) 37.69 6903.4(14.3) 18.03 6892.2(14.3,3.4) 36.03 6892.2(14.3,3.4)
B=2 0.67 37.4 18617.4(56.3) 52.3 4181(202) 99.23 18617.3(56.3) 91.93 18617.3(56.3) 394.29 18617.3(56.3) 91.44 18567.4(56.3,6.2) 411.76 18567.5(56.3,6.2)
B=3 0.56 83.46 34181.4(150.4) 79.04 10165.2(442.2) 264.49 34181.4(150.4) 228.66 34181.4(150.4) 1034.48 34181.4(150.4) 204.98 34039.2(150.4,8.2) 225.6 34039.2(150.4,8.2)

Table 2: Running time and expanded node count for optimal solvers with hMinMin

– rel-env the simplified-environment heuristic where
node evaluation is done on a relaxed environment.

– rel-mod the simplified-design heuristic that estimates
the value of a modification by a single dominating mod-
ification.

– rel-combined the simplified-design heuristic that esti-
mates the modification value by a single dominating
modification in a relaxed environment.

– rel-proc the simplified-design heuristic that estimates
the modification value using parametrized padding (on
the first parameter of a modification).

– rel-combined-proc the simplified-design heuristic
that estimates the value of a modification using
parametrized padding of relaxed modifications (on the
first parameter of a modification).

Optimal solutions were acquired using a deterministic
best first search for the design space for the BFD. We used
the solutions of LAO* (Hansen and Zilberstein 1998) for
calculating the exact values of BFD execution nodes and
the DC (compilation) with convergence error bound of ε =
10−6. Approximate solutions were obtained by replacing
LAO* with FLARES (Pineda et al. 2017), a sampling-based
SSP solver that uses short-sighted labeling to cache the value
of explored states and speed-up computation; we used the
parameters t = 0, ε = 0.01, and a maximum of 100 iter-
ations. We also assigned a cap of 500.0 for the maximum
state cost (100.0 for the approximate case), in order to han-
dle dead-ends (Kolobov et al. 2012). In the approximate
solution of the compilation approach, the expected cost is
computed from 100 simulations of the policy computed by
FLARES. For the suboptimal solutions acquired by BFD,
the cost after applying modifications is the state cost esti-
mated by FLARES, which is guaranteed to be admissible.

Optimal solutions were tested on an Intel(R) Xeon(R)

CPU X5690 machine with a budget of 1 − 3. Approxi-
mate solutions were tested on Intel(R) Xeon(R) CPU E3-
1220 3.40Ghz, with a budget of 1 − 3. To implement the
budget constraint we added a counter verifying the number
of design action does not exceed the budget. Each run had a
30 minutes time limit.

For solving the underlaying MDP(for both the BFD and
compilation), we used two heuristic. The Min-Min heuristic
(Bonet and Geffner 2005)(hMinMin) solves the all outcome
determinization using the zero heuristic. We also imple-
mented the bounded all-outcome determinization (heuristic
hBAOD) performs a depth-bounded BFS exploration of the
all outcome determinization. Both heuristics are admissible.
Results Separated by domain and budget, Table 1 and Ta-
ble 2 summarize the average results acquired for each do-
main and each budget (B = i) using an optimal solver with
hBAOD and hMinMin as the MDP heuristics, respectively.
The tables present V ∗ as the reduction in expected utility
for each design budget with respect to the initial utility (the
values are the ratio with respect to the initial value). In ad-
dition, they present the running time in seconds (time) and
the number of expanded nodes (evaluated by the heuristic)
during the search (nodes). The number of design nodes, rep-
resenting a modification sequence being applied, is in paren-
thesis. For the rel-proc and rel-combined-proc heuris-
tics the numbers in parenthesis represent the number of ex-
panded design node and the number of explicitly calculated
design nodes, nodes for which the heuristic value of the
dominating modification could not be found in the cache.
TO indicates a time out for problems that exceeded the time
bound.

Table 3 specifies the results acquired using the approxi-
mate solver with hBAOD as the MDP heuristic. V ∗ repre-
sents the ratio between the simulated value and the one ac-

5

BFS DC BFD rel-env BFD rel-mod BFD rel-combined BFD rel-proc BFD rel-combined-proc

V ∗ stderr time nodes V ∗ stderr time nodes V ∗ stderr time nodes V ∗ stderr time nodes V ∗ stderr time nodes V ∗ stderr time nodes V ∗ stderr time nodes

BLOCKS

B=1 1.05 0.45 0.28 4316.2(190.3) 0.95 0.43 0.48 3827.3(652.6) 1.09 0.48 0.3 4242.5(190.3) 1.14 0.49 0.28 4229.3(190.3) 1.14 0.49 0.3 4152.4(190.3) 1.07 0.45 0.28 4036.3(190.3,7.4) 1.07 0.46 0.288 4036.4(190.3,7.4)

B=2 1.07 0.49 6.27 65772.2(4966.2) 1.02 0.44 4.02 58102.5(9388) 1.06 0.46 6.24 65772(4966.2) 1.02 0.43 5.48 66093(4966.2) 1.02 0.47 5.58 66089(4966.2) 1.02 0.45 6.5 60623(4966.2,25.5) 1.02 0.43 6.47 60623(4966.2,25.5)

B=3 1.02 0.43 80.68 693387.5(71802.2) 1.02 12.68 58.4 582887.5(96126.9) 1.03 0.46 101.24 692854.5(71802.2) 1.02 0.45 93.78 692558.6(71802.2) 1.07 0.45 105.49 693245.6(71802.2) 1.01 0.41 82.42 622343.2(71802.2,63.5) 1.2 0.49 82.73 621769.5(71802.2,63.5)

EX. BLOCKS

B=1 1.9 23.98 12.47 134918.4(82.2) 1.17 16.49 2.8 5601.2(170.2) 1.9 12.3 12.58 134191(82.2) 1.2 16.08 42.77 132526.4(82.2) 1.9 21.2 11.7 130487.7(82.2) 1.9 13.06 13.2 129957.5 (69.4,7.5) 1.9 23.47 11.55 136625.5(69.4,7.5)

B=2 0.01 0 73.5 768204.4(916.3) 0.01 0 16.31 25329.6(1226.3) 0.01 0 71.71 771082.4(916.3) 0.01 0 65.07 778786.5(916.3) 0.01 0 76.8 782888.7(916.3) 0.01 0 31.5 180761(420.7,25.9) 0.01 0 50.4 495917.8(455.7,25.9)

B=3 0.01 0 443.3 2935654.4(5622.3) 0.01 0 114.9 98556.5(6009.4) 0.01 0 426.4 2940276.3(5622.2) 0.01 0 385.6 2909483.4(5622.3) 0.01 0 288.58 2925312.2(5622.3) 0.01 0 100.4 338548(2526,63) 0.01 0 102.6 334572(2526,63)

TIRE

B=1 1.48 0.2 0.41 2612.3(70.2) 2.1 24.779 0.03 1083(171.6) 1.09 0.49 0.43 2982(70.2) 1.02 0.49 0.42 3351.5(70.2) 1.02 0.48 0.43 3593.5(70.2) 1.18 0.2 0.41 2998(635.4,5.6) 1.17 0.49 0.42 3329.5(63.4,5.5)

B=2 1.03 0.45 0.7 16672.4(666.4) 2.1 24.9 0.24 5087.5(916.5) 1.03 0.47 0.65 16608.8(666.4) 1.02 0.44 0.67 17618.6(666.4) 1.03 0.48 1.2 16580.8(666.4) 1.05 0.49 0.68 17547.5(614.6,16.4) 1.04 0.43 0.64 15789.7(494.3,16.4)

B=3 1.02 0.45 2.52 58570.4(3482.4) 2.4 22.4 0.7 19412.5(3535.3) 1.03 0.45 2.52 58570.5(3482.2) 1.15 0.45 2.37 56487.6(3482.4) 1.13 0.21 2.54 58807.8(3482.9) 1.03 0.49 2.42 57306.7(3402.5,37.3) 1.04 0.48 2.42 55508(3407.4,37.3)

VACUUM

B=1 1.45 0.47 11.21 6075.6(728.3) 1.06 0.45 2.75 2090.3(27.5) 1.51 0.48 10.46 5848.6(28.5) 1.05 0.43 9.08 5140.3(28.5) 1.04 0.44 10.2 4917.6(28.5) 1.03 0.43 8.32 4873.6(28.5,3.3) 1.04 0.43 9.4 4895(28.5,4.4)

B=2 1.44 0.47 26.01 13414.5(1121.4) 0.01 0.43 9.08 6736.5(102.6) 1.01 0.41 28.7 11937.5(112.4) 1.01 0.42 22.74 11679.6(112.4) 0.01 0.42 37.52 11981.7(112.4) 1.4 0.48 25.67 13028.5(112.4) 1.4 0.48 25.7 13028.5(112.4)

B=3 1.4 0.49 33.84 20071.5(300.4) 1.01 0.43 17.95 13767.6(233.2) 1.46 0.49 16.9 19752.6(300.4) 1.4 0.46 51.92 20306.7(300.4) 1.4 0.46 109.841 20306.7(300.4) 1.01 0.41 46.4 18364.7(300.4) 1.02 0.45 70.3 18372.7(300.4)

Table 3: Running time for sub-optimal solvers using the hBAOD heuristic

quired using the optimal solver, stderr represents the stan-
dard deviation, while time and nodes have the same mean-
ing as in the optimal solver’s tables.

Our first observation is that with regards to the optimal
solutions, the compilation (DC) approach outperforms the
BFD approach for most domains with a shorter running
time and less expanded nodes. The only exception oc-
curs in the BLOCKS domain for budget 3 and the hBAOD
MDP heuristic, for which rel-combined-proc outperforms
the other approaches and the same setting with hMinMin as
the MDP heuristic, for which the BFS approach was best. It
is worth noting, however, that the number of design nodes,
each corresponding to a modification sequence, is higher for
DC then for all BFD approaches.

Our evaluation uses only independent models. Therefore,
for any budget above 1, the BFD approach examines all the
permutations of a given modification sequence separately,
while for the compilation, the value for these nodes is com-
puted only once. However, the use of independent models
does not explain the superior performance of the compila-
tion over the BFD approach for budget 1 as well.

To examine this trend further, we compared the number
of nodes that are evaluated by the heuristic to the distinct
nodes evaluated for the first time (and for which the heuris-
tic value has not been computed). The results show that
while the DC examines up to 20% less nodes, the number
of distinct nodes for both BFD and DC is similar. We also
performed additional evaluations on small instances of the
VACCUM domain (2 × 2 and 3 × 3) where the BFD ap-
proaches, and the rel-proc procedure in particular, outper-
formed the compilation in terms of both running time and
expanded nodes. These results show that the efficiency of
the applied approach depends on the specific problem struc-
ture and indicate that further investigation of both the nature
of the benchmarks and the LAO* algorithm are warranted
to understand the results and evaluate the efficiency of our
proposed methods.

Next, we analyze the use of caching by comparing rel-
env, rel-mod, and rel-combined that do not use caching
against their counterparts rel-proc and rel-combined-proc
that are applied to a relaxed environment and re-use previ-
ously computed costs. The results show the newly proposed
heuristics outperform the heuristics proposed by Keren et al.
(2017) for all instances in terms of running time. This is due
to saving in computation gained by the caching of similar
modifications. This applies to both hMinMin and hBAOD
heuristics.

Comparing hBAOD (Table 1) with hMinMin (Table 2) we
note that for most instances the hBAOD outperformed the
hMinMin heuristic, both in terms of running time and the
number of explored nodes.

Exploring the different heuristic approaches for BFD cal-
culation, we observe that for most domains, the different ap-
proaches yield the same number of explored nodes as the
blind search (indicated by BFS). The only approaches that
reduce the number of calculated nodes are the caching-based
approaches, namely rel-proc and rel-combined-proc that
reduce the computational overhead by avoiding redundant
computations. This suggests that the relaxations we apply
are non-informative in the domains we explore, leaving us
with the wish to explore other, more elaborate domains in
which the value of the heuristic approaches will be demon-
strated.

For the approximate solvers (Table 3), the results indi-
cate that in most cases the solvers we have used managed
to achieve a utility reduction that deviated from the optimal
design by up to 10%. Notable in particular is the ability to
achieve a nearly optimal design for the EX.BLOCKS do-
main, which could not be solved by all but the DC in the
optimal setting. Indeed, as in the optimal case, the DC com-
pilation is the dominating approach for most domains. How-
ever, results are inconclusive since in most cases they fail to
provide a single computation method that outperforms the
other approaches on all measures. This, again, indicates that
further investigation is needed into the pros and cons of us-
ing sub-optimal solvers.

Related Work
Environment design (Zhang et al. 2009) provides a general
framework for modifying environments with the objective
of maximizing some utility. Keren et al. (2017) formulated
ER-UMD as a special case of environment design where the
objective is to find a sequence of modifications that maxi-
mize some agent utility.

For solving ER-UMD settings, two methods were sug-
gested by Keren et al. (2017), namely a compilation (DC)
that embeds the design problem into a planning problem and
heuristic search (BFD) in the space of modifications. For the
latter, they suggest applying modifications to a relaxed envi-
ronment and show it generates an admissible heuristic.

We extend this approach by offering a set of heuristics
based on the relaxation of the design process. By search-
ing in the relaxed modification space we potentially avoid
the need to calculate the value of every possible modifica-

6

tion and use cached values to estimate the value of similar
modifications. Our approach can be seen as complementary
to the previous approaches, since caching and modification
relaxation can be combined with environment relaxation to
yield estimations that may be computed efficiently.

The modification padding technique we suggest to
generate dominating modifications is inspired by pattern
database(PDB) heuristic approaches, originally developed
for planning problems (Culberson and Schaeffer 1998;
Haslum et al. 2007; Edelkamp 2006). PDBs are abstraction
heuristics that ignore some aspects of a search problem (the
pattern) in order to create a problem that can be optimally
solved efficiently. The key difference between padding and
pattern database heuristics is that the former does not nec-
essarily yield an easier-to-solve model. Instead, it poten-
tially avoids redundant computations of irrelevant modifica-
tion sets, those that do not affect the agent’s expected utility.

As noted by Keren et al. (2017), it is the relationship
between agent and system utility that dictates the types of
methods that can be used to solve an environment design
problem. In particular, for ER-UMD we exploit the correla-
tion between agent and system utilities to develop planning-
based methods for design. The heuristics we propose (and
show to be admissible) are not admissible for environment
design in general and in particular not for goal recognition
design (Keren et al. 2014) or policy teaching (Zhang and
Parkes 2008).

Conclusions
This work proposed a new class of heuristics for ER-UMD,
called simplified-design, which relax the modification pro-
cess by mapping each modification that is expanded during
the redesign to a modification that dominates it. Instead of
the original modification, we calculate the value of the dom-
inating one and cache the computed value for future use. We
identified conditions under which this heuristic class is ad-
missible and discussed automatic generation of relaxations.

For future work, we intend to automate the process of se-
lecting the best relaxation approach for a given domain. In
addition, we intend to implement an approach that may al-
ternate during the search between different levels of relax-
ation granularity; for padded modification sequences that
yields a utility gain, a more accurate (and costly) estimation
is acquired while for padded sequences that leave the initial
utility unchanged, we use the high level value.

References
Dimitri P. Bertsekas. Dynamic programming and optimal
control, volume 1. Athena Scientific Belmont, MA, 1995.
Blai Bonet and Héctor Geffner. mGPT: A probabilistic plan-
ner based on heuristic search. Journal of Artificial Intelli-
gence Research, 24:933–944, 2005.
Blai Bonet, Gábor Loerincs, and Héctor Geffner. A ro-
bust and fast action selection mechanism for planning. In
AAAI/IAAI, pages 714–719, 1997.
Joseph C Culberson and Jonathan Schaeffer. Pattern
databases. Computational Intelligence, 14(3):318–334,
1998.

Stefan Edelkamp. Automated creation of pattern database
search heuristics. In International Workshop on Model
Checking and Artificial Intelligence, pages 35–50. Springer,
2006.
Eric A. Hansen and Shlomo Zilberstein. Heuristic search
in cyclic AND/OR graphs. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence, pages 412–
418, 1998.
Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, Sven
Koenig, et al. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI, vol-
ume 7, pages 1007–1012, 2007.
Sarah Keren, Avigdor Gal, and Erez Karpas. Goal recogni-
tion design. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), pages 154–162, 2014.
Sarah Keren, Luis Pineda, Avigdor Gal, Erez Karpas, and
Shlomo Zilberstein. Equi-reward utility maximizing design
in stochastic environments. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2017), August 2017.
Andrey Kolobov, Daniel Weld, et al. A theory of
goal-oriented mdps with dead ends. arXiv preprint
arXiv:1210.4875, 2012.
Luis Enrique Pineda, Kyle Hollins Wray, and Shlomo Zil-
berstein. Fast ssp solvers using short-sighted labeling. In
AAAI, pages 3629–3635, 2017.
Sung Wook Yoon, Alan Fern, and Robert Givan. FF-Replan:
A baseline for probabilistic planning. In Proceedings of the
Seventeenth International Conference on Automated Plan-
ning and Scheduling (ICAPS), pages 352–359, 2007.
Haoqi Zhang and David Parkes. Value-based policy teach-
ing with active indirect elicitation. In Proceedings of the
Twenty-Third Conference on Artificial Intelligence (AAAI),
pages 208–214, 2008.
Haoqi Zhang, Yiling Chen, and David Parkes. A general ap-
proach to environment design with one agent. In Proceed-
ings of the Twenty-First International Joint Conference on
Artifical Intelligence, pages 2002–2008, 2009.

7

Analyzing Tie-Breaking Strategies for the A∗ Algorithm

Augusto B. Corrêa1, André G. Pereira2 and Marcus Ritt2
1 University of Basel, Switzerland

2 Federal University of Rio Grande do Sul, Brazil
{abcorrea, agpereira, marcus.ritt}@inf.ufrgs.br

Abstract
For a given state space and admissible heuristic function h
there is always a tie-breaking strategy for which A∗ expands
the minimum number of states (Dechter and Pearl 1985). We
say that these strategies have optimal expansion. Although
such a strategy always exists it may depend on the instance,
and we currently do not know a tie-breaker that always guar-
antees optimal expansion. In this paper, we study tie-breaking
strategies for A∗. We analyze common strategies from the lit-
erature and prove that they do not have optimal expansion. We
propose a novel tie-breaking strategy using cost adaptation
that has always optimal expansion. We experimentally ana-
lyze the performance of A∗ using several tie-breaking strate-
gies on domains from the IPC and zero-cost domains. Our
best strategy solves significantly more instances than the stan-
dard method in the literature and more than the previous state-
of-the-art strategy. Our analysis improves the understanding
of how to develop effective tie-breaking strategies and our re-
sults also improve the state-of-the-art of tie-breaking strate-
gies for A∗.

Introduction
A∗ is the most popular best-first heuristic search algo-
rithm (Hart, Nilsson, and Raphael 1968). It expands states
in order of increasing f -values. For a given state s, the func-
tion f(s) is the sum of the cost g(s) of the current path from
the initial state to state s, and the heuristic cost h(s) from s
to a goal state. A heuristic h is admissible if it never overes-
timates the cost of a state to its closest goal state. In this case
A∗ returns an optimal solution path of minimum cost C∗, if
there is one. The heuristic that returns the cost of an opti-
mal path for all states is called the perfect heuristic h∗. Dur-
ing the search, it is possible to have several states with the
same f -value. Hence, A∗ has to use an order [f, τ] with a
tie-breaking strategy τ to select one of them to be expanded
next. A∗ with a deterministic tie-breaking strategy τ defines
a unique expansion sequence of states.

A state space evaluated by an admissible heuristic h
is nonpathological if there exists some cost-optimal path
where h(s) < h∗(s) for all non-goal states s on it. Dechter
and Pearl (1985) have shown that in this case the tie-breaker
τ plays no role as the set of states with f < C∗ contains all
states expanded by A∗. However, if the admissible heuris-
tic h on the state space is pathological, then A∗ will expand
all states with f < C∗ and additionally some states with

f = C∗. This set of states is known as the final plateau or
final f -layer. There is always a tie-breaking strategy τ that
expands, in addition to states with f(s) < C∗, only states on
a shortest cost-optimal path in the final f -layer (i.e., states
along the cost-optimal path with the least number of oper-
ators). In this case, we say that tie-breaking strategy τ has
optimal expansion, or simply is optimal.

Most of the search and planning literature considers
breaking ties in favor of smaller h-values to be a good prac-
tice (e.g., (Holte 2010; Hansen and Zhou 2007)). Dechter
and Pearl (1985) describe A∗ as being agnostic with regard
to the tie-breaking strategy letting it “break ties arbitrarily,
but in favor of a goal state” and assume that only a few
states s will satisfy f(s) = C∗. However, Asai and Fuku-
naga (2016) showed that this is often false and A∗ using tie-
breaking strategies that do not favor small h-values can solve
more instances and expand fewer states.

In many applications the goal is to minimize the use of
some resource (e.g., fuel in logistic problems), and operators
that do not use this resource can be modeled as having no
cost. Based on this observation Asai and Fukunaga (2016)
have introduced so-called zero-cost domains. In such do-
mains, the final plateau can account for a large part of the
expanded states and A∗ can follow long zero-cost paths that
can be avoided by a tie-breaking strategy.

Empirical analysis shows that all IPC instances using A∗
with heuristic hLM-cut which are solved in 5 minutes or less
are pathological and more than 95% of the zero-cost in-
stances solved using this time limit are also pathological.
Hence, tie-breakers are relevant for most of the instances in
both benchmarks.

In this paper we study tie-breaking strategies for A∗. We
first analyze previously proposed tie-breaking strategies and
prove that they are not always optimal. We also propose a
new strategy which is guaranteed to have optimal expan-
sion. We experimentally analyze the performance of A∗ us-
ing several strategies on the set of IPC instances and in-
stances with zero-cost operators where the perfect heuris-
tic h∗ can be computed. In practical settings using hLM-cut

our new strategies solve more instances than other methods
in the literature. Our results show how to build an optimal
tie-breaking strategy given h∗ and our analysis improves the
understanding of how to develop tie-breakers.

8

Background
State Space Let S = 〈s0, S∗,O, cost〉 be a state space,
where s0 is the initial state, S∗ is a set of goal states and O
is a set of operators. For a given state s there is a (possibly
empty) subset of operators in O that can be applied to s to
generate a set of successor states succ(s). Every operator
o ∈ O has a cost cost(o) ∈ R+

0 associated to a transition
s → s′, where s′ ∈ succ(s). A sequence of distinct states
denoted as s0 → s1 → · · · → sn is called a path, if for every
pair of consecutive states s → s′ we have s′ ∈ succ(s). If
sn ∈ S∗ then the sequence is called a solution path (s-path).

Tie-Breaking Strategies The A∗ algorithm receives a
state space S and a heuristic function h as input and out-
puts an s-path, if there is one, or “unsolvable” otherwise.
A∗ ordering states by [f, τ] with a tie-breaking strategy τ
(where f = g+ h and τ is some function over S) expands a
unique sequence of states 〈s0, s1, . . . , sn〉, called the expan-
sion sequence. We assume that A∗ keeps a priority queue
denoted as OPEN that sorts the states lexicographically in
increasing order of [f, τ]. To expand a state means to remove
it from OPEN and to generate all its successors. Note that
in this way goal states are only processed, i.e. removed from
OPEN, but not expanded. If the expansion sequence of A∗
with a given tie-breaking strategy has the minimum number
of states among all possible sequences we say that this strat-
egy has optimal expansion – or simply that it is optimal. If
the function f uses the perfect heuristic h∗, we denote it as
f∗ = g + h∗.

An s-path is not fully informed if h(s) < h∗(s) for all
s /∈ S∗ on that path. Dechter and Pearl (1985) define a state
space S with admissible heuristic h to be nonpathological
if there exists at least one cost-optimal not fully informed s-
path. Conversely, a state space S with admissible heuristic h
is pathological if all cost-optimal s-paths are fully informed.

Common Tie-Breaking Strategies
In this section, we present a theoretical framework to ana-
lyze tie-breaking strategies for A∗. Our framework is based
on the perfect heuristic h∗ as a fully informed tie-breaker. In
state spaces where we can compute h∗, A∗ with f∗ will only
expand states whose f -value equals the optimal cost C∗. In
this setting, the tie-breaking strategy will have optimal ex-
pansion if it only expands states on one cost-optimal s-path
with the least number of operators.

Analyzing h∗ as Tie-Breaker
The heuristic search literature usually considers breaking
ties by h to be a good approach. Therefore one would expect
that when having h∗, we could use its value as a tie-breaker,
leading to an strategy with optimal expansion. In this setting,
using order [f∗, h∗] means that A∗ uses f∗ as main evalua-
tion function and h∗ as tie-breaker, and any remaining ties
are solved arbitrarily.

However, using order [f∗, h∗] is not optimal, as it may ex-
pand more states than another strategy. Figure 1a shows an
example with two paths to goal states using only zero-cost
operators. State s0 is the initial state, doubly-circled states

s0

A

C

F

B

D Ei

G

H

0 0

0

0

α 0

0

0

(a) Orders [f∗, h∗] and [f∗, ĥ∗] fail.

s0

A

C

B

Di

E

0

α

α

0

0

(b) Order [f∗, h∗
ε] fails.

Figure 1: Instances where tie-breaking by h∗, ĥ∗, and h∗
ε fails.

are goals and ellipses represent arbitrarily long transition
sequences of zero cost. In this situation, [f∗, h∗] provides
no information. Hence, the expansion sequence depends on
how remaining ties are solved, which does not guarantee op-
timal expansion. To reach a goal from s0, A∗ may expand
three states using the left s-path (s0 → A → C → F),
or an arbitrarily large set of states using the right s-path
(s0 → B → · · · → G→ H).

Analyzing ĥ∗ as Tie-Breaker

Asai and Fukunaga (2017) propose to use distance-to-go
heuristics as tie-breakers. A distance-to-go heuristic, de-
noted ĥ, uses the same algorithm to compute h but replaces
the cost of all operators by one. Thus ĥ∗(s) is the minimum
number of operator applications necessary to reach a goal
state from s. In practice, A∗ using [f∗, ĥ∗] improves cover-
age in zero-cost domains (Asai and Fukunaga 2017).

However, order [f∗, ĥ∗] can also fail to produce an op-
timal expansion, as the example of Figure 1a shows. Let
α > 0. After expanding s0, we have ĥ∗(A) = 2, because
A can reach the closest goal F applying two operators, and
ĥ∗(B) = 1, because B can reach its closest goal D apply-
ing only one operator. As a consequence, A∗ expands state
B first. However, the s-path s0 → B → D is not optimal
because the operator that enables B to reach goal state F
has cost α. Thus [f∗, ĥ∗] expands four states (〈s0, B,A,C〉),
and the optimal strategy only three (〈s0, A,C〉).

9

s0

A

B

C

Ei G

X

B′

A′

D′ E′

C′0
0

0

0
0

α

0
0

0

α+ ε
0

α+ ε

0

Figure 2: Example of an instance where order [f∗, h∗
c] using cost adaptation fails for any value of c, and ε > 0.

Novel Strategies based on Cost Adaptation
The tie-breaking strategy using the perfect heuristic h∗

guides the search along a cost-optimal path but fails to iden-
tify the cost-optimal path with the least number of operators.
The tie-breaking strategy using the distance-to-go heuristic
ĥ∗ guides the search along a path with fewest operators to
the goal but fails to estimate the total cost of the path. We
can combine both estimates to improve the search perfor-
mance.

Definition 1 (Cost-adapted heuristic). Let S =
〈s0, S∗,O, cost〉 be a state space and h be a heuristic
for S. A cost-adapted heuristic hc is a heuristic function for
S, where for all o ∈ O there is a new operator oc ∈ Oc
with cost(oc) = cost(o) + c and hc computes the heuristic
function by replacing O by Oc.

In other words, the cost-adapted heuristic hc is the same
algorithm to compute h on S, but adds a constant c to each
operator cost. We will call a tie-breaking strategy based on
hc a method using cost adaptation.

Richter, Westphal, and Helmert (2011) introduced the
idea of adding one to every operator cost in the satisficing
LAMA solver. The intuition is that by doing so, A∗ can com-
bine the operator cost with the cost of applying an operator.
In the special case used in the LAMA solver with c = 1 we
denote hc as h+1.

Analyzing h∗c as Tie-Breaking Strategy
Now, we analyze the behavior of h∗c for different magnitudes
of c. First, consider c = ε where ε is a small constant such
that ε � mino∈O{cost(o) | cost(o) > 0}. The effect of
making ε very small is that even for the longest path with
l operators, the product lε is still smaller than the smallest
difference between a cost-optimal and a non-cost-optimal
s-path. If we apply [f∗, h∗ε] to the example of Figure 1a it
produces the optimal expansion 〈s0, A,C〉.

However, [f∗, h∗ε] can also fail. Figure 1b shows an ex-
ample where A∗ with [f∗, h∗ε] expands three states and the
optimal expansion only two. In this example, after expand-
ing s0, A∗ can expand A and B, where h∗ε (A) = α + ε
while h∗ε (B) = 2ε + |Di|ε. Thus, B is chosen for expan-
sion, followed by the sequence of states Di, leading to goal
state E. A∗ expands the path s0 → B → · · · → E instead
of the shortest cost-optimal path s0 → A→ C.

An approach to solve the example of Figure 1b is to
use c = M , where M � maxo∈O(cost(o)). In Figure 1b
breaking ties by h∗M produces the optimal expansion. Now,
h∗M (A) = α + M and h∗M (B) = 2M + |Di|M . Since

M � α, A∗ expands A instead of B, and terminates at the
goal state C, leading the search to the optimal expansion se-
quence 〈s0, A〉.

However, h∗M fails to achieve the optimal expansion in
the example of Figure 1a, where we have h∗M (A) = 2M
and h∗M (B) = α + M . Since M � α, we have h∗M (A) >
h∗M (B) causing the search to expand B, leading to the same
problem of [f∗, ĥ∗].

Unfortunately, there is no strategy for selecting c that
works universally for any task. Figure 2 shows an example
where there is no constant c such that order [f∗, h∗c] leads to
an optimal expansion. The optimal strategy must expand the
path s0 → A→ C → X → A′ → C ′. However, for c > α,
after expanding the initial state s0 we have h∗c(B) < h∗c(A)
because of the path using the operator with cost α from B
to X , and thus A∗ will expand state B which is not opti-
mal. For c < α+ ε, on the other hand, after expanding state
X , A∗ will next select state B′ since h∗c(B

′) < h∗c(A
′), but

the optimal expansion strategy should expand A′ in order to
minimize the number of expansions. Since ε > 0 for every
c one of the two cases will fail. Despite this, cost adaptation
will prove to be useful in defining a tie-breaking strategy
with optimal expansion.

An Optimal Expansion Strategy with Cost
Adaptation

Dechter and Pearl (1985) have shown that for any state space
S and admissible heuristic function h there is always a tie-
breaking strategy τ such that A∗ with [f, τ] presents optimal
expansion. The following theorem presents a strategy using
a single tie-breaker that achieves optimal expansion for ad-
missible and consistent heuristic functions h. This expansion
strategy only requires the evaluation function f to use a con-
sistent heuristic h – not necessarily h∗ – but it stills need h∗
for the tie-breaker, which now also considers the g values of
the states.

Theorem 1. For an admissible and consistent heuristic h,
A∗ with order [g + h, τ] and tie-breaker τ = g + h∗ε has
optimal expansion.

Proof. If there is no solution A∗ will always expand all
reachable states and thus has optimal expansion. Otherwise,
since h is admissible and consistent, A∗ will process states
by non-decreasing f -values, ending with f = C∗ at some
goal state. We will show that A∗ with tie-breaker τ expands
the least number of states in the final f -layer, from which the
claim follows, since states with f < C∗ must be expanded
by all searches which find an optimal solution.

10

s0
h = 2

A
h = 2

B
h = 2

C
h = 1

D
h = 0

E
h = 1

G

0

0

1

1

1

1

2

1

Figure 3: Example of an instance where order [g+ h, g+ h∗
ε] fails

if h is inconsistent. The h-value of each state is also showed.

Consider the moment when for the first time the state of
least f -value in OPEN has f = C∗. From this point on all
processed states have f = C∗ = g + h∗ and therefore are
processed in τ -order. For a state s on a cost-optimal path
to a goal we have h∗ε (s) ≤ h∗(s) + εd̄, where d̄ is an upper
bound on the distance from s to some goal, since a non-cost-
optimal path from s to some goal costs at least h∗(s)+∆ for
some ∆ > 0, and therefore h∗ε (s) ≤ h∗(s) + εd̄ < h∗ + ∆,
by choice of ε.1

Thus, for the state s of least τ -value we have τ(s) =
g(s) + h∗ε (s) = g(s) + h∗(s) + εd∗(s) where d∗(s) is the
shortest distance from s to a goal on some cost-optimal path,
and since g + h∗ is constant for all states with f = C∗, they
are processed in d∗-order. Now, since each state of distance
d∗ has at least one successor of shortest distance d∗− 1 on a
cost-optimal path, the distance to the goal decreases in each
iteration, and A∗ expands exactly d∗ − 1 states before pro-
cessing a goal state. Since d∗ is the shortest distance on a
cost-optimal path, optimal expansion follows.

As a simple consequence of Theorem 1 we have that for
A∗ with the perfect heuristic function h∗, tie-breaker τ =
g+h∗ε has optimal expansion. Notice that optimal expansion
does not imply that A∗ finds a shortest cost-optimal solution,
since the shortest path is guaranteed only for the final f -
layer.

The result from Theorem 1 is useful from the follow-
ing perspective: consider an inadmissible heuristic h where
h(s) = h∗(s) in a significant number of states but h(s) >
h∗(s) in only a few. Function h cannot be used to guide an
admissible search, but Theorem 1 suggests that we can use
it as an effective tie-breaking strategy.

Figure 3 illustrates an instance where order [g+h, g+h∗ε]
fails if h is inconsistent. Heuristic values are shown in-
side each state. To achieve optimal expansion the algorithm
should expand paths s0 → A → C → G or s0 →
B → E → G. However, whenever we expand state A,
we must expand state D as well. Due to the inconsistency
of the heuristic function h, we have f(D) < f(A) and
arg mins∈OPEN f(s) = D, hence this successor must be
expanded before than any other successor of A. Since our
tie-breaking strategy g + h∗ε cannot guarantee to favor the

1For integer costs, we can choose ε < 1/d̄.

expansion of B over the expansion of A, it does not guaran-
tee optimal expansion if h is inconsistent.

If instead of using the optimal expansion strategy from
Theorem 1, we use [f∗, g + hε] (i.e., the perfect heuristic
is used for the evaluation function and not the tie-breaker),
we cannot guarantee optimal expansion anymore. Consider
the example of Figure 1a and assume that oα is the operator
causing the transition of cost α. Let h be an approximation
of h∗ that is incapable of capturing the necessity of applying
operator oα – i.e., it considers the cost of operator oα to be
0. Since A∗ uses f∗, we have f∗(A) = f∗(B) = C∗ = 0
for the successors A and B of s0. To break this tie, we use
g + hε. We have g + hε(A) = 2ε and g + hε(B) = ε due to
the possible path s0 → B → D where h cannot predict the
need of oα. Hence, B is expanded instead of A, and A∗ fails
to expand only the cost-optimal path with the least number
of operators.

Experiments
In our experiments, we tested the improvement of state ex-
pansions, search time and coverage for the different meth-
ods studied here and previously mentioned in the literature.
The experiments use revision 6251 of the Fast-Downward
planning system (Helmert 2006) with the modifications of
Asai and Fukunaga (2017) and also the same benchmarks
as them. In total, we used 1104 instances from the IPC
and 620 from the zero-cost benchmarks of Asai and Fuku-
naga (2017). All experiments have been run on a PC with an
AMD FX-8150 processor running at 3.6 GHz and 32 GB of
main memory. In the case where τ cannot solve all ties, the
remaining ones are broken by FIFO order.

Comparing Theory and Practice
We first focus on the question if the theoretical advantage of
cost adaptation strategies translates into practice. For these
experiments we use a time limit of 30 minutes, a memory
limit of 4 GB, and the subset of 183 IPC and 87 zero-cost
domains, which could be solved optimally by all methods
given these limits and the internal limits of Fast-Downward
to build h∗. Thus, this reduced set of benchmarks contains
instances with smaller state spaces than usual.

Table 1 reports the geometric mean of the number of
expanded states for different combinations of primary A∗
heuristic and tie-breaker. For each combination, the table
shows the results for IPC and zero-cost domains separately.
The pair at the header of each column is denoted by h1, h2,
where h1 was used as the heuristic for the function f and h2
as the heuristic for the tie-breaking strategy. The best results
in each column are shown in bold. We can see that using the
benchmarks with a small state space, A∗ expands few states.

We first analyze the theoretical predictions using the per-
fect heuristic h∗ in function f and as tie-breaker. The re-
sults are in the first two columns of Table 1. In practice,
the theoretically optimal tie-breaker g + h∗ε performs best,
and strictly dominates the other tie-breakers on zero-cost do-
mains.

In the second combination we relax the tie-breaker to
hLM-cut (Helmert and Domshlak 2009). As expected, the

11

h∗, h∗ h∗, hLM-cut hLM-cut, h∗ hLM-cut, hLM-cut hLM-cut, hFF

IPC Z IPC Z IPC Z IPC Z IPC Z

[g + h1, h2] 12.05 124.49 13.34 244.44 69.92 549.94 79.24 805.68 80.79 690.19
[g + h1, ĥ2] 11.78 13.33 14.28 23.72 69.87 119.02 79.29 172.46 80.88 156.04
[g + h1, h2+1] 11.78 13.37 13.01 20.18 69.87 105.57 79.18 147.79 80.95 131.62
[g + h1, h2ε] 11.78 13.39 12.63 21.33 69.88 105.57 79.36 144.93 79.63 142.02
[g + h1, g + h2ε] 11.78 13.26 31.91 65.67 69.84 104.67 80.71 145.88 81.26 141.08

Table 1: Comparison of the geometric mean of the number of expanded states using different heuristics and tie-breaking strategies in IPC
domains (“IPC”) and zero-cost (“Z”) domains.

number of expanded states increases for all tie-breakers,
showing that, in fact, tie-breaking strategy matters. The the-
oretical results do not guarantee an optimal expansion break-
ing ties by τ = g+h∗ε in this case, and indeed we can see that
the strategy actually performs worse than other strategies.
This can be explained by the fact the hLM-cut is not fully in-
formed. Thus, when a successor state on a cost-optimal path
is generated it tends to have a higher value of g + hLM-cut

ε ,
and leads A∗ to first expand less informed states. This effect
is less pronounced for tie-breakers not using g.

In the remaining combinations, we switch roles and fo-
cus on not fully informed searches using heuristic hLM-cut

with different tie-breakers. In all these cases, A∗ expands a
significantly higher number of states. The fifth and sixth col-
umn in Table 1 show the results for breaking ties using h∗.
Even though hLM-cut is not guaranteed to be consistent, we
find that the f -values never decrease in about 90 % of the
instances in both benchmarks. Hence, our result from Theo-
rem 1 guarantees optimal expansion for [g+hLM-cut, g+h∗]
in most instances. In fact, all cost adaptation methods have
a similar performance on the IPC instances, and the theo-
retically optimal tie-breaker g + h∗ε is the best method by a
small margin.

We finally relax the tie-breaker to approximations of
h∗. Following Asai and Fukunaga (2017) we have selected
heuristics hLM-cut and hFF (Hoffmann and Nebel 2001). Note
that heuristic hFF is not admissible, but will not change the
optimality of the search when used as a tie-breaker. Both
cases expand more states than the optimal strategy, as ex-
pected, but the relative performance of the tie-breakers is
very similar, with little difference on the IPC benchmark.
On the zero-cost domains, breaking ties by ĥ is always the
worst, and methods using cost adaption are always the best.

Table 1 quantifies the advantage of our theoretically best
method on the restricted set of small instances, where h∗ can
be computed. Yet, some instances still need many expan-
sions when breaking ties using h∗ which is a fully informed
heuristic. For example, A∗ with order [g + hLM-cut, h∗] or
[g + h∗, h∗] expands 349.108 states in the first instance of
the ELEVATORS-UP domain, while order [g+hLM-cut, g+h∗ε]
expands 18 states. Instance P04 of the same domain presents
a similar behavior. In the ROVERS-FUEL domain, instance
P05 has an optimal solution of cost C∗ = 3 with a length
of 22 operators, but the order [f∗, hLM-cut] expands 272.171
states, while the order [f∗, g+h∗ε] expands exactly 22 states.

Method IPC (1104) Zero-cost (620)

[f, hLM-cut] 525 237

[f, ĥLM-cut] 531 301
[f, hLM-cut

+1] 530 299
[f, hLM-cut

ε] 532 301
[f, g + hLM-cut

ε] 524 300

[f, hFF] 548 251

[f, ĥFF] 557 338
[f, hFF

+1] 562 352
[f, hFF

ε] 559 351
[f, g + hFF

ε] 553 346

[f, ĥFF, 〈d〉 , LIFO] 530 328

Table 2: Comparison of the number of solved instances in IPC and
zero-cost benchmarks where f = g + hLM-cut.

In summary, all cost adaptation strategies are similar on
the IPC instances, but far better than the default tie-breaker h
on zero-cost. Our results show that even in small state spaces
and using the perfect heuristic h∗, tie-breakers are important,
even when not optimal. Still, the heuristic function is more
important than the tie-breaker, as the comparison between
the second and the third combinations confirms. The last two
combinations show that tie-breakers also make a difference
in practice, and there is enough room for improvement.

Performance on the Complete Set of Instances
We now turn to the practical performance of tie-breakers us-
ing cost adaptation. Our second experiment compares the
coverage of different tie-breaking strategies using f = g +
hLM-cut to guide the search on the complete set of 1104 IPC
and 620 zero-cost domains. In this experiment we have im-
posed limits of 4 GB and 5 min for each run, following Asai
and Fukunaga (2017).

The results are shown in Table 2. We compare our main
cost adaptation methods against the standard methods in
the literature and the current best deterministic tie-breaker
on zero-cost domains from Asai and Fukunaga (2017) (last
row). (The best non-deterministic tie-breaker of Asai and
Fukunaga (2017) solves in average 2.3 instances more.)

12

Number of Expansions Expansions per Second

101

103

105

107107

h
F
F

+
1

101

103

105

IP
C

101 103 105 107

101

103

105

107

107

107

hLM-cut

h
F
F

+
1

101 103 105 107107

ĥFF
101 103 105

101

103

105

hLM-cut

101 103 105

ĥFF

Z
e
ro

-c
o
st

(a) (b) (c) (d)

Figure 4: Expansions and expansions per second for IPC (top) and zero-cost (bottom) using A∗ with hLM-cut and different tie-breakers (axis).

Looking at the group of tie-breakers using hLM-cut we find
that that all methods using cost adaption perform better than
the standard tie-breaker h.

The second group using hFF in the tie-breaker dominates
the strategies using hLM-cut only. This confirms the observa-
tion of Asai and Fukunaga (2017) that breaking ties by hFF is
better than hLM-cut. However, we find that ĥFF also performs
better on zero-cost domains than their best strategy. This can
probably be explained by the difference between processor
speeds. Again the tie-breaker g + hFF

ε which is theoretically
best for h∗ is competitive. The overall best method is hFF

+1. It
solves five instances more on the IPC benchmark than ĥFF,
the best tie-breaker from the literature. The best known tie-
breaker for zero-cost instances is [f, ĥFF, 〈d〉 , LIFO] (Asai
and Fukunaga 2017). Here, hFF

+1 solves 24 instances more.

Figures 4a and 4b compare the number of expanded states
of the best method [f, hFF

+1] against the most used method in
literature, [f, hLM-cut] and the best method from the literature
[f, ĥFF]. The plots on top show results for IPC instances, the
ones on the bottom for zero-cost. We see that tie-breaking
with hFF

+1 expands fewer states on most of the instances com-
pared to hLM-cut, in particular on the zero-cost domains. The
number of expanded states compared to ĥFF is similar in IPC
but in zero-cost domains hFF

+1 outperforms ĥFF in general.

Another important issue about tie-breaking strategies is
the overhead to compute a second evaluation function. Fig-
ures 4c and 4d compare the expansions per second of the
methods. We find that all methods expand about the same
number of states per second, with the exception of hLM-cut

on zero-cost domains.

In general lines, the “pure” cost adaptation methods
([f, hc]) using the hFF heuristic have the best performance.
Tie-breaking by hFF

+1 presents the best coverage in both
benchmarks.

Conclusion and Future Work

In this paper, we presented a tie-breaking strategy for A∗
with h∗ that guarantees the minimum number of expanded
states among all tie-breaking strategies. Our analysis showed
that even for the perfect heuristic h∗ previously proposed
tie-breakers fail in producing an optimal tie-breaking strat-
egy. Our results showed how to build an optimal tie-breaking
strategy for A∗ for an admissible and consistent heuristic h.

Our experiments confirm the results from Asai and Fuku-
naga (2017) that tie-breakers have the potential to increase
coverage and reduce the number of expanded states. In sum-
mary, our best method based on cost adaptation solves 152
instances more than breaking ties by h, the most common
tie-breaker in the literature, and more than the two deter-
ministic methods from Asai and Fukunaga (2017) we have
tested. Our experiments showed that even in small state
spaces and with the perfect heuristic h∗, the performance
of A∗ can be improved by a better tie-breaking strategy. Our
main contribution in this work is to provide an analysis that
enables a better understanding of the role of tie-breaking
strategies in the performance of A∗.

Two ideas may be interesting to investigate further. The
first is an analysis similar to the one by Helmert and
Röger (2008) who investigated for specific domains the per-
formance of A∗ with almost perfect heuristics. One could
do the same with almost perfect tie-breakers. Second, one
may study the existence of effective domain-dependent tie-
breakers, not based on h∗.

Acknowledgments

This work was supported by FAPERGS as part of project
17/2551− 0000867.7 and was conducted while the first au-
thor was a student at the Federal University of Rio Grande
do Sul.

13

References
Asai, M., and Fukunaga, A. S. 2016. Tiebreaking strategies
for A∗ search: How to explore the final frontier. In AAAI
Conference on Artificial Intelligence, 673–679.
Asai, M., and Fukunaga, A. 2017. Tie-breaking strategies
for cost-optimal best first search. Journal of Artificial Intel-
ligence Research 58:67–121.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A∗. Journal of the ACM
32(3):505–536.
Hansen, E. A., and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research 28:267–297.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE Trans. Systems Science and Cybernetics 4(2):100–
107.
Helmert, M., and Domshlak, C. 2009. Landmarks, crit-
ical paths and abstractions: what’s the difference anyway?
In International Conference on Automated Planning and
Scheduling, 162–169.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In AAAI Conference on Artificial Intelligence, vol-
ume 8, 944–949.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Holte, R. C. 2010. Common misconceptions concerning
heuristic search. In Symposium on Combinatorial Search.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA
2008 and 2011. In International Planning Competition,
117–124.

14

Completeness-Preserving Dominance Techniques for Satisficing Planning

Álvaro Torralba
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

torralba@cs.uni-saarland.de

Abstract

Dominance pruning methods have recently been introduced
for optimal planning. They compare states based on their goal
distance to prune those that can be proven to be worse than
others. In this paper, we introduce dominance techniques for
satisficing planning. We extend the definition of dominance,
showing that being closer to the goal is not a prerequisite
for dominance in the satisficing setting. We develop a new
method to automatically find dominance relations in which a
state dominates another if it has achieved more serializable
sub-goals. We take advantage of dominance relations in dif-
ferent ways; while in optimal planning their usage focused
on dominance pruning and action selection, we also use it to
guide enforced hill-climbing search, resulting in a complete
algorithm.

Introduction
Satisficing planning is the problem of, given an input plan-
ning task, finding a sequence of actions that go from the
initial state to a state that satisfies the goal condition.
Most satisficing planners use search algorithms like Greedy
Best-First Search (GBFS) or Enforced-Hill Climbing (EHC)
guided with heuristics such as the delete-relaxation heuris-
tic and extensions thereof (Hoffmann and Nebel 2001;
Domshlak et al. 2015) plus certain diversification tech-
niques (Richter et al. 2011; Röger and Helmert 2010)
and/or sub-goal selection strategies (Chen et al. 2004;
Porteous et al. 2001; Hoffmann et al. 2004). Both GBFS
and EHC use heuristics, but they use them in different ways.
In GBFS, heuristics determine the order in which states are
expanded. EHC, on the other hand, uses heuristics to com-
pare newly generated states against the initial state, restart-
ing the search when it finds a state with lower heuristic value
than the initial state. The success of EHC highly depends on
the accuracy of the heuristics. When the heuristic is accu-
rate EHC finds solutions very quickly, but it is incomplete in
tasks with unrecognized dead-end states, i.e., states that the
heuristic finds promising but have no solution (Hoffmann
2005).

Dominance pruning techniques have recently been intro-
duced for optimal planning (Hall et al. 2013; Torralba and
Hoffmann 2015). They reduce the search space by pruning
states that are dominated by others. The definition of dom-
inance is based on goal distance: a state dominates another

state if it can be proven to be at least as close to the goal.
In this paper we explore the use of dominance methods to

compare states in satisficing search. We redefine the notion
of dominance for satisficing planning, substituting the opti-
mality guarantee by a completeness guarantee that ensures
that at least one plan (not necessarily optimal) will be pre-
served. We also consider how dominance relations can be
used to reduce the size of the search space. Like in optimal
planning, one can prune states that are dominated by oth-
ers, but lifting any considerations with respect to the cost of
reaching such states. Also, a state s can be replaced by any
of its successors s′ if s′ strictly dominates s. Based on this,
we define a variant of EHC that is complete.

Our work builds on previous methods to automatically
find dominance relations for a given planning task. We
strengthen their reasoning and specialize them for satisfic-
ing search. To do this, we define a new dominance relation
that serializes the planning task, inspired by sub-goal seri-
alization approaches (Barrett and Weld 1993). Our exper-
iments show that these serialized dominance relations are
able to identify dominance in a number of domains to guide
a dominance-based EHC.

Background
A labeled transition system (LTS) is a tuple Θ =
〈S,L, T, sI ,SG〉where S is a finite set of states, L is a finite
set of labels, T ⊆ S × L× S is a set of transitions, sI ∈ S
is the start state, and SG ⊆ S is the set of goal states. A
plan for a state s is a path from s to some sG ∈ SG. A state
s is reachable if there exists a path from sI to s. A state is
solvable if there exists a plan from s, otherwise we say that
s is a dead end. By h∗(s) (g∗(s)) we denote the length of a
shortest plan for s (path from sI to s). A plan for s is optimal
iff its cost equals h∗(s). Since our goal is to find solutions
fast, regardless of their cost, we assume unit-cost domains.
We also simplify the explanation of previous work on dom-
inance for optimal planning based on this assumption.

Following previous work on dominance pruning, we con-
sider a planning task as a set of LTSs on a common set of
labels, {Θ1, . . . ,Θn}. Given a planning task in the more
common SAS+ formalism (Bäckström and Nebel 1995), the
atomic transition systems representation with one LTS for
each SAS+ variable can be easily obtained (Helmert et al.
2014). The state space of the task is the synchronized prod-

15

R

(A) Robot position.

¬Vi Vi

mi mi

(B) Cell i visited.

F2 F1 F0

mx mx

(C) Fuel available.

Figure 1: Example based on the Visitall domain where a robot must
visit all tiles in a square grid. The robot has two units of fuel which
are consumed when moving into striped cells so the robot must not
enter the square grid via the shortest path.

uct of all the LTSs: Θ = Θ1 ⊗ · · · ⊗Θn. The synchronized
product of two LTSs Θ1 ⊗ Θ2 is another LTS with states
S = {(s1, s2) | s1 ∈ Θ1 ∧ s2 ∈ Θ2}, transitions T =
{((s1, s2), l, (s′1s

′
2)) | (s1, l, s

′
1) ∈ T1 ∧ (s2, l, s

′
2) ∈ T2},

s.t. (s1, s2) ∈ SG iff s1 ∈ SG1 and s2 ∈ SG2 . We write
s
l−→ s′ as a shorthand for (s, l, s′) ∈ Θ. Let τ be a set of la-

bels, we write s τ−→∗s′ to denote a path from s to s′ where all
labels belong to τ . We use subscripts to differentiate states
in the state space Θ (e.g., s, s′, t) and their projection into
some Θi (e.g., si, s′i, ti). We say that a transition s → s′ in
Θ affects Θi if it modifies its value, si 6= s′i.

Consider a planning task represented as a set of LTSs
{Θ1, . . . ,Θn} like our running example shown in Figure 1,
where a robot must visit all tiles in a square grid. There is
an LTS representing the position of the robot (A), an LTS for
each cell in the square grid that represents if the cell has been
visited or not (B), and an LTS describing the available fuel
(C). In (A) we depict the grid. The corresponding LTS has
a node for each cell, and transitions between adjacent cells.
Transitions moving the robot to cell i are labeled with la-
bel mi. Only walking into stripped cells (x) consumes fuel.
All other labels have a self-loop transition in every state and
they are omitted.

A heuristic is a function h : S → N that estimates the
distance from every state to the goal. A state is reachable
if there exists a sequence of actions from sI to it. A state
is alive iff it is solvable, reachable, and not a goal state.
A heuristic h is descending if all alive states have a suc-
cessor with lower heuristic value. A heuristic is dead-end
aware if h(s) =∞ for all dead-end states s. Most common
search algorithms in satisficing planning (e.g., hill-climbing
or GBFS) will solve the planning task with at most h(sI)
expansions if h is a descending and dead-end aware heuris-
tic (Seipp et al. 2016).1

A relation � is a set of pairs of states. A relation � is a
preorder iff it is reflexive and transitive. We write s ≺ t as
a shorthand for s � t and t 6� s (i.e., ≺ is a strict partial-
order). We say that � approximates a heuristic h iff s � t
implies h(t) ≤ h(s). Dominance relations approximate the
goal distance; whenever s � t (t dominates s) then tmust be
at least as close to the goal as s (h∗(t) ≤ h∗(s)). Torralba

1Seipp et al. (2016) consider the more general case of dead-end
avoiding heuristics instead of dead-end aware heuristics.

and Hoffmann (2015) introduced label-dominance simula-
tion, a method to compute a set of relations {�1, . . . ,�n}
that can be combined to derive a dominance relation � for
Θ where s � t iff si �i ti for all i. In a best-first search
with open list open and closed list closed , dominance prun-
ing consists of removing a state s from the open list without
expanding it, whenever there exists t ∈ open ∪ closed such
that s � t and g(t) ≤ g(s). If � is a dominance relation,
then at least one optimal plan is preserved.

Quantitative dominance extends the previous method by
considering numeric functions instead of relations (Torralba
2017). A function D : S × S → Q ∪ {−∞} is a quantita-
tive dominance function (QDF) if D(s, t) ≤ h∗(s)− h∗(t).
QDFs are computed as a set of functions {D1, . . . ,Dn} such
that D(s, t) =

∑
iDi(si, ti). To guarantee that the sum of

all Di is a QDF, they must fulfill the equation:

Di(si, ti) = min
si

l−→s′i

max
ui

l′−→u′i

Di(s′i, u′i)−hτ (ti, ui)+
∑

j 6=i
DLj (l, l′)

In words, whatever we can do from si (si
l−→ s′i), we can

do from ti via a path ti
τ−→∗ui l′−→ u′i, taking into account

the comparison of the goal distance between the final result
of both paths (Di(s′i, u′i)), the cost from ti to ui (hτ (ti, ui)),
and how much cost we incur for applying l′ instead of l in
all other LTSs (

∑
j 6=iDLj (l, l′)). This requires to define hτ

and DLj :
• hτ accounts for transitions that only affect a single LTS

Θi. A label is a τ -label for Θi iff it can always be applied
to change the value of Θi without affecting other LTSs.
Formally, if l is a τ -label for Θi then sj

l−→ sj ∀Θj 6=
Θi,∀sj ∈ Θj . The τ -distance from si to ti, written
hτ (si, ti), is the length of a shortest path from si to ti in
Θi using only transitions with τ labels or ∞ if no such
path exists. For example, moving the robot to a non-
striped cell outside the square part of the grid is a τ -label
because it changes the position of the robot without af-
fecting other variables.

• DLj (l, l′) measures how good it is to apply l′ instead of l in
Θj . If DLj (l, l′) ≥ 0, it means that any time we can apply
l to reach some sj , we can also apply l′ to reach tj s.t.
D(sj , tj) ≥ 0. For example, in the LTS that represents
the available fuel, DLF (mx,mi) = 0 for any striped cell x
and non-striped cell i.
In the example of Figure 1, we can obtain a QDF

{D1, . . . ,Dn} where each Di is comparing states only ac-
cording to their value in Θi. For the position of the robot
we obtain D(x, y) = −d(x, y) where d(x, y) is the distance
from cell x to cell y using only movements that do not con-
sume fuel. For the fuel, we obtain D(s, t) = 0 if t has at
least as much fuel than s or −∞ otherwise. For each cell,
we have a value of −∞ if the cell has been visited in s and
not in t and 0 otherwise. In optimal planning, t dominates s
if
∑
iDi(si, ti) ≥ 0. In our example this means that a state

is better if it has visited more cells, it has at least as much
fuel and the position of the robot is the same.

QDFs can be used, apart for dominance pruning, to per-
form action selection. Action selection is a type of pruning

16

sI

s s′

t t′

sG

Figure 2: Example with two alternative paths to the goal.

where a state s ∈ open may be replaced by one of its im-
mediate successors t if D(s, t) ≥ c(s, t) where c(s, t) is the
cost of the transition from s to t. In that case, such transition
starts an optimal plan from s, so at least one optimal solution
is always preserved.

Satisficing Dominance
In optimal planning, a dominance relation is one where for
any s � t, t should be as close to the goal as s. However, this
is sometimes too restrictive for satisficing search. For exam-
ple consider a problem where there are two paths to the goal,
one requires solving a hard combinatorial problem and the
other follows a straightforward, but potentially longer, path.
Assuming that providing any guarantees about the cost of
solving the combinatorial problem is hard, no dominance
can be proven for optimal planning. However, it is simple to
manually design a dominance relation where the states in the
simpler path dominate those related to solving the combina-
torial problem, directly guiding the search towards the goal.
With this aim, we define a satisficing dominance relation as
one that preserves solutions, no matter their cost or length.

Definition 1 (Satisficing Dominance Relation) A pre-
order � is a satisficing dominance relation if there exists a
descending and dead-end aware heuristic h� such that �
approximates h� (s � t =⇒ h�(t) ≤ h�(s)).

Intuitively, h� should be dead-end aware so that unsolv-
able states do not dominate solvable states, and descending
to avoid the case where a state dominates all its successors,
hence rendering the search incomplete. Note that simply
requiring each state to not dominate one of its solvable suc-
cessors is not enough to guarantee that a plan is preserved.
Consider the example of Figure 2, where dominance prun-
ing with a relation where t′ � s and s′ � t could prune both
s′ and t′, causing all solutions to be pruned.

This is a generalization of dominance relations used in op-
timal planning, since the perfect heuristic h∗ is descending
and dead-end aware. Note that any descending and dead-
end aware heuristic can be defined via computing h∗ after
changing the cost of the transitions in Θ. Therefore, Defini-
tion 1 can also be interpreted as a dominance relation for an
instance with a different cost function.

In optimal planning, dominance relations have been used
in two different ways: for dominance pruning (eliminating
states that are dominated by others) and action selection
pruning (automatically applying an action if this action is
guaranteed to start an optimal plan). Next, we adapt these
types of pruning to satisficing planning. Dominance pruning
can be applied in a similar way as in optimal planning, but

slightly stronger since the cost of reaching each state does
not matter.

Theorem 1 Let � be a satisficing dominance relation.
Then, a best-first search with open list open , and closed list
closed in which a state s ∈ open may be pruned if there ex-
ists another t ∈ open ∪ closed such that s � t is complete.

Proof Sketch: Let h� be the dead-end aware and descend-
ing heuristic approximated by �. s was pruned so there
must exist t ∈ open ∪ closed such that h�(t) ≤ h�(s).
Let u be the state with lowest h� value in the open list.
Then, h�(u) ≤ h�(t) since if t is closed, one of its suc-
cessors with lower h� value (h� is descending) was inserted
in open . Since h�(u) ≤ h�(s) < ∞, u is solvable. As h�
is descending, there exists a plan for u that does not contain
any state dominated by s. �

Action selection can also be adapted for the satisficing
case. In this case, we do not care about the solution cost so
quantitative dominance is not required anymore. Instead, we
consider strict dominance to avoid loops in which two states
that dominate each other are constantly replaced by one an-
other. We can also generalize action selection to consider
not only immediate successors, but also any successor that
is reached by a sequence of actions. This is far more useful
in satisficing than in optimal planning because the cost of
the action sequence can be ignored.

Theorem 2 Let≺ be a strict satisficing dominance relation.
A best-first search where a state s ∈ open can be replaced
by some t such that t is the result of executing any sequence
of actions in s and s ≺ t is complete.

Proof Sketch: As h≺(t) ≤ h≺(s), and h≺ is descending, t
must have a solution that does not traverse s, since all states
ti in the solution have h≺(ti) < h≺(s) so ti 6= s and ti 6≺ s.
By transitivity neither t nor any state in its solution can be
substituted by s or any state s′ such that s′ ≺ s. �

It should be noted that both types of pruning can be ap-
plied at the same time, but only if they use the same relation.

Theorem 3 Let � be a satisficing dominance relation.
Then:

1. Let ≺ be a strict relation such that s ≺ t iff s � t and
t 6� s. Performing dominance pruning with � and action
selection with ≺ is always safe.

2. Let ≺′ be a different strict satisficing dominance rela-
tion. Then, there exist cases where performing dominance
pruning with � and action selection with ≺′ is not safe.

Proof Sketch: To show (2.) consider again the example of
Figure 2. Let � be a relation such that s � s′ � sI � t �
t′ � sG and≺′ be a strict relation such that t ≺′ t′ ≺′ sI ≺′
s ≺′ s′ ≺′ sG. Then, by Theorem 2, sI can be replaced by
t, and then later t′ could be pruned according to Theorem 1
because it is dominated by a previously expanded state (sI).

To show (1.), if both relations � and ≺ approximate the
same heuristic h�, then the minimum h� value of any state
in the open list monotonically decreases. A loop like the
one in the example above cannot happen because the value

17

of h≺ can only decrease along the path to the goal. Since
h≺(t′) < h≺(t), t′ cannot be pruned by any state that has a
larger h≺ value (e.g., any state that is replaced by t). �

Dominance-Based Enforced Hill-Climbing
Enforced Hill-Climbing (EHC) is a well-known search algo-
rithm for planning (Hoffmann and Nebel 2001). EHC per-
forms a breadth first search from the initial state sI until
finding a state s such that h(s) < h(sI). At that point, if s
is a goal state a plan has been found. Otherwise, the initial
state is replaced by s and the search is restarted.

According to Theorem 2, any time we find a state strictly
better than s according to a satisficing dominance relation
�, we can remove s and all other of its successors from con-
sideration. This may be expensive to do for all states in the
search, but can be easily done for the special case where s
is the initial state sI . In that case, the search is restarted
from the newly found state that dominates sI . This is a form
of EHC, where the search is restarted whenever a state bet-
ter than sI is found, substituting the heuristic function by a
dominance relation to determine which states are better than
sI .

Also, while the original EHC algorithm used breadth-first
search to escape the current plateau, there is no reason to
not consider other best-first search algorithms with different
priority functions as well. We define the dominance-based
EHC DEHC≺(X) algorithm relative to any best-first search
algorithm X and strict preorder ≺. DEHC≺(X) runs algo-
rithm X until finding a goal state or any state s such that
sI ≺ s. In the latter case, it restarts from s.

Theorem 4 LetX be a sound and complete best-first search
algorithm, and let ≺ be a strict preorder such that for any
pair of reachable states s, t, if s ≺ t and s is solvable then t
is solvable. Then DEHC≺(X) is sound and complete.

Proof: Soundness follows from soundness ofX . Complete-
ness: If the instance is solvable, each run of X can finish
either finding a goal, or finding a state t such that sI ≺ t
and another instance of X is started from t. Then, as t must
be solvable, X can never be restarted on an unsolvable state.
The algorithm always terminates because ≺ is a strict pre-
order so the number of times X may be called is bounded
by the number of reachable states which is always finite. �

The conditions required for ≺ are weaker than what is re-
quired for a satisficing dominance relation. If≺ is based on a
satisficing dominance relation �, then by Theorem 3, domi-
nance pruning can be used inX . In this case, any state dom-
inated by the initial state in each call of X can be pruned,
thereby ensuring that the search does not re-expand any pre-
vious initial state. However, DEHC can also be used with
relations defined from heuristic functions in the following
way.

Definition 2 (Heuristic-based Relation for DEHC) Let D
be a quantitative dominance function and h be any heuristic.
We define ≺h as a relation such that s ≺h t if and only if
D(s, t) > −∞ and h(t) < h(s).

As D(s, t) > −∞ implies that h∗(s) − h∗(t) > −∞
this means that if s is solvable, t must be solvable as well.

This results in a complete variant of EHC with any heuristic
function that uses dominance only to avoid dead-ends. The
role of ≺ in this context is to select when to be more or less
greedy following the heuristic advice, interpolating between
GBFS (when no dominance is found) and EHC.

Practical Methods for Computing Satisficing
Dominance Relations

In this section, we introduce a new method to compute dom-
inance relations for satisficing planning.

Serialized Dominance Relations
Consider the example of Figure 1. Dominance relations for
optimal planning will consider a state better if more cells
have been visited, the robot has at least as much fuel and
the position of the robot is the same. The latter condition
is an important limitation because, in order to find a state
that dominates the initial state, the robot must go back to the
initial position every time that it visits more cells. This is un-
desirable since it will be harder to find a state that dominates
sI and it will result in longer plans.

Intuitively, we prefer states where more cells have been
visited, regardless of the position of the robot. This is pos-
sible because these sub-goals are serializable, i.e., no sub-
goal must be undone in order to achieve the rest. To obtain
such relation, we serialize the LTSs so that a state dominates
another if it is as good for the first j − 1 LTSs (has not un-
visited any position), it is strictly better in Θj (has visited a
new position), and there exists a solution for all other LTSs
without using any label that is “dangerous” for the previous
LTSs. We define a label as dangerous for an LTS Θi accord-
ing to �i if applying it on some state si requires to go to a
potentially worse state s′i s.t. si 6�i s′i.
Definition 3 (Dangerous label) Let�i be a relation for Θi.
We say that a label l is dangerous for�i if there exists a state
si ∈ Θi such that there exists si

l−→ s′i and there does not

exist si
l−→ ti s.t. si �i ti.

For example, labels associated with movements that con-
sume fuel are dangerous for the LTS that represents the
amount of available fuel. However, movements of the robot
are not dangerous for the LTSs that correspond to whether a
cell has been visited or not. Now, we can serialize the LTSs
that define our task. The serialized dominance gives pref-
erence to those states that are better according to the first
LTS, as long as a solution can be found for the other LTSs
without using any label that is dangerous for the first LTS
(i.e., the sub-goals achieved do not need to be undone). To
model this, we re-define label dominance (i.e., the compo-
nent DLj (l, l′) used in the equation that defines a QDF) so
that dangerous labels do not dominate any label.

Definition 4 (Serialized Dominance) Let 〈�1, . . . ,�n〉
be a label-dominance simulation for a list of LTSs
〈Θ1, . . . ,Θn〉 and 〈D1, . . . ,Dn〉 a list of functions that
satisfy the equations of a QDF where DLj (l, l′) = −∞ for
all l′ ∈ L and l ∈ L that is dangerous for �i for any i < j.
We define the serialized dominance relation as s �S t iff

18

sj �j tj for all j ∈ [1, n] or exists i such that sj �j tj
for all j ∈ [1, i), si ≺i ti and D(sj , tj) > −∞ for all
j ∈ (i, n].

Theorem 5 A serialized dominance �S is a satisficing
dominance relation.

Proof Sketch: We show that�S approximates a descending
and dead-end aware heuristic function h� (s �S t =⇒
h�(t) ≤ h�(s)). As h� is dead-end aware, if s is a dead-
end then h�(s) = ∞ and the condition holds. If s is not a
dead-end then t cannot be a dead end because s �S t implies∑Di(si, ti) > −∞. Therefore, it suffices to consider the
case where s and t are both solvable.

We define h� as the perfect goal distance under a cost
function constructed from � such that (i) costs of all transi-
tions affecting Θi cost more than those that only affect Θj

for i < j and (ii) if si ≺i ti transitions from si cost more
than transitions from ti. In both cases, the cost difference
must be large enough so that the most expensive transition
dominates the cost of the entire path.

To prove that s �S t =⇒ h�(t) ≤ h�(s), we assume
WLOG that s1 ≺1 t1.2 Then, for any path from s1, πs =

s1
l1−→ s11 . . .

lk−→ sk1 , there exists a path from t1, πt = t1
l′1−→

t11 . . .
l′k−→ tk1 such that si1 � ti1 for all i ∈ [1, k]. Then, the

cost of πt is lower than that of πs because the first transition
is more expensive from s1 (s1 ≺1 t1) and the rest are not.

SinceDi(si, ti) > −∞ for all i ∈ [2, n], by the properties
of a QDF, the path πt can always be extended into a plan for
t by inserting additional actions. As DLi (l, l′) = −∞ these
additional actions are not dangerous for �1. Since in our
cost function the cost of the most expensive transition domi-
nates the overall cost, the complete path for t is still cheaper
than the one for s under this cost function so h�(t) < h�(s).
�

The resulting dominance relation is heavily influenced by
the ordering chosen for the LTSs. To preserve completeness,
this order must be the same throughout the entire search.
However, one does not need to decide the order a priori, but
rather it can be dynamically chosen during the search. Ini-
tially, we keep a set with all {Θ1, . . . ,Θn} unsorted and the
list of serialized LTSs is initialized empty. When comparing
a state s against sI , we check whether si ≺i sIi for some
i and insert Θi in the list of serialized LTSs if and only if
thanks to this we get that sI ≺S s. Using this policy in our
running example, the order in which the cells are serialized
in the dominance relation is exactly the order in which they
are found during the search.

Recursive and Positive τ -Labels
The method above is most interesting in situations where
dominance relations in optimal planning cannot prove t to
be closer to the goal than s, but where it can show that t is
not a dead-end, i.e., −∞ < D(s, t) < 0. For this, τ -labels

2Let j be the smallest index for which sj ≺j tj . If j > 1, we
can consider instead the synchronized product Θ1 ⊗ · · · ⊗Θj . By
the properties of label-dominance simulation, (s1, . . . , sj) ≺1,...,j

(t1, . . . , tj).

are of great importance. Having more τ -labels can only de-
crease the tau distance between states (hτ), which may in
turn increase the value of D. Previous work considered l a
τ -label for Θi if it has self-loop transitions for any state in
all other Θj . In other words, transitions labeled with l may
be used to modify the value of Θi in any state without af-
fecting the value of other LTSs. Hence, all τ -labels had to
fulfill two properties:

1. They do not have preconditions on other LTSs so it is al-
ways applicable, and

2. They do not have side effects on other LTSs.

Here, we extend the notion of τ -labels in two different
ways, relaxing each of these assumptions in order to find
coarser dominance relations.

Recursive τ -labels Some labels are not τ -labels because
they have preconditions on other LTSs. For example, in a
typical logistics transportation task, loading a package at
some location is not a τ -label for the position of the package
because it is not applicable in all states (the truck must be at
the same location). However, the truck can always be driven
from any given location to the position of the package, load
it, and then drive back to the original position, reaching a
state where the package is in the truck without affecting any
other variable. Hence, we could introduce new transitions
that correspond to those macro-actions. We use this in order
to redefine the set of τ -labels for each LTS.

For every si such that there exists Θj with a path

πτl (si, sj) = (si, sj)
τ−→∗(si, s′j)

l−→ (s′i, s
′
j)

τ−→∗(s′i, sj) for

all sj ∈ Θj , we may introduce a new transition sj
l−→ sj .

The cost of this new transition is equal to the cost of the
τ actions in πτl (si, sj). Thanks to these self-loops, l may
become a τ label. In that case, we do not introduce these
transitions to the definition of the planning task. Instead, we
simply consider label l to be a τ label with a cost equal to
the maximum πτl (si, sj) for any (si, sj). After introducing
new τ -labels, the process can be repeated.

Positive τ -labels Some labels are not τ -labels because
they have side effects. In our running example movements
are not τ -labels for the LTSs representing the position of the
robot because they have the side-effect of marking a cell as
visited. However, these side-effects are always positive ac-
cording to our dominance relation so they can be ignored for
the computation of τ labels. A label is a positive τ -label for
Θi iff ∀Θj 6= Θi,∀sj ∈ Θj , there exists sj

l−→ tj ∈ Θj s.t.
Dj(sj , tj) ≥ 0.

When using this definition one must be careful, due to
the circular dependency between the values of D and the set
of τ -labels. D is typically computed by assuming a very
coarse dominance relation and then iteratively refining it un-
til a fixpoint is reached. However, the values ofD during this
computation have not been proven correct until it ends, so
positive τ -labels cannot be defined in terms of the D that is
being computed. Hence, to avoid such circular dependencies
we first computeD based on the previous notion of τ -labels,

19

and then compute a new set of τ -labels and re-compute D.
This process can be repeated until no more labels are added
to the set of τ labels.

Experiments
We run experiments on all satisficing-track STRIPS plan-
ning instances from the international planning competitions
(IPC’98 – IPC’14). All experiments were conducted on a
cluster of Intel Xeon E5-2650v3 machines with time (mem-
ory) cut-offs of 30 minutes (4 GB). Our goal is to eval-
uate the potential of current dominance techniques to en-
hance search in satisficing planning. As a simple baseline,
we use lazy GBFS in Fast Downward (Helmert 2006) with
the hFF heuristic (Hoffmann and Nebel 2001), and compare
the results against dominance-based EHC guided with blind
search (hB) and the hFF heuristic. We also include the per-
formance of LAMA (Richter and Westphal 2010) and Mer-
cury (Katz and Hoffmann 2014; Domshlak et al. 2015) as
representatives of more modern planners.

We run several configurations comparing our new serial-
ized dominance (�S) against quantitative dominance rela-
tions (�D) used in previous work on optimal planning (Tor-
ralba 2017). However, satisficing planning benchmarks are
much larger than those for optimal planning so we change
the dominance pruning setting in two important aspects. On
the one hand, previous work considered using merge and
shrink (Helmert et al. 2014) to reduce the number of LTSs.
But, as the overhead is too large for these benchmarks, we
consider instead only the atomic transition systems. This re-
duces the number of domains in which state-of-the-art meth-
ods are effective to find dominance. On the other hand, pre-
vious work considered pruning states that are dominated by
any previously expanded state. This check is too expensive
in satisficing planning so instead we only compare each state
against its parent and the initial state.

Table 1 shows coverage results on domains where dom-
inance has a non-negligible effect either by restarting the
search from states that dominate the initial state (top part
of the table) or by pruning states (bottom part). The results
show that our dominance techniques are able to find use-
ful dominance relations in a number of IPC domains, even
when only considering atomic transition systems. Compared
to the baseline, the results are quite good in most domains.
Results could be even better but our implementation is not
able to finish the preprocessing in the largest tasks of some
domains (e.g. Logistics, Rovers, Satellite, and Visitall).
This explains why not all instances of Visitall are solved by
DEHC(hB) and the difference wrt. the baseline in domains
where no dominance pruning occurs.

The general trend is that serialized dominance relations
(�S) are most useful to compare states against the initial
state in the context of DEHC (domains in the upper part of
the table), while the dominance relation based on the dis-
tance to the goal �D is more effective for dominance prun-
ing and action selection. The reason is that the serialization
is global for the entire search, slightly reducing the ability of
dominance pruning and action selection.

Focusing on domains where dominance is useful for
DEHC, one can observe that there is no much synergy with

Baseline Pruning
Domain GBFS L M DEHC(hB) DEHC(hFF) GBFS(hFF)

(hFF) �D �S �D �S �D �S

Logistics (63) 54 63 63 43 43 57 58 53 53
Miconic (150) 150 150 150 150 150 150 150 150 150

Openstacks (30) 30 30 30 7 7 30 30 30 30
Rovers (40) 23 40 40 14 12 22 24 23 23

Satellite (36) 30 36 36 10 10 21 25 22 26
Scanalyzer (50) 44 50 50 46 46 44 44 44 44

Visitall (40) 5 40 40 3 31 6 31 4 4
Woodwork (50) 49 50 50 6 6 49 49 49 49
Zenotravel (20) 20 20 20 13 13 20 20 20 20

∑
405 479 479 292 318 399 431 395 399

Floortile (40) 8 8 8 8 8 14 14 14 14
Maintenance (20) 5 2 7 0 0 6 6 6 6

Nomystery (20) 9 13 15 20 11 20 17 20 16
Parking (40) 29 40 40 0 0 26 28 27 28

Pathways (30) 11 24 30 4 4 12 12 12 12
Pipes-NT (50) 30 43 44 15 14 29 29 29 29

Tidybot (20) 14 16 14 1 1 7 13 7 12
TPP (30) 22 30 30 6 6 23 22 21 23

∑
128 176 188 54 44 137 141 136 140

Total (1636)
∑

1231 1462 1491 624 640 1217 1252 1212 1219

Table 1: Coverage on IPC instances. We highlight the best con-
figuration apart from LAMA (L) and Mercury (M). At the top
are domains containing an instance where DEHC restarts from a
state that dominates the initial state at least 10 times in a single
instance. At the bottom, domains where dominance pruning has a
non-negligible effect on coverage.

heuristics and they can even be harmful, like in Scanalyzer.
The reason is that the heuristic is not aware of the dominance
relation so it may guide the search in a direction where no
states dominating the initial state can be found.

Even though the results of DEHC are quite good on these
domains compared to the baseline, they are still far behind
LAMA and Mercury, which easily solve all instances in
those domains. LAMA uses landmarks in order to achieve
sub-goals very greedily so is extremely effective in do-
mains where all sub-goals are serializable. Therefore, one
may wonder whether there are cases where DEHC can beat
LAMA. One example is Nomystery, where action selection
pruning is specially effective. But our running example il-
lustrates the strengths of dominance even better.

Figure 3 shows the comparison of DEHC�S against
LAMA in our running example. The particular feature of our
running example is that it combines sub-goals that are easily
serializable (visiting normal cells), with others that are not
(visiting stripped cells). Heuristic approaches that greedily
try to maximize the number of achieved sub-goals fall into a
dead-end trap and are unable to solve the task. However,�S
is able to identify which sub-goals are safe and which ones
could potentially be dangerous. As the heuristics are not
aware of the dominance relation, this only works in com-
bination with blind search. Otherwise the search is guided
by the heuristic towards a part of the state space where no
dominance can be found (correctly so, because it is a dead-

20

5 10 15

100

102

Height/Width of the square part of the grid

To
ta

lt
im

e
(s

) LAMA
DEHC�S (hFF)

DEHC�D (hB)

DEHC�S (hB)

Figure 3: Total time of DEHC and LAMA in our running example.

end trap). DEHC�D (hB) also beats LAMA in this domain,
but it is still worse than DEHC�S (hB) because using dom-
inance purely based on goal distance the robot needs to go
back to the initial state every time it visits a new cell, which
is hard to do without any heuristic guidance towards there.

Related Work
The notion of dominance is related to approaches that char-
acterize when a task can be solved in polynomial time. Our
serialized dominance relation reminds of serializable sub-
goals (Korf 1987; Barrett and Weld 1993). A set of sub-
goals is serializable if they can always be achieved sequen-
tially without undoing any of them. Our dominance relation
also imposes a serialization on the LTSs that form the plan-
ning task. This is slightly different from sub-goals in that we
may obtain dominance if progress has been made in an LTS
(e.g. a package being in the truck is better than at the initial
position) while sub-goals only consider its goal value (the
package being at its destination). If a problem has several
serializable sub-goals, we can always construct a dominance
relation that represents this information. Up to the best of
our knowledge, there are no automatic algorithms to prove
that a set of sub-goals is serializable. Serialized dominance
could be tailored for this purpose.

There is a long list of works that identify tractable
fragments of the optimal and satisficing planning prob-
lem (Bäckström and Klein 1991; Jonsson and Bäckström
1998; Brafman and Domshlak 2003; Giménez and Jonsson
2008; Katz and Domshlak 2008; Chen and Giménez 2010).
Our dominance techniques can capture some of the structure
exploited by these tractable fragments, like acyclic causal
graphs (using recursive τ -labels). But, at the same time,
we are not limited by such features of the planning tasks
(e.g. the causal graph of our running example is not acyclic).
Moreover, dominance relations can be useful in tasks where
planning is intractable but some part of the problem is easy
to solve. In those cases, the use of dominance techniques
can still dramatically reduce the search space.

There are several parametrized search algorithms that run
in polynomial time in a width parameter w. These algo-
rithms are based on a substantial amount of pruning either by
only allowing to change the value of up tow variables (Chen
and Giménez 2007) or pruning states with a novelty greater
than w (Lipovetzky and Geffner 2012). In both cases, these
algorithms do not solve the entire planning task, but are used
to find a state “better” than the initial state in terms of the

achieved sub-goals. Dominance relations offer an alternative
way to compare states, which is more general than the cri-
terion used by Chen and Giménez and offers completeness
guarantees unlike simple sub-goal based criteria suggesting
potential in combining these approaches.

Seipp et al. (2016) introduced another notion of width
based on how hard is to represent a dead-end aware and
descending potential heuristic (Pommerening et al. 2015).
Many typical domains have a width of 2, meaning that it
is easy to represent a heuristic that solves them in polyno-
mial time. No method to automatically find such heuristic is
known yet but, satisficing dominance relations approximate
these kind of heuristics so any such algorithm could poten-
tially be used to obtain dominance relations as well.

A question that naturally comes up is what is the advan-
tage of using dominance relations over heuristic functions.
Dominance relations are more expressive than heuristics be-
cause they are partial preorders while heuristics are total pre-
orders. For example, we may have relations where s � t and
s′ � t′, but the relation between s, t and s′, t′ remains un-
known (e.g. s 6� t′ and s′ 6� t). However, no assignment of
heuristic values can represent this relation. In practice, this
matters most in cases where dominance is able to discover
some local information that can be exploited independently
of the rest of the problem. Consider the Nomystery domain,
where a truck transports a set of packages using a limited
amount of fuel. The use of dominance allows us to iden-
tify that having a package at its destination is always good
so we can unload it directly without considering any other
alternative. The problem with heuristics is that they aggre-
gate all estimations into a single value, making it very diffi-
cult to identify in which parts of the state space the heuris-
tic is wrong. In Nomystery, most heuristics will correctly
estimate that all packages need to be loaded and unloaded
exactly once, but underestimate the number of truck move-
ments. However, the search will equally explore the pos-
sibility of loading/unloading packages in different locations
due to the heuristic inaccuracies.

Our Dominance-Based Enforced Hill-Climbing algorithm
uses quantitative dominance functions to guarantee com-
pleteness by ensuring that the search is never restarted from
a dead end. Recently, there have been other approaches
based on heuristic refinement that also devise a variant of
EHC that preserves completeness (Fickert and Hoffmann
2017).

Discussion
In this paper, we have introduced the notion of dominance
for satisficing planning. Dominance can be used for dom-
inance pruning as well as to identify states that are strictly
better than others. This allows the search algorithm to be
extremely greedy, restarting the search from any state that
dominates the initial state, but still preserving completeness.
We have adapted the algorithms to automatically find domi-
nance relations for these purposes. Dominance can be a very
powerful instrument to compare states, specially in instances
with a mixture of complex and simple sub-goals.

Our experiments show the ability of dominance to guide
EHC search. However, there is still a gap when compared

21

against state-of-the-art planners. Our results also point out
some limitations of current dominance techniques that may
be worth exploring in future work. Considering more than
one variable at a time could help to find stronger dominance
relations in many domains. Also, heuristics could use the
information captured by the dominance relation, increasing
the synergy between them.

Acknowledgments
This paper has been supported by the German Research
Foundation (DFG), under grant HO 2169/6-1, “Star-
Topology Decoupled State Space Search”.

References
[Bäckström and Klein 1991] Christer Bäckström and Inger Klein.

Planning in polynomial time: The SAS-PUBS class. Computa-
tional Intelligence, 7(4), 1991.

[Bäckström and Nebel 1995] Christer Bäckström and Bernhard
Nebel. Complexity results for SAS+ planning. Computational
Intelligence, 11(4):625–655, 1995.

[Barrett and Weld 1993] Anthony Barrett and Daniel S. Weld.
Characterizing subgoal interactions for planning. pages 1388–
1393, 1993.

[Brafman and Domshlak 2003] Ronen Brafman and Carmel
Domshlak. Structure and complexity in planning with unary
operators. Journal of Artificial Intelligence Research, 18:315–349,
2003.

[Chen and Giménez 2007] Hubie Chen and Omer Giménez. Act
local, think global: Width notions for tractable planning. In Mark
Boddy, Maria Fox, and Sylvie Thiebaux, editors, Proc. of the 17th
International Conference on Automated Planning and Scheduling
(ICAPS’07), pages 73–80, 2007.

[Chen and Giménez 2010] Hubie Chen and Omer Giménez. Causal
graphs and structurally restricted planning. Journal of Computer
and System Sciences, 76(7):579–592, 2010.

[Chen et al. 2004] Y. Chen, C. Hsu, and B. Wah. SGPlan: Subgoal
partitioning and resolution in planning. In Stefan Edelkamp, Jörg
Hoffmann, Michael Littman, and Håkan Younes, editors, Proc. of
the 4th International Planning Competition, 2004.

[Domshlak et al. 2015] Carmel Domshlak, Jörg Hoffmann, and
Michael Katz. Red-black planning: A new systematic approach to
partial delete relaxation. Artificial Intelligence, 221:73–114, 2015.

[Fickert and Hoffmann 2017] Maximilian Fickert and Jörg Hoff-
mann. Complete local search: Boosting hill-climbing through
online heuristic-function refinement. In Proc. of the 27th In-
ternational Conference on Automated Planning and Scheduling
(ICAPS’17), 2017.

[Giménez and Jonsson 2008] Omer Giménez and Anders Jonsson.
The complexity of planning problems with simple causal graphs.
Journal of Artificial Intelligence Research, 31:319–351, 2008.

[Hall et al. 2013] David Hall, Alon Cohen, David Burkett, and Dan
Klein. Faster optimal planning with partial-order pruning. In
Daniel Borrajo, Simone Fratini, Subbarao Kambhampati, and An-
gelo Oddi, editors, Proc. of the 23rd International Conference on
Automated Planning and Scheduling (ICAPS’13), 2013.

[Helmert et al. 2014] Malte Helmert, Patrik Haslum, Jörg Hoff-
mann, and Raz Nissim. Merge & shrink abstraction: A method
for generating lower bounds in factored state spaces. Journal of
the Association for Computing Machinery, 61(3), 2014.

[Helmert 2006] Malte Helmert. The Fast Downward planning sys-
tem. Journal of Artificial Intelligence Research, 26:191–246, 2006.

[Hoffmann and Nebel 2001] Jörg Hoffmann and Bernhard Nebel.
The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

[Hoffmann et al. 2004] Jörg Hoffmann, Julie Porteous, and Laura
Sebastia. Ordered landmarks in planning. Journal of Artificial
Intelligence Research, 22:215–278, 2004.

[Hoffmann 2005] Jörg Hoffmann. Where ‘ignoring delete lists’
works: Local search topology in planning benchmarks. Journal
of Artificial Intelligence Research, 24:685–758, 2005.

[Jonsson and Bäckström 1998] Peter Jonsson and Christer Bäck-
ström. State-variable planning under structural restrictions: Algo-
rithms and complexity. Artificial Intelligence, 100(1–2):125–176,
1998.

[Katz and Domshlak 2008] Michael Katz and Carmel Domshlak.
New islands of tractability of cost-optimal planning. Journal of
Artificial Intelligence Research, 32:203–288, 2008.

[Katz and Hoffmann 2014] Michael Katz and Jörg Hoffmann. Mer-
cury planner: Pushing the limits of partial delete relaxation. In IPC
2014 planner abstracts, pages 43–47, 2014.

[Korf 1987] Richard E. Korf. Planning as search: A quantitative
approach. Artificial Intelligence, 33(1):65–88, 1987.

[Lipovetzky and Geffner 2012] Nir Lipovetzky and Hector Geffner.
Width and serialization of classical planning problems. In Luc De
Raedt, editor, Proc. of the 20th European Conference on Artificial
Intelligence (ECAI’12), pages 540–545, 2012.

[Pommerening et al. 2015] Florian Pommerening, Malte Helmert,
Gabriele Röger, and Jendrik Seipp. From non-negative to general
operator cost partitioning. In Blai Bonet and Sven Koenig, edi-
tors, Proc. of the 29th AAAI Conference on Artificial Intelligence
(AAAI’15), pages 3335–3341, 2015.

[Porteous et al. 2001] Julie Porteous, Laura Sebastia, and Jörg
Hoffmann. On the extraction, ordering, and usage of landmarks
in planning. In A. Cesta and D. Borrajo, editors, Proc. of the 6th
European Conference on Planning (ECP’01), pages 37–48, 2001.

[Richter and Westphal 2010] Silvia Richter and Matthias Westphal.
The LAMA planner: Guiding cost-based anytime planning with
landmarks. Journal of Artificial Intelligence Research, 39:127–
177, 2010.

[Richter et al. 2011] Silvia Richter, Matthias Westphal, and Malte
Helmert. LAMA 2008 and 2011 (planner abstract). In IPC 2011
planner abstracts, pages 50–54, 2011.

[Röger and Helmert 2010] Gabriele Röger and Malte Helmert. The
more, the merrier: Combining heuristic estimators for satisficing
planning. In Ronen I. Brafman, Hector Geffner, Jörg Hoffmann,
and Henry A. Kautz, editors, Proc. of the 20th International Con-
ference on Automated Planning and Scheduling (ICAPS’10), pages
246–249, 2010.

[Seipp et al. 2016] Jendrik Seipp, Florian Pommerening, Gabriele
Röger, and Malte Helmert. Correlation complexity of classical
planning domains. In Subbarao Kambhampati, editor, Proc. of the
25th International Joint Conference on Artificial Intelligence (IJ-
CAI’16), pages 3242–3250, 2016.

[Torralba and Hoffmann 2015] Álvaro Torralba and Jörg Hoff-
mann. Simulation-based admissible dominance pruning. In Qiang
Yang, editor, Proc. of the 24th International Joint Conference on
Artificial Intelligence (IJCAI’15), pages 1689–1695, 2015.

[Torralba 2017] Álvaro Torralba. From qualitative to quantitative
dominance pruning for optimal planning. In Carles Sierra, editor,

22

Proc. of the 26th International Joint Conference on Artificial Intel-
ligence (IJCAI’17), pages 4426–4432, 2017.

23

Online Refinement of Cartesian Abstraction Heuristics

Rebecca Eifler and Maximilian Fickert
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

{eifler,fickert}@cs.uni-saarland.de

Abstract

In classical planning as heuristic search, the guiding heuristic
function is typically treated as a black box. While many heu-
ristics support refinement operations, they are typically only
used for its initialization before search, but further refinement
during search could make use of additional information not
available in the initial state. We explore online refinement for
additive Cartesian abstraction heuristics. These abstractions
are computed through counter-example guided abstraction re-
finement, which can be applied online as well to further im-
prove the abstractions. We introduce three operations, refine-
ment, merging, and reordering, which are combined to a con-
verging online-refinement algorithm. We describe how online
refinement can effectively be used in A∗ and evaluate our ap-
proach on the IPC benchmarks, where it outperforms offline-
generated abstractions in many domains.

Introduction
Heuristic search is one of the most successful approaches to
classical planning. Many heuristics have a parameter to in-
crease the level of precision which typically implies a trade-
off with respect to the computational complexity when eva-
luating the heuristic. For abstraction heuristics (Edelkamp
2001; Helmert et al. 2014; Seipp and Helmert 2013), the
size of the abstraction can be chosen to range from the null
heuristic h0 = 0 to the perfect heuristic h∗. Partial delete
relaxation heuristics (Keyder, Hoffmann, and Haslum 2014;
Domshlak, Hoffmann, and Katz 2015; Fickert, Hoffmann,
and Steinmetz 2016) interpolate between fully relaxed se-
mantics and real semantics.

These heuristics are often instantiated through iterative
refinement operations. The heuristic starts out with a basic
relaxation, and is repeatedly refined until a time or memory
bound is reached. Given sufficiently large bounds the heuris-
tic may converge, making the relaxation exact (e.g. (Haslum
et al. 2007; Seipp and Helmert 2013; Helmert et al. 2014;
Keyder, Hoffmann, and Haslum 2014). This process is tra-
ditionally done offline, i.e. once before search, and the re-
sulting heuristic is treated as a black box throughout search.

However, as search progresses and new information be-
comes available, this additional knowledge might be used to
further improve the heuristic, e.g. to eliminate flaws in the
relaxation that were not apparent in the initial construction
of the heuristic and were only detected later in the search

process. Additional refinement steps performed online can
address such issues and further improve the heuristic.

So far, online refinement of heuristic functions is mos-
tly unexplored. Fickert and Hoffmann (2017) introduced on-
line refinement for the hCFF heuristic in an enforced hill-
climbing setting. The heuristic is refined whenever search is
stuck in a local minimum, thus effectively removing local
minima from the search space surface instead of attempting
to escape them through brute-force search.

There are several other forms of online learning that do
not refine a heuristic function. One such technique is upda-
ting values on a per-state basis, e.g. in transposition tables
(Akagi, Kishimoto, and Fukunaga 2010) or LRTA∗ (Korf
1990). Similarly, Wilt and Ruml (2013) use backward se-
arch to improve the heuristic estimation: Since the h∗ va-
lue is known for a backward expanded node, it can be used
to compute the minimal error of the heuristic and use it to
update the heuristic values during forward search. Another
example is refining combinations of multiple heuristics (e.g.
(Felner, Korf, and Hanan 2004; Katz and Domshlak 2010)),
but the individual heuristics remain unchanged.

In this work we introduce online refinement of additive
Cartesian abstraction heuristics (Seipp and Helmert 2014).
The refinement operation for these heuristics is based on
splits of abstract states, which allows a locally restricted re-
finement in small steps and is well suited for online refine-
ment. Seipp briefly touched online refinement in his Mas-
ter’s Thesis (Seipp 2012), but the explored design space is
small and the approach was restricted to single abstractions.

Our online-refinement algorithm defines three basic ope-
rations: refinement, merging and reordering. Refinement ex-
tends individual abstractions, using the same procedure that
is also applied in offline refinement. The merge operation
is necessary to preserve convergence against h∗ when mul-
tiple additive abstractions are used. Finally, the reordering
operation provides an alternative way to improve the heuris-
tic by generating new orderings for the cost partitioning, as
different orders are useful in different states (Seipp, Keller,
and Helmert 2017). We combine these three operations to a
monotone online-refinement procedure that converges to h∗.

We show how online refinement of Cartesian abstraction
heuristics can be used in A∗ (Hart, Nilsson, and Raphael
1968) to improve the heuristic during search. We evaluate
our approach on the IPC benchmarks and compare it to

24

offline-generated Cartesian abstraction heuristics.

Preliminaries
In the following we consider classical planning using the
finite-domain representation (FDR) (Bäckström 1995). A
planning task is a 5-tuple Π = (V,A, c, I,G), where
• V is a finite set of state variables where each v ∈ V has

a finite domain D(v). A variable/value pair v = d with
v ∈ V and d ∈ D(v) is called a fact.

• A is a finite set of actions. Each action a ∈ A is a pair
(prea, effa) of partial variable assignments which are cal-
led preconditions and effects respectively.

• c : A 7→ R+
0 is the cost function, mapping each action to

a non-negative real number.
• I is a complete assignment of variables describing the ini-

tial state.
• G is a partial assignment of variables describing the goal.
The state space of Π is the labeled transition system ΘΠ =
(S,L, c, T, I, SG). The states S are the complete variable
assignments. The value of a variable in a state s ∈ S is
denoted by s(v). An action is applicable in a state s if
prea ⊆ s. In this case, the values for all variables v ∈ V
in the state appl(s, a) resulting from applying a in s are de-
fined as appl(s, a)(v) := effa(v) if effa(v) is defined and
appl(s, a)(v) := s(v) otherwise. The labels L of the state
space correspond to the actions A and the cost function c to
that of Π. The transition relation T ⊆ S × L× S is defined
as T = {s a−→ appl(s, a) | prea ⊆ s}. The initial state I is
the same as in Π. The goal states SG = {s ∈ S | G ⊆ s}
are the states that satisfy G. A plan for Π is an iteratively
applicable sequence of actions which starts in I and leads to
a goal state s ∈ SG. A plan is optimal if the summed up cost
of all actions is minimal among all plans of I .

A heuristic function h : S 7→ R+
0 ∪ {∞} maps each state

to a non-negative real number or ∞. We write h[ci] to de-
note that the heuristic h is computed on a modification of Π
where the cost function c is replaced by ci. The perfect heu-
ristic h∗ assigns each state s its remaining cost, which is the
cost of an optimal plan for s, or∞ if no plan for s exists. A
heuristic h is admissible if h(s) ≤ h∗(s) for all s ∈ S and
consistent if h(s) ≤ h(s′) + c(a) for all transitions s a−→ s′.
Given the transition system Θ = (S,L, c, T, I, SG), an ab-
straction of Θ is a surjective function α : S 7→ Sα. The
abstract state space induced by α, written Θα, is the transi-
tion system Θα = (Sα, L, c, Tα, Iα, SαG) with Iα = α(I),
SαG = {α(s) | s ∈ SG} and Tα = {(α(s), l, α(t)) |
(s, l, t) ∈ T}. By ∼α we denote the induced equivalence
relation on Θ, defined by s ∼α t iff α(s) = α(t) and the
equivalence classes by [s]. The heuristic function induced
by α, written hα, is the heuristic function which maps each
state s ∈ S to h∗Θα(α(s)).

A cost partitioning for a planning task with actions A is
a set of functions C = {c1, . . . , cn : A 7→ R+

0 } such that
for all a ∈ A :

∑n
i=1 ci(a) ≤ c(a). We say that an ad-

missible heuristic h has a local error in state s ∈ S if it
does not satisfy the Bellman optimality equation: h(s) ≤
min(s,a,s′)∈Th(s′) + c(a).

Additive Cartesian Abstraction Heuristics
An abstraction is Cartesian if all its states are Cartesian sets,
i.e., they have the form A1 × · · · × An, where Ai ⊆ D(vi)
for all 1 ≤ i ≤ n. The abstraction is built starting with
the trivial abstraction and iteratively splitting states using
counterexample-guided abstraction refinement (Seipp and
Helmert 2013), which we summarize in the following.

In every iteration, an optimal solution as a trace τ =
〈[s′0], a1, . . . , [s

′
n−1], an, [s

′
n]〉, an alternating sequence of

abstract states and actions, is computed. If no solution ex-
ists, the problem is unsolvable. Otherwise we check if τ can
be converted to a solution of the concrete state space. During
iteratively applying the actions in τ , resulting in a sequence
of concrete states s0, s1, . . . , sn, we check if one of the fol-
lowing flaws occurs:

1. The concrete state si does not fit the abstract state [s′i] in
τ , i.e. [si] 6= [s′i].

2. The concrete trace is completed, but sn is not a goal state.

3. The action ai+1 is not applicable in the concrete state si.

If none of the flaws occurs, we found a solution. Otherwise,
a state can be split according to the following rules (the num-
bers correspond to the cases above):

1. Split [si−1] into [t′] and [u′] such that si−1 ∈ [t′] and ai
does not lead from a state in [t′] to a state in [s′i].

2. Split [sn] into [t′] and [u′] such that sn ∈ [t′] and [t′] does
not contain a goal state.

3. Split [si] into [t′] and [u′] in such a way that si ∈ [t′] and
ai+1 is inapplicable in all states in [t′].

As the size of the abstract state space grows larger, the num-
ber of refinement iterations that are necessary to result in an
increase of the heuristic estimate also becomes larger. In or-
der to avoid this problem, a set of multiple small abstractions
can be used instead. Multiple abstractions can be generated
by only considering one goal fact in each abstraction, such
that each abstraction covers different parts of the planning
task (Seipp and Helmert 2014).1

Cost partitionings can be used to admissibly combine a
set of heuristics. The saturated cost partitioning (SCP) is an
effective way to construct an additive ensemble of multiple
Cartesian abstractions (Seipp and Helmert 2014).

For a heuristic h and cost function c, the saturated
cost function saturate(h, c) is defined as the minimal cost
function c′ ≤ c with h[c′](s) = h[c](s) for all states s. Gi-
ven a set of heuristic functions H = {h1, · · · , hn} for Π
and an order ω = (h1, · · · , hn) of those functions, the satu-
rated cost partitioning C = c1, · · · cn and the remaining cost
functions c̄0, · · · , c̄n are defined as

c̄0 = c

ci = saturate(hi, c̄i−1)

c̄i = c̄i−1 − ci
1Seipp and Helmert also define a decomposition based on land-

marks, which we do not consider here as it requires non-trivial ex-
tensions to the online refinement and merging procedures.

25

If h is an abstraction heuristic based on an abstract tran-
sition system Tα of Π with labels L, then the satura-
ted cost function ĉ(a) for a ∈ L is defined as ĉ(a) =
max

s
a−→s′∈Tα max{0, h(s)−h(s′)}. This ensures that each

abstraction only uses the minimal amount of cost required to
preserve the cost of an optimal plan from each state.

Running Example Our example consists of a robot who
has to visit certain cells on a small grid (Figure 1).

(1, 1) (2, 1)

(0, 0)

R
(1, 0) (2, 0)

Figure 1: Sample task: the robot R must visit the green cells.

The state variables are the robot position at (which can be
any of the five locations, initially (1, 0)) and the boolean
variables v00 and v20 indicating if the corresponding cells
have been visited (initially 0, must be 1 in the goal). The ro-
bot can move between adjacent cells x, y ∈ D(at), x 6= y
with a move action m(x, y) with preconditions {at = x}
and effects {at = y}. If the target position of the move is
either one of the goal locations (y = (0, 0) or y = (2, 0)),
the effects include achieving the corresponding visited fact
(v00 = 1 or v20 = 1 respectively). All action costs are 1,
except the move action from (1, 0) to (1, 1), which costs 2.

The offline-refined Cartesian abstractions of the example
are shown in Figure 2. The procedure starts with a trivial ab-
straction of a single abstract state for each goal. Initially, the
abstract solution is empty because the abstract initial state is
already a goal state. To prevent this flaw, the abstract state
is split on the goal fact v00 = 1 respectively v20 = 1. This
results in the abstractions shown in Figure 2. Since now the
abstract solution corresponds to the concrete solution in the
individual goal abstractions, the refinement terminates.

v00 = {0}v00 = {1}
m(10, 00)

(a) A1

v20 = {0} v20 = {1}
m(10, 20)

m(21, 20)

(b) A2

Figure 2: Abstractions of the running example after offline
refinement. If a variable is not mentioned in a state all va-
lues are possible. Self loops are omitted. The SCP order is
ω = {A1,A2}. Goal states are marked in green. Actions are
abbreviated, e.g. as m(10, 00) instead of m((1, 0), (0, 0)).

Online Refinement Operations
In the following, we describe the three operations refine-
ment, merging, and reordering, that make up our online-
refinement approach.

Refinement of Additive Cartesian Abstractions
The refinement operation is based on the refinement algo-
rithm described in the previous section. The essential modi-
fication for online refinement is the start state of the trace τ .

While offline refinement always starts from the initial state,
online refinement uses the current search state. If the solu-
tion for each individual goal is short, but the goals influence
each other strongly, the abstractions refined offline largely
underestimate the remaining cost. The reason is that an ab-
straction refined offline does not consider going into a wrong
direction first, and states that are not on an optimal path for
the initial state in the abstraction are never refined further.

If the sample abstractions are refined on the state sru =
{at = (2, 0), v00 = 0, v20 = 1} where the robot is in
the right upper cell, A1 changes as shown in Figure 3. The
action m(10, 00) of the abstract solution is not applicable
in sru, so the starting cell of the robot is split from the ot-
her cells. As a result, the heuristic value of the refined state
increases from 1 to 2. The abstraction A2 does not change
because it is refined on a goal state.

at = {(0, 0), (2, 0),
(1, 1), (2, 1)}
v00 = {0}

s3

at = {(1, 0)}
v00 = {0}
s2

v00 = {1}
s1

m(20, 10)
m(11, 10)

m(10, 20)
m(10, 11)

m(10, 00)

Figure 3: A1 after online refinement on the state {at =
(2, 0), v00 = 1, v20 = 0}. Solid transitions have cost 1, das-
hed ones have cost 0.

Influence on Cost Partitioning After every refinement of
the abstractions the cost partitioning needs to be recompu-
ted. Here, two undesirable effects can occur. The first ab-
straction absorbs more and more of the cost. Thereby the
impact of the additive component of the abstractions at the
end of the cost partitioning order is diminished. Secondly, it
is possible that the heuristic estimation of a state decreases
after the cost is redistributed by the saturated cost partitio-
ning algorithm, as illustrated in the following example.

at = {(0, 0),
(1, 1), (2, 1)}
v00 = {0}

3 s3b

at = {(2, 0)}
v00 = {0}

2
s3aat = {(1, 0)}

v00 = {0}

1

s2

v00 = {1}
0

s1 m
(1
1
, 1
0
)2

m
(1
0
, 1
1
)

m(10, 20)

m(20, 10)

m
(2
1
, 2
0
)

m
(2
0
, 2
1
)

m(10, 00)

Figure 4: A1 after online refinement on state at =
(2, 1), v00 = 0, v20 = 1. The blue numbers correspond to
the remaining cost of the state.

IfA1 in Figure 3 is further refined on the state srl = {at =
(2, 1), v00 = 0, v20 = 1}, state s3 is split as shown in Fi-
gure 4. The first action of the abstract solution m(20, 10)
is not applicable in srl, so the precondition at = (2, 0) is
split from s3. The solid arrows indicate the actions which
retain their cost after the saturation of the abstraction. As
the action m(10, 11) has a cost of 2, the cost of the action
m(21, 20) is necessary to preserve the optimal plan cost of
s3b. As a result, there is no cost for m(10, 20) remaining in
A2, which now evaluates to 0 for any state. Overall, in the

26

additive heuristic of A1 and A2, the heuristic estimation for
the states abstracted by s3b in Figure 4 increased by 1, while
for all others it decreased by 1.

Both problems, the dominance of the first abstractions in
the order and the decreasing estimation, can be solved by a
slight adaptation of the SCP algorithm. Instead of comple-
tely redistributing the cost, every abstraction can keep the
cost of the previous iteration, and only gains new cost from
the cost which is not used by any other abstraction in the
previous iteration. In the following, this cost is called unu-
sed cost. For the abstraction in Figure 4 this means that it
can not use the cost of the action m(21, 20), because it is
already used byA2. Therefore, the heuristic estimation does
not decrease for any state.

Definition 1 Given the cost partitioning Cl−1 =
{cl−1

1 , · · · , cl−1
n } of the previous iteration, the online

saturated cost partitioning (OSCP) Cl = {cl1, . . . , cln} and
the remaining cost functions c̄l0, . . . , c̄

l
n are defined as

c̄l0 = c−
n∑

j=1

cl−1
j (unused cost)

cli = saturate(hi, c̄
l
i−1 + cl−1

i)

c̄li = c̄li−1 − cli

Useful Splits Every split of an abstract state increases the
memory size of the abstraction and the evaluation time of the
heuristic. Hence, it is only useful to split an abstract state if
this could increase the heuristic value of some state. If a state
s is split into the states s′ and s′′, the heuristic can only incre-
ase if the cost of all actions in at least one direction between
s′ and s′′ is greater than 0. Otherwise, it is still possible to
move between these states for free and the split has no im-
pact on the remaining cost of any abstract state. Exactly this
behavior happens in the split of state s3 in Figures 3 and 4.
When performing the OSCP, none of the actions between the
states s3a and s3b has a cost larger than zero. Therefore, the
heuristic estimation can not increase.

In the following, a split of a state s is called useful, if all
actions in at least one direction between the resulting states
s′ and s′′ have a non-zero cost after recomputing the cost
partitioning. The check if a split is useful is implemented
by testing if there is still unused cost or cost reserved by
the abstraction (in any order in O, c.f. Section Reordering)
for all actions in at least one direction between s′ and s′′.
Since a non-useful split can sometimes be necessary to make
a useful split reachable in refinement, it is possible that the
useful split check prevents heuristic from increasing.

Merging
Originally the reason to use multiple small abstractions
instead of one large abstraction was a slow increase in the
heuristic estimation. But this separation of the goal facts pre-
vents a convergence of the heuristic against h∗. This beha-
vior can be observed for the initial state of the sample task.
The heuristic value based on the two abstractions will ne-
ver be 3 for the initial state, independent of the number of

refinement operations. We can restore this convergence pro-
perty by replacing two abstractions A1 and A2 by their syn-
chronized product whenever further improvement based on
refinement it not possible. The synchronized product are the
non-empty intersections of the abstract states ofA1 andA2.
The merge result is Cartesian because the intersection of two
Cartesian sets is again Cartesian (Seipp 2012).

Considering again our example, the synchronized product
of A1 (Figure 3) and A2 (Figure 2) is shown in Figure 5.

at = {(0, 0), (2, 0),
(1, 1), (2, 1)}
v00 = {0}
v20 = {0}

at = {(1, 0)}
v00 = {0}
v20 = {0}

v00 = {1}
v20 = {0}

at = {(0, 0), (2, 0),
(1, 1), (2, 1)}
v00 = {0}
v20 = {1}

at = {(1, 0)}
v00 = {0}
v20 = {1}

v00 = {1}
v20 = {1}

m(10, 11)

m(11, 10)

m(21, 20)

m(10, 00)

m
(1
0,

20
) m(10, 20)

m(21, 20)

m(21, 20)

m(11, 10)
m(20, 10)

m(10, 11)
m(10, 20)

m(10, 00)

Figure 5: Synchronized product of the abstractions A1 (Fi-
gure 3) and A2 (Figure 2).

While the merge operation itself does not change the heuris-
tic value, it allows further refinement operations to be perfor-
med on the resulting abstraction. Afterwards, the cost parti-
tioning for all abstractions is recomputed using the sum of
the cost functions of A1 and A2 as the cost function of the
merge result.

Reordering
The order in which the cost functions for the saturated cost
partitioning are computed can have a huge impact on the in-
formativeness of the heuristic. The performance of the heu-
ristic can be improved by using a set of ordersO. When eva-
luating a state, the heuristic can use the maximum estima-
tion of all cost partitionings corresponding to the orders O
(Seipp, Keller, and Helmert 2017). Diverse orders are obtai-
ned by generating several potentially useful orders, and only
retaining those that lead to an improved estimation on at le-
ast one randomly sampled state.

These approaches can be transferred to the online phase
to potentially gain better orders, because instead of random
sample states, actual search states can be used.

We start out with one order based on the hadd value of the
goal fact of the abstractions, following the default configu-
ration by Seipp and Helmert (2014). If, during search, an or-
der leading to a higher estimation for the current search state
is found, it is added to O and can be used in all following
states. If the structure of any abstraction changes, either by
refinement or merging, the cost partitioning for each order
ω ∈ O is recomputed through OSCP.

When generating a new order, we order the abstractions
by their impact on the current search state. More specifically,
the abstractions are ordered descendingly according to their
individual goal distance, using the original cost function.
This strategy worked best in preliminary experiments.

27

Converging Online Refinement
We now describe our converging online-refinement proce-
dure that combines the three introduced operations (Algo-
rithm 1). Our approach relies on the Bellman equation to
identify states with a local error, which the online refinement
algorithm aims to correct.

Algorithm 1: Online Refinement
Input: An additive Cartesian abstraction heuristic h

with abstractions A1, . . . ,An and orders O,
and a state s where h does not satisfy Bellman

ω′ := FINDORDER(h, s)
cω′ := SCP(h, ω′)
if h(s) increases when using cω′ then
O := O ∪ {ω′}

while ¬BELLMAN(h, s) do
for i := 1, . . . , n do

REFINE(Ai, s)
if no abstraction Ai was modified then

Let Ax,Ay be the two abstractions in h with
the fewest abstract states

MERGE(Ax,Ay)

for ω ∈ O do
OSCP(h, ω)

First the algorithm tries to improve the heuristic by finding a
better cost partitioning order for the current state. If this does
not suffice to satisfy the Bellman equation, all abstractions
are refined on the current search state until either there is no
local error anymore or no further refinement is possible. In
the latter case, the two smallest abstractions are merged to
gain new refinement opportunities.

Theoretical Properties
Theorem 1 Let Π = (V,A, c, I,G) be a planning task, H
be a set of Cartesian Abstraction heuristics, and O a set of
orderings for H. Then the heuristic estimation for any state
can not decrease after applying any of the introduced opera-
tions (refining (i), merging (ii) or reordering (iii)) and subse-
quent recomputation of the cost partitioning for (i) and (ii).

Proof Sketch:
For (i): Refinement of an abstraction without changing the
cost function is monotone. As the OSCP does not decrease
the cost of any action (unless decreasing the cost preserves
the optimal plan cost for all states) it can not lead to a chea-
per solution for any state. If the refinement of all heuristics
is monotone then so is the sum of them.
For (ii): For any state s, an optimal plan p for s in the sy-
nchronized product of two abstractions A1 and A2 is also
a (not necessarily optimal) plan in both A1 and A2. Let
ci be the cost function of Ai and cM of the merge result.
Then it suffices to show that

∑
a∈p cM (a) ≥∑

a∈p c1(a) +∑
a∈p c2(a) because an optimal plan in Ai is as most as ex-

pensive as p. The inequality holds since cM is defined as
cM = c1 + c2. The recomputation of the cost partitioning is
monotone as shown in (i).

For (iii): As orders are only added to O and we always take
the maximum estimation of all orders, the estimation can
only increase for any state.
Theorem 2 Let Π = (V,A, c, I,G) be a planning task, and
h an additive Cartesian abstraction heuristic. Then using
the refinement procedure described in Algorithm 1 the heu-
ristic converges towards h∗.
Proof Sketch:
Whenever no further refinement operations are possible, two
abstractions are merged. If necessary, in the end this results
in one big abstraction containing all goal facts. This leads to
a convergence against h∗ in every planning task, as the op-
timal plan in the merged abstraction will also be an optimal
plan in the original task in the limit.

Online Refinement in A∗

The A∗ search algorithm needs one adaption to handle a dy-
namically changing heuristic. The open list stores the search
nodes according to the sum of the heuristic estimation and
the shortest known distance from the initial state. When the
heuristic function changes, the open list must be resorted in
order to always use the best known estimation in the expan-
sion order. Other possibilities would be to restart the search
or spawning parallel search processes (Arfaee, Zilles, and
Holte 2011). Both approaches seem unsuitable if the heu-
ristic changes frequently but locally restricted. Not updating
the open list would lead to an admissible but inconsistent
heuristic resulting in reopened search nodes. As the heuris-
tic function can only increase for any state (Theorem 1), it is
not necessary to reorder the entire open list. Instead, we can
do this lazily: Every time a state is expanded, we check if the
heuristic value using the current heuristic is the same as the
one when the state was inserted into the open list. If this is
the case the state is expanded, otherwise it is reinserted into
the open list with the updated heuristic value. Whenever a
state that is currently being expanded has a local error, the
refinement procedure is called.

Experiments
We implemented our techniques in Fast Downward (FD)
(Helmert 2006) based on the existing implementation of
Cartesian abstraction heuristics (Seipp and Helmert 2013;
2014). The experiments were run on Intel Xenon E5-2650
v3 processors with a clock rate of 2.3 GHz. The time and
memory limit were set to 30 minutes and 4 GB. As bench-
marks we use all domains from the optimal tracks of all IPCs
up to 2014 (excluding the trivial Movie domain), for a total
of 1637 problem instances.

First, we look at the search behavior of our online-
refinement algorithm and analyze the overhead added by
online-refinement. As this overhead can sometimes be pro-
hibitive, we devise additional configurations in an attempt
to reduce this. We compare our configurations to offline-
refined Cartesian abstraction heuristics.

Overview
For our base configuration hon, we initialize the heuristic
with 1000 (offline-refined) abstract states in total. During se-

28

arch, we apply our online-refinement procedure in each state
until the Bellman equation is satisfied.

As our comparison baseline, we use an offline-refined
heuristic hoff with a refinement timeout of 15 minutes. The
cost partitioning order uses the default setting of a descen-
ding order of the hadd values of the goal facts that correspond
to the individual abstractions.

Domain hon hoff hon
0.1 exp time hSCP

div
Airport (50) 23 34 33 0.02 0.57 30
Barman (34) 0 4 4 1.02 2.90 4
Blocksworld (35) 10 18 22 0.24 1.07 28
Childsnack (20) 0 0 0 – – 0
Depot (22) 2 5 9 0.11 0.38 11
Driverlog (20) 8 11 14 0.08 0.41 14
Elevators (50) 36 37 42 0.52 1.43 44
Floortile (40) 0 2 4 0.22 1.08 2
FreeCell (80) 6 19 20 0.11 1.04 65
GED (20) 5 15 16 1.09 4.37 15
Grid (5) 1 2 3 0.02 0.30 3
Gripper (20) 6 8 7 0.77 3.84 8
Hiking (20) 6 12 13 0.71 3.35 13
Logistics (63) 28 26 30 0.07 0.50 39
Miconic (150) 104 63 100 < 0.01 0.19 144
Mprime (35) 26 29 29 0.32 1.87 27
Mystery (30) 16 18 18 0.06 2.58 17
Nomystery (20) 11 16 20 0.10 0.37 20
Openstacks (100) 18 49 45 0.55 7.10 51
Parcprinter (50) 28 20 32 0.13 0.86 39
Parking (40) 0 0 3 – – 8
Pathways (30) 4 4 5 0.18 0.98 4
Pegsol (50) 6 46 48 0.30 4.47 48
Pipesw.-NT (50) 4 17 21 0.21 0.78 23
Pipesw.-T (50) 4 14 16 0.47 1.21 16
PSR (50) 48 49 49 1.16 2.02 49
Rovers (40) 4 8 10 0.25 0.76 7
Satellite (36) 4 6 7 0.03 0.55 7
Scanalyzer (50) 11 21 23 0.16 1.04 23
Sokoban (50) 44 41 45 0.53 1.50 45
Storage (30) 10 16 15 1.26 2.43 16
Tetris (17) 1 9 9 0.25 0.66 9
Tidybot (40) 3 26 30 1.45 2.24 22
TPP (30) 7 11 8 – 0.98 8
Transport (70) 7 24 28 0.68 2.07 25
Trucks (30) 3 10 10 0.17 0.70 12
Visitall (40) 12 13 13 0.16 1.07 16
Woodw. (50) 18 21 35 < 0.01 0.24 32
Zenotravel (20) 8 12 13 0.17 0.80 13
aggregate (1637) 562 766 879 0.19 1.11 987

Table 1: Coverage for the basic online-refinement approach
hon, the baseline hoff, and online-refinement with restricted
refinement time hon

0.1 in the leftmost columns. The middle
columns show the ratio of the expansions until the last f -
layer is reached and search time for hon

0.1 compared to hoff.
The rightmost column shows coverage data for a state-of-
the-art configuration of Cartesian abstraction heuristics.

In the two leftmost columns of Table 1, the coverage of
both configurations is displayed. The online-refinement ver-
sion solves a total of 562 tasks, 204 less than the offline ver-
sion. In 32 domains hoff solves more tasks than hon, in 3
domains they solve equally many, and in 4 domains hon sol-
ves more tasks. Our online refinement approach works best
in the Miconic domain, where it solves 104 instances com-
pared to 63 with hoff. Online refinement seems unsuitable for
the Openstacks, Pegsol, and Tidybot domains, as the overall
coverage drops by 31, 40, and 23 respectively.

The left side of Figure 6 compares the number of expansi-
ons until the last f -layer is reached for commonly solved in-

100 102 104 106 108
100

102

104

106

108

10−2 100 102 104

10−2

100

102

104

Figure 6: Left: Number of expansions until the last f -layer.
Right: Search time per expanded state per task in ms. The x-
and y-axes correspond to hon respectively hoff.

stances of hon and hoff. With very few exceptions, hon needs
significantly fewer expansions, up to 5 orders of magnitude
fewer in some instances. On larger instances, this observa-
tion becomes more pronounced, as the heuristic is more fre-
quently refined and in the end much more informative than
hoff. Since initially hoff may have more abstract states than
hon, on some (very few) smaller instances there are cases
where more expansions are necessary.

This decrease in expansions comes with a trade-off in se-
arch time, as shown on the right side of Figure 6. While
the maximum time for each expansion is consistently low
in hoff, hon can spend a lot of time in refinement and use up
almost the entire search time to refine a few states. On com-
monly solved instances, the search time for hon is 15 times
larger than for hoff on average. Exceptions are Logistics, Mi-
conic, and Woodworking, where hon has lower search time,
resulting in higher coverage in Miconic and Logistics.

Operation Time Distribution A significant fraction of
the search time is used to improve the heuristic. This time
is distributed over the three operations refine, merge and re-
order (each including the recomputation of the cost parti-
tioning and the updating of the stored h∗ values in the ab-
straction), evaluating the Bellman equation, and updating the
open list. Figure 7 shows the time distribution for each dom-
ain. The percentages are averaged over all instances of the
domain (including unsolved ones).

A
ir

po
rt

B
ar

m
an

B
lo

ck
sw

.
C

hi
ld

sn
ac

k
D

ep
ot

D
riv

er
lo

g
E

le
va

to
rs

Fl
oo

rt
ile

Fr
ee

C
el

l
G

E
D

G
ri

d
G

ri
pp

er
H

ik
in

g
L

og
is

tic
s

M
ic

on
ic

M
pr

im
e

M
ys

te
ry

N
om

ys
te

ry
O

pe
ns

ta
ck

s
Pa

rc
pr

in
te

r
Pa

rk
in

g
Pa

th
w

ay
s

Pe
gs

ol
Pi

pe
sw

.-N
T

Pi
pe

sw
.-T PS

R
R

ov
er

s
Sa

te
lli

te
Sc

an
al

yz
er

So
ko

ba
n

St
or

ag
e

Te
tr

is
Ti

dy
bo

t
T

PP
Tr

an
sp

or
t

Tr
uc

ks
V

is
ita

ll
W

oo
dw

.
Z

en
ot

ra
ve

l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

refine merge open list prove reorder rest

Figure 7: Average ratio between the time to improve the heu-
ristic and the search time. The improvement time is split in
five parts. Displayed is the average ratio per domain exclu-
ding tasks which have been solved in 0.01s or less.

29

0 0.2 0.4

300

350

400

Total Abstraction Size

0 0.2 0.4

2

3

4

·104 Expansions

0 0.2 0.4

865

870

875

880

Coverage

0 0.2 0.4

0.9

1

Search Time

Figure 8: Results for hon
p with p ranging from 0.01 to 0.4.

On average, about two thirds of the search time is used
only to refine abstractions, but the variance is high and hea-
vily depends on the domain. The extreme cases are Sokoban,
where no time at all is spent on refinement, and Transport,
with 99%. In Sokoban, there are applicable zero-cost actions
in every state leading to states with equal heuristic value, so
the Bellman equation is always satisfied. The impact of the
merge operation depends on the number of goals facts. In
domains with many goal facts, e.g. GED or Gripper, there
are many small abstractions which need to be merged to ena-
ble further refinement operations. With about 1% the reorder
time is negligible in all domains, which can be attributed to
our simple ordering strategy. The time spent on the Bellman
equation check highly depends on the branching factor of
the domain as more heuristic values must be compared. In
most domains, this accounts for less than 10% of the overall
time, the only exceptions are Miconic (17%) and Sokoban
(14%). The open list time is below 5% in almost all dom-
ains. This is mainly due to the fact that the open list stays
relatively small due to the low number of expanded states.

Used Cost The OSCP algorithm is based on the assump-
tion that there is still unused cost. In Figure 9 the average
fraction of used cost per domain is shown, both for the initial
abstractions and the final value when the instance is solved
or the timeout is reached.

A
ir

po
rt

B
ar

m
an

B
lo

ck
sw

.
C

hi
ld

sn
ac

k
D

ep
ot

D
riv

er
lo

g
E

le
va

to
rs

Fl
oo

rt
ile

Fr
ee

C
el

l
G

E
D

G
ri

d
G

ri
pp

er
H

ik
in

g
L

og
is

tic
s

M
ic

on
ic

M
pr

im
e

M
ys

te
ry

N
om

ys
te

ry
O

pe
ns

ta
ck

s
Pa

rc
pr

in
te

r
Pa

rk
in

g
Pa

th
w

ay
s

Pe
gs

ol
Pi

pe
sw

.-N
T

Pi
pe

sw
.-T PS

R
R

ov
er

s
Sa

te
lli

te
Sc

an
al

yz
er

So
ko

ba
n

St
or

ag
e

Te
tr

is
Ti

dy
bo

t
T

PP
Tr

an
sp

or
t

Tr
uc

ks
V

is
ita

ll
W

oo
dw

.
Z

en
ot

ra
ve

l0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

initial solved/timeout

Figure 9: Fraction of the actions which are used in any ab-
straction with a non-zero cost. Displayed is the average over
all orders per domain for the initial abstractions, and after
the instance is solved or the time limit is reached.

On average only 45% of the actions are used with non-
zero cost in any abstraction in the beginning of the search,
so typically there is enough unused cost that can be distri-
buted among the abstractions in the OSCP. However, this

number has a high variance depending on the domain, and
there are some domains where almost the entire cost is used
in the beginning already (e.g. Elevators and GED). In some
domains, there is still a large amount of unused cost remai-
ning, even at the end of the search (Mprime, Mystery, Tetris,
Trucks).

Reducing the Refinement Overhead
If every local erroneous state is refined, the overhead intro-
duced by the online-refinement procedure is very high. This
leaves only little time remaining for the actual search pro-
cess (c.f. the grey bars in Figure 7).

Addressing this issue, we experimented with additional
configurations hon

p where a parameter p is introduced that li-
mits the time spent on refinement to a fixed fraction of the
overall search time. The refinement process is only execu-
ted, if currently the fraction of the overall search time that is
spent on refinement is below that threshold. The time spent
to satisfy the Bellman equation in one state can still be very
high. Therefore, we only perform at most one refinement
operation in each state and do not merge any abstractions.

A graphical overview of the results for these configurati-
ons, using the values 0.01, 0.05, 0.10, . . . , 0.40 is shown in
Figure 8 and 0.1 for p. As we increase the refinement para-
meter p, the final abstraction size increases and with it the
number of expansions needed to reach the final f -layer de-
creases. On the other hand, too much refinement overhead is
also detrimental to the overall performance of this approach.
The sweet spot lies at p = 0.1, where the highest overall
coverage of 879 and lowest average search time is reached.

Compared to our base configuration hon, the increase in
coverage is consistent across almost all domains (the only
exception is Miconic). Our configuration with restricted re-
finement diminishes the negative effect of the refinement
overhead, and considerably improves over both hon and hoff.
It has a higher coverage than hoff in 26 domains, and only
loses in 5 domains. On average, the number of expansions
until the last f -layer is reduced by 81% (c.f. column “exp”
in Table 1). However, the search time on commonly solved
instances is often greater due to the added overhead of online
refinement on instances where it is not required (c.f. column
“time” in Table 1).

Comparison to State of the Art As a comparison to the
state of the art in Cartesian abstractions, we compare our
best performing configuration hon

0.1 to an additive Cartesian

30

abstractions heuristic hoff
div that also uses landmark decom-

position, and uses a diversified set of greedily instantiated
orders for the saturated cost partitioning (Seipp 2017).

The results for hoff
div are shown in the rightmost column

in Table 1. In terms of overall coverage, hoff
div beats our ap-

proach by a large margin, but mostly due to the big gaps in
the FreeCell (+45) and Miconic (+44) domains. In 14 dom-
ains hoff

div has higher coverage than hon
0.1, while our approach

works better in 10 domains. The biggest advantage for on-
line refinement can be observed in Tidybot (+8).

Useful Splits In order to best evaluate the impact of the
useful split check we use our hon

p configuration with p = 1.
Enabling this check can prevent the Bellman equation from
being satisfied, so we can not use hon.

100 102 104 106 108
100

102

104

106

108

101 102 103 104
101

102

103

104

Figure 10: Left: Number of expansions until last f -layer.
Right: Number of abstract states. The x- and y-axes corre-
spond to without respectively with useful splits.

Figure 10 shows the number of expansions until the last
f -layer is reached and the size of the abstractions. It shows
that using the useful splits check can sometimes significantly
reduce the size of the resulting abstractions while retaining
very similar heuristic informativeness.

This improvement also translates to a higher coverage
(709 with vs. 682 without useful splits). The domains be-
nefitting the most are Pegsol (+8) and Scanalyzer (+4), but
there are also domains where the coverage decreases, e.g.
−3 in GED. For hon

0.1, enabling the useful split check did not
improve the overall results.

Online vs. Offline Refinement
Finally, we want to examine whether refinement based on
the current search states leads to a more informed heuristic
than doing refinement only in the initial state. While we al-
ready showed that hon can reach the final f -layer with much
fewer expansions than hoff (Figure 6), in that comparison the
online-refined abstractions were allowed to grow a lot bigger
than those generated offline.

In order to create a fair environment, both abstractions
should have the same number of abstract states. The abstract
state space size using goal abstractions and only offline refi-
nement is often strictly limited. Hence, for this comparison,
we use only a single abstraction containing all goal facts.

For this experiment, we first do a run with online refine-
ment, starting from the trivial abstraction, and performing
the online refinement procedure until each state satisfies the
Bellman equation. After this run (when a solution is found

or a time limit of 15 minutes is reached), we restart the se-
arch and use the resulting abstraction Aon without further
online refinement. We compare this setting to a run with an
offline-refined abstractionAoff, using the number of abstract
states of Aon as the abstract state space size bound during
offline refinement.

100 102 104 106 108
100

102

104

106

108

Figure 11: Comparison of the expansions until the last f -
layer. The x- and y-axes correspond toAon respectivelyAoff.

Figure 11 compares the number of expansions until re-
aching the final f -layer for both resulting heuristics. The
online-refined abstractions tend to need fewer expansions,
on commonly solved instances the expansions are reduced
to a factor of only 0.66 compared to Aoff. In only 4 out of
37 domains Aoff is better, in all other domains using Aon

results in a smaller search space. The greatest search space
reduction can be observed in the domains Grid (0.12), Hi-
king (0.14), and Mprime (0.09). This also leads to a better
overall coverage forAon (690 vs. 679). Interestingly, the ini-
tial heuristic value is often much lower with Aon compared
to Aoff (4.2 vs. 14.2, geometric mean over all instances).
This shows that the fineness of the abstract state space is
distributed more evenly in the online-refined abstraction.

Conclusion
We introduced a monotone converging online-refinement
procedure for a set of additive Cartesian abstraction heu-
ristics consisting of the three operations refine, merge, and
reorder. Our results show that online refinement conside-
rably improves the accuracy of the heuristic, but it has to
be used carefully to avoid prohibitive overhead. When this
overhead is bounded to a managable amount, our approach
significantly improves over a heuristic using basic offline-
refined abstractions, and even beats a heuristic using additio-
nal techniques such as landmark decomposition and greedily
instantiated cost partitioning orders on many domains. In
principle, these techniques could be combined with online
refinement as well, so there is still more potential.

Another interesting direction for future work is devising
more sophisticated strategies for refinement (i.e. which sta-
tes to refine and how much). Similarly, different strategies to
select which abstractions to merge could be tried, in particu-
lar for domains with many goals (and thus, many individual
abstractions that can be merged).

31

References
Akagi, Y.; Kishimoto, A.; and Fukunaga, A. 2010. On
transposition tables for single-agent search and planning:
Summary of results. In Felner, A., and Sturtevant, N. R.,
eds., Proceedings of the 3rd Annual Symposium on Combi-
natorial Search (SOCS’10). Stone Mountain, Atlanta, GA:
AAAI Press.
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learning heu-
ristic functions for large state spaces. Artificial Intelligence
175(16-17):2075–2098.
Bäckström, C. 1995. Expressive equivalence of planning
formalisms. Artificial Intelligence 76(1–2):17–34.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black
planning: A new systematic approach to partial delete relax-
ation. Artificial Intelligence 221:73–114.
Edelkamp, S. 2001. Planning with pattern databases. In
Cesta, A., and Borrajo, D., eds., Proceedings of the 6th Eu-
ropean Conference on Planning (ECP’01), 13–24. Springer-
Verlag.
Felner, A.; Korf, R.; and Hanan, S. 2004. Additive pattern
database heuristics. Journal of Artificial Intelligence Rese-
arch 22:279–318.
Fickert, M., and Hoffmann, J. 2017. Complete local search:
Boosting hill-climbing through online heuristic-function re-
finement. In Proceedings of the 27th International Confe-
rence on Automated Planning and Scheduling (ICAPS’17).
AAAI Press.
Fickert, M.; Hoffmann, J.; and Steinmetz, M. 2016. Com-
bining the delete relaxation with critical-path heuristics: A
direct characterization. Journal of Artificial Intelligence Re-
search 56(1):269–327.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyberne-
tics 4(2):100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern da-
tabase heuristics for cost-optimal planning. In Howe, A.,
and Holte, R. C., eds., Proceedings of the 22nd National
Conference of the American Association for Artificial In-
telligence (AAAI’07), 1007–1012. Vancouver, BC, Canada:
AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & shrink abstraction: A method for genera-
ting lower bounds in factored state spaces. Journal of the
Association for Computing Machinery 61(3).
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Katz, M., and Domshlak, C. 2010. Optimal admissible
composition of abstraction heuristics. Artificial Intelligence
174(12–13):767–798.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Impro-
ving delete relaxation heuristics through explicitly represen-
ted conjunctions. Journal of Artificial Intelligence Research
50:487–533.

Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42(2-3):189–211.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In Borrajo, D.; Fratini,
S.; Kambhampati, S.; and Oddi, A., eds., Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling (ICAPS’13), 347–351. Rome, Italy: AAAI
Press.
Seipp, J., and Helmert, M. 2014. Diverse and additive car-
tesian abstraction heuristics. In Chien, S.; Do, M.; Fern,
A.; and Ruml, W., eds., Proceedings of the 24th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’14). AAAI Press.
Seipp, J.; Keller, T.; and Helmert, M. 2017. Narrowing
the gap between saturated and optimal cost partitioning for
classical planning. In Singh, S., and Markovitch, S., eds.,
Proceedings of the 31st AAAI Conference on Artificial Intel-
ligence (AAAI’17), 3651–3657. AAAI Press.
Seipp, J. 2012. Counterexample-guided abstraction refine-
ment for classical planning. Master’s thesis, University of
Freiburg, Germany.
Seipp, J. 2017. Better orders for saturated cost partitioning
in optimal classical planning. In Fukunaga, A., and Kishi-
moto, A., eds., Proceedings of the 10th Annual Symposium
on Combinatorial Search (SOCS’17). AAAI Press.
Wilt, C. M., and Ruml, W. 2013. Robust bidirectional search
via heuristic improvement. In desJardins, M., and Littman,
M., eds., Proceedings of the 27th AAAI Conference on Ar-
tificial Intelligence (AAAI’13). Bellevue, WA, USA: AAAI
Press.

32

Accounting for Partial Observability in Stochastic Goal Recognition Design:
Messing with the Marauder’s Map

Christabel Wayllace† and Sarah Keren‡ and William Yeoh†

and Avigdor Gal‡ and Erez Karpas‡
†Washington University in St. Louis

‡Technion – Israel Institute of Technology

Abstract

Given a stochastic environment and a set of allowed mod-
ifications, the task of goal recognition design is to select a
valid set of modifications that minimizes the expected max-
imal number of steps an agent can take before his goal is
revealed to an observer. This paper extends the stochastic
goal recognition design (S-GRD) framework in the following
two ways: (1) Agent actions are unobservable; and (2) Agent
states are only partially observable. These generalizations are
motivated by practical applications such as agent navigation,
where agent actions are unobservable yet his state (current lo-
cation) can be (at least partially) observed, using possibly low
sensor (e.g., GPS) resolution, forcing nearby states to become
indistinguishable. In addition to the generalized model, we
also provide accompanying algorithms that calculate the ex-
pected maximal number of steps, offer new sensor refinement
modifications that can be applied to enhance goal recognition,
and evaluate them on a range of benchmark applications.

Introduction
Goal recognition aims at discovering the goals of an agent
according to his observed behavior, collected online (Car-
berry 2001; Ramı́rez and Geffner 2010; Sukthankar et al.
2014). Goal recognition design (GRD) (Keren et al. 2014)
is the offline task of redesigning environments (either phys-
ical or virtual) to allow efficient online goal recognition.

Typically, a GRD problem has two components: (1) The
goal recognition setting being analyzed and a measure of the
efficacy of goal recognition and (2) a model of possible de-
sign changes one can make to the underlying environment.
In the seminal work by Keren et al. [2014], they proposed
the worst case distinctiveness (wcd) metric, which aims at
capturing the maximum number of steps an agent can take
without revealing its goal, as a measure of the goal recogni-
tion efficacy. Removal of actions was considered as a pos-
sible design change to the environment. This definition is
made for the problem under three key assumptions:
• Assumption 1: Agents in the system execute optimal

plans to reach their goals;
• Assumption 2: The environment is fully observable (i.e.,

both states and actions of agents are observable); and
• Assumption 3: Agent actions are deterministic.

The GRD problem has been since generalized to relax
each of the three assumptions (Keren et al. 2015; 2016a;

2016b; Wayllace et al. 2016; 2017; Keren et al. 2018).
Aside from these relaxations, Wayllace et al. [2017] have
also proposed a new metric called expected case distinctive-
ness (ecd), which weighs the possible goals based on their
likelihood of being the true goal. Additionally, Keren et al.
[2016b] have proposed the refinement of sensors, which de-
creases the degree of observation uncertainty on tokens pro-
duced by actions (rather than states) of an agent, as a possi-
ble design change to the environment. Table 1 summarizes
the generalizations, metrics, and possible designs of existing
GRD models.

In this work, we go beyond the state-of-the-art by ex-
tending the Stochastic GRD (S-GRD) model (Wayllace et
al. 2017) to also relax Assumption 2 and handle partially
observable environments. The new model, which we call
Partially-Observable Stochastic GRD (POS-GRD), assumes
that actions of the agent are now no longer observable and
states of the agent are now partially observable. This relax-
ation is motivated by practical applications such as agent
navigation, where agent actions are unobservable yet his
state (current location) can be (at least partially) observed.
The partial observability of agent states is due to low sen-
sor (e.g., GPS) resolution – several nearby states may be in-
distinguishable from one another. Finally, we also consider
sensor refinement as a possible design to the environment,
which contributes to the observability of states.

Our empirical evaluation shows that partial observabil-
ity increases the wcd required to recognize the agent’s goal
and that sensor refinement always reduces this value. The
analysis also suggests that, given a limited number of possi-
ble modifications, the initial sensor configuration affects the
value of wcd and its reduction ratio; therefore, it might be
possible to reduce the wcd even further using the same num-
ber of sensors with the same resolution but in a different
configuration.

Illustrating Example
To illustrate the setting of this work, we present an exam-
ple from the wizarding world of Harry Potter, who is back
at the Hogwarts School of Witchcraft and Wizardry. He is
tasked with establishing a security system that can detect as
early as possible a student who enters the school from the
main entrance and is heading towards Professor Snape’s of-
fice armed with a wand made of oak wood. All students use

33

Generalizations Metrics Possible Designs
Suboptimal Partially Stochastic wcd ecd Action Sensor

Plans Obs. Env. Actions Removal Refinement
Keren et al. [2014] X X
Son et al. [2016] X X
Keren et al. [2015] X X X
Keren et al. [2016a] X X X X
Keren et al. [2016b] X X X X X
Wayllace et al. [2016] X X X
Wayllace et al. [2017] X X X X
Our proposed model X X X X X

Table 1: Properties of Current Goal Recognition Design Models

the staircase chamber to move around the school. The stair-
case is stochastic, especially when a student is walking up
the staircase. Therefore, a student aiming at a certain part of
the school may find herself at a different location. For ex-
ample, a student heading to Professor Snape’s office or the
dining hall may find herself at the hallway, in which case she
needs to retrace to the entrance and try reaching her destina-
tion again. Figure 1(top) depicts the locations as nodes and
the transitions (and their probabilities) as edges.

To accomplish his task, Potter plans to use the Marauder’s
Map, a magical artifact that reveals the whereabout of all
witches and wizards at Hogwarts. The map can show where
witches and wizards are, but due to some dark magic, it can
no longer identify them by their names. Further, it was not
created with the ability to detect whether a student carries a
wand, not to mention the type of wood of which the wand is
made.

Potter can cast exactly one spell to either reveal the name
of the witches and wizards on the map or to reveal the type of
wand that they are carrying, if any. Knowing that all wands
are forbidden in the dining hall, Potter realizes that his best
choice is to cast the spell that reveals wands and the type of
wood of which they are made. This will guarantee that any-
one ending up at the hallway with a wand made of oak wood
and heads back to the entrance has the intention of reaching
Professor Snape’s office, and such a recognition can occur
after at most two actions, namely moving towards Professor
Snape’s office but ending up in the hallway and returning to
the entrance. Figure 1(bottom) illustrates the problem after
the modification spell; each node now represents a 〈 loca-
tion, wand 〉 tuple, where nodes in red represent the states
with oak wands.

Background
Markov Decision Process (MDP)
A Stochastic Shortest Path Markov Decision Process (SSP-
MDP) (Mausam and Kolobov 2012) is represented as a tuple
〈S, s0,A,T,C,G〉. It consists of a set of states S; a start
state s0 ∈ S; a set of actions A; a transition function T :
S×A× S→ [0, 1] that gives the probability T (s, a, s′) of
transitioning from state s to s′ when action a is executed;
a cost function C : S × A × S → R that gives the cost
C(s, a, s′) of executing action a in state s and arriving in

Figure 1: Marauder’s Map Before (top) and After (bottom)
Potter’s Modification Spell

state s′; and a set of goal states G ⊆ S. The goal states are
terminal, that is, T (g, a, g) = 1 and C(g, a, g) = 0 for all
goal states g ∈ G and actions a ∈ A.

An SSP-MDP must also satisfy the following two condi-
tions: (1) There must exist a proper policy, which is a map-
ping from states to actions with which an agent can reach a
goal state from any state with probability 1. (2) Every im-
proper policy must incur an accumulated cost of∞ from all
states from which it cannot reach the goal with probability 1.
In this paper, we will focus on SSP-MDPs and will thus use
the term MDPs to refer to SSP-MDPs. A solution to an MDP
is a policy π, which maps states to actions. Solving an MDP
means finding an optimal policy, that is, a policy with the
smallest expected cost. Finally, we use optimal actions to
denote actions in an optimal policy.

Value Iteration (VI) and Topological VI (TVI)

Value Iteration (VI) (Bellman 1957) is one of the fundamen-
tal algorithms to find an optimal policy. It uses a value func-
tion V to represent expected costs. The expected cost of an
optimal policy π∗ for the starting state s0 ∈ S is the ex-
pected cost V (s0), and the expected cost V (s) for all states
s ∈ S is calculated using the Bellman equation (Bellman

34

1957):

V (s) = min
a∈A

∑

s′∈S

T (s, a, s′)
[
C(s, a, s′) + V (s′)

]
(1)

The action chosen by the policy for each state s is then the
one that minimizes V (s).

VI suffers from a limitation that it updates each state in
every iteration even if the expected cost of some states have
converged. Topological VI (TVI) (Dai et al. 2011) addresses
this limitation by repeatedly updating the states in only one
strongly connected component (SCC) until their values con-
verge before updating the states in another SCC. Since the
SCCs form a directed acyclic graph, states in an SCC only
affect the states in upstream SCCs. Thus, by choosing the
SCCs in reverse topological sort order, it no longer needs to
consider SCCs whose states have converged in a previous
iteration.

Goal Recognition Design (GRD)
A Goal Recognition Design (GRD) problem (Keren et al.
2014) is represented as a tuple T = 〈P,D〉, where P is an
initial goal recognition model and D is a design model. The
initial model P , in turn, is represented by the tuple 〈D,G〉,
where D captures the domain information and G is a set of
possible goal states of the agent. The worst case distinctive-
ness (wcd) of problem P is the length of a longest sequence
of actions π = 〈a1, . . . , ak〉 that is the prefix in cost-minimal
plans π∗g1 and π∗g2 to distinct goals g1, g2 ∈ G. Intuitively,
as long as the agent executes π, he does not reveal his goal
to be either g1 or g2.

A design modelD (Keren et al. 2018) includes three com-
ponents: The setM of modifications that can be applied to a
model; a modification function δ that specify the effect each
modification m ∈ M has on the goal recognition setting to
which it is applied; and a constraint function φ that speci-
fies the modification sequences that can be applied to a goal
recognition model. In the original GRD problem definition,
action removals are the only modifications allowed in the
design model.

The objective in GRD is to find a feasible modification
sequence that, when applied to the initial goal recognition
model P , will minimize the wcd of the problem. This opti-
mization problem is subject to the requirement that the min-
imal cost to achieve each goal g ∈ G is the same before and
after the modifications.

Researchers have proposed a number of extensions to sup-
port different goal recognition and goal recognition design
models, tabulated in Table 1.

Stochastic GRD (S-GRD)
Stochastic Goal Recognition Design (S-GRD) (Wayllace et
al. 2016; 2017) extends the GRD framework by assuming
the actions executed by the agent, which are fully observ-
able, have stochastic outcomes. Similar to GRD, it is rep-
resented as a tuple T = 〈P,D〉, where P = 〈D,G〉 is an
initial goal recognition model, D is a design model, D cap-
tures the domain information, and G is a set of possible goal
states of the agent.

The elements of D = 〈S, s0,A,T,C〉 of S-GRD prob-
lems are as described in MDPs, except that the cost function
C is restricted to positive costs. It is assumed that the cost of
all actions is 1 for simplicity. The worst case distinctiveness
(wcd) of problem P is the largest expected cost incurred by
the agent without revealing his true goal. The wcd of a prob-
lem assumes that all goals are of equal likelihood of being
the true goal. The expected case distinctiveness (ecd) weighs
the expected cost of each policy for a goal by the likelihood
of that goal to be the true goal.
Augmented MDP for S-GRDs: Given a regu-
lar MDP 〈S, s0,A,T,C,G〉, an augmented MDP
〈S̃, s̃0, Ã, T̃, C̃, G̃〉 augments each component of the
tuple in the following way:
• Each state s̃ ∈ S̃ is represented by 〈s,G′〉 where s ∈

S and G′ ⊆ G is the set of possible goals for s. Two
augmented states are different if any of their components
are different.

• The augmented start state is s̃0 = 〈s0,G〉.
• Each augmented action ã ∈ Ã is a tuple 〈a,G′〉, where
a ∈ A and G′ is the set of all goals for which that action
is an optimal action.

• The new transition function T̃ : S̃ × Ã × S̃ → [0, 1]

gives the probability T̃ (s̃, ã, s̃′), where s̃ = 〈s,G′〉, ã =

〈a,G′′〉, and s̃′ = 〈s′,G′∩G′′〉. T̃ (s̃, ã, s̃′) = T (s, a, s′)
if |G′ ∩G′′| > 1 and equals 0 otherwise.

• The cost function C̃ : S̃ × Ã × S̃ → R+ gives the
cost C̃(s̃, ã, s̃′) of executing action ã in augmented state s̃
and arriving in s̃′. This cost equals the cost C̃(s̃, ã, s̃′) =
C(s, a, s′) under the same conditions as above.

• The augmented goal states G̃ ⊆ S̃ are those augmented
states 〈s,G′〉 for which any execution of an augmented
action will transition to an augmented state 〈s′,G′′′〉 with
one goal or no goals (i.e., |G′′′| ≤ 1) in the regular MDP.
S-GRD algorithms use augmented MDPs and VI-like al-

gorithms to compute the wcd by finding the maximum ex-
pected cost from the augmented starting state to any aug-
mented goal.

Partially-Observable S-GRD (POS-GRD)
A key assumption in S-GRDs is that the actions of the agents
are observable. However, in applications such as those in-
volving agent navigation, agent actions are not observed and
only his state (current location) is available. Further, while
in deterministic settings (Assumption 3), one can accurately
infer the action of an agent by continuously observing his
state, this does no longer hold in S-GRDs. Therefore, the S-
GRD algorithms proposed thus far cannot be used off-the-
shelf directly.

Towards this end, we define the Partially-Observable S-
GRD (POS-GRD) problem, where (1) only states (rather
than actions) can be observed; and (2) states are partially ob-
servable, so that several states are indistinguishable from one
another. The degree of observation uncertainty is defined by
the resolution of sensors in the problem.

We follow Keren et al. [2018] by modeling a POS-GRD

35

problem with two components: A goal recognition model
that describes the goal recognition problem and a design
model that specifies the possible ways one can modify the
goal recognition model. We formulate each of these com-
ponents separately before integrating them into a POS-
GRD model.

Definition 1 (Goal Recognition Model) A partially-
observable goal recognition (POS-GRD) model with
stochastic action outcomes is represented as a tuple
PO = 〈D,G, N〉 where
• D = 〈S, s0,A,T,C〉 captures the domain information;
• G is a set of possible goals; and
• N represents a sensor function that partitions S into ob-

servation sets ON
1 , ...,O

N
n , where ∀si, sj ∈ S, si 6= sj :

si, sj ∈ ON
k ⇐⇒ N(si) = N(sj). Each set ON

k corre-
sponds to a different observation and we refer to N(s) as
the projected observation of s.

The above model generalizes the stochastic goal recogni-
tion setting proposed by Wayllace et al. [2016] by including
a sensor model N that defines the degree of partial observ-
ability of the states in the problem. If all the states are fully
observable, then observation set Oi is composed of exactly
one state.

In this paper, we focus on two types of possible modifica-
tions in the design model D:
• ACTION REMOVAL: A modification that removes some

actions from the set of applicable actions in the model,
and

• SENSOR REFINEMENT: A modification that allows the
observer to distinguish between two states that have the
same observation.

Definition 2 [refinement] A sensor model N ′ is a refine-
ment of sensor model N if there exists a set ON

j such that
ON ′
i ⊆ ON

j for each observation ON ′
i of N ′.

We let POm represent the POS-GRD model that results
from applying m to PO and let Nm and N denote the sen-
sor models of POm and PO, respectively. We define sensor
refinement as follows.

Definition 3 [sensor refinement] A modificationm is a sen-
sor refinement modification if for every goal recognition
model PO, POm is identical to PO except that Nm is a
refinement of N .

Note that as opposed to the sensor refinement suggested by
Keren et al. [2016b], where the sensor model is defined over
tokens emitted by performed actions, sensor refinement de-
fined here applies to settings where the state of the agent
may be only partially observed and the observer has a way
to improve its observability by sensing features of the envi-
ronment.

Definition 4 A partially-observable goal recognition de-
sign (POS-GRD) problem is given by the pair T =
〈PO0,D〉, where

• PO0 is an initial goal recognition model, and
• D is a design model.

Figure 2: Example Illustration

Due to low sensor resolution, more than one state can map
to the same observation. We represent this fact by group-
ing states with the same observation together. Figure 2 illus-
trates the states and their observations, where each shaded
area represents one observation. If the agent moves between
states with the same observation, it is impossible for the ob-
server to know whether the agent stayed in its current state or
moved to a different state with the same observation. If the
agent moves to a state that has a different observation, the
observer may gain some information. To do so, the observer
needs to keep track of the set of possible goals given the
sequence of observations observed. Wayllace et al. [2017]
used an augmented MDP to keep track of the history of
states of the agent and to discard some possible goals along
the path. To solve a POS-GRD problem, we make use of a
similar augmented MDP structure, where we modify it to ac-
count for partial observability. Below, we provide new defi-
nitions that will be useful to explain the construction of the
new augmented MDP.

Definition 5 (Starting State) State s is a starting state if
∃s′ ∈ S, a ∈ A : T〈s′, a, s〉 > 0∧N(s) 6= N(s′)∨ s = s0,
where s0 is the initial state.

Definition 6 (Set of Connected States) Given a starting
state si, the set of connected states Ci of si is the set of
all states that are reachable from si and whose observa-
tion is the same as si. More precisely, Ci = {si} ∪ {sj |
T(si, ·, sj) > 0 ∧N(sj) = N(Si)}.
Definition 7 (Connected Observation) Given a set
of starting states S′, its connected observation is
Õ(S′) = ∪si∈S′Ci, where Ci is the set of connected
states of starting state si.

Definition 8 (Ending State) Given a connected observa-
tion O(S′), state s is an ending state of O(S′) if s ∈
O(S′) ∧ ∃a ∈ A, s′ /∈ O(S′) : T〈s, a, s′〉 > 0.

To demonstrate, in Figure 2, the starting states are
s0, s3, s4, s5, s8, g0, and g1; the set of connected states of
s0 is C0 = {s0, s1, s2} and the set of connected states
of s4 is C4 = {s4, s6, s7}; the connected observation of
Õ({s4, s5}) = {s4, s5, s6, s7}; and the ending states are
s2, s3, s6, s7, s9, g0, and g1. Note that a state can be starting
and ending state at the same time.

36

Definition 9 (Predecessor) Given two connected observa-
tions Õ(S′) and Õ(S′′), Õ(S′) is the predecessor of Õ(S′′)
if ∃a ∈ A, s ∈ Õ(S′), s′ ∈ Õ(S′′) : T〈s, a, s′〉 >
0 ∧N(s) 6= N(s′).

In Figure 2, O1 = Õ({s0}) is a predecessor of
O2, O3, O4, and O6.

To construct the augmented MDP for a POS-GRD prob-
lem, we start by augmenting states, actions, and transi-
tions from the original MDP 〈S, s0,A,T,C,G〉, that is, we
generate 〈S̃, s̃0, Ã, T̃〉 following the procedure described
by Wayllace et al. [2017]. It is important to point out that
when a state s is augmented to a state s̃ = 〈s,G′〉, s̃ projects
the same observation as s, that is, N(s) = N(〈s,G′〉) for
any set G′ ⊆ G.

Augmented MDPs for POS-GRD
For example, for the original MDP shown in Figure 3(a),
the corresponding augmented states and actions are shown
in Figure 3(b). Note that all the augmented states generated
from the same state (e.g., s2 or s4) have the same observa-
tion. Every state is augmented with the set of possible goals
for that state and every action is augmented with the set of
goals for which that action is optimal (non-optimal actions
in gray are not taken into account); the set of possible goals
of a successor is found by intersecting the set of possible
goals of its predecessor with the set of possible goals of the
action executed to transition to that state.

If all states and actions were observable in the example
depicted in Figure 3, the agent would reveal its goal as soon
as one action is executed (since a1 is an optimal action only
for goal g1 and a0 is optimal only for goal g0). However,
in our partially-observable setting, where actions are not ob-
servable and all connected states have the same observation,
the agent is able to hide its true goal for longer. For exam-
ple, in Figure 3(b), when the observer observes 〈O1, O2〉, it
could be due to the agent executing action a1 from state s0
and transitioning to state s2 or it could be due to the agent ex-
ecuting action a0 and transitioning to the same state s2. Even
though the two actions are optimal actions for two different
goals g1 and g2, the observer is not able to distinguish be-
tween them. As a result, the agent is able to hide its true goal
after executing either of those two actions if it transitions to
state s2. However, if the observer observes 〈O1, O4〉, then it
knows with certainty that the agent executed action a1 and
can infer that the agent’s goal is g1.

To do this type of inference, we keep track of the set of
possible goals with respect to the projected observations by
extending Definitions 5 to 9 to the augmented domain. The
extensions are trivial – in every definition, it is sufficient to
substitute any reference to a state, action, or transition with
their augmented counterpart. For instance, Definition 5 is
extended as follows:

Definition 10 (Augmented Starting State) Augmented
state s̃ is an augmented starting state if ∃s̃′ ∈ S̃, ã ∈ Ã :
T〈s̃′, ã, s̃〉 > 0 ∧ N(s̃) 6= N(s̃′) ∨ s̃ = s̃0, where s̃0 is the
augmented initial state.

Definition 11 (Augmented Observation) An augmented
observation is a tuple 〈Õ(S̃′),G′〉 where Õ(S̃′) is a
connected observation and G′ =

⋃
〈s,G′′〉∈S̃′ G′′.

Once the tuple 〈S̃, s̃0, Ã, T̃〉 is built, a structure of aug-
mented observation sets (AOS) is constructed following
Algorithm 1. This structure implements the model repre-
sented by the shaded regions in Figure 3(b). Specifically,
each shaded region corresponds to one augmented observa-
tion and the predecessor for any augmented observation in
AOS can be easily found.

Two connected observations can have states projecting the
same observation. For example, given Õ(S̃′) and Õ(S̃′′),
if S̃′′ ∩ S̃′ 6= ∅, then by Definition 7, ∀s̃i ∈ S̃′, s̃j ∈
S̃′′ : N(s̃i) = N(s̃j). If their augmented observations are
〈Õ(S̃′),G′〉 and 〈Õ(S̃′′),G′′〉 respectively, and G′ 6= G′′,
then both augmented observations are considered different.
Since one state should belong to only one augmented ob-
servation, we need to create duplicates from all common
augmented states and modify their transition functions ac-
cordingly. The function Create (line 13) will create a new
augmented state s̃′ every time that an explored state s̃ be-
longs to another augmented observation.

Once Algorithm 1 is executed, the augmented observa-
tions in AOS contain the information that is available to the
observer. Therefore, we can now use it to define a new aug-
mented MDP that will allow us to correctly solve the initial
goal recognition model (Definition 4).

Definition 12 (Augmented MDP for POS-GRD) For
a POS-GRD problem PO = 〈D,G, N〉 with domain
information D = 〈S, s0,A,T,C〉 and the set of augmented
observations AOS built following Algorithm 1, an aug-
mented MDP is defined by a tuple 〈S̃, s̃0, Ã, T̃, C̃, G̃〉 that
consists of the following:

• a set S̃ of augmented states s̃, where s̃ ∈ S̃ ⇐⇒
∀〈Õ(S̃′),G′〉 ∈ AOS : s̃ ∈ Õ(S̃′);

• an augmented start state s̃0 = 〈s0,G〉;
• a set of augmented actions Ã = 〈a,G′′〉, where G′′ is the

set of all goals for which a ∈ A is an optimal action;
• a transition function T̃ : S̃×Ã×S̃→ [0, 1] that gives the

probability T̃ (〈s,G′〉, 〈a,G′′〉, 〈s′,G′ ∩G′′〉) of transi-
tioning from augmented state 〈s,G′〉 to augmented state
〈s′,G′ ∩ G′′〉 when augmented action 〈a,G′′〉 is exe-
cuted; this probability equals T (s, a, s′) if |G′∩G′′| > 1
and equals 0 otherwise;

• a cost function C̃ : S̃ × Ã × S̃ → R+ that gives cost
C̃(s̃, ã, s̃′) = 0 if ∃〈Õ(S̃′),Go〉 ∈ AOS : s̃′ ∈
Õ(S̃′) ∧ |Go| ≤ 1 and C̃(s̃, ã, s̃′) = C(s, a, s′) other-
wise; and

• the set of augmented goals G̃ ⊂ S̃ = {s̃ |
∀〈Õ(S̃′),Go〉 ∈ AOS : |Go| = 1 ∧ s̃ ∈ S′}

37

(a) Original Example (b) Augmented Observation Sets (c) After Sensor Refinement

Figure 3: Example

Algorithm 1: CONSTRUCTION OF THE AUGMENTED STATE SPACE

1 Input: 〈S̃, s̃0, Ã, T̃〉
2 AOS← {〈Õ({s̃0}),G〉}
3 Q← Õ({s̃0})
4 while Q 6= ∅ do
5 Õ(S̃i)← Q.dequeue()
6 Find all ending states se ∈ Õ(S̃i)

7 foreach se ∈ Õ(S̃i) do
8 if ∃ã ∈ Ã then
9 Find all starting states s̃s with T(s̃e, ã, s̃s) > 0 ∧N(s̃e) 6= N(s̃s)

10 Group all s̃s with same N(s̃s)

11 foreach group S′ do
12 if @〈Õ(S̃′),G′〉 ∈ AOS : G′ =

⋃
〈ss,G′′〉∈S̃′ G′′ then

13 〈Õ(S̃′),G′〉 ← Create ({s̃s|s̃s ∈ S̃′},G′,AOS)
14 if @〈Õ(S̃′′),G′〉 ∈ AOS : S̃′ 6= S̃′′ ∧ Õ(S̃′) = Õ(S̃′′) then
15 AOS← AOS ∪ 〈Õ(S̃′),G′〉
16 Enqueue 〈Õ(S̃′),G′〉 in Q

Function Create(S̃s,G′,AOS)

17 S̃′s ← ∅
18 foreach s̃ ∈ S̃s do
19 if ∃Õ(S̃) ∈ AOS : s̃ ∈ Õ(S̃) then
20 s̃′ ← newState(s̃)

21 S̃′s ← S̃′s ∪ s̃′
22 S̃← S̃ ∪ s̃′
23 else
24 S̃′s ← S̃′s ∪ s̃

25 Õ(S̃′)← connectedObs(S̃′)
26 return 〈Õ(S̃′),G′〉 ← augmentedObs(Õ(S̃′),G′)

Computing the wcd
Definition 13 (wcd) The wcd of a POS-GRD problem PO
is defined as:

wcd(PO) = max
π̃∈Π̃

Vπ̃(s̃0) (2)

Vπ̃(s̃) =
∑

s̃′∈S̃

T̃ (s̃, π̃(s̃), s̃′)
[
C̃(s̃, π̃(s̃), s̃′) + Vπ̃(s̃

′)
]

(3)

where Π̃ is the set of augmented policies in the augmented
MDP as specified in Definition 12 and Vπ̃(s̃0) is the expected
cost for s0 with augmented policy π̃ computed recursively
using Equation 3.

The baseline algorithm to compute the wcd is to follow
Equations 2 and 3, that is, for each possible augmented pol-
icy π̃, run a VI-like algorithm, where instead of using the
Bellman equation (Equation 1) we use Equation 3, run the
algorithm until convergence, and store the value Vπ̃(s̃0) to

38

find the maximum among all policies. Finding the maximum
expected cost should be done in one execution of the algo-
rithm using the following equation:

V ∗(s̃) = max
ã∈Ã

∑

s̃′∈S̃

T̃ (s̃, ã, s̃′)
[
C̃(s̃, ã, s̃′) + V ∗(s̃′)

]
(4)

Observe that this equation is equivalent to Equations 2
and 3, and it differs from the Bellman equation only in the
operator: this one uses the maximization instead of min-
imization. The main problem of maximizing costs is the
existence of infinite loops since the optimal policy is to
accumulate cost infinitely. The augmented MDP does not
have infinite loops because the augmented actions are con-
structed using only optimal actions to arrive to any possible
goal, hence, the only case of a cycle could be if an agent
transitioning from state s̃ to s̃′ executes an augmented ac-
tion 〈ã,G′〉 and to transition from s̃′ to s̃ executes action
〈ã′,G′′〉, where G′ ∩ G′′ = ∅, that is, if both actions are
optimal for a different set of possible goals. However, this
is impossible because the set of possible goals of an aug-
mented state is always a subset of the set of possible goals
of its predecessors. A formal sketch proof of this property
was presented by Wayllace et al. [2017] for the augmented
MDP for S-GRD problems. The property remains true for
POS-GRD since the new augmented states are duplicates of
others; therefore, the possible augmented actions, successors
and predecessors remain the same.

Therefore, a VI-like algorithm using Equation 4 can be
used. Even further, we took advantage of the structure of
the augmented MDP that usually allows to group augmented
states into strongly connected components (SCC), therefore,
algorithms similar to TVI can be used. The Tarjan’s algo-
rithm (Tarjan 1972) was used to form SCCs. Once the SCCs
are constructed, a VI-like algorithm is executed on each SCC
in reverse topological order.

It is worth mentioning that non-reachable states in the
augmented MDP can be prunned, as well as states that be-
long to an augmented observation whose predecessors have
only one possible goal.

Reducing the wcd
Once the wcd of the model has been computed, we propose
to apply two types of modifications with the objective to re-
duce the wcd: (1) Sensor refinement and (2) Action removal.

Sensor Refinement: In a POS-GRD problem, partial ob-
servability is due to low-resolution sensors that make it im-
possible for an observer to distinguish a number of similar
states. As a result, all the states covered by a sensor have the
same observation and the observer does not know which is
the actual state of the agent. By refining sensor resolution,
the observer can gain better observability of the states cov-
ered by a particular sensor. The design objective is thus to
identify which sensors refine such that the resulting wcd is
minimized under the specified constraints. Ideally, all sen-
sors should be refined so that the all states are fully observ-
able as this will guarantee that the wcd is minimized. How-

Algorithm 2: Sensor Refinement
27 create a queue Q← combination of up to k states
28 wcd∗ ←∞
29 S∗ ← ∅
30 while Q 6= ∅ do
31 Scand ← Q.deque
32 wcdcand ← compute wcd(Scand)
33 if wcdcand < wcd∗ then
34 wcd∗ ← wcdcand
35 S∗ ← Scand

36 foreach si ∈ S∗ do
37 ON

i = getObs(si)

38 ON
i ← ON

i \ {si}
39 add mapping si → ON

n+i to sensor function N

ever, we assume that there is a limited budget available and
only a limited number of sensors can be refined.

In this paper, we use a simple implementation of sensor
refinement (as defined in Definition 3 by allowing making a
single state fully observable. In other words, if the agent is
in any of the refined states, the observer is able to observe
it with full certainty. Figure 3(c) shows an example of sen-
sor refinement for the original example in Figure 3(a), where
state s0, previously mapped to the same observation O1 as
states s3 and s5, is now mapped to a new observation O7.
This makes it possible to distinguish s0 from the other two
states. In our setting, there is a maximum of k sensor refine-
ment modifications that can be performed.

Algorithm 2 describes the sensor refinement pseudocode
for choosing the k states to refine. It first constructs a queue
that contains all subsets of up to k states (line 27). Then, it
iteratively evaluates each set by computing the wcd if those
refined states (line 32). If the resulting wcd is smaller than
the minimal wcd found so far, it updates the best wcd with
that value and stores that set of states as the best set (lines 33-
35). After evaluating all sets of states in the queue, it updates
the sensor function N by replacing the observation of each
of the k states with new observations (lines 36-39).

Action Removal: Another (more classical) modification
that can be performed to the model is action removal, where
there is also a constraint on the number of modifications.
Specifically, the objective is to minimize the wcd by remov-
ing at most k actions. Similar to the algorithms previously
used by Wayllace et al. [2017], we enumerate through all
possible combinations of up to k actions, compute the wcd
for each combination, and choose the combination that re-
duces the wcd the most.

Empirical Evaluation
The domain used to run the experiments is a modification
of the domain called ROOM, which was used in the Non-
Deterministic Track of the 2006 ICAPS International Plan-

39

ning Competition.1 It is a grid world where the actions as
well as the transition probabilities are defined individually
for each state. Each instance of this domain is defined by the
x- and y-dimensions of the room and the number of possible
goals. The initial setting for partial observability was added,
specifically, four contiguous states were mapped to the same
observation.

Three type of experiments were performed: (1) Partial ob-
servability with sensor refinement (SR); (2) Partial observ-
ability with action removal (AR); and (3) Full observability
of states with action removal (FO), (note that this is dif-
ferent to S-GRD since the actions are non-observable here).
The smaller instances used a budget k=2 in all settings while
the larger ones used k=1; they timed out with k=2. The pa-
rameter k represents the maximum number of states to re-
fine in SR and the maximum number of actions to remove
in AR and FO. Both SR and AR start with the same initial
partially-observable problem. The only difference is in the
type of modifications allowed. FO assumes that all states
are fully observable and only the actions are hidden to the
observer. The experiments were conducted on a 3.1 GHz In-
tel Core i7 with 16 GB of RAM and a timeout of two days
was imposed.

We make the following observations:
• The initial wcd is larger for all the instances with partially-

observable states (SR and AR) compared to if they are
fully observable (FO). However, the ratio between both
values differs across instances, which is interesting be-
cause it shows that not only the resolution (number of
states covered by one sensor), but also the placement
(which states are covered by the same sensor) of sensors
matters. Thus, in the future, we plan to conduct additional
experiments to optimize sensor placement, even without
improving their resolution.

• The wcd reduced for all instances when we applied sen-
sor refinement. However, the wcd reduced for only one
instance when we applied action removal (two others also
show some reduction, but it might be due to rounding er-
rors). This is because the domain in general has few poli-
cies that are common to more than one goal and removing
actions increases the initial expected cost or causes the
goal to become unreachable.

• In SR, only two instances were able to match the wcd
value of FO after reduction, but four other instances were
close. This does not depend on the size of the state space
(one match occurred for instance 4-4-3 and the other for
32-32-3), which also suggests that the initial sensor map-
ping could affect the quality of goal recognition.

• The running time grows exponentially with the size of the
reachable state space and, as expected, with the number
of modifications k.

Conclusions and Future Work
Previous work in GRD did not account for partially-
observable states, which is relevant to many applications
such as agent navigation, where only the current state is ob-

1http://idm-lab.org/wiki/icaps/ipc2006/probabilistic/

servable, not the intention of movement. Additionally, obser-
vations depend on the resolution of the sensor. Thus, some
states can be perceived as identical to other states. In re-
sponse to these observations, this paper proposes the Par-
tially Observable S-GRD (POS-GRD) problem where (1)
actions are not observable and (2) states are partially ob-
servable. New algorithms taking partial observability into
account to compute the wcd and to perform sensor refine-
ment in POS-GRD problems were proposed. Experimental
results show that sensor refinement always reduces the wcd
and suggest that the initial sensor configuration affects the
reduction ratio when the number of possible modifications
is limited.

Future work includes the use of heuristics to prune the
search space for higher values of k. Since the modifications
start from 1 to k, the idea is to find all augmented states that
have less or equal expected cost than the current (minimized)
value of wcd and prune the rest of the searching space. We
are also interested in use other metrics and design mecha-
nisms in the POS-GRD context.

Acknowledgments
This research is partially supported by NSF grant 1540168.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the sponsoring organizations, agencies, or the U.S. govern-
ment.

References
Richard Bellman. Dynamic Programming. Princeton Uni-
versity Press, 1957.
Sandra Carberry. Techniques for plan recognition. User
Modeling and User-Adapted Interaction, 11:31–48, 2001.
Peng Dai, Mausam, Daniel S Weld, and Judy Goldsmith.
Topological value iteration algorithms. Journal of Artificial
Intelligence Research, 42:181–209, 2011.
Sarah Keren, Avigdor Gal, and Erez Karpas. Goal recog-
nition design. In Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS),
pages 154–162, 2014.
Sarah Keren, Avigdor Gal, and Erez Karpas. Goal recogni-
tion design for non-optimal agents. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pages
3298–3304, 2015.
Sarah Keren, Avigdor Gal, and Erez Karpas. Goal recogni-
tion design with non-observable actions. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), pages
3152–3158, 2016.
Sarah Keren, Avigdor Gal, and Erez Karpas. Privacy pre-
serving plans in partially observable environments. In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 3170–3176, 2016.
Sarah Keren, Avigdor Gal, and Erez Karpas. Strong stub-
born sets for efficient goal recognition design. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling (ICAPS), 2018.

40

Domain
k

Sensor Refinement (SR) Action Removal (AR) Full State Observability (FO)
Instances wcd Reduction Runtime (s) wcd Reduction Runtime (s) wcd Reduction Runtime (s)
4-4-3 2 4.98→ 3.71 0.25 4.98→ 4.98 0.18 3.71→ 3.71 0.26
8-8-2 2 16.05→ 16.03 19.76 16.05→ 16.05 23.48 16.02→ 16.02 22.65
8-8-3 2 10.64→ 9.22 51.78 10.64→ 10.64 27.96 9.09→ 9.09 13.18
12-12-3 2 16.67→ 16.53 231.48 16.67→ 16.67 102.05 16.42→ 16.42 82.26
16-16-3 2 16.71→ 8.16 3,238.08 16.71→ 16.71 1,538.90 6.62→ 6.62 955.53
20-20-3 2 53.42→ 40.27 14,595.43 53.42→ 53.33 28,649.10 38.59→ 38.59 5,845.37
24-24-3 2 19.28→ 12.61 53,846.64 19.28→ 19.28 8,322.37 12.15→ 12.15 1,948.80
32-32-2 1 79.67→ 48.17 395.39 79.67→ 79.50 481.14 39.28→ 38.91 105.14
32-32-3 1 87.57→ 86.57 455.83 87.57→ 87.57 632.53 86.57→ 86.57 145.22
44-44-3 1 92.74→ 87.21 1,519.19 39.28→ 39.28 13.18 73.76→ 73.76 1,116.03

Table 2: Experimental Results

Mausam and Andrey Kolobov. Planning with Markov De-
cision Processes: An AI Perspective. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2012.
Miquel Ramı́rez and Hector Geffner. Probabilistic plan
recognition using off-the-shelf classical planners. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2010.
Tran Cao Son, Orkunt Sabuncu, Christian Schulz-Hanke,
Torsten Schaub, and William Yeoh. Solving goal recogni-
tion design using ASP. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), pages 3181–3187,
2016.
Gita Sukthankar, Christopher Geib, Hung Hai Bui, David
Pynadath, and Robert P Goldman. Plan, activity, and intent
recognition: Theory and practice. Newnes, 2014.
Robert Tarjan. Depth-first search and linear graph algo-
rithms. SIAM Journal on Computing, 1(2):146–160, 1972.
Christabel Wayllace, Ping Hou, William Yeoh, and Tran Cao
Son. Goal recognition design with stochastic agent action
outcomes. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 3279–3285,
2016.
Christabel Wayllace, Ping Hou, and William Yeoh. New
metrics and algorithms for stochastic goal recognition de-
sign problems. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 4455–
4462, 2017.

41

Unchaining the Power of Partial Delete Relaxation, Part II:
Finding Plans with Red-Black State Space Search

Maximilian Fickert and Daniel Gnad and Jörg Hoffmann
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

{fickert,gnad,hoffmann}@cs.uni-saarland.de

Abstract

Red-black relaxation in classical planning allows to interpo-
late between delete-relaxed and real planning. Yet the tradi-
tional use of relaxations to generate heuristics restricts relax-
ation usage to tractable fragments. How to actually tap into
the red-black relaxation’s interpolation power? Prior work
has devised red-black state space search (RBS) for intracta-
ble red-black planning, and has explored two uses: proving
unsolvability, generating seed plans for plan repair. Here, we
explore the generation of plans directly through RBS. We de-
sign two enhancements to this end: (A) use a known trac-
table fragment where possible, use RBS for the intractable
parts; (B) check RBS state transitions for realizability, spawn
relaxation refinements where the check fails. We show the
potential merits of both techniques on IPC benchmarks.

Introduction
Relaxations are prominently used in AI Planning for the
generation of heuristic functions (e. g. (Bonet and Geffner
2001; Hoffmann and Nebel 2001; Helmert and Domshlak
2009; Helmert et al. 2014)). The delete relaxation in parti-
cular has been highly influential. Under this relaxation, state
variables accumulate their values rather than switching bet-
ween them.

The delete relaxation cannot account for having to move
to-and-fro, and it ignores resource consumption. Hence
there is a lot of work on taking some deletes into account
(e. g. (Fox and Long 2001; Helmert and Geffner 2008; Has-
lum 2012; Coles et al. 2013; Keyder, Hoffmann, and Haslum
2014)). Here we consider red-black planning (Domshlak,
Hoffmann, and Katz 2015), a partial delete relaxation met-
hod that allows to force delete-relaxed plans to behave like
real plans in the limit. A subset of (“red”) variables take the
delete-relaxed semantics, accumulating values, while the re-
maining (“black”) ones retain the true semantics.

The partition into red and black variables is called a pain-
ting, and its choice obviously allows to interpolate between
delete-relaxed and real planning. Yet for use as a heuristic
function, the painting must be chosen so that red-black plan
generation is tractable. Prior work therefore restricts the
black variables to what we will refer to as ACI, with acyclic
causal-graph dependencies and invertible value-transitions.

Acyclic dependencies and invertible value-transitions
occur only in small parts of practical planning tasks, so ACI

is typically very far from real planning. How can we actually
tap into the interpolation power of red-black planning?

We follow up on prior work on this question (Gnad et al.
2016) (Gnad16 in what follows). Gnad16 have shown how
to generate red-black plans for arbitrary paintings, via red-
black state space search (RBS), a hybrid of forward search
and delete-relaxed planning, where every transition contains
a local delete-relaxed planning step over the red variables.
Gnad16 explored 1) the generation of red-black seed plans
for plan repair with LPG (Gerevini, Saetti, and Serina 2003;
Fox et al. 2006); and 2) proving planning tasks unsolvable
within the red-black relaxation, via an iteration of more and
more refined RBS searches (more and more black variables).

Here, we explore the use of RBS for generating plans.
This is the natural complement of 2), in what we envision
as a red-black relaxation refinement process. The challenge
is to make RBS produce real plans early on, with few black
variables. We design two enhancements to this end:

A) We create synergy between RBS and ACI, by replacing
delete-relaxed planning with ACI planning in RBS. This
uses ACI where possible (e. g., moving to-and-fro on an
invertible road map), and uses RBS where not (e. g.,
non-invertible resource consumption). We identify a
maximally permissive condition on the black-variable
dependencies under which this combination is possible.

B) We design an adaptive variant of refinement, locally
within a single RBS search space where needed. We
check every transition s a−→ s′ for realizability of the red
parts, i. e., whether the delete-relaxed plan here works in
reality. Non-realizable transitions are pruned, and spawn
refinement options: red-black planning tasks starting at
s, with additional black variables addressing the non-
realizability of s a−→ s′. The refinement options become
search nodes in an overall heuristic search.

We evaluate our techniques on the IPC benchmarks. In over-
all performance, A) is competitive, while B) often suffers
from too many refinement options. Compared to Gnad16’s
approach 1), A) is better overall, and both A) and B) are
highly complementary to 1) per domain. In five domains,
our best configurations outperform the state-of-the-art sys-
tems LAMA and Mercury by large margins.

42

Preliminaries
We use the finite-domain representation (FDR) framework
(Bäckström and Nebel 1995; Helmert 2009). An FDR plan-
ning task is a tuple Π = (V,A, I,G). V is a set of vari-
ables v, each with a finite domain Dv . A complete assig-
nment to V is a state. I is the initial state, and the goal
G is a partial assignment to V . A is a finite set of actions,
where each a ∈ A is a triple (prea, effa, ca). The precon-
dition prea and the effect effa are partial assignments to V ;
ca ∈ R+

0 is the action’s cost. We will sometimes refer to
variable-value pairs v = d as facts. For a partial assignment
p, V(p) denotes the set of variables instantiated by p. For
V ′ ⊆ V(p), by p[V ′] := p|V ′ we denote the restriction of p
to V ′. We say that an action a is applicable in a state s if
s[V(prea)] = prea. The outcome state sJaK is like s except
that sJaK(v) = effa(v) for each v ∈ V(effa).

A transition system is a tuple Θ = (S,L, T, s0, SG). S
is a set of states. L is a set of labels. T ⊆ S×L×S is a set of
transitions. s0 ∈ S is the start state and SG ⊆ S is the set
of goal states. A plan for a state s is a transition path from s
to a state in SG. The state space of Π is the transition system
ΘΠ where S is the set of states in Π, L = A, (s, a, s′) ∈ T
iff a is applicable in s and s′ = sJaK, s0 = I , and s ∈ SG if
s[V(G)] = G. A plan π for I in ΘΠ is called a plan for Π.

The causal graph (e. g. (Jonsson and Bäckström 1995;
Helmert 2006)) is a digraph with vertices V and an arc
(v, v′) if v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a)) ∪ V(pre(a))]× V(eff(a)).

Red-Black Planning
We next give an overview of red-black planning and associ-
ated techniques, as needed to understand our contribution.

Definitions
A red-black planning task, or RB task, is a tuple ΠRB =
(V B, V R, A, I,G) with V B ∩ V R = ∅, where Π :=
(V,A, I,G) is an FDR task with V := V B ∪ V R. V B is
the set of black variables, V R is the set of red variables.
States are now RB states sRB, which map each variable v to
a subset of its domain, sRB(v) ⊆ Dv , where |sRB(v)| = 1
for v ∈ V B. In the RB initial state sRB0 each variable v
is mapped to {I(v)}. RB goal states are those sRB where
G(v) ∈ sRB(v) for all v ∈ V(G). An action a is applicable
in an RB state sRB if prea(v) ∈ sRB(v) for all v ∈ V(prea).
Upon executing a in sRB, v ∈ V(effa) ∩ V B is set to
{effa(v)}, and v ∈ V(effa)∩V R is set to sRB(v)∪{effa(v)}.
The outcome state is denoted sRBJaK. A plan πRB under this
semantics is an RB plan for ΠRB. We also refer to πRB as
an RB plan for Π, viewing ΠRB as a red-black relaxation
of Π, where the choice of V B vs. V R is a painting defining
the relaxation.

The red-black relaxations of any FDR task Π form a re-
finement hierarchy, with more refined relaxations having
larger sets V B. At the extremes, for V B = V we obtain real
planning, and for V B = ∅ we obtain fully delete-relaxed
planning.
Example 1. Our example task Π is shown in Figure 1. It has
variables V = {T,M,A,B} with domains DT = {l1, l2},

l2 l1

Figure 1: A simple TPP-like task.

DM = {0, 1, 2}, DA = {0, 1}, DB = {0, 1}. T encodes a
traveling agent with two locations l1 and l2, initially l2. The
goal is to be at l2, and to possess each product A and B.
Each product is available at l1 at price 1; A is also availa-
ble at l2, but at price 2. M is the available money. The acti-
ons have the form go(l, l′) and buy(l, p,m). For example,
go(l1, l2) has precondition {T = l1} and effect {T = l2},
and buy(l1, A, 2) has precondition {T = l1,M = 2} and
effect {A = 1,M = 1}.

A fully delete-relaxed plan for this task has two flaws: 1)
it does not go back from l1 to l2; 2) it may choose to buy
A at l2 instead of l1, over-spending the budget. We can fix
1) by painting T black, and we can fix 2) by painting M
black. In the red-black relaxation where V B = {T,M} and
V R = {A,B}, every RB plan for Π is a real plan for Π.

Tractable Fragment: ACI
The initial line of work on red-black planning (Domshlak,
Hoffmann, and Katz 2015), culminating in the Mercury sy-
stem’s success at IPC’14 (Katz and Hoffmann 2014), ge-
nerates a heuristic function based on the tractable fragment
ACI. We simplify some details in what follows, for easier
exposition.

ACI requires 1) that the causal graph over the black varia-
bles is acyclic, and 2) that every black variable is invertible.
A variable v is invertible if every value transition can be in-
verted under the same (or easier) conditions on other varia-
bles. An RB plan can then be generated by finding a fully
delete-relaxed plan π+, and running ACI plan repair on
π+ to obtain an RB plan πRB. The repair process executes
π+ step-by-step under the red-black semantics; whenever a
condition (precondition or goal) g on V B is not satisfied, the
process inserts a subsequence π achieving g. The latter is al-
ways possible, in time polynomial in the length of π: thanks
to 1), V B can be solved in a sequence from clients (variables
which can only be modified through actions depending ot-
her variables) to servants (the dependent variables); thanks
to 2), whenever a servant v must provide a value d ∈ Dv for
a client, v can reach d from its current value.1

Example 2. In Example 1, T is invertible. A relaxed plan
is π+ = 〈buy(l2, A, 2), go(l2, l1), buy(l1, B, 2)〉. ACI plan
repair with V B = {T} finds flaw 1), π+ does not satisfy the
goal T = l2. It inserts go(l1, l2) at the end to fix that.

Given an FDR task Π, the painting strategies associated
with ACI choose V R so as to guarantee that the resulting re-
laxed task ΠRB is in ACI. A major weakness in practice here

1In our implementation, we adapted red facts following, the
more advanced repair algorithm by Katz and Hoffmann (2013).

43

is the restriction of V B to invertible variables. In our exam-
ple, T is the only such variable; we cannot paint M black,
so we cannot fix flaw 2) pertaining to money consumption.

Intuitively, using ACI instead of full delete relaxation
fixes the “moving to-and-fro” issue, for invertible moves
now painted black (here: T). But it does not address re-
source consumption, which involves non-invertible varia-
bles (here: M).

Red-Black State Space Search
To enable convergence to real planning in the limit, red-
black planning methods are required that can handle ar-
bitrary paintings. Addressing this, Gnad et al. (2016)
(Gnad16) have introduced red-black state space search
(RBS). RBS performs forward search with a relaxed fixed
point over the red variables at each transition. At plan ex-
traction time, RBS augments the solution path with a relaxed
plan at each transition.

We require some notations. The red actions in an RB
state sRB, denoted AR(sRB), are the actions available to
the relaxed fixed point at sRB: the actions that comply
with the black-variable values. AR(sRB) := {aR | a ∈
A, prea[V B] ⊆ sRB, effa[V B] ⊆ sRB}, where aR is the pro-
jection of a onto V R.

The relaxed fixed point at sRB is now formalized in terms
of a local planning task, namely the RB task Π+(sRB) :=
(∅, V R, AR(sRB), sRB[V R], ∅). The red completion of sRB
is the RB state F+(sRB) where F+(sRB)[V B] = sRB[V B],
and F+(sRB)[V R] is the set of all facts reachable in
Π+(sRB).

Definition 1 (Gnad16). Let ΠRB be an RB planning task.
The RB state space is the transition system ΘRB = (SRB,
TRB, A, sRB0 , SRB

G). SRB is the set of RB states. sRB0 is the
RB initial state. SRB

G = {sRB | F+(sRB) is RB goal state}.
TRB is the set of transitions sRB a−→ tRB where a is ap-
plicable to F+(sRB), eff(a)[V B] 6⊆ sRB[V B], and tRB =
F+(sRB)JaK.

Example 3. Setting V B = {M}, F+(sRB0) contains T = l1
and T = l2, but neither A = 1 nor B = 1 as buying a pro-
duct affects the black variable M . The outgoing transitions
of sRB0 are the buy actions. 〈buy(l1, A, 2), buy(l1, B, 1)〉 le-
ads to an RB goal state. For buy(l2, A, 2), in contrast, the
outcome RB state tRB has tRB(M) = {0}, so no further acti-
ons are applicable here and we detect that this is a dead-end.

RB plan extraction augments backward solution path ex-
traction with a relaxed plan extraction step at each transi-
tion. Assume that π = 〈a0, . . . , an−1〉 is a plan for ΘRB,
assume that backward extraction has already extracted an
RB plan for the postfix πk := 〈ak, . . . , an−1〉, and assume
that the transition taken by ak−1 in π is sRBk−1

ak−1−−−→ sRBk .
Then the red goal for relaxed plan extraction at this tran-
sition is G(sRBk−1) := RegressR(G, ak−1 ◦ πk) \ sRBk−1[V R],
where RegressR is regression in the projection onto V R. In-
tuitively, G(sRBk−1) is the set of red facts that must be achie-
ved before ak−1, and that cannot be achieved further be-
low. Any relaxed plan extraction mechanism can now be

used on Π+(sRBk−1) to find a relaxed plan π+(sRBk−1) achie-
vingG(sRBk−1). Then πk is replaced by π+(sRBk−1)◦ak−1◦πk,
and we iterate.

Example 4. In Example 3, denote π = 〈buy(l1, A, 2),
buy(l1, B, 1)〉 = 〈a0, a1〉. Denote the RB states along π as
sRB0 , sRB1 , sRB2 . Plan extraction first processes sRB1

a1−→ sRB2 .
The red goal here isG(sRB1) = ∅, as RegressR({A = 1, B =
1}, buy(l1, B, 1)) = {T = l1, A = 1} and sRB1 [V R] =
{T = l2, T = l1, A = 0, A = 1, B = 0}. The postfix
thus simply is π1 = 〈buy(l1, B, 1)〉. In the next step though,
at sRB0

a0−→ sRB1 , the red goal isG(sRB0) = {T = l1}, leading
to the relaxed plan 〈go(l2, l1)〉 and thus to the overall red-
black plan πRB = 〈go(l2, l1), buy(l1, A, 2), buy(l1, B, 1)〉.

Observe that πRB in Example 4 is correct about M , but is
flawed regarding T (as πRB does not go back from l1 to l2 at
the end, leaving the goal T = l2 unsatisfied). This is com-
plementary to the tractable fragment ACI, which can fix T
but cannot fix M (cf. Example 2). The first new method we
propose here is motivated by this kind of complementarity.
We combine RBS with ACI to handle each kind of flaw with
the most appropriate method.

Combining RBS with ACI
Any flaw in an RB plan πRB can in principle be fixed by
painting the respective variable v black, V B := V B ∪ {v},
and re-running RBS. Yet ΘRB grows exponentially in |V B|.
Can we avoid the computational cost incurred by painting v
black?

As we now show, the answer is yes – if, like for v = T
in Example 4, we can handle v by ACI instead. We can use
ACI to effectively handle a tractable part of the task at hand
(e. g. invertible moves to-and-fro), combined with RBS to
handle the remainder (e. g. resource consumption).

The RBS+ACI Framework
Our combined framework, that we baptize RBS+ACI, dis-
tinguishes black variables of two different kinds, handled by
RBS vs. ACI. So a painting is now a partition of V into three
subsets V RBS, V ACI, V R where V B = V RBS ∪ V ACI.

Assume that such a partition is given. We need an RB
plan relative to the entire set V B of black variables, i. e. for
the RB task (V RBS∪V ACI, V R, A, I,G). The basic idea is to
apply ACI plan repair on the outcome of RBS on the coarser
(more relaxed) task ΠRB

+ := (V RBS, V R ∪ V ACI, A, I,G).
ACI plan repair is defined for fully delete-relaxed plans,

not RB plans, so we must adapt the repair process. We
must make sure that the repair 1) is always possible given
the black part V RBS already fixed, and 2) never affects that
fixed part.

Let π be the plan found by RBS for ΠRB
+ . Our adap-

ted repair process, RBS+ACI plan repair, computes a
plan without conflicts on the entire set of black variables
V RBS∪V ACI, fixing unsatisfied conditions only on V ACI wit-
hout modifying the conflict-free V RBS.

To ensure 2), an obvious and natural requirement is that
there is no a ∈ A with V(effa) ∩ V ACI 6= ∅ and V(effa) ∩
V RBS 6= ∅. That is, the repair actions will never affect V RBS.

44

Ensuring 1) is more tricky. In RBS on ΠRB
+ , the red com-

pletion F+(sRB) of any state sRB uses only actions whose
precondition is satisfied given the black variable assignment
sRB[V RBS]. So one may think (and we did think at first) that
no further restrictions are needed. However, across transi-
tions sRB a−→ tRB, the fixed repair context changes from
sRB[V RBS] to tRB[V RBS]. This causes problems because, du-
ring RBS, the values reached for V ACI in F+(sRB) are pro-
pagated to tRB. But due to the different context tRB[V RBS],
the repair process at tRB cannot necessarily reach these va-
lues.

Similar to Gnad and Hoffmann (2015), we impose that
there is no a ∈ A with V(effa) ∩ V ACI 6= ∅ and V(prea) ∩
V RBS 6= ∅, i. e., the repair actions do not have preconditions
on V RBS. We next show that this restriction is sufficient (the
repair will always work). We then show that the restriction
is necessary for computational reasons.

The conjunction of our two restrictions is equivalent to
the absence of a causal graph arc from V RBS to V ACI. We
say in this case that V ACI does not depend on V RBS.
Proposition 1. Given an RB planning task ΠRB = (V B, V R,
A, I,G), and a partition of V B into V RBS and V ACI so
that (V ACI, V R ∪ V RBS, A, I,G) is in ACI, and V ACI does
not depend on V RBS. Let π be an RB plan for ΠRB

+ =

(V RBS, V R ∪V ACI, A, I,G). Then RBS+ACI plan repair on
π succeeds, and its output πRB is an RB plan for ΠRB.

Proof. Any action a that may be inserted by ACI plan re-
pair, and hence by RBS+ACI plan repair, affects a variable
in V ACI. Therefore, by prerequisite, 1) a has no effect on
V RBS, and 2) a has no precondition on V RBS. So the argu-
ments given by Katz et al. (2013) remain applicable.

Example 5. Say we set V RBS = {M} and V ACI = {T}.
Note that M depends on T : this dependency direction is
allowed.

RBS is run on ΠRB
+ = ({M}, {T,A,B}, A, I,G). The

outcome is π = 〈go(l2, l1), buy(l1, A, 2), buy(l1, B, 1)〉.
Running ACI plan repair on π finds the unsatisfied goal con-
dition g = {T = l2} at the end. This is repaired by appen-
ding 〈go(l1, l2)〉 to π, yielding a plan for the original task.

Proposition 1 shows that our RBS+ACI framework is
sound for RB planning in ΠRB. Completeness holds, too:
Proposition 2. Under the prerequisites of Proposition 1, an
RB plan for ΠRB = (V RBS ∪V ACI, V R, A, I,G) exists iff an
RB plan for ΠRB

+ = (V RBS, V R ∪ V ACI, A, I,G) exists.

Proof. The “if” direction holds by Proposition 1. The “only
if” direction holds because ΠRB is a refinement of ΠRB

+ .

So our approach works provided there is no CG arc from
V RBS to V ACI. Let us show that this restriction is neces-
sary. Consider the decision problem RBS-dependent ACI
PlanGen, defined as follows. Given ΠRB = (V B, V R, A,
I,G) and a partition of V B into V RBS and V ACI s.t. (V ACI,
V R ∪ V RBS, A, I,G) is in ACI, and all CG arcs between
V RBS and V ACI, if any, go from V RBS to V ACI. Given an
RB plan π for ΠRB

+ = (V RBS, V R ∪ V ACI, A, I,G). Denote
by π|V RBS the subsequence of V RBS-affecting actions in π.

Decide whether π|V RBS is a subsequence of an RB plan for
ΠRB.

Theorem 1. RBS-dependent ACI PlanGen is NP-hard.

Proof. By a reduction from SAT. Let φ be a CNF formula
with propositions p1, . . . , pn and clauses c1, . . . , cm. Our
planning encoding first chooses values for pi, then satisfies
the clauses cj . The construction sets V RBS to contain a sin-
gle “indicator” variable, determining whether we can right
now set pi to 0 or to 1; V ACI represents this choice of va-
lues; and V R represents whether or not a clause has been
satisfied yet.

In detail, we set V RBS = {v} with domain {0, 1}, initial
value 0, and a single action a[v01] going from 0 to 1. We set
V ACI = {vp1

, . . . , vpn
} with domain {u, 0, 1}, initial value

u, actions going from u to 0 with precondition v = 0, and
actions going from u to 1 with precondition v = 1. We set
V R = {vc1 , . . . , vcm} with domain {0, 1}, initial value 0,
goal value 1, and an action a[vcj01] setting vcj from 0 to 1
with precondition {v = 1, vpi = x} for each (pi = x) ∈ cj .

Observe first that this RB planning task ΠRB does satisfy
the prerequisites: all vpi

∈ V ACI are invertible, and there
are no dependencies across these variables; the dependen-
cies between V RBS and V ACI consist in the CG arcs (v, vpi).

Consider now π|V RBS := 〈a[v01]〉. This is a subsequence
of an RB plan π for ΠRB

+ : We can move each vpi
to vpi

= 0
before the application of a[v01], and to vpi

= 1 after that
application. Any formula φ can be satisfied that way.

But is π|V RBS a subsequence of an RB plan for ΠRB? The
answer is “yes” iff φ is satisfiable. This is because π|V RBS

is (trivially) a subsequence of any RB plan for ΠRB, and an
RB plan for ΠRB exists iff φ is satisfiable. The latter is true
because, in ΠRB, each vpi

can support the clause-satisfying
actions a[vcj01] with only a single truth value. First, vpi

= 1
can only be reached after a[v01], at which point vpi = 0 is
no longer reachable. Second, we can set vpi = 0 before the
application of a[v01]. But at that point, a[vcj01] is not yet
applicable due to its precondition v = 1. So we must apply
a[v01], and afterwards we can no longer reach vpi

= 1.

By Theorem 1, given the fixed solution path π|V RBS found
by RBS for ΠRB

+ , augmenting π|V RBS to an RB plan for ΠRB

is hard. In our framework, such augmentation is done by red
(delete-relaxed) planning in ΠRB

+ alongside π|V RBS , followed
by RBS+ACI plan repair. So one of these steps would need
to have worst-case exponential runtime (unless P = NP). In
other words, efficient RBS+ACI plan repair is not possible
when allowing CG arcs from V RBS to V ACI.

In practice, i. e., in our overall planning algorithm intro-
duced next, one can ameliorate the situation by attempting
RBS+ACI plan repair even if V ACI does depend on V RBS. If
the repair succeeds, all is fine. We only need to act – remove
the problematic variable(s) from V ACI – if the repair fails.

Overall Planning Process: Iterated RBS+ACI
We now know how to solve any RB task ΠRB with a painting
V RBS, V ACI, V R that qualifies for Proposition 1. But our aim
here is to find real plans, for the original FDR input task

45

Π. So RBS+ACI becomes a tool within an overall planning
process.

That process is a loop around RBS+ACI searches with in-
creasingly refined paintings. In a pre-process, we compute
an ACI painting V B

0 , V
R
0 using the default painting strategy

in Mercury, which orders the variables by causal graph le-
vel and iteratively paints variables red until the black CG is
a DAG (Katz and Hoffmann 2014). We then initialize our
painting as V RBS := ∅, V ACI := V B

0 , V
R := V R

0 . We run
RBS+ACI on that painting. If an RB plan does not exist, we
know that Π is unsolvable and we stop. Otherwise, we now
have an RB plan πRB. We check whether πRB is a real plan
for Π. If yes, we stop. Otherwise, we refine our painting.
Namely, we simulate the execution of πRB under the real
planning semantics in Π, and we count the number of flaws
associated with each variable v ∈ V R. We select v ∈ V R

with a maximal number of flaws (a criterion adapted from
Mercury). We set V RBS := V RBS∪{v} and V R := V R\{v},
and iterate.

Adding v to V RBS may introduce dependencies of V ACI

on V RBS. Therefore, as discussed above, at some point
RBS+ACI plan repair may fail. In that case, we move the
culprit variable(s) from V ACI to V R, re-establishing the Pro-
position 1 guarantee that repair will succeed. The red-black
relaxation considered is, then, no longer a refinement of the
previous one. But convergence to V B = V remains intact,
so that the completeness of the overall planning process is
preserved.

Whenever checking whether an intermediate RB plan πRB

works under the real planning semantics in Π, a variant is to
commit to the prefix that works. We will refer to this as
prefix-execution. The advantage is that the next iteration of
RBS+ACI will not have to start from scratch on the initial
state. On the downside, of course this loses completeness.

Adaptive Refinement via Realizability
An iterative refinement loop around RBS, as in iterated
RBS+ACI, is wasteful in that every iteration of RBS starts
from scratch, re-building the entire RB state space. Prefix-
execution fixes this, but in a very limited way. Ideally, like
other abstraction refinement processes, we ought to refine
in an adaptive manner, only where needed, and do so incre-
mentally within a single, iteratively refined, relaxed search
space.

But how to do this in RBS, and effectively for the purpose
of finding real plans? The straightforward approach would
be to search until an RB plan πRB is found, execute πRB

against the real semantics until the first flaw occurs at RB
state sRB, then accordingly refine the painting and re-do the
RBS search space below sRB. But there are a number of is-
sues with this. First, it saves us only the work otherwise done
above sRB (similarly as the much simpler prefix-execution).
Second, with many black variables – as needed to find real
plans – finding πRB becomes very expensive so there will
be long time intervals between the local refinement steps.
Which is especially wasteful as, third, things often go wrong
at the root of an RBS sub-tree already. To illustrate the lat-
ter, say that the only action applicable at the root sRB has red
preconditions p and q, each of which is reached in F+(sRB)

but which are in conflict so their conjunction is not reacha-
ble under the real semantics. Then all search below sRB is
wasted.

Given these observations, here we design an eager appro-
ach, imposing refinements whenever a transition in ΘRB will
not work out in reality. We first show how to do this in RBS,
then we discuss the combination with ACI.

Realizability Refinement: X-RBS
Let sRB be any RB state in ΘRB, and let sRB a−→ tRB be
any outgoing transition of sRB. By construction, we know
that prea[V R] ⊆ F+(sRB). That is, the red preconditions
of a can be achieved in the delete-relaxed task Π+(sRB) at
sRB. Let now π+

X be a relaxed plan for the goal prea[V R]
in Π+(sRB), extracted by some relaxed-plan extraction met-
hod X. If π+

X achieves prea[V R] under the real semantics
V B = V , we say that sRB a−→ tRB is realized by π+

X and is
realizable given X.
Definition 2. Let ΠRB be an RB planning task, and let X be
a relaxed-plan extraction method. The X-RB state space is
the transition system ΘRB

X defined like ΘRB except that:

(i) transitions sRB a−→ tRB not realizable given X are pru-
ned;

(ii) if sRB a−→ tRB is realized by π+
X , then tRB is the outcome

state of executing π+
X ◦ a in sRB with V B = V .

Some remarks are in order. First, the rationale behind (i)
is that red-black plans will be extracted using X, so if X does
not actually achieve prea in reality then sRB a−→ tRB won’t
be in a real plan. It is of course a restriction here to commit
to X. But there is no systematic alternative: short of a full-
scale planning process for prea – giving up on the relaxation
altogether – if X does not find a real plan, then the best one
could do is try another relaxed plan extraction method X’.

Second, that said, Definition 2 is only one half of the story.
Whenever a transition sRB a−→ tRB is pruned by (i), we spawn
a refinement option, discussed in detail below. A refine-
ment option is a refined RB planning task at sRB, addressing
the reason for non-realizability of sRB a−→ tRB.

Finally, (ii) has the immediate effect that every reachable
state sRB in ΘRB

X is in fact a real state. It turns the red part of
the search (the method X) into a fast macro-generator to the
next applicable black-variable affecting action. Observe that
this is a natural match with our realizability check. What re-
alizability affirms is that, in reality, we can reach prea at sRB.
In contrast, the over-approximated state transition, without
(ii), would pretend that we can reach the entire set F+(sRB).
Intuitively, we can check the validity of sRB a−→ tRB only in
a limited way, because we don’t a-priori know what the red
goal might be here at plan extraction time. So we commit
to the minimal way of both, checking and using, the tran-
sition. (On the side, realizability checks without (ii) would
apply the real semantics starting from an RB state, another
mismatch.)

Now, that said, (ii) is a choice we made in our work so far.
Exploring alternate definitions is a topic for future work.

Let us now turn to refinement options:

46

Definition 3. Let ΠRB = (V B, V R, A, I,G) be an RB plan-
ning task. Let sRB a−→ tRB be a transition pruned in ΘRB

X , not
realized by π+

X . Let v ∈ V R be s.t. π+
X contains a maximal

number of flaws on v. Then ΠRB
+v(sRB) := (V B ∪ {v}, V R \

{v}, A, sRB, G) is a refinement option for sRB a−→ tRB.

Whenever a transition sRB a−→ tRB is pruned in our explo-
ration of ΘRB

X , we generate a refinement option ΠRB
+v(sRB).

That option is inserted as a search node into the overall (heu-
ristic) search. Thus, the search decides not only which states
to explore, but also which refinement is used to explore that
state. We will refer to this overall search framework as X-
RBS.

Observe that the under-approximation (ii) loses comple-
teness, i. e., our overall search space may not contain a
plan: below realizable transitions, the commitment to π+

X
may exclude the solutions. As an optional fix, refinement-
explored, we also spawn refinement options at nodes sRB all
of whose descendants have been unsuccessfully explored. In
such a case, we do not have a concrete flaw to fix, so we pick
a variable v ∈ V R to paint black arbitrarily.

Combination with ACI
The number of refinement options can be a major source of
computational overhead in X-RBS. One way to ameliorate
this is to combine X-RBS with ACI, to X-RBS+ACI: repla-
cing delete-relaxed planning with tractable red-black plan-
ning will result in fewer flaws, and in more realizable tran-
sitions.

The combination is simple in X-RBS as relaxed planning
occurs only at individual transitions sRB a−→ tRB. It 1) gene-
rates F+(sRB) to test whether prea is relaxed-reachable; it
2) extracts a relaxed plan using method X, to check realiza-
bility.

Using ACI instead, 1) remains unchanged. For 2), we use
ACI plan repair on top of X. This uses separate sets V RBS vs.
V ACI of black variables as before, but with no constraint on
their dependencies: in a realizability check – against the real
semantics – a success guarantee cannot be given anyhow.

Experiments
Our techniques are implemented on top of Gnad16’s RBS,
which modifies Fast Downward (FD) (Helmert 2006) in a
minimally intrusive way, exchanging the state and state tran-
sition data structures while preserving all search algorithms.
All our configurations run FD’s greedy best-first dual-queue
search with Gnad16’s hFF extension and preferred operators.

We run each of RBS and X-RBS with vs. without ACI. We
run RBS with vs. without prefix-execution (PE), and X-RBS
with vs. without refinement-explored (RE), yielding eight
different configurations. Among these, RBS with neither
ACI nor prefix-execution is a baseline easily derived from
(though not evaluated by) Gnad16. To represent the state of
the art in satisficing planning, we run LAMA (Richter and
Westphal 2010) and Mercury (Katz and Hoffmann 2014).
We also run the best-performing LPG-plan-repair configu-
ration by Gnad16. This paints 90% of the variables black,

RBS X-RBS
+ACI +ACI RBS Mer-

+PE +PE +RE +RE +LPG LAMA cury

Airport (50) 27 28 27 28 41 43 41 44 42 32 32
Barman (40) 0 3 0 3 0 7 0 0 24 39 40
Blocks (35) 35 35 35 35 35 35 24 33 35 35
Childsnack (20) 5 20 9 10 0 0 0 0 4 5 0
Depots (22) 15 17 16 18 1 9 14 15 21 20 21
Driverlog (20) 19 18 20 19 2 7 3 9 18 20 20
Elevat (50) 45 47 50 50 0 12 50 50 50 50 50
Floortile (40) 3 3 6 7 0 4 0 0 9 8 8
Freecell (80) 71 69 71 69 69 61 69 60 35 79 80
GED (20) 10 9 10 10 20 20 14 0 4 20 20
Grid (5) 4 4 5 4 0 2 4 5 4 5 5
Hiking (20) 20 20 15 17 18 15 18 20 19 18 20
Logistics (63) 62 62 63 63 0 12 63 63 35 63 63
Maintenan (20) 11 7 11 7 0 0 0 0 0 7
Mprime (35) 35 34 35 35 3 18 35 34 35 35 35
Mystery (19) 16 13 17 13 1 8 19 18 16 19 19
NoMystery (20) 19 19 19 17 0 4 1 4 19 11 14
ParcPrin(50) 49 49 49 49 39 48 36 37 35 49 50
Parking (40) 12 13 11 13 0 0 0 0 0 40 40
Pathways (30) 21 28 21 28 27 26 27 26 21 23 30
PegSol (50) 50 50 50 50 50 50 50 37 16 50 50
PipesNoT (50) 35 38 36 38 34 25 25 17 39 43 44
PipesTank (50) 31 26 28 30 26 20 34 18 24 42 42
PSR (50) 50 50 50 50 0 49 0 49 50 50 50
Rovers (40) 40 40 40 40 2 16 18 20 40 40
Satellite (36) 36 36 36 36 0 5 36 36 36 36
Scanaly (50) 42 46 42 50 43 42 44 44 46 50 50
Sokoban (50) 20 15 22 13 44 44 29 9 5 48 42
Storage (30) 18 20 18 18 16 17 28 28 25 19 19
Tetris (20) 0 3 0 2 1 0 3 2 0 13 19
Thoughtful (20) 6 11 6 10 15 13 9 5 16 13
Tidybot (20) 8 6 7 8 0 2 0 0 13 17 15
TPP (30) 30 30 30 30 0 10 30 27 30 30 30
Transpo (70) 31 33 70 70 0 20 61 57 45 61 70
Trucks (30) 12 12 12 12 4 10 0 8 20 15 19
VisitAll (40) 3 4 40 40 3 3 40 40 4 40 40
Woodw (50) 50 49 50 49 17 16 10 13 47 50 50
Zenotrav (20) 20 20 20 20 1 7 20 20 20 20
∑

(1385) 961 987 1047 1061 512 680 855 848 755 1211 1238

Table 1: Coverage. Best results highlighted. We omit domains
where all tested planners have full coverage. RBS+LPG is RBS
followed by LPG plan repair (empty entries could not be run, see
text).

uses RBS to find an RB plan πRB, then calls LPG to repair
πRB into a real plan.

We run all IPC satisficing STRIPS benchmarks. All ex-
periments were run on a cluster of Intel Xeon E5-2650v3
machines, with runtime (memory) limits of 30 minutes (4
GB).

Coverage
Consider Table 1, and the variants of RBS (leftmost part of
the table). Relative to the baseline, our techniques (+ACI
and +PE) improve performance substantially. This is clearly
visible in overall coverage. Per domain, +PE yields better
coverage in 14 domains, +ACI in 12, and the two together
in 15. Both techniques also have their drawbacks, as +PE

47

does not work well if the prefix often leads into dead ends
(e.g. in Sokoban). Furthermore, +ACI can sometimes in-
troduce more conflicts into the partially relaxed plan. This
happens e.g. in Childsnack, where otherwise the RBS+PE
configuration only needs to paint the sandwich objects and
tray locations black (22-25% of the total variables) to make
the red-black plan a real plan, solving all instances in less
than 5 seconds.

For the X-RBS method, in the middle part of Table 1, the
results are much worse, in many domains and hence in the
overall. A key reason is the overhead from too many refine-
ment options. On average, 74% of the generated transitions
are realizable, in some domains much less (15% in Parking,
18% in Tetris). As expected, the combination with ACI ame-
liorates this significantly. But it remains a question for future
work how X-RBS can be made competitive overall. While
the +RE option helps in domains where X-RBS fails often, it
also increases the overhead of too many refinement options.

Consider now RBS+LPG. The empty entries in Table 1
are domains where that architecture did not run properly,
for implementation reasons (Gnad16’s results do not include
these domains either). Filling in the gaps optimistically – as-
suming that RBS+LPG can solve all instances in the missing
domains – overall coverage becomes 934. This still lags be-
hind our RBS methods, even the baseline. On a per-domain
level though, the methods are highly complementary: of the
32 domains, RBS beats RBS+LPG in 12 and is inferior in
12; RBS+ACI+RE beats RBS+LPG in 16 and is inferior in
11.

For our X-RBS configurations, the comparison to
RBS+LPG is, naturally, less favorable. Complementarity
at per-domain level persists though. X-RBS+ACI beats
RBS+LPG in 13 domains and is inferior in 14.

Consider finally LAMA and Mercury. All our configura-
tions are far from their performance overall. Our best confi-
guration, RBS+ACI+PE, beats LAMA in 5 domains and is
inferior in 20; for Mercury, these numbers are 2 vs. 22.

That said, there are five domains in which at least one
of our configurations works exceptionally well. In Air-
port, our best method gains +12 coverage over the best of
LAMA and Mercury; in Childsnack, +15; in Maintenance,
+4; in NoMystery, +5; in Storage, +9. So the new methods
can potentially contribute in portfolios or per-domain auto-
configuration.

#Black Variables until Solution in RBS

The major motivation behind our +ACI and +PE extensions
to RBS is to reduce the size of V RBS required to find a real
plan. Figure 2 measures this impact directly.

Both extensions clearly help as intended. Without +ACI,
few instances can be solved without search (|V RBS| = 0) as,
there, the delete-relaxed plan for the initial state has to be a
real plan. The advantage of our extensions remains strong
when allowing larger V RBS, until about |V RBS|/|V | = 50%
where the gap narrows. After that, the difference is mainly
due to benchmarks (like Transport) that ACI solves on the
initial state but that are beyond reach of RBS search alone.

 0

 200

 400

 600

 800

 1000

 1200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RBS+ACI+PE

RBS+ACI

RBS+PE

RBS

Figure 2: Coverage as a function of the fraction of RBS variables,
|V RBS|/|V |, in the first iteration of RBS that finds a real plan.

Conclusion
We have shown that RBS can be synergetically combined
with ACI tractable red-black planning, and we have star-
ted the exploration of adaptive relaxation refinement within
RBS. The results for the former show performance impro-
vements due to the smaller number of black variables that
need to be searched over. The results for the latter exhibit
promise, but the jury is still out how such adaptive refine-
ment is best done.

Overall, our work contributes another piece in the puzzle
how to tap into the power of partial delete relaxation without
incurring a prohibitive overhead. This fits into the larger
puzzle of how to use informative but costly approximations.
We believe that such research is valuable to complement the
more prominent focus on fast-but-inaccurate approximati-
ons, and we hope that our ideas and insights may be useful
for approaches other than red-black planning as well.

Acknowledgments
This work was partially supported by the German Research
Foundation (DFG), under grants HO 2169/5-1 (“Critically
Constrained Planning via Partial Delete Relaxation”) and
HO 2169/6-1 (“Star-Topology Decoupled State Space Se-
arch”).

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic se-
arch. Artificial Intelligence 129(1–2):5–33.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2013. A
hybrid LP-RPG heuristic for modelling numeric resource
flows in planning. Journal of Artificial Intelligence Rese-
arch 46:343–412.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-
black planning: A new systematic approach to partial delete
relaxation. Artificial Intelligence 221:73–114.

48

Fox, M., and Long, D. 2001. Stan4: A hybrid planning
strategy based on subproblem abstraction. The AI Magazine
22(3):81–84.
Fox, M.; Gerevini, A. E.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In Long, D., and
Smith, S., eds., Proceedings of the 16th International Con-
ference on Automated Planning and Scheduling (ICAPS’06),
212–221. Ambleside, UK: Morgan Kaufmann.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239–290.
Gnad, D., and Hoffmann, J. 2015. Red-black planning: A
new tractability analysis and heuristic function. In Lelis, L.,
and Stern, R., eds., Proceedings of the 8th Annual Sympo-
sium on Combinatorial Search (SOCS’15). AAAI Press.
Gnad, D.; Steinmetz, M.; Jany, M.; Hoffmann, J.; Serina, I.;
and Gerevini, A. 2016. Partial delete relaxation, unchained:
On intractable red-black planning and its applications. In
Baier, J., and Botea, A., eds., Proceedings of the 9th Annual
Symposium on Combinatorial Search (SOCS’16). AAAI
Press.
Haslum, P. 2012. Incremental lower bounds for additive
cost planning problems. In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd In-
ternational Conference on Automated Planning and Sche-
duling (ICAPS’12), 74–82. AAAI Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the 18th
International Conference on Automated Planning and Sche-
duling (ICAPS’08), 140–147. AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & shrink abstraction: A method for genera-
ting lower bounds in factored state spaces. Journal of the
Association for Computing Machinery 61(3).
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173:503–
535.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Jonsson, P., and Bäckström, C. 1995. Incremental planning.
In European Workshop on Planning.
Katz, M., and Hoffmann, J. 2013. Red-black relaxed plan
heuristics reloaded. In Helmert, M., and Röger, G., eds.,
Proceedings of the 6th Annual Symposium on Combinatorial
Search (SOCS’13), 105–113. AAAI Press.

Katz, M., and Hoffmann, J. 2014. Mercury planner: Pushing
the limits of partial delete relaxation. In IPC 2014 planner
abstracts, 43–47.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013. Red-
black relaxed plan heuristics. In desJardins, M., and Litt-
man, M., eds., Proceedings of the 27th AAAI Conference on
Artificial Intelligence (AAAI’13), 489–495. Bellevue, WA,
USA: AAAI Press.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Impro-
ving delete relaxation heuristics through explicitly represen-
ted conjunctions. Journal of Artificial Intelligence Research
50:487–533.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.

49

Relaxed Decision Diagrams for Cost-Optimal Classical Planning

Margarita P. Castro†, Chiara Piacentini†, Andre A. Cire‡, and J. Christopher Beck†
†Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada, ON M5S 3G8

‡Department of Management, University of Toronto Scarborough, Toronto, Canada, ON M1C 1A4

Abstract

We explore the use of multivalued decision diagrams (MDDs)
to represent a relaxation of the state-transition graph for
classical planning problems. The relaxation exploits the ex-
act state transitions up to a pre-defined memory limit and
uses value-accumulating semantics when the limit is reached.
Moreover, it provides admissible heuristic values by means of
an efficient shortest-path algorithm, which is applied in anA∗

algorithm to find cost-optimal plans. We also consider a vari-
ant of A∗ that takes advantage of feasible solutions extracted
by the MDD to reduce the number of states that need to be
evaluated. Our experimental evaluation shows that the MDD-
based heuristic, despite being computationally more expen-
sive, can be more informative than some state-of-the-art ad-
missible heuristics.

1 Introduction
We present a new admissible heuristic based on a relaxed
multivalued decision diagram (MDD). A relaxed MDD is
a graph of restricted size that over-approximates the set of
feasible solutions to a discrete problem. Relaxed MDDs
have been largely applied to mathematical programming
and discrete optimization, in particular for obtaining opti-
mization bounds for combinatorial and scheduling problems
(Hoda, Van Hoeve, and Hooker 2010; Bergman et al. 2016;
Kinable, Cire, and van Hoeve 2017).

This paper defines relaxed MDDs for a classical planning
task and uses them to compute a novel admissible heuristic
to reach a goal node. We explore the relationship between re-
laxed MDDs and existing techniques to solve classical plan-
ning problems, showing that a relaxed MDD is an abstrac-
tion of the transition graph for a planning task and that our
heuristic dominates the well-known hmax heuristic (Bonet
and Geffner 2000).

The MDD-based heuristic is used in a variant of A∗ in-
spired by a branch-and-bound tree search. We enhance the
A∗ search algorithm with a bounding mechanism that re-
duces the number of states expanded via bounds on plan cost
derived from feasible plans extracted from the MDD. The
new algorithm is therefore suitable for finding both feasible
and optimal plans.

The paper is organized as follows. Section 2 defines a
classical planning task and presents related work. Section
3 defines a relaxed MDD for classical planning and Section

4 presents the construction procedure. Section 5 relates re-
laxed MDDs to transition graphs and compares them to other
heuristics in classical planning. Section 6 explains the imple-
mentation and our preliminary results are presented in Sec-
tion 7. Lastly, Section 8 discusses the approach and possible
directions for future research.

2 Background
This section presents a formal definition of a cost-optimal
classical planning, introduces the notation used in this paper,
and reviews work in the classical planning literature that is
related to our relaxed MDD approach.

2.1 Cost-Optimal Classical Planning
We consider cost-optimal classical planning tasks with non-
zero cost actions using the STRIPS formalism. A planning
task is a tuple Π = 〈P,A, I,G〉, whereP is the set of propo-
sitional variables,A is the set of actions, I ⊆ P is the initial
state, and G ⊆ P is the set of goal conditions. A state s is
defined as a subset of propositional variables, s ⊆ P .

An action a ∈ A is a tuple 〈pre(a), add(a), del(a), c(a)〉,
where pre(a) ⊆ P is the set of preconditions, add(a) ⊆ P
is the set of add effects, del(a) ⊆ P is the set of delete
effects, and c(a) > 0 is the action cost. An action a is ap-
plicable to a state s if the preconditions are satisfied in s,
i.e., pre(a) ⊆ s. The application of an action a to a state
s produces a successor state s′ given by s′ = φ(a, s) =
(s \ del(a)) ∪ add(a).

A solution of a planning task Π is a plan, i.e., a se-
quence of actions such that each action is applicable in its
predecessor state and the last state satisfies the goal condi-
tions. Formally, π = (a0, . . . , an) is a plan if for each ac-
tion ai in π, pre(ai) ⊆ φ(ai−1, φ(ai−2, . . . φ(a0, I))), and
G ⊆ φ(an, φ(an−1, . . . φ(a0, I))) = φ(π, I).

The cost of a plan π is the sum of all the actions appearing
in π, i.e., c(π) =

∑n
i=0 c(ai). A cost-optimal plan π̂ is a plan

with minimum cost, i.e, c(π̂) ≤ c(π) for any plan π of Π.
Given a planning task Π, we define a delete-free plan-

ning task Π+ where delete effects are ignored. Formally, the
delete-free task is given by Π+ = 〈P,A+, I,G〉, where
for each a ∈ A there is an action a′ ∈ A+ such that
pre(a′) = pre(a), add(a′) = add(a) and del(a′) = ∅. A
delete relaxation of a planning task Π refers to its associated
delete-free task Π+.

50

2.2 Related Work in Planning
Our work is closely related to heuristics based on graphical
structures, such as Graphplan (Blum and Furst 1997), red-
black relaxed plans (Katz, Hoffmann, and Domshlak 2013),
and abstractions (Edelkamp 2001; Helmert et al. 2007). We
also discuss the use of decision diagrams for symbolic A∗
search in classical planning (Torralba, Linares López, and
Borrajo 2016) and the differences with our approach.

Graphplan (Blum and Furst 1997) is a compact data struc-
ture for encoding planning problems. It is a directed and
layered graph with alternating propositional and action lay-
ers, in which nodes represent propositions and actions, re-
spectively. Edges connect a proposition to an action node if
the proposition is a precondition of the action, and an ac-
tion to a proposition node if the proposition belongs to the
add or delete effects of the action. Graphplan derives the ad-
missible heuristic hG by taking the index of the first layer
where the goal conditions appear without any mutex rela-
tion (Bonet and Geffner 2000). A relaxed version of Graph-
plan, called the Relaxed Planning Graph (RPG), represents
the delete relaxation of a planning task. Relaxed plans can
be extracted from the RPG in polynomial time and yield the
non-admissible heuristic hFF (Hoffmann and Nebel 2001).

While the delete relaxation provides several other heuris-
tics, e.g., hmax, hadd (Bonet and Geffner 2001) and hLM -cut

(Helmert and Domshlak 2009), ignoring the delete effects
can result in a poor heuristic estimation. Red-black planning
heuristics overcome some of the problems of delete relax-
ation heuristics by dividing the propositional variables into
two groups: one that follows the semantics of the delete re-
laxation and one that takes into account the delete effects of
actions (Domshlak, Hoffmann, and Katz 2015). Our relaxed
MDD heuristic follows a similar idea in the sense that we
partially ignore delete effects, though our approach to doing
so is by considering nodes as the union of plan states.

Abstraction-based heuristics are also related to our work.
An abstraction maps the search space into a smaller one in
which an optimal path from an abstract initial state to an ab-
stract goal state is an admissible heuristic. Different abstrac-
tion mappings result in different heuristics, for example pat-
tern database heuristics (Edelkamp 2001) and merge-and-
shrink (Helmert et al. 2007; Sievers, Wehrle, and Helmert
2014). Our relaxed MDD representation of a planning task
can be viewed as an abstraction, as detailed in Section 5.1.

Binary decision diagrams (BDDs) have been used in plan-
ning to succinctly represent sets of states (symbolic states).
Using this representation, a symbolic version of the A∗

search algorithm achieves state-of-the-art performance in
cost-optimal classical planning (Torralba, Linares López,
and Borrajo 2016). Several admissible heuristics have been
proposed to guide the search over the symbolic state-space,
e.g., abstraction-based heuristics (Edelkamp, Kissmann, and
Torralba 2012; Torralba, López, and Borrajo 2013). In con-
trast, our approach uses relaxed MDDs to compute admissi-
ble heuristics on a standard A∗ search algorithm.

Lastly, the planning literature has used edge-value multi-
valued decision diagrams (EVMDD) to represent cost func-
tions of planning problem with state-dependent actions costs
(Keller et al. 2016; Geißer, Keller, and Mattmüller 2016).

3 Relaxed MDDs for Planning
In this section, we demonstrate the use of relaxed MDDs as a
graphical structure to approximate the state-space transition
graph. We first define an MDD for classical planning and
then extend the definition to relaxed MDDs.

Consider τ as an upper bound on the number of actions in
a cost-optimal plan. An MDD for a classical planning task Π
is a graphical structure that, starting from the initial state I,
represents the set of reachable states after applying at most
τ actions. Specifically, an MDDM = (N , E) is a layered
directed acyclic graph where N is the set of nodes and E is
the set of edges. Each node u has a label σ(u) that represents
a reachable state, i.e., σ(u) ⊆ P is the set of propositions in
the state. In particular, the set of nodes is divided into layers
N = {N0,N1, ...,Nτ}, where layer N0 = {r} has a single
node, called the root node, and σ(r) = I.

Given an edge e = (u, v) ∈ E , its tail and head nodes
are given by ρ(e) = u and κ(e) = v, respectively. For a
given layer Nt (0 ≤ t < τ), all outgoing edges are directed
to a node in layer Nt+1, i.e., ρ(e) ∈ Nt iff κ(e) ∈ Nt+1.
Each edge e ∈ E has a label θ(e) that indicates its associ-
ated action. Given two nodes u ∈ Nt and v ∈ Nt+1 there
is an edge e = (u, v) connecting them iff the action associ-
ated to the edge, a = θ(e), is applicable in σ(u) and node
v represents the successor state, i.e., pre(a) ⊆ σ(u) and
φ(a, σ(u)) = σ(v).

Thus, an MDD for a task Π is a layered state-transition
graph. A node u ∈ Nt (0 ≤ t ≤ τ) is associated to a state
that can be reached after applying t actions from the initial
state I. Specifically, any path (e0, ..., et) inM from r to a
node u ∈ Nt represents a plan π = (θ(e0), ..., θ(et−1)) that
starts at I and reaches state σ(u).

The construction of such an MDD is, however, impracti-
cal. First, the number of reachable states in a planning task Π
can grow exponentially with the number of variables. More-
over, the number of actions needed for any cost-optimal plan
is unknown, i.e., the minimum number of layers that is re-
quired for its construction is also not available in advance.

We define instead relaxed MDDs, which are constructed
by imposing an additional limit on the number of nodes per
layer, i.e., its width w(M) := max{|Nt| : 0 ≤ t ≤ τ}
is bounded by a given parameterW . To enforce this bound,
each node in a relaxed MDD represents an approximation of
the union of one or more states as opposed to a single state.
The edges emanating from a node represent all possible ac-
tions that can be applied to the union of the states. Two ex-
amples of MDDs are depicted in Figure 2 and construction
details are presented in Section 4.

3.1 A Relaxed MDD-based Heuristic
Consider a relaxed MDDM and a node u ∈ N . Let δin(u)
and δout(u) be the set of edges directed to and emanat-
ing from node u, respectively. An edge e is in δout(u) if
pre(θ(e)) ⊆ σ(u). Then, the proposition label of node u is
defined as

σ(u) :=
⋃

e∈δin(u)
φ(θ(e), σ(ρ(e))). (1)

51

Given a planning task Π and a relaxed MDD with width
w(M) ≥ 1, we can compute the cost to reach each node
u ∈ N from r, using a shortest path algorithm. Let ω∗(u) be
the minimum cost to reach a node u ∈ N , with ω∗(I) = 0.
Consider NG ⊆ N as the set of goal nodes, i.e., u ∈ NG iff
G ⊆ σ(u). Then, the relaxed MDD-based heuristic hM is
given by the minimum cost to reach any goal node:

hM := min {ω∗(u) : u ∈ NG} . (2)

3.2 Example
Consider the planning task Π = 〈P,A, I,G〉 depicted in
Figure 1. The set of propositions is P = {q1, q2, b1, b2, c},
where qi indicates if the robot is in room i ∈ {1, 2},
bi if the block is in room i, and c if the robot is carry-
ing the block. The task has six unit cost actions, A =
{m1,m2, p1, p2, d1, d2}, where m1 represents moving the
robot from room 1 to room 2, m2 is the opposite move, and
for each i ∈ {1, 2}, pi and di correspond to picking-up and
dropping the block in room i, respectively. The initial state
and goal conditions are illustrated in Figures 1a and 1b, re-
spectively.

Room 1 Room 2

x �

(a) Initial State, I = {q1, b2}.
Room 1 Room 2

�

(b) Goals, G = {b1}.

Figure 1: Planning domain description.

Figure 2 shows two MDDs for this planning task, with
τ = 4. For each MDD, the edge labels correspond to appli-
cable actions and the nodes denote the set of propositions,
as described in equation (1). The first MDD (Figure 2a) has
one node per reachable state (i.e., it is an exact MDD). The
node outlined in black represents a goal node and the bold
path corresponds to the shortest path with cost hM = 4.

q1, b2

q2, b2

q1, b2 q2, c

q2, b2 q1, c

q1, b2 q2, c q1, b1

m1

m2 p2

m1

d2
m2

m2 p2 m1 d1

(a) Exact MDD, w = 3.

q1, b2

q2, b2

q1, q2, b2, c

q1, q2, b1, b2, c

m1

m2

p2

m1 d1m2 d2p2

(b) Relaxed MDD, w = 1.

Figure 2: MDDs for the example in Section 3.2.

In the second relaxed MDD (Figure 2b), nodes represent
the union of one or more states. In this case, the shortest
path in the relaxed MDD reaches a goal node after applying
3 actions, i.e., hM = 3.

As depicted in Figure 2b, width-one relaxed MDDs have
a similar structure to relaxed planning graphs (RPG) (Bonet
and Geffner 2000). However, the RPG completely ignores
delete effects while our relaxed MDD partially considers
them. For example, the second node in the relaxed MDD
omits proposition q1, while the RPG would consider it.

4 Relaxed MDD Construction
We present a top-down algorithm to construct a relaxed
MDD for a classical planning task Π. Our construction pro-
cedure, presented in Algorithm 1, results in a relaxed MDD
with width at mostW and with a finite number of layers.

The top-down procedure is as follows. Starting with a sin-
gle node in the first layer, σ(r) = I, the procedure itera-
tively constructs one layer at a time by performing three op-
erations. The first operation, UPDATENODES, updates the
nodes in a given layer by computing the set of achiev-
able propositions and calculating the cost to reach the node.
Moreover, this step updates the heuristic value if a node is
a goal node. The second operation, FINDAPPLICABLEAC-
TIONS, finds the set of actions applicable to the nodes and
eliminates any action that does not add any information for
the heuristic computation. The procedure creates an edge for
each action and directs all edges to a single node in the fol-
lowing layer. Lastly, operation SPLITNODES decides how
to partition the incoming edges of the new layer to create at
mostW nodes.

Algorithm 1 Relaxed MDD construction
1: procedure CONSTRUCTMDD(Input: Π,W)
2: t = 0, hM =∞
3: repeat
4: UPDATENODES(Nt, hM)
5: FINDAPPLICABLEACTIONS(Nt)
6: t = t+ 1
7: SPLITNODES(Nt,W)
8: until TERMINATE(Nt)
9: return hM

In each iteration, the algorithm checks whether or not we
should construct a new layer via the TERMINATE procedure.
When the construction is completed, Algorithm 1 returns the
heuristic value. The following sections explain each of the
procedures presented above.

4.1 Updating Nodes
For a given layer Nt, the procedure updates each node
u ∈ Nt to represent its set of propositions, σ(u), and the
minimal cost to reach u. The procedure also updates the
heuristic value hM if we encounter a goal node.

As described in Section 3, each node u ∈ N is associated
with a label σ(u) that corresponds to the set of propositions
that are true in at least one state encoded by u. This label is
computed by setting σ(r) = I and applying recursion (1).

Each node u ∈ Nt is also associated with a set of la-
bels that represents the minimum cost to reach u. Inspired
by the reachability analysis used in hmax, we compute the
minimum cost to reach each proposition represented in u.

52

For each p ∈ σ(u), let ω(u, p) be the cost to reach propo-
sition p in node u. We associate a cost label ν(e, p) to each
incoming edge e that has proposition p in its resulting state,
i.e., p ∈ φ(θ(e), ρ(e)). Then, ω(u, p) is calculated by setting
ω(r, p) = 0 to all p ∈ I, and applying the recursion

ω(u, p) := min{ν(e, p) : e ∈ δinp (u)}, (3)

where δinp (u) represents the set of edges in δin(u) that have
p in their resulting state.

For a given edge e and a proposition p ∈ φ(θ(e), ρ(e)),
we calculate ν(e, p) by considering (i) the cost to apply ac-
tion θ(e) and (ii) the cost to have p in the resulting state. Let
ν(e) be the minimum cost of applying action a = θ(e) in
node v = ρ(e). We have that ν(e) is the cost of action a plus
the cost of its most expensive precondition on v, i.e.,

ν(e) := c(a) + max{ω(v, q) : q ∈ pre(a)}. (4)

Then, for each edge e ∈ δinp (u), we compute ν(e, p) as the
minimum cost to have p. To do so, we identify two cases. If
action a = θ(e) adds proposition p, then the cost to reach p
is given by ν(e). If a does not add p, the cost of p in the tail
node v = ρ(e) might be larger than the cost of any precon-
dition of a in v. In that case, we compute ν(e, p) by consid-
ering the cost of the most expensive associated proposition.
The edge cost is hence:

ν(e, p) :=

{
ν(e) p ∈ add(a),
max{ν(e), c(a) + ω(v, p)} o.w.

To summarize, procedure UPDATENODES iterates over
all the nodes u ∈ Nt and updates labels σ(u) and ω(u, p)
for all p ∈ σ(u).

The procedure will also compute a heuristic estimate
whenever a node u ∈ Nt is a goal node, i.e., G ⊆ σ(u).
Given a goal node u, we compute its minimum cost, ω∗(u),
as the cost to reach its most expensive goal proposition, i.e.,

ω∗(u) := max{ω(u, p) : p ∈ G}. (5)

Then, we update the heuristic value hM as

hM = min
{
hM, ω∗(u)

}
. (6)

4.2 Applicable and Essential Actions
For a given layer Nt, the FINDAPPLICABLEACTIONS pro-
cedure iterates over each node u ∈ Nt to find its applicable
actions. The procedure eliminates actions that do not con-
tribute to the computation of the heuristic value and creates
an edge for each remaining action.

Given a node u ∈ Nt, let A(u) be the set of its applicable
actions, i.e., A(u) = {a ∈ A : pre(a) ⊆ σ(u)}. This set
can be computed, for instance, by iterating over all actions
a ∈ A and checking if their preconditions are satisfied.

It is possible to identify if an action a ∈ A(u) will lead
to a state that will be part of the heuristic computation. We
denote these actions byM-essential.
Definition 4.1. Given a relaxed MDD M and a node u ∈
Nt, we say that an action a ∈ A(u) is M-essential if its
successor state v = φ(a, σ(u)) satisfies all the following
conditions:

(i) State v has not been reached before with less cost, i.e., for
each node u′ ∈ Nt′ (t′ ≤ t) either v 6⊆ σ(u′) or v ⊆ σ(u′)
and ω(v, p) ≤ ω(u′, p) for all p ∈ v.

(ii) State v has a minimum cost less than the current heuristic
value, i.e., c(a) + max{ω(u, p) : p ∈ pre(a)} < hM.

(iii) State v has a minimum cost less than a given incumbent
η∗, i.e., c(a) + max{ω(u, p) : p ∈ pre(a)} < η∗.

We develop a set of rules to identify if an action is M-
nonessential, i.e., it violates at least one of the conditions
in Definition 4.1. Consider a node u ∈ Nt, an applicable
action a ∈ A(u), and its corresponding edge e. Action a is
M-nonessential if any of the following rules hold:

Rule 1. The resulting state adds no new propositions and
the cost of each proposition does not decrease, i.e., ∀p ∈
add(a) : p ∈ σ(u) ∧ ν(e, p) ≥ ω(u, p).

Rule 2. The minimum cost of the resulting state is higher
than the current heuristic value, i.e., ν(e) ≥ hM.

Rule 3. The minimum cost of the resulting state is higher
than a given incumbent, i.e., ν(e) ≥ η∗.

Note that Rules 2 and 3 are direct applications of con-
ditions (ii) and (iii) in Definition 4.1. However, Rule 1 is
a necessary, but not sufficient, condition to check if a node
has been reached before (i.e., condition (i) in Definition 4.1).
The main advantage of these rules, in comparison to the con-
ditions in Definition 4.1, is that we can check them in poly-
nomial time during the construction procedure iterating over
each edge only once.

Any action a ∈ A(u) that satisfies one of the above rules
is removed from the set of applicable actions, i.e., A(u) :=
A(u) \ {a}. After we have checked that each remaining ap-
plicable action a in node u is notM-nonessential, we gen-
erate a new edge e with label θ(e) = a that emanates from
u and points to node u0 in the next layer.

4.3 Splitting Nodes
The SPLITNODES procedure is similar to the one used for
solving sequencing problems in the literature (Andersen et
al. 2007). The procedure, shown in Algorithm 2, splits the
nodes in a layer Nt until it reaches the maximum sizeW or
there is no more splitting needed.

Algorithm 2 Split states procedure
1: procedure SPLITNODES(Input:Nt,W)
2: if hM =∞ and t > 10 andW > 1 then
3: W =W − 1
4: Q = {p1, ..., p|P|} priority queue
5: while Q.notEmpty() and |Nt| <W do
6: p = Q.pop()
7: for u ∈ Nt do
8: if δinp (u) = ∅ or δinp (u) = δin(u) then
9: continue

10: Create node v andNt = Nt ∪ {v},
11: redirect arcs using δin(v) = δinp (u) and
12: δin(u) = δin(u) \ δinp (u).
13: if |Nt| =W then break

53

Starting with a layer Nt = {u0} with a single node, the
procedure iteratively splits the nodes such that each result-
ing node represents fewer states. Specifically, the procedure
considers a priority queue of propositions. In each iteration,
the procedure chooses a proposition p from the queue (line
6). Then, it iterates over all the nodes u ∈ Nt to check if
there is any node with incoming edges that can be parti-
tioned such that one partition results in a node with p and
the other in a node without p (line 8). In such case, we cre-
ate a new node v where all edges that represent states where
p is true are now directed to v (line 10-12). The procedure
ends when there are no more propositions in the queue or we
have reached the width limitW .

The priority queue Q divides the propositions into three
priority levels. The first level corresponds to goal proposi-
tions, i.e., any propositions in G. The second level consid-
ers landmark propositions (Hoffmann, Porteous, and Sebas-
tia 2004). We use a simple reachability algorithm to identify
propositional landmarks. Finally, the last level corresponds
to propositions that are not in the previous levels. Inside each
level, we rank the propositions in lexicographical order.

In addition, SPLITNODES checks if the heuristic has been
updated (line 2), i.e., if a goal node has been reached in a pre-
vious layer. If that is not the case, we reduce the maximum
width by 1. The width reduction guarantees the termination
of the algorithm (Section 4.4). Our implementation starts the
width reduction after 10 layers, which gave the best perfor-
mance in our testing phase. WhenW = 1, the construction
procedure continues ignoring delete effects.

While there are many ways to split nodes that we intend
to investigate in the future, this algorithm has two main ad-
vantages. First, this splitting procedure guarantees that there
are no two nodes in a layer where one node is a subset of the
other. This is due to the fact that we start with a single node
and that, in each iteration, we separate the edges according
to their propositions. The second advantage is that, if W is
big enough, all nodes will represent a single reachable state.

4.4 Termination Condition
The last component of our top-down construction algorithm,
TERMINATE, checks whether we need to create a new layer
in our relaxed MDD by observing whether or not procedure
FINDAPPLICABLEACTIONS created any new edges.

If the planning task Π is solvable (i.e., a goal state is
reachable from I), it is sufficient to check if procedure
FINDAPPLICABLEACTIONS created a new edge. Specifi-
cally, if the task is solvable, we will eventually reach a goal
node, which will make hM < ∞. Since c(a) > 0 for all
a ∈ A, Rule 2 (Section 4.2) guarantees that there exists a
layer Nt such that all emanating edges have a cost greater
than hM. The same is true if we have an upper bound on the
cost-optimal plan (η∗ < ∞) and we use Rule 3 to remove
M-nonessential actions.

If the planning task is infeasible, the procedure will still
terminates due to the width reduction (Section 4.3). Since
our implementation ignores delete effects when we reach
W = 1, we can guarantee that there exists a layer Nt in
which A(u) = ∅ for each u ∈ Nt.

5 Relationship with Existing Techniques
This section explores the relationship of our relaxed MDD-
based heuristic with existing approaches. We start by relat-
ing the relaxed MDD structure to a transition graph.
Definition 5.1. (Helmert et al. 2007) A transition graph is
a 5-tuple T = 〈S,L,Σ, sI ,SG〉 where S is a finite set of
states, L is a finite set of transition labels, Σ is a the set of
(labeled) transitions Σ ⊆ S × L × S , sI is the initial state,
and SG is the set of goal states SG ⊆ S.

Consider a relaxed MDD M = (N , E) and a planning
task Π = 〈P,A, I,G〉. Note that a relaxed MDD is in
fact a transition graph. Specifically, we can represent a re-
laxed MDD as a transition graph T (M) = 〈N ,A, E , r,NG〉
where the set of states is given by the nodes inM, the set of
action corresponds to the labels, the edges define the tran-
sitions, and the initial and goal states are given by r ∈ N
and NG ⊆ N . In particular, each edge e ∈ E is associated
with the 3-tuple 〈ρ(e), θ(e), κ(e)〉, which is an element of
N ×A×N .

Helmert et al. (2007) define a transition graph induced by
a planning task Π as T (Π) = 〈S,A,Σ(Π), I,SG〉, where S
is the set of states of a planning task, Σ(Π) represents the set
of valid transitions and SG is a subset of states such that s ∈
SG iff G ⊆ s. In particular, any transition 〈s, a, s′〉 ∈ Σ(Π)
is such that pre(a) ⊆ s and s′ = φ(a, s).

Consider an unbounded (i.e., W = ∞) relaxed MDD
M∞ = {N∞, E∞}. The transition graph given by M∞,
T (M∞), is in fact a transition graph induced by the plan-
ning task Π. Any path from r to a node u ∈ NG is a valid
plan, and the shortest path represents a cost-optimal plan
with cost equal to hM.

5.1 Relaxed MDDs and Abstractions
Definition 5.2. (Helmert et al. 2007) An abstraction of
a transition graph T is a pair 〈T ′, α〉 where T ′ =
〈S ′,L,Σ′, s′I ,S ′G〉 is a transition graph called the ab-
stract transition graph and α : S → S ′ is a function
called the abstraction mapping. Specifically, we have that
〈α(s), a, α(s′)〉 ∈ Σ′ for all 〈s, a, s′〉 ∈ Σ, α(sI) = s′I , and
α(sG) ∈ S ′G for all sG ∈ SG .

Abstraction-based heuristics are admissible heuristics cal-
culated as shortest paths on an abstract transition graph. Sev-
eral works have studied different ways to define abstractions
(Edelkamp 2001; Helmert et al. 2007) and how to combine
them (Katz and Domshlak 2010).

We now show that an MDD relaxation is equivalent to
an abstraction of an unbounded MDD. For theoretical pur-
poses, assume that the construction procedure ignores Rule
2 (Section 4.2) and we have an upper bound on the optimal
plan cost, η∗. Note that these two requirements do not affect
the heuristic computation over a relaxed MDD.
Proposition 5.1. Consider a classical planning task Π. Let
M∞ = (N∞, E∞) and M = (N , E) be two relaxed
MDDs constructed using Algorithm 1, where M∞ has an
unbounded width, andM has a maximum width 1 ≤ W <
∞. For every node u ∈ N∞t there exists a node u′ ∈ Nt′
(t′ ≤ t) such that
σ(u) ⊆ σ(u′) and ω(u, p) ≥ ω(u′, p) ∀p ∈ σ(u). (7)

54

Proof. We prove the above statement by induction on the
number of layers ofM∞. Consider the base case where t =
0. By construction we have that N∞0 = N0 = {r}, where
σ(r) = I. Thus, condition (7) is satisfied.

Now consider that (7) is valid for all nodes u ∈ N∞t , for
a given t ≥ 0. Let v ∈ N∞t+1 and e ∈ δin(v) be any edge
directed to v. Take a = θ(e) and u = ρ(e), i.e., u ∈ N∞t . By
hypothesis, there exists a node u′ ∈ Nt′ (t′ ≤ t) such that
(7) is satisfied for node u. By construction, a is an applicable
action on u′. It might be, however, M-nonessential for u′.
If a 6∈ A(u′), then Rule 1 (Section 4.2) has to be true and
u′ satisfies (7) for node v. If a ∈ A(u′), then there exists a
node v′ ∈ Nt′+1 such that the edge associated to a directs
to it. Note that v′ satisfies (7) for v due to (4) and (3).

A direct result of the above proposition is the admissibil-
ity of our relaxed MDD based heuristic.
Theorem 5.1. Given a classical planning task Π and a max-
imum size W ≥ 1, Algorithm 1 computes an admissible
heuristic hM.

Proof. Consider a relaxed MDD M = (N , E) with 1 ≤
W < ∞ constructed using Algorithm 1 and an unbounded
MDDM∞ = (N∞, E∞). From Proposition 5.1, for every
goal node u ∈ N∞G there exists a goal node u′ ∈ NG such
that

ω(u′, p) ≤ ω(u′, p) ∀p ∈ G,
and so ω∗(u′) ≤ ω∗(u). Therefore, hM ≤ hM∞ = h∗, where
h∗ is the perfect heuristic.

We now use Proposition 5.1 to create an abstract map-
ping from an unbounded MDD to a relaxed one, as shown in
Proposition 5.2. In other words, we show that the transition
graph defined over a relaxed MDD is an abstract transition
graph for a planning task Π.
Proposition 5.2. Consider a planning task Π, a relaxed
MDDM = (N , E) with maximum widthW ≥ 1, and the
transition graph induced byM, T (M) = 〈N ,A, E , I,NG〉.
There exists an abstraction mapping α such that 〈T (M), α〉
is an abstraction of T (M∞), whereM∞ = (N∞, E∞) is
an unbounded MDD for Π.

Proof. We define an abstraction mapping α : N∞ → N
recursively over the layers ofM∞. We start with α(r∞) =
r and assume that we have defined α for all nodes in layer
N∞t . For each node v ∈ N∞t+1 take any incoming edge e ∈
δin(v) and its tail u = ρ(e). Consider u′ = α(u) ∈ N . If
there exists an edge e′ ∈ δout(u′) such that θ(e) = θ(e′),
then α(v) = ρ(e′), otherwise α(v) = u′.

Due to Proposition 5.1, the abstraction mapping α is
such that every goal node u ∈ N∞G is mapped to a goal
node u′ ∈ NG . Moreover, every transition 〈u, θ(e), v〉 de-
fined by an edge e ∈ E∞ has a corresponding transi-
tion 〈α(u), θ(e), α(v)〉 in T (M). Note that any transition
〈α(u), θ(e), α(v)〉 that defines a self loop (i.e., α(u) =
α(v)) is not explicitly defined by any edge in M. How-
ever, we can extend the set of transitions in T (M) without
impacting the heuristic value. Specifically, we can consider
E ′ = E ∪Eloops, where every edge in e ∈ Eloops corresponds
to an edge that violates Rule 1 (Section 4.2).

5.2 hM vs. hmax

We now compare our heuristic with the simplest admissi-
ble critical path heuristic, hmax (Haslum and Geffner 2000).
This heuristic computes the minimum cost to reach each
proposition from the initial state. Specifically, consider h(p)
as the minimum cost to reach p ∈ P , and h(a) as the mini-
mum cost to use action a. These values are computed recur-
sively using the formula below and setting h(p) = 0 for all
p ∈ I, h(p) =∞ for any p 6∈ I, and h(a) =∞.

h(p) := min
a∈A(p)

{h(p), h(a)} ∀p ∈ P

h(a) := c(a) + max{h(q) : q ∈ pre(a)} ∀a ∈ A
Then, the hmax heuristic is define as

hmax := max{h(p) : p ∈ G}
Proposition 5.3. Consider a classical planning task Π and a
relaxed MDDM = (N , E) with a maximum sizeW ≥ 1.
Then, hM ≥ hmax.

Proof. First, consider the following statement:

h(p) ≤ ω(u, p) ∀u ∈ N , p ∈ σ(u) (8)

We prove (8) by induction over the layers ofM. By con-
struction, (8) holds for N0 = {r}. Now consider that (8) is
true for all nodes u ∈ Nt and p ∈ σ(u). Consider a node
v ∈ Nt+1 and a proposition p ∈ σ(v). By construction,
there exists an edge e ∈ δin(v) such that ν(e, p) = ω(v, p).
Consider action a = θ(e) and node u = ρ(e) ∈ Nt. There
are two cases, either p ∈ add(a) or not. If p ∈ add(a), then

ν(e, p) = c(a) + max{ω(u, q) : q ∈ pre(a)}
≥ c(a) + max{h(q) : q ∈ pre(a)} ≥ h(p)

If p 6∈ add(a), then p ∈ σ(u). Since u ∈ Nt, we have
h(p) ≤ ω(u, p). Then it follows that

h(p) + c(a) ≤ ω(u, p) + c(a) ≤ ν(e, p)

Therefore, h(p) ≤ v(e, p), which proves (8). Since (8) is
true, it follows that hM ≥ hmax.

6 Implementation
This section presents how we can exploit the graphical struc-
ture given by the relaxed MDD to improve the search pro-
cedure. Our approach constructs M in each state s of the
search and uses hM as an admissible heuristic in a modi-
fied A∗ search algorithm. Specifically, we add a bounding
mechanism to A∗, similar to the branch-and-bound algo-
rithm used in Integer Programming (IP) solvers. To do so,
we useM to find feasible plans while computing hM. The
following sections explain how we can find a feasible plan
using a relaxed MDD and how the cost of this plan enhances
the A∗ search algorithm.

6.1 Finding Feasible Plans in a Relaxed MDD
Our implementation considers two different procedures to
find a feasible plan using the relaxed MDD graphical struc-
ture. The first procedure extracts a relaxed plan, denoted by

55

πh, with equal cost to the heuristic value and checks its va-
lidity. The second approach selects a subset of nodes from
the relaxed MDD that represent single states and uses them
to find a valid plan πb. For both procedures, plan extraction
and validation occur after the relaxed MDD construction.

Consider a relaxed MDD M for a state s with at least
one minimum cost goal node uG . We follow the edges ofM
backward to find a path from uG to s. The resulting path is
a relaxed plan, πh, that has the same cost as our heuristic
hM. If πh is a valid plan, we create a plan π that is valid for
the planning task. Consider πI as the plan from I to state
s given by the search algorithm. Then, we create a feasible
plan π concatenating πI and πh, i.e., π = (πI , πh).

The second method allocates a fixed number of nodes,
We ≤ W , in each layer ofM to participate in the extraction
of a valid plan. For each layer Nt, let N e

t be a set of nodes
that represent a single state (i.e., exact nodes), and N r

t be a
set of node that represent the union approximation of mul-
tiple states (i.e., relaxed nodes), where Nt = N e

t ∪ N r
t .

Specifically, we modify SPLITNODES such that in each
layer Nt we arbitrarily select We edges emanating from
nodes ue ∈ N e

t to be the exact nodes in N e
t+1. If an ex-

act node ue is a goal node, then we extract a plan taking
any path from r to ue. Since all parent nodes of an exact
node are exact, we can guarantee that the extracted plan is
valid. As previously, we generate a valid plan for the plan-
ning task by concatenating the extracted plan πb with πI ,
i.e., π = (πI , πb).

While having more exact nodes increases the chances of
finding a feasible plan πb, the heuristic quality can be nega-
tively affected. Since the maximum width does not change,
the union approximation of the relaxed nodes is weaker.
Hence, we use the second method only to find a first fea-
sible plan.

Note that whenever we find a valid plan π (created with
either πh or πb), we can use its cost as an upper bound η∗
in the construction procedure. Specifically, for a state s in
the search, the value of η∗ in Rule 3 (Section 4.2) is set to
c(π)− c(πI), where πI is the plan to reach s from I.

6.2 Exploiting Upper Bounds in A∗

To take advantage of the information represented by the
MDD, we propose a modified A∗ search algorithm that con-
siders the cost of feasible solutions. In particular, our ap-
proach is inspired by the branch-and-bound algorithm im-
plemented in IP solvers. Branch-and-bound uses a linear
programming (LP) relaxation as an admissible heuristic to
guide the search. Whenever the LP relaxation gives an in-
teger solution, the algorithm prunes any node in the search
for which the LP relaxation provides a cost greater than the
upper bound. Similarly to the branch-and-bound algorithm,
our approach uses feasible extracted plans to create an upper
bound and prune states in the search space.

We incorporate this idea in A∗, proposing a variant that
we call A∗BB . In every expanded state, A∗BB checks the fea-
sibility of a relaxed plan calculated by a relaxed MDDM.
The cost of such a valid plan plus the cost of reaching the
state is an upper bound on the cost of the optimal solution.

3

53 3 5

54 5 4 3

44 5 54 4

44 4 55 5

Figure 3: Nodes explored by A∗ (in black and gray) and
A∗BB (in black). Dashed nodes are states that do not need
to be inserted in the search queue by A∗BB . Nodes circled in
red are the ones with a feasible plan πh. Node labels indicate
the f -value of a state.

In A∗, states with a f -value1 strictly greater than the opti-
mal solution are never expanded, thus, the benefit of pruning
states with a greater f -value than the upper bound is limited
to memory saving during search.

The real advantage ofA∗BB arises whenM extracts a fea-
sible plan πh with the same cost as hM for a state s. If s
is retrieved from the open list, the search terminates and the
minimum-cost plan is π = (πI , πh). The termination crite-
ria is correct since s has the minimum f -value among the
states in the list, i.e., f = hM + g is a lower bound for the
minimum-cost plan. Since π = (πI , πh) is a valid plan with
cost equal to f , this proves that π is a minimum-cost plan.
Notice that A∗BB can be used with any admissible heuristic
(consistent or not) that has a plan extraction procedure.

Therefore, A∗BB may avoid expanding states with an f -
value equal to the optimal solution, while A∗ would need to
explore them. Figure 3 shows an example of the difference
in states expanded by A∗ and A∗BB . Of course, in the worst
case,A∗BB will still look at the same number of states asA∗.

7 Preliminary Results
We now present an empirical analysis on the relaxed MDD
heuristic using the LPRGP planning system (Coles et al.
2008). We experiment with both A∗ and A∗BB algorithms,
where ties are broken preferring higher h-values. We con-
sider three variations of relaxed MDDs, where we limit the
maximum width to 256, 512 and 1024, respectively. This
analysis includes a comparison between our heuristics and
hmax and the operator counting heuristic hoc (Pommeren-
ing et al. 2014). We implemented a STRIPS version of hoc
with landmarks and state equation constraints. The LP mod-
els are solved using CPLEX v12.7. All experiments are run
on a Xeon 3.5GHz processor machine, with a 2 GB memory
limit and a 30 minute time limit.

We selected 6 domains with positive action costs, from
the last two International Planning Competitions (IPCs): no-
mystery, wood-working, floortile, tetris, transport, and visit-
all. No-mystery and visit-all have unary action costs, while

1We assume the usual heuristic search notation: f = h+ g.

56

100 101 102 103 104 105
100

101

102

103

104

105

states exp. A∗BB

#
st

at
es

ex
p.
A
∗

hM256

hM512

hM1024

Figure 4: Number of states expanded using A∗BB and A∗.

the other domains feature non-uniform action costs. These
domains were chosen due to their range in difficulty and to
illustrate the strong and weak aspects of our approach.

7.1 A∗ vs. A∗BB

We compare A∗ with A∗BB using our relaxed MDD heuris-
tics hM256, hM512 and hM1024 (with W ∈ {256, 512, 1024}, re-
spectively).

Figure 4 shows the number of expanded states (logarith-
mic scale) for each search algorithm and heuristic. A point in
the plot represents an instance and its (x, y) coordinate the
number of states expanded by A∗BB and A∗, respectively.
Figure 4 shows that A∗BB expands fewer (or equal) number
nodes than A∗ in all instances, especially for instances that
need a small number of expansions to find the cost-optimal
plan. In fact, on average A∗BB reduces the number of ex-
panded nodes by 1%, 2% and 6% when using heuristic hM256,
hM512 and hM1024, respectively. Similar results are found for
number of states evaluated, where A∗BB decreases the num-
ber of states evaluated by 1%, 4% and 12% when hM256, hM512
and hM1024 are used, respectively.

As expected, the benefit of using A∗BB is more prominent
when using a bigger width. A larger relaxed MDD is more
likely to provide valid relaxed plans.

7.2 hM vs. Existing Techniques
We now compare the performance of our proposed relaxed
MDD heuristics against hmax and hoc. We use A∗BB as the
search algorithm for the hM heuristics, while we employ
A∗ for both hmax and hoc. Table 1 shows the number of
instances that each approach solves to optimality (# Opti-
mal plans) and the number of instances for which a relaxed
MDD heuristic finds a feasible plan (# Valid plans). It should
be noted that, due to the nature of A∗, on the problems for
which hmax and hoc fail to find optimal solutions, they also
do not find feasible solutions.

With respect to the number of optimal plans, hoc achieves
the best coverage, followed by hmax and the hM heuristics.
In particular, hM256 performs best among the relaxed MDD
heuristics, finding an optimal plan on 15 instances.

Table 1: Coverage performance.

Optimal plans # Valid plans

hM256 hM512 hM1024 hoc hmax hM256 hM512 hM1024
floortile 20 0 0 0 2 2 19 20 20
no-mystery 20 8 8 8 15 7 10 10 11
tetris 20 3 3 3 13 5 15 14 15
transport 20 1 0 0 1 5 12 15 14
visit-all 20 1 1 1 6 0 8 11 13
wood-working 20 2 2 2 5 2 19 19 19
TOTAL 120 15 14 14 42 21 83 89 92

To understand these results, Table 2 compares the run time
and number of states expanded over the instances that all
heuristics solve to optimality. The symbol # indicates the
number of instances considered. We can see that the hM
heuristics have the highest average run time. However, we
observe an opposite trend in terms of the number of states
expanded: all hM heuristics expand orders of magnitude
fewer states than hmax and a similar number as hoc. The
only exception is wood-working, where hM expands signif-
icantly fewer states than hoc.

Table 2: Average run time and states expanded.

Average run time (sec)

hM256 hM512 hM1024 hoc hmax

no-mystery 7 20.5 24.8 27.9 0.6 49.0
tetris 3 45.3 55.4 69.4 1.1 3.1
wood-working 2 307.0 192.1 97.0 32.2 223.9

Average # states expanded

no-mystery 7 35.6 15.1 6.4 45.6 35053.6
tetris 3 360.7 193.7 99.7 33.0 6326.0
wood-working 2 553.5 117.0 20.5 2238.5 97394.0

While relaxed MDD-based heuristics seem to be highly
informative, their computational cost is currently too high to
make them competitive with state-of-the-art heuristics.

We also point out the strength of our approach to find valid
plans. As shown in Table 1, all relaxed MDD-based heuris-
tics have a high coverage when finding a valid plan. Specif-
ically, our approach has an exceptional performance finding
feasible plans in floortile, the only domain where none of the
hM heuristics found an optimal solution.

With respect to solution quality, Table 3 shows the mean
relative error (MRE) for the best feasible solution found by
each MDD-based heuristic. We compute the MRE for in-
stances where all relaxed MDD heuristics found a feasible
plan. For a given heuristic and instance, we compute the rel-
ative error as (UB − LB)/UB, where UB is the best in-
cumbent found the heuristic and LB is the best known lower
bound, i.e., either the optimal solution or the best heuristic
value in the initial state. The table shows that hM1024, on aver-
age, finds the best quality plan. However, on most domains,
the feasible plans are still quite far from optimal.

8 Conclusions and Future Works
This work presents a new heuristic to solve cost-optimal
classical planning problems based on relaxed multivalued

57

Table 3: Mean Relative Error for all domains.

Domain # hM256 hM512 hM1024

floortile 19 0.61 0.58 0.59
no-mystery 10 0.04 0.06 0.03
tetris 14 0.18 0.18 0.18
transport 12 0.63 0.59 0.55
visit-all 8 0.31 0.46 0.46
wood-working 19 0.25 0.25 0.22
All instances 82 0.36 0.36 0.35

decision diagrams (MDDs), a graphical structure that pro-
vides an adjustable approximation of the state-space transi-
tion graph. We present an algorithm that constructs relaxed
MDDs and calculates an admissible heuristic. Moreover, we
show how to exploit the graphical structure to find valid
plans and enhance an A∗ search algorithm by considering
upper bounds. We relate this graphical structure to transition
graphs and show that a relaxed MDD is an abstraction of the
state transition graph. Moreover, we show that our heuristic
is strictly more informative than the hmax heuristic.

Preliminary results in a subset of IPC domains show that
relaxed MDD heuristics can considerably reduce the num-
ber of states expanded during search. However, the effort to
compute a relaxed MDD currently makes the approach un-
competitive.

Future directions include an extension of our framework
to SAS+ planning and a more in-depth study of the relation-
ship between relaxed MDD and abstractions. In particular,
we want to exploit MDDs to represent projections and com-
bine them using a Lagrangian decomposition method (Fisher
2004) similarly to the cost-partition framework (Katz and
Domshlak 2010).

References
Andersen, H. R.; Hadzic, T.; Hooker, J. N.; and Tiedemann,
P. 2007. A constraint store based on multivalued decision
diagrams. In CP 2007. Springer. 118–132.
Bergman, D.; Cire, A. A.; van Hoeve, W.-J.; and Hooker,
J. N. 2016. Decision Diagrams for Optimization. Springer
International Publishing, 1 edition.
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial intelligence 90(1):281–
300.
Bonet, B., and Geffner, H. 2000. Planning as Heuris-
tic Search: New Results. Recent Advances in AI Planning
1809:360–372.
Bonet, B., and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence 129(February 2000):5–33.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. A hybrid
relaxed planning graph-lp heuristic for numeric planning do-
mains. In ICAPS 2008, 52–59.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black
planning: A new systematic approach to partial delete relax-
ation. Artificial Intelligence 221:73–114.

Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2012. Sym-
bolic a* search with pattern databases and the merge-and-
shrink abstraction. In ECAI 2012, 306–311.
Edelkamp, S. 2001. Planning with pattern databases. In
ECP 2001, 13–24.
Fisher, M. L. 2004. The lagrangian relaxation method for
solving integer programming problems. Management sci-
ence 50(12):1861–1871.
Geißer, F.; Keller, T.; and Mattmüller, R. 2016. Abstractions
for planning with state-dependent action costs. In ICAPS
2016, 140–148.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In AIPS 2000, 140–149.
Helmert, M., and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
ICAPS 2009, 162–169.
Helmert, M.; Haslum, P.; Hoffmann, J.; et al. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
ICAPS 2007, 176–183.
Hoda, S.; Van Hoeve, W.-J.; and Hooker, J. N. 2010. A sys-
tematic approach to MDD-based constraint programming.
In CP 2010. Springer. 266–280.
Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. Journal of Artificial Intelligence
Research 22:215–278.
Katz, M., and Domshlak, C. 2010. Optimal admissible
composition of abstraction heuristics. Artificial Intelligence
174(12-13):767–798.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013. Red-black
relaxed plan heuristics. In AAAI 2013, 489–49.
Keller, T.; Pommerening, F.; Seipp, J.; Geißer, F.; and
Mattmüller, R. 2016. State-dependent cost partitionings for
cartesian abstractions in classical planning. In IJCAI 2016,
3161–3169.
Kinable, J.; Cire, A. A.; and van Hoeve, W.-J. 2017.
Hybrid optimization methods for time-dependent sequenc-
ing problems. European Journal of Operational Research
259(3):887 – 897.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based heuristics for cost-optimal planning. In
ICAPS 2014, 226–234.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
Label Reduction for Merge-and-Shrink Heuristics. In AAAI
20014, 2358–2366.
Torralba, Á.; Linares López, C.; and Borrajo, D. 2016. Ab-
straction heuristics for symbolic bidirectional search. In IJ-
CAI 2016, 3272–3278.
Torralba, Á.; López, C. L.; and Borrajo, D. 2013. Symbolic
merge-and-shrink for cost-optimal planning. In IJCAI 2013.

58

Application of MCTS in Atari Black-box Planning

Alexander Shleyfman
Technion, Haifa, Israel

alesh@campus.technion.ac.il

Alexander Tuisov
Technion, Haifa, Israel

alexandt@campus.technion.ac.il

Carmel Domshlak
Technion, Haifa, Israel
dcarmel@technion.ac.il

Abstract

Action selection in environments where the problem struc-
ture is hidden by an action simulator presents a challenge
for domain-independent action planning. Using the Ar-
cade Learning Environment (ALE) that supports Atari 2600
games, recent research on the subject led to several planning
algorithms suitable for this challenging settings. The most
competitive of this set of algorithms are variants of best-first
search with action pruning based on the properties of the
states already generated by the simulator. Pushing the en-
velope of domain-independent planning with simulators, we
show that a different family of algorithms, one that plans for
a bounded-length trajectories and not only for the next action
to apply, allows solving problems that so far were out of our
reach. In particular, we present a family of such Monte-Carlo
Tree Search algorithms that favorably compete with its state-
of-the-art counterparts. Likewise, noticing that the two al-
gorithmic approaches are rather complementary, we examine
both a pre-sampling based selection among the two, as well as
an alternating composition of the algorithms, and show that
they favorably compete with both of their individual compo-
nents.

Introduction
Popular in the 80s, recently Atari 2600 games once again be-
came a center of attention, but now for an entirely different
reason. In 2013, Bellemare et al. (2013) introduced the Ar-
cade Learning Environment (ALE) – a convenient platform
for domain-independent planners and learners with an ac-
cessible interface to numerous Atari video games. In these
black-box planning domains, the set of actions, the vector
state, and the objective function are fully observable, and all
actions have a deterministic effect. At the same time, the
action and reward dynamics are inaccessible, and given only
via a simulator.

While making the problems closer to many challenges of
the real-world applications, these traits of the ALE setup
also prevent one from using techniques that have been devel-
oped over the years for search in declaratively represented
domains, such as planning as heuristic search or planning as
satisfiability (Russell and Norvig 2010; Geffner and Bonet
2013). At the high level, this leaves us only with variants of
the brute-force search methods such as breadth-first search
(BRFS), as well as with sampling-based Monte-Carlo Tree
Search (MCTS) algorithms.

The first evaluation of such techniques on ALE was done
by Bellemare et al. (2013), and it showed that UCT (Koc-
sis and Szepesvári 2006), one of the most popular MCTS
algorithms, substantially outperforms BRFS on a wide set
of Atari 2600 games. Recently, however, Lipovetzky et
al. (2015) and Shleyfman et al. (2016) showed that some
more sophisticated variants of breadth-first search, namely
Iterative Width (IW(i)) and Prioritized Iterative Width (P-
IW(i)), respectively, exhibit significantly better performance
than UCT. Both these algorithms exploit state pruning that
focuses the search only on states which are ”novel” with re-
spect to the previously discovered states, with the difference
between the two being primarily in the way the state novelty
is defined.

The results of Lipovetzky et al. (2015) and Shleyfman
et al. (2016) positioned the breadth-first search algorithms
as the tools of choice for problem setups like ALE, and
somewhat pushed MCTS into the shadow here. However,
a closer look at the empirical results reveal that the su-
perior performance of IW(i) and P-IW(i) over UCT was
not uniform across the different Atari 2600 games, and in
fact, the two sets of tools could have been seen as com-
plementary in terms of games coverage. Furthermore, sev-
eral works have shown, both formally and empirically, that
UCT is not necessarily the most effective MCTS algorithm
available (Coquelin and Munos 2007; Bubeck et al. 2009;
Feldman and Domshlak 2014; 2013).

Given the above, in this work we examine whether the
effectiveness of MCTS techniques in the ALE environment
can be pushed substantially further, and provide an affirma-
tive answer to this question, even using relatively straight-
forward techniques. Specifically, following the path taken
by Shleyfman et al. (2016), we consider action selection in
ALE as a multiarmed bandit style competition between the
actions available at the current state. However, in contrast to
the work of Shleyfman et al., the competition here is done
at the level of action sequences, and thus the planning is
done not for the next “best” state, but for some time epoch
of a preset length. We show that this approach both dom-
inates UCT, as well as favorably competes with P-IW(1).
Furthermore, we show that this approach is complementary
to the breadth-first variations, and explore some techniques
that successfully combine the two, either by selecting the
more appropriate method to the task at hand, or alternating

59

between the two approaches.

Background
The ALE problem, as it was formalized by Jinnai and Fuku-
naga (2017), is a tuple 〈V,A, f, s0, r〉, where:

• V = {v1, . . . , vn} is a finite set of state variables with
finite domains D(vi), and each state is represented by a
complete assignment to these variables (the variable/value
pairs are written as vi = d, and sometimes referred to as
facts);

• A is a finite set of actions, with all actions being applica-
ble in all states;

• f is a deterministic transition function represented by a
simulator, with f(a, s) being the state of the game that
follows the application of an action a in the state s;

• s0 is a starting state; and

• r is a real-valued reward function, with r(s) being the
reward obtained by applying (any) action in state s.

This setting is somewhat similar to the classical planning
in the sense that the current state of the game starting with
s0 and actions A are known to the agent. However, both
the transition and reward functions are initially hidden, and
are gradually revealed with the search progress through in-
teractions with the simulator: upon simulation of applying
action a in state s, the resulting state f(a, s) and the reward
r(f(a, s)) are being revealed to the planner. Following Sh-
leyfman et al. (2016), a cumulative reward R(s) of a state s
is recursively defined as R(s′) = R(s) + γdr(s), where s′
is the unique parent state of s, γ is a discount factor, and d
is the depth of s in the search tree.

P-IW(1)
One of the more prominent algorithms for black-box plan-
ning is P-IW(1). It is a regular breadth-first search with a
following modifications: When a state s is generated it is
assigned a novelty value. A state is declared novel if it has
at least one fact vi = d in s was not previously observed as
an element of some state s′′ which had a higher cumulative
reward than s. If a state is not novel, it is pruned from the
search tree. Ties in the BRFS queue are broken by the cumu-
lative reward of the states belonging to the nodes in question.
The action a chosen to be applied in s0 is the action on a path
to the leaf node with a state that yields highest cumulative re-
ward. Novelty-based algorithms however often explore the
search space in a highly imbalanced manner, often leading
to “single tunnel” phenomenon, where the search tends to
prune all but one path to the deeper parts of the search tree,
and the comparison between different actions close to the
root becomes skewed. P-IW(1), although slightly alleviates
the problem, is no stranger to this drawback either.

UCT
Another algorithm that had been put to the test in aforemen-
tioned setting is UCT, a MCTS-based algorithm originally
created for MDP planning by Kocsis and Szepesvári (2006)

and adapted for ALE by Bellemare et al. (2013). UCT ex-
plores the search space by growing a search tree in a manner
that treats every search tree node as an independent multi-
armed bandit problem (MAB). The algorithm makes use of
the UCB1, constructing a statistical confidence intervals for
each of the arm in the search node. The UCT algorithm,
however, treats each arm optimistically, i.e., evaluating each
arm j only by the left part of the interval, resulting in the
formula:

xj +
√

2(lnn)/nj ,

where xj is the the mean payout for arm j, nj is the number
of plays of arm j, and n is the total number of plays from the
current node. The strategy of UCT is to pick the arm with
the highest upper bound each time. In the selection phase,
the algorithm moves down on the tree nodes, using the statis-
tics necessary to treat each position as a MAB. This phase
lasts until the algorithm reaches a tree leaf. The phase of ex-
pansion occurs when UCB1 no longer applies. An unvisited
child position is randomly chosen, and a new record node is
added to the search tree. And after that come the simulation
and back-propagation phases. These are typically done by
Monte Carlo simulation (until the algorithm reaches some
preset horizon), than averaging on the result of this simula-
tion, correspondingly.

Algorithm stops at a leaf node, and expands it. It then
applies a random simulation (rollout) of a certain length
to obtain a score estimate for all its successors, and back-
propagates the result. It is important to note that the UCT
procedure saves in the memory only the search tree built so
far, and does not save any simulated rollouts. ALE prob-
lems, however, differ from the MDP and game tree prob-
lems UCT was originally developed for. ALE environment
is deterministic, thus any reward observed is deterministi-
cally achievable. This fact shifts our interest from finding
best average reward to finding a maximal reward. Moreover,
UCB1 formula minimizes the cumulative regret, where ALE
design and dynamics suggest one should try and minimize
simple regret (the difference between best trajectory found,
and best trajectory there is), closer to the setting presented
by Schulte and Keller (2014).

Tree Search Algorithms
In this section, we describe the MCTS family of algorithms
in general, and approaches we used in particular. Since
the MCTS algorithms were not originally developed for the
ALE setting, description of adaptations made to fit MCTS to
the problem at hand also follows.

MCTS family of algorithms for game trees as presented
by Chaslot et al. (2008) has the following structure: it con-
sists of four steps, namely selection – traversing the search
tree from the root until leaf node using selection strategy,
expansion – storing some descendants of the chosen node
using expansion strategy, simulation – evaluation of the leaf
node using simulation strategy, and back-propagation – up-
dates the value of the nodes based on the results of the sim-
ulation using back-propagation strategy. These steps are re-
peated as long as the resources allowed per decision aren’t
exhausted.

60

Each of these steps has its own strategy, and to describe
an MCTS algorithm it is sufficient to describe these four
strategies. It is worth noting that the application of the gen-
eralization of the MCTS methods – Trial-Based Heuristic
Tree Search (THTS) (Keller and Helmert 2013) had been
explored in the context of classical planning (Schulte and
Keller 2014), which also features deterministic actions, but
differs from our setting.

1. In the deterministic setting back-propagation strategy is
pretty straightforward. We propagate back the reward of
the best trajectory in every algorithm, where by “trajec-
tory” we mean a sequence of consequently applied ac-
tions, and by “best” we mean leading to an end state (de-
termined by a preset horizon) with highest cumulative re-
ward. Since the ALE setting is deterministic, every tra-
jectory can be followed through, and this cumulative re-
ward is achievable at the execution. Therefore, there is no
need to consider sub-optimal trajectories after the explo-
ration is finished. This method of back-propagation was
discussed in the work of Schulte and Keller (2014) (albeit
in a cost rather than a reward setting). Back-propagation
strategies will not be discussed further.

2. Selection strategy – deviating from MCTS scheme, we
permit selecting non-leaf nodes. Moreover, following
the work of Tolpin and Shimony (2012) on MCTS algo-
rithms, in some of the following methods we decouple
selection in the root node from selection in the rest of the
tree. The intuition for this approach is derived from the
game setting, where we apply actions step-by-step, and
not fully execute the best trajectory found by the algo-
rithm.

3. Simulation and Expansion strategies – in the deterministic
setting of ALE, there is no much point in generating (via
simulator) already existing states, thus we combine both
these strategies into one. This will result in some nodes
in the search tree, where not all the immediate successors
had been generated. This approach is not implemented in
the UCT algorithm, which “spends” most of the allocated
budget on simulating rollouts that will add one tree node
each, resulting in a much more shallow search tree.
Simulating a result here means sampling a trajectory from
the trajectory space via Monte-Carlo procedure. Since we
would like to compare trajectories of an equal length (oth-
erwise we might create a bias towards longer, but not nec-
essarily better trajectories, or, as in games with negative
rewards, shorter but less informed trajectories), we opt to
simulate the result only until a certain planning horizon,
which is also a maximal trajectory length. In what fol-
lows, simulation of trajectory or a trajectory itself may be
referred as rollout.

Using this formulation we describe the family of algo-
rithms presented below in terms of the selection and simula-
tion strategies they employ.

UNIFORM

The first, and the most trivial approach, UNIFORM is based
upon a uniform selection of the immediate successor of the

root. The simulating strategy of applying uniformly selected
random actions until it reaches maximal trajectory length l1.
Given the fact that in the ALE setting, there is a fixed prede-
termined number of actions in each state (18, to be exact), it
is equivalent to picking uniformly at random a trajectory of
length l. This approach, however, suffers from some draw-
backs. For example, it seems to be “wasting” numerous sim-
ulations on creating trajectories from less rewarding (at least
so far) children of the root. So, it would seems natural to
employ some gradual “candidate rejection” technique.

SEQHALVING

The next approach, SEQHALVING, tries to tackle this prob-
lem. SEQHALVING has the same simulation strategy as
UNIFORM, but it employs more sophisticated selection strat-
egy. It approaches the selection problem as multi-armed
bandit, where the children of the root node are considered
bandit arms, and the act of creating a rollout from a node
is parallel to sampling a bandit arm. Now one could use an
apparatus created for solving MAB problem with fixed bud-
get (since our budget is known in advance to the decision
making process), namely SEQUENTIALHALVING technique
suggested by Karnin et al. (2013). It operates as described
in Algorithm 1.

Algorithm 1 SEQHALVING

1: initialize T ← total budget
2: initialize S0 ← set of all children of the root node
3: initialize n← |S0|
4: for r = 0 to dlog2 ne − 1 do
5: make rollout from every node i ∈ Sr for

⌊ T

|Sr|dlog2 ne
⌋

times
6: let Sr+1 be the set of d|Sr|/2e successors of the root

with the highest maximal rewards
7: return the subtree rooted at the first action in the best

trajectory

On one hand, this technique alleviates the aforementioned
problem. On the other hand, the exploration dynamics of
the nodes beyond the immediate successors of the root are
still unbiased, and contain no elements of exploitation of any
previously found high-reward nodes.

ε-GREEDY

As discussed before, it may be beneficial to try and shift the
dynamics towards exploitation. In the following approach,
ε-GREEDY selection strategy chooses a node leading to the
best trajectory with some probability 0 < ε < 1, and selects
a node uniformly otherwise. Simulation strategy follows a
similar principle. The first node of the rollout (if non-leaf)

1Note that here there is no difference was the selected node
previously was previously generated or not. Previously generated
node, however, will not spend the allocated budget, since the state
is already part of the search tree.

61

and encountering a non-leaf node yielding a positive reward
are decision points. At any decision point, the simulation
follows previously simulated trajectory with probability ε
until the next decision point (or until the planning horizon
if no more decision points are present). With probability
1− ε, or when in a leaf node, the algorithm chooses the next
action uniformly. All children of a node that have not been
previously generated are counted as if they were yielding a
reward of −∞.

Reasoning
The family of the aforementioned algorithms have at least
two reassuring properties. First, given a fixed amount of al-
ways applicable actions (as is the case in ALE setting), each
trajectory of a preset length can be generated uniformly.
Thus, the expectation of the value of the recommended tra-
jectory is monotonic in budget, which is a property novelty-
based algorithms such as P-IW(1) don’t possess. Second,
the probability of recommending the best trajectory for a
given planning horizon converges to 1, given a sufficiently
large budget. This is also not true for novelty-based algo-
rithms, because of the pruning procedure involved. Note,
however, that the optimality of the trajectory is judged with
regard to the fixed horizon l, and not for the whole game.

Experimental Results
Out of the presented family of MCTS algorithms we choose
to evaluate UNIFORM, SEQHALVING, and ε-GREEDY. We
are evaluating them against two of the most prominent state-
of-the-art algorithms P-IW(1) and UCT. As mentioned be-
fore, the testbed for these evaluations will be the games of
the ALE setting by Bellemare et al. (2013). As in previous
works, we exclude two games: SKIING game was already
left out in the experiments of Lipovetzky et al. (2015) due
to certain issues with the reward structure of this game2,
and BOXING since by Shleyfman et al. (2016), the game
boils down to striking in arbitrary directions since the sec-
ond player is inactive, thus every algorithm trivially scores
the possible maximum. This leaves us with 53 of the 55
different games. We also contemplated to leave out the
SPACE INVADERS games, since it may be flawed, and termi-
nates due to some inner bug. However, we decided to leave
it, since all the algorithms compete in the same conditions.

We have implemented our algorithms on top of the imple-
mentation of Lipovetzky et al. (2015), with the addition of
P-IW(1) by Shleyfman et al. (2016). The implementation of
the UCT algorithm was provided by Bellemare et al. (2013).
Its exploration constant here is set to 0.1. In each decision
point, the algorithm normalizes its rewards according to the
first reward it has found.

In our experiments, we use the setting of frames reuse
proposed by Bellemare et al. (2013). In this setting the
frames in the sub-tree of the previous lookahead provides
the algorithms with “additional” simulations, since there is
no point in re-generation of already existing states. In their
works Lipovetzky et al. (2015) and Shleyfman et al. (2016)

2The rewards in this game are time based, and it is challenging
to extract these rewards in the black-box ALE setting.

used the a lookahead budget of 150000 simulated frames
(or, equivalently, 30000 search nodes), with time limit of
18000 frames (5 minutes) for each game. This, however,
seems unpractical to us, since the duration of full simulation
process of a “five-minute-real-time” game may, in practice,
take more than three days of computation time. Therefore,
we limit our simulation budget to 50000 frames (or, equiva-
lently, 10000 search nodes). It is worth noting that even after
this limitation, the evaluation process is still extremely de-
manding to computational resources, which severely limits
our ability to thoroughly check many configurations without
compromising on the variance of the results.

The lookahead depth was limited to 1500 frames (300
search nodes, or, equivalently, 25 seconds of game time),
and the accumulated rewards were discounted as R(s′) =
R(s) + γdr(s) where s a unique parent of s′, and d is the
depth of s in the search tree. The discount factor was set to
γ = 0.95. To reduce the variance of the result each game
was executed 30 times, with seeds 0, . . . , 29.

Table 2 shows that UNIFORM, SEQHALVING, and ε-
GREEDY rather consistently outperform UCT. For exam-
ple, on the 53 games, UNIFORM achieved higher average
scores in 44 games, 1 game ended up with a draw, and UCT
achieved higher average scores in 8 games. The situation is
almost the same for SEQHALVING and ε-GREEDY, with the
only difference that both of them draw in one more game,
rather than winning it. It’s also important to note that this
family of MCTS algorithms also outperforms P-IW(1) in a
majority of the games, as Table 2 shows us (albeit with a bit
less significant margin).

Composite methods
As can be seen from Table 1, the relative performance of
the novelty-based and MCTS approaches varies highly de-
pending on the game (take the scores for FROSTBITE and
JAMESBOND as an example). These approaches seem to be
somewhat complementary indeed, so it seems natural to try
and combine them in some way, such that we could reap
the benefits of both. In this section we cover a few ways in
which a composition between them could be achieved. It is
worth mentioning that there was some earlier attempts to use
some novelty properties in MCTS by Soemers et al. (2016),
however, the methods introduced in their work depend heav-
ily on the GVG-AI environment, and cannot be generalized
to ALE straight forward. Also, it should be noted that we
attribute the effect on the relative scores of P-IW(1) and
MCST methods on different games to some innate property
of the games themselves (rather than pure chance).

Naı̈ve approach
One can assume that the aforementioned property might be
discovered relatively early in the game (the correctness of
this assumption will be discussed later). If this is true, one
also can invest a relatively negligible amount of simulations
in order to discover which algorithm is better suited for this
particular game. We propose to do it in the following way:

1. in the first decision point of the game, use some budget of
simulations B to run P-IW(1);

62

Game P-IW(1) UCT UNIFORM SEQHALVING ε = 0.67

ALIEN 13264 6382 17240 14696 16881
AMIDAR 2041 47 910 1005 1031
ASSAULT 1552 1625 1831 1805 1867
ASTERIX 347800 303333 255875 264283 271267
ASTEROIDS 5548 4122 9987 10541 12490
ATLANTIS 197450 178753 197547 197133 200223
BANK HEIST 592 518 1793 2117 2498
BATTLE ZONE 3667 41500 130400 232200 103967
BEAM RIDER 4868 5024 14208 15340 15745
BERZERK 485 555 739 723 684
BOWLING 64 22 83 83 80
BREAKOUT 856 805 849 849 864
CARNIVAL 5605 4787 6759 6446 6323
CENTIPEDE 186964 106260 136776 138767 144143
CHOPPER COMMAND 2140 18243 36480 42500 52240
CRAZY CLIMBER 140833 135563 97134 84525 91753
DEMON ATTACK 38898 24128 30512 30700 31641
DOUBLE DUNK -16 24 24 24 24
ELEVATOR ACTION 23077 14427 26137 25790 26390
ENDURO 0 279 405 428 426
FISHING DERBY 18 34 36 39 26
FREEWAY 33 0 8 8 7
FROSTBITE 7667 272 293 295 293
GOPHER 28618 8215 29285 29544 30099
GRAVITAR 1177 2888 5767 5862 5235
HERO 5702 10100 13933 14478 13946
ICE HOCKEY 15 39 56 56 56
JAMESBOND 40 385 13813 15068 14927
JOURNEY ESCAPE 2507 1320 86120 84420 77830
KANGAROO 4337 2048 2027 2047 2107
KRULL 11443 8742 5241 5744 6023
KUNG FU MASTER 79717 50347 63000 63690 63667
MONTEZUMA REVENGE 0 0 50 293 193
MS PACMAN 23584 17502 30893 30958 33548
NAME THIS GAME 16713 14927 13992 13779 14062
PONG 21 21 21 21 21
POOYAN 18943 14655 20358 21182 20802
PRIVATE EYE 920 100 1040 9 1076
QBERT 21727 17598 38274 43233 36553
RIVERRAID 11702 6316 9607 9915 9994
ROAD RUNNER 62650 39043 59650 60343 55283
ROBOTANK 6 45 58 58 58
SEAQUEST 590 543 499 490 609
SPACE INVADERS 2448 2482 2603 2665 2417
STAR GUNNER 1373 1467 1233 1217 1200
TENNIS 24 3 24 24 22
TIME PILOT 54137 52640 53060 53052 63386
TUTANKHAM 135 229 271 259 257
UP N DOWN 73325 63272 99037 100593 99639
VENTURE 33 0 10 17 0
VIDEO PINBALL 592102 323700 340109 328939 334709
WIZARD OF WOR 115347 98327 127667 129713 133525
ZAXXON 21553 24540 45047 52217 46123
Best in 16 3 9 15 16

Table 1: Performance results over the 53 Atari 2600 games. The
algorithms P-IW(1), UCT, UNIFORM, SEQHALVING, ε = 0.67,
(ε-GREEDY) are evaluated over 30 episodes for each game. The
look ahead of every algorithm is limited to a budget of 50000 sim-
ulated frames. The maximum episode duration is 18000 frames.
Numbers in bold show best performer in terms of average score.
The Best in row shows on how many games an algorithm scored
the maximum.

P-IW(1) UCT UNIFORM SEQHALVING ε = 0.67
p− IW (1) 0 34 20 21 19
UCT 17 0 8 8 8
Uniform 33 44 0 17 21
SeqHalving 31 43 34 0 25
ε = 0.67 34 43 31 27 0

Table 2: presents on how many instances the algorithm in row X
outperformed the algorithm in column Y . For example, UNIFORM
was strictly better than UCT on 44 out of 53 instances.

2. delete the search tree;

3. use budget B again to run an UNIFORM algorithm de-
scribed in Section ;

4. delete the search tree;

5. for the rest of the decision points in the game, use the
algorithm that yielded the highest cumulative reward.
It is important to emphasize that this decision is being

made only once per game, thus B can be relatively large
compared to the budget allocated per decision point.

ALTERNATION

One of the techniques for combining different approaches
for the same problem is alternating between them. In clas-
sical planning this approach was introduced by Röger and
Helmert (2010).

The version of alternation presented here builds a search
tree as dictated by the UNIFORM algorithm at every even
decision point, and as dictated by P-IW(1) at any odd de-
cision point (thus alternating between the two). This type
of combination, however, presents an ambiguity when we
reuse already generated frames. In order to get rid of this
ambiguity, we apply these rules:

1. odd step: run the P-IW(1) algorithm, do not prune the
nodes that are already present in the search tree (including
those added in UNIFORM step), and ignore them in the
novelty calculation, so more nodes can escape pruning;

2. after recommending the “best” action chosen by the al-
gorithm, add the nodes rooted in the node created by the
recommended action to the search tree as they are;

3. even step: run the UNIFORM algorithm;
4. once again, pass the subtree of the winning action to the

next iteration;
5. in each step, recommend the action, that leads to the tra-

jectory with the highest commutative reward.
In contrast to the MCTS family of algorithms described in
Section , this algorithm often picks actions that lead to the
rooted subtrees of different sizes and depths. This may result
both in positive and negative outcomes, as will be demon-
strated in the next Section.

Empirical Evaluation of the Composite
Methods

We evaluate both composition methods mentioned in the
previous Section on the setting described in Section 3. We
compare both amalgamation methods to the base line pre-
sented by the algorithms P-IW(1) and UNIFORM (which
was chosen as a representative of the MCTS family as the
most basic method). Two numbers in the Naı̈ve approach
represent the score that the algorithm that is based upon run-
ning the algorithm chosen by the classification, and the ac-
curacy of the algorithm (the percentage where the classifi-
cation was correct). If the score on both P-IW(1) and UNI-
FORM pre-test is equal (this mostly happens when none of
the algorithms could find any reward from the initial state),
we choose randomly between the two.

The budget B allocated to each of the two iterations is
150000 (30000 nodes), this is tree times more than the bud-
get allocated to each decision point.

3Some games were evaluated over 15 episodes because of the
lack of time

63

Table 3 shows that the Naı̈ve approach is a weak binary
classifier (its accuracy is 62.8%), which means that the un-
derlying assumption mentioned earlier is not entirely cor-
rect. The results of the classifier may be boosted however,
by applying the tests to the game in question with different
random seeds , and pick the algorithm that achieved most
points in the majority of the runs (accuracy of this approach
is 75.8%).

The experiments show that the ALTERNATION technique
typically results in a score closer to the maximum between
P-IW(1) and UNIFORM. In some games, however, it fails
to achieve even a minimum score between them. These
games can be divided into two groups. First – adversar-
ial games, e.g.,PONG, TENNIS, or FISHING DERBY. The
common denominator of this games is the presence of the
negative rewards (in adversarial games negative rewards ap-
pear if the opponent is getting some positive rewards). In
this setting, the disadvantage comes from the frame reuse
of the algorithm. The subtrees produced by the P-IW(1)
part and the UNIFORM part are mixed in one search tree.
Abundance of the negative rewards makes longer trajecto-
ries more likely to yield negative score overall, which makes
the algorithm choose an action starting the shorter trajecto-
ries, thus gravitating towards myopic decisions (and those
aren’t likely to be optimal). On the other hand, there are
games like CRAZY CLIMBER and VIDEO PINBALL, in which
the rewards are very sparse. That once again leads to a bias,
but now towards longer rollouts of the UNIFORM algorithm.
This leads us to conclusion, that in order to get a better ver-
sion of this algorithm, there is a need in more balancing be-
tween the P-IW(1) and UNIFORM parts of the algorithm.

To summarize the experimental result on the ALTERNA-
TION presented in Table 3. In most games the scores of the
algorithm lie in-between the scores of P-IW(1) and UNI-
FORM with a slight bias towards the UNIFORM algorithm.
However, on 15 games the algorithm scores more than the
maximum between the two components, and on 44 games it
scores more than minimum. An important finding is that in
6 games the algorithm scores more than 150% of the maxi-
mum of its components.

Summary
Black-box planning still presents a challenging task, since
unlike in the classical planning domains, a black-box plan-
ner cannot rely on the off-the-shelf techniques that employ
any kind of reasoning over propositional encoding of actions
and goals. Previous works show that BRFS-like algorithms
with pruning, such as IW(1) and P-IW(1) are setting the
state-of-the-art performance, with the key to success being
structural, similarity-based approximation of duplicate prun-
ing (Lipovetzky et al. 2015). However, we have demon-
strated that methods based on the Monte-Carlo simulations
can be competitive in the majority of the Atari games, given
some reasonable adaptations to the setting. The empirical re-
sults show that all 4 algorithms proposed in this work signif-
icantly outperform UCT and are competitive with the state-
of-the-art P-IW(1).

Empirical evaluation also shows us that the blind search
and MCTS approaches excel in different games, and a com-

Game P-IW(1) UNIFORM Naı̈ve ALTERNATION

ALIEN 13264 17240 13264 0.37 31939
AMIDAR 2041 932 2041 0.90 2216
ASSAULT 1551 1831 1774 0.73 1825
ASTERIX 349041 255875 349041 1.00 273283
ASTEROIDS 5548 9986 9053 0.77 8222
ATLANTIS 197450 197546 197163 0.40 196870
BANK HEIST 591 1792 1247 0.77 2782
BATTLE ZONE 3666 130400 130400 1.00 259333
BEAM RIDER 4868 14208 14208 0.97 14922
BERZERK 485 739 707 0.80 1044
BOWLING 63 83 81 0.93 78
BREAKOUT 855 832 832 0.79 849
CARNIVAL 5605 6759 6598 0.80 6682
CENTIPEDE 186964 136775 155046 0.37 149865
CHOPPER COMMAND 2140 36480 6283 0.03 26986
CRAZY CLIMBER 140388 90418 91614 0.04 76948
DEMON ATTACK 38897 30511 35572 0.60 33252
DOUBLE DUNK -16 24 24 1.00 24
ELEVATOR ACTION 22503 26136 25918 0.97 25556
ENDURO 0 405 254 0.63 358
FISHING DERBY 18 36 29 0.63 -1
FREEWAY 32 7 32 1.00 31
FROSTBITE 7667 293 3572 0.50 994
GOPHER 28618 29284 29284 0.67 27812
GRAVITAR 1176 5766 5766 1.00 5448
HERO 5702 13932 9765 0.47 13858
ICE HOCKEY 14 55 39 0.60 55
JAMESBOND 40 13813 12149 0.87 14883
JOURNEY ESCAPE 2506 86120 5161 0.07 69900
KANGAROO 4336 2026 2026 0.00 3300
KRULL 11443 5240 8200 0.50 10193
KUNG FU MASTER 79716 63000 65735 0.17 64446
MONTEZUMA REVENGE 0 50 25 1.00 536
MS PACMAN 23583 30893 26245 0.47 33229
NAME THIS GAME 16713 13991 14391 0.23 14086
PONG 21 21 21 0.77 2
POOYAN 18926 20358 20235 0.93 20283
PRIVATE EYE 919 1040 1040 0.50 731
QBERT 21726 38274 29782 0.73 36189
RIVERRAID 11702 9607 11702 0.77 10045
ROAD RUNNER 62655 58982 62655 0.69 127715
ROBOTANK 6 58 54 0.93 58
SEAQUEST 589 498 621 0.63 350
SPACE INVADERS 2447 2602 2535 0.60 2620
STAR GUNNER 1373 1233 1320 0.33 1300
TENNIS 24 24 24 0.57 19
TIME PILOT 54136 53060 50800 0.43 53606
TUTANKHAM 134 271 157 0.23 252
UP N DOWN 73325 99037 76000 0.13 99730
VENTURE 33 10 21 0.73 96
VIDEO PINBALL 592101 340108 439210 0.33 323869
WIZARD OF WOR 115346 127666 124746 0.47 132540
ZAXXON 21553 45046 39385 0.77 38800

Best in 18 22 0.63 17

Table 3: Performance results over the 53 Atari 2600 games. The al-
gorithms P-IW(1), UNIFORM, Naı̈ve, and ALTERNATION are eval-
uated over 30 episodes for each game. The look ahead of every
algorithm is limited to a budget of 50000 simulated frames. The
maximum episode duration is 18000 frames. Numbers in bold
show best performer in terms of average score. Average scores
were rounded to a nearest integer

64

position of the two may yield a more consistent result on
a previously unseen task. Further experiments with differ-
ent types of composition tend to support this claim. We
explore two types of composition: pre-sampling based se-
lection among the complementary methods, and an alterna-
tion between them. Both composite methods perform with
mixed success. It is possible that a smarter classification of
games can give an insight what algorithm should be used on
the problem at hand.

References
M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling.
The Arcade Learning Environment: An evaluation platform
for general agents. JAIR, 47:253–279, 2013.
Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure ex-
ploration in multi-armed bandits problems. In Algorithmic
Learning Theory, 20th International Conference, ALT 2009,
Porto, Portugal, October 3-5, 2009. Proceedings, pages 23–
37, 2009.
Guillaume M JB Chaslot, Mark HM Winands, H JAAP
VAN DEN Herik, Jos WHM Uiterwijk, and Bruno Bouzy.
Progressive strategies for monte-carlo tree search. New
Mathematics and Natural Computation, 4(03):343–357,
2008.
Pierre-Arnaud Coquelin and Rémi Munos. Bandit algo-
rithms for tree search. In UAI 2007, Proceedings of the
Twenty-Third Conference on Uncertainty in Artificial Intel-
ligence, Vancouver, BC, Canada, July 19-22, 2007, pages
67–74, 2007.
Zohar Feldman and Carmel Domshlak. Monte-carlo plan-
ning: Theoretically fast convergence meets practical effi-
ciency. In Proceedings of the Twenty-Ninth Conference on
Uncertainty in Artificial Intelligence, UAI 2013, Bellevue,
WA, USA, August 11-15, 2013, 2013.
Zohar Feldman and Carmel Domshlak. On mabs and
separation of concerns in monte-carlo planning for mdps.
In Proceedings of the Twenty-Fourth International Confer-
ence on Automated Planning and Scheduling, ICAPS 2014,
Portsmouth, New Hampshire, USA, June 21-26, 2014, 2014.
Hector Geffner and Blai Bonet. A Concise Introduction to
Models and Methods for Automated Planning. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2013.
Yuu Jinnai and Alex S. Fukunaga. Learning to prune dom-
inated action sequences in online black-box planning. In
Proceedings of the Thirty-First AAAI Conference on Artifi-
cial Intelligence, February 4-9, 2017, San Francisco, Cali-
fornia, USA., pages 839–845, 2017.
Zohar Shay Karnin, Tomer Koren, and Oren Somekh. Al-
most optimal exploration in multi-armed bandits. In Pro-
ceedings of the 30th International Conference on Machine
Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013,
pages 1238–1246, 2013.
Thomas Keller and Malte Helmert. Trial-based heuristic tree
search for finite horizon mdps. In ICAPS, 2013.
L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo
planning. In ECML, pages 282–293, 2006.

N. Lipovetzky, M. Ramı́rez, and H. Geffner. Classical plan-
ning with simulators: Results on the Atari video games.
pages 1610–1616, 2015.
Gabriele Röger and Malte Helmert. The more, the merrier:
Combining heuristic estimators for satisficing planning. Al-
ternation, 10(100s):1000s, 2010.
Stuart J. Russell and Peter Norvig. Artificial Intelligence -
A Modern Approach (3. internat. ed.). Pearson Education,
2010.
Tim Schulte and Thomas Keller. Balancing exploration and
exploitation in classical planning. In Proceedings of the Sev-
enth Annual Symposium on Combinatorial Search, SOCS
2014, Prague, Czech Republic, 15-17 August 2014., 2014.
Alexander Shleyfman, Alexander Tuisov, and Carmel
Domshlak. Blind search for atari-like online planning revis-
ited. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York,
NY, USA, 9-15 July 2016, pages 3251–3257, 2016.
Dennis JNJ Soemers, Chiara F Sironi, Torsten Schuster, and
Mark HM Winands. Enhancements for real-time monte-
carlo tree search in general video game playing. In Com-
putational Intelligence and Games (CIG), 2016 IEEE Con-
ference on, pages 1–8. IEEE, 2016.
David Tolpin and Solomon Eyal Shimony. MCTS based on
simple regret. In Proceedings of the Twenty-Sixth AAAI Con-
ference on Artificial Intelligence, July 22-26, 2012, Toronto,
Ontario, Canada., 2012.

65

On Computational Complexity of Automorphism Groups in Classical Planning

Alexander Shleyfman
Technion, Haifa, Israel

alesh@campus.technion.ac.il

Abstract

Symmetry-based pruning is a family of state-of-the art meth-
ods that are used to reduce the search effort. Applying these
methods requires first to establish an automorphism group
that is used later on during the main search procedure. Al-
though this group can be applied in various contexts, one of
the prominent ways is to use it for pruning symmetric states.
Despite the increasing popularity of these techniques, noth-
ing have been said about the computational complexity of the
automorphism group of a general planning task. Herein, we
show a reduction that proves that the aforementioned prob-
lem of computing the symmetry group of planning task is
GI-hard. Furthermore, we discuss the presentation of these
symmetry groups and list some of their drawbacks.

Introduction
Symmetry breaking is a method for search reduction, that
was well-explored across several areas in Computer Sci-
ence, including, but not limited to classical planning (e. g.
(Starke 1991; Emerson and Sistla 1996; Fox and Long 1999;
Rintanen 2003; Pochter et al. 2011; Domshlak et al. 2012)).
Symmetry pruning divides the states in the search space into
orbit-based equivalence classes, which in turn, allows to ex-
plore only one representative state per such class. Applica-
tion of this technique to the forward search partially prunes
the exponential growth of the search space in the presence
of objects with symmetric behavior. This method, however,
requires to compute first some subgroup of automorphisms
of the state transition graph.

The first notion of symmetries for classical planing was
proposed by Pochter et al. (2011), and then refined by
Domshlak et al. (2012). The definitions presented in these
works, practical however they are, were based on the notion
of colored graphs, and thus are quite cumbersome to reason
about. Later on, Shleyfman et al. (2015) came up with the
notion of structural symmetries that captures previously pro-
posed concepts, and which can be derived from the syntax
of a planning task in a simple declarative manner.

With this in mind, it is quite surprising, that not much
has been said about the complexity of computing an auto-
morphism group for a given planning task. In this work,
we present two reductions that not only provide us with a
pessimistic result that computing automorphism group for a
specific planning task is as hard as for any undirected graph,

but also show the non trivial connection between the auto-
morphism groups of a planning task and its causal graph.

Background
To define a planning task we use the finite-domain repre-
sentation formalism (FDR) presented by (Bäckström and
Nebel 1995; Helmert 2006). Each task is given by a tuple
Π = 〈V,A, I, G〉, where V is a set of multivalued vari-
ables, each associated with a finite domain D(v). The sets
of variable/value pairs are written as 〈var, val〉, and some-
times referred as facts. A state s is a full variable assign-
ments which maps each variable v ∈ V to some value in
its domain, i.e. s(v) ∈ D(v). For V ⊆ V , s[V] denotes
the partial assignment (also referred as a partial state) of s
over V . Initial state I is a state. The goal G is a partial
assignment. Let p be a partial assignment. We denote by
vars(p) ⊆ V the subset of variables on which p is defined.
For two partial assignments p and q, we say that p satisfies q,
if vars(q) ⊆ vars(p), and p[v] = q[v] for all v ∈ vars(q),
this is denoted by p |= q. A is a finite set of actions, each
represented by a triple 〈pre(a), eff(a), cost(a)〉 of precon-
dition, effect, and cost, where pre(a) and eff(a) are partial
assignments to V , and cost(a) ∈ R0+. In this work we as-
sume all actions are of unit-cost, unless otherwise stated. An
action a is applicable in a state s if s |= pre(a). Applying a
in s changes the value of all v ∈ vars(eff(a)) to eff(a)[v],
and leaves s unchanged elsewhere. The outcome state is de-
noted by sJaK.
S denotes the set of all states of Π. We say that action

sequence π is a plan, if it begins in I ends in in sG s.t.
sG |= G, and each action in π is iteratively applicable, i.e.
for each ai ∈ π holds that si−1 |= pre(ai) and si−1JaiK =
si. The cost of a plan defined as cost(π) =

∑
ai∈π cost(ai).

An optimal plan, is a plan of a minimal cost. In a unit-cost
domain, an optimal plan is a plan of the shortest length. The
state space of Π is denoted TΠ.

A directed graph is pair 〈N,E〉 where N is the set of
vertices, andE ⊆ N2 is a set of edges. An undirected graph
is a pair 〈N,E〉 where N , once again, is the set of vertices,
and E ⊆ {e ⊆ N | |e| = 2} is the set of edges.

Let G = 〈N,E〉 be a (un-)directed graph, and let σ be
a permutation over the vertices N , we say that σ is a graph
automorphism (or just an automorphism, if this is clear from
the context) when (n, n′) ∈ E iff (σ(n), σ(n′)) ∈ E. The

66

automorphisms1 of a graph G are closed under composition,
and for every automorphism there exists an inverse permuta-
tion which is also an automorphism. Thus, automorphisms
of a graph form a group. We call this group an automor-
phism group, and denote it by Aut(G). The identity element
e in this group will be denoted by idG .

Causal Graph
One way of capturing the structural complexity of a plan-
ning task are causal graphs. The idea mention in numer-
ous papers, e.g. (Knoblock 1994; Bacchus and Yang 1994;
Domshlak and Brafman 2002), but here we will follow the
definition given by Helmert (2010).

The causal graph of a planning task Π = 〈V,A, I, G〉 is a
directed graph CG(Π) = 〈V, E〉, where (u, v) ∈ E if u 6= v
and there exists a ∈ A, s.t. u ∈ vars(pre(a))∪ vars(eff(a))
and v ∈ vars(eff(a)).

In a nutshell, the causal graph contains an edge from a
source variable to a target variable if changing the value of
the target variable may depend on the value of the source
variable, even if it’s only a co-depending effects.

Structural Symmetries
The second ingredient we need was recently introduced by
Shleyfman et al. (2015). This subsection defines the notion
of structural symmetries, which capture previously proposed
concepts of symmetries in classical planning. In short, struc-
tural symmetries are relabellings of the FDR representation
of a given planning task Π. Variables are mapped to vari-
ables, values to values (preserving the 〈var, val〉 structure),
and actions are mapped to actions. In this work, we fol-
low the definition of structural symmetries for FDR plan-
ning tasks as defined by Wehrle et al. (2015). For a planning
task Π = 〈V,A, I, G〉, let P be the set of Π’s facts, and let
PV := {{〈v, d〉 | d ∈ D(v)} | v ∈ V} be the set of sets of
facts attributed to each variable in V . We say that a permu-
tation σ : P ∪ A → P ∪ A is a structural symmetry if the
following holds:

1. σ(PV) = PV ,

2. σ(A) = A, and, for all a ∈ A, σ(pre(a)) = pre(σ(a)),
σ(eff(a)) = eff(σ(a)), and cost(σ(a)) = cost(a).

3. σ(G) = G.

Note, that that the definition σ(X) := {σ(x) | x ∈ X},
where X is a set, can be applied recursively. For example,
let s be a partial state, since s can be represented a set of
facts, applying σ to s will result in a partial state s′, s.t. for
all facts 〈v, d〉 ∈ s it holds that σ(〈v, d〉) = 〈v′, d′〉 ∈ s′ and
s′[v′] = d′.

A set of structural symmetries Σ for a planning task Π
induce a subgroup Γ of the automorphism group Aut(TΠ),
which in turn defines an equivalence relation over the states
S of Π. Namely, we say that s is symmetric to s′ iff there
exists an automorphism σ ∈ Γ such that σ(s) = s′.

1The definition of a graph automorphism for an undirected
graph is almost the same with the only exception of edges, that
are sets of a size 2 and not directed pairs.

Symmetries from Problem Description Graphs
The last creature we want to introduce in this section is the
problem description graph (PDG), that was introduced by
Pochter et al. (2011), and later on reformulated for differ-
ent purposes by Domshlak et al. (2012), and Shleyfman et
al. (2015). In this work we will use the definition of PDG
for the FDR planning tasks. It is important to point out, that
this structure has no direct use in the work below. However,
since we want to illustrate some of our claims by graphic
examples, PDG becomes quite helpful, since in contrast to
structural symmetries PDG is a graph, and hence can be pre-
sented in a picture.

Definition 1. Let Π be a FDR planning task. The problem
description graph (PDG) of Π is the colored directed graph
〈N,E〉 with nodes

N = NV ∪
⋃

v∈V
ND(v) ∪NA

where NV = {nv | v ∈ V}, ND(v) = {n〈v,d〉 | d ∈ Dv},
and NA = {na | a ∈ A}; node colors

col(n) =

0 if n ∈ NV
1 if n ∈ ⋃v∈V ND(v) and 〈v, d〉 ∈ G
2 if n ∈ ⋃v∈V ND(v) and 〈v, d〉 6∈ G
3 + cost(a) if na ∈ NA

and edges

E =
⋃

v∈V
Ev ∪

⋃

a∈A
Epre
a ∪ Eeff

a

where Ev = {(nv, n〈v,d〉) | d ∈ D(v)}, Epre
a =

{(na, n〈v,d〉) | 〈v, d〉 ∈ pre(a)}, and Eeff
a = {(n〈v,d〉, na) |

〈v, d〉 ∈ eff(a)}}.
In their work, Pochter et al. (2011) observed, that PDG

symmetry is a symmetry of TΠ that is induced by a graph
automorphism of the PDG of Π. Shleyfman et al. (2015),
in turn, showed that every structural symmetry of Π corre-
sponds to a PDG symmetry of Π in the sense that they in-
duce the same transition graph symmetry. In what follows,
we will denote by Aut(Π) the automorphism group of PDG
of a task Π. The illustrative examples of planning tasks will
also be presented via PDGs.

Complexity
In this section we aim to prove that for each undirected graph
one may construct a planning task with a similar automor-
phism group. Surprisingly, not much have been said about
complexity of computation of such a group. We show a sim-
ple reduction that will prove that this computation is at least
GI-hard.

The graph isomorphism problem (GI) is a well-known
problem, that gave its name to a whole complexity class.
This problem is a decision problem of determining whether
two finite graphs are isomorphic. Other well know problem
is the graph automorphism problem, that is a problem of test-
ing whether a graph has a nontrivial automorphism. And this

67

is at least as hard as solving the decision problem of either
automorphism group of a given graph is trivial or not. The
graph automorphism problem is polynomial-time many-one
reducible to the graph isomorphism problem (Mathon 1979)
(the converse reduction is unknown). Thus, given the reduc-
tion, we can say that computing the automorphism group of
a given planning task is at least GI-hard. The latest result by
Babai (2015) claims (most probably rightfully) that GI can
be solved in quasipolynomial time, i.e. in exp((log n)O(1)).
The best previous bound stood onO(exp(

√
n log n)) (Babai

and Luks 1983).

Reduction to bounded variable domains
While discussing relations between the automorphism
groups of different structures, we first should introduce the
notation of mapping and comparing these groups. In this
section we will rely mostly on the basic definitions of the
group theory taken from the book “Topics in algebra” (Her-
stein 1975). Let us start with some useful mappings:

Definition 2. Let G and G′ be groups:

1. and let f : G 7→ G′ be a mapping that satisfies f(ab) =
f(a)f(b) for all a, b ∈ G, then f is a homomorphism of
G to G′.

2. If f is a bijection, it is called an isomorphism, this is
denoted by G ∼= G′, or simply G = G′.

3. If f is a injection, then there exist a subgroupH ≤ G, s. t.
H ∼= G′. In this case we will write simply G ≤ G′.
As we mentioned before, Pochter et al. (2011) introduced

a method for deduction of the automorphism group for an
FDR representation of a planning task using PDG. While
this representation is easy to visualize and understand, it is a
bit inconvenient as an algebraic model of representation. On
the other hand, structural symmetries while having a much
simpler definition, lack the graphical appeal. In the proof
which follows, we want to establish a connection between
the vertexes of a given undirected graph and the variables
of the planning task constructed by our reduction. Thus,
as the middle ground, we chose to conduct our proof using
causal graphs, since they are both simple in representation
and, once again, have an allure of being graphs. Unfortu-
nately, as the next statement shows, there is no straightfor-
ward subgroup relation between the automorphism group of
the planning task and the automorphism group of its causal
graph.

Observation 1. There exist a planning task Π, s. t.
Aut(Π) � Aut(CG(Π)) and Aut(CG(Π)) � Aut(Π).

Proof. Let Π be a planning task with variables V and
actions A. Consider a set of variables V = {v, u}, where
D(v) = {v1, v2, v3, v4} and D(u) = {u1, u2}. Let A be a
set of actions with single precondition and single effect. To
ease the writing and reading of this example, we will use the
following notation axi→yj := 〈{〈x, xi〉}, {〈y, yj〉}〉. Thus,
for example the action av1→v2 = 〈{〈v, v1〉}, {〈v, v2〉}〉.
Now, let us define a set of actions of Π, A =
{av1→v2 , av2→v3 , av3→v1 , av1→v4 , av2→v4 , av3→v4 , av4→u1

,
au1→u2

, au2→v4}. Since we don’t want our planning task

to be redundant we will set G = {〈v, v4〉}. It is
easy to check that Aut(Π) is generated by the cycle
(〈v, v1〉, 〈v, v2〉, 〈v, v3〉), i. e. for some σ ∈ Aut(Π)
holds that σ(〈v, v1〉) = 〈v, v2〉, σ(〈v, v2〉) = 〈v, v3〉, and
σ3 = idΠ to complete the cycle, and that σ is fixed on all
other facts. Thus, Aut(Π) ∼= Z3, and cyclic group of order
3. The causal graph and PDG of Π are depicted in Figure 1.

v u

v1

v2

v3 v4 u2 u1

v u

Figure 1: Illustration for Observation 1: The graph with the white
nodes represents the PDG of the task described in the Observa-
tion in question. Since preconditions and effects of each action are
single-valued, we annotated them via dashed arrows. The goal fact
is denoted by double circle. Here it is easy to see, that the auto-
morphism group of the PGD is generated by the cycle (v1, v2, v3)
(red, dashed arrows). The filled dots represent the causal graph of
the same task.

On the other hand, the causal graph of task Π is 〈N =
{v, u}, E = {(v, u), (u, v)}〉, and has the automorphism
group that is isomorphic to Z2. Hence, since both Z3,Z2

have no non-trivial subgroups the claim holds.

Since we still want to embed Aut(Π) into Aut(CG(Π)),
we will need the following Definitions and Theorem (once
again taken from the “Topics in algebra” (Herstein 1975)).
Definition 3. Let H be a subgroup of G, and let x be an
element in G.

1. The set of elements Hx = {hx | h ∈ H} is called a
right coset of H . A left coset defined similarly.

2. If for every x ∈ G holds that Hx = xH , H is called a
normal subgroup.

3. Let H be a normal subgroup of a G. The set G/H :=
{xH | x ∈ G} of all left cosets forms a quotient group
of G modulo H .
Below we give a short reminder on the definition of group

homomorphism.
Definition 4. Let H and G be two groups. We say that the
map φ : G → H is a group homomorphism (later on re-
ferred as homomorphism), if for all g1, g2 ∈ G it holds that
φ(g1)φ(g2) = φ(g1g2).

The kernel of the map φ, denoted by ker(φ), is the set
φ−1(idH).

We say that φ is an isomorphism, if in addition to the
mentioned above it is also a bijection.

Note, that it is easy to prove that ker(φ) ≤ G and φ(G) ≤
H are both subgroups. To establish additional relationships
between homomorphisms, quotients, and subgroups we will
need the following theorem by Noether (1927).

68

Theorem 1 (First isomorphism theorem). Let G and H be
groups, and let φ : G→ H be a homomorphism. Then:

1. The kernel of φ is a normal subgroup of G,
2. The image of φ is a subgroup of H , and
3. The image of φ is isomorphic to the quotient group

G/ker(φ).
In particular, if φ is surjective then H is isomorphic to
G/ker(φ).

Intuitively, the next Lemma shows that if we strip from
Aut(Π) all the automorphism that do not affect the tasks
variables, the resulted subgroup can be embedded into the
automorphism group of CG(Π).
Lemma 1. Let φ : Aut(Π) 7→ Aut(CG(Π)) be a map s.t.
for each σ ∈ Aut(Π) : φ(σ) = σV , where σV is σ restricted
to V .

Then, φ is a homomorphism, and Aut(Π)/ker(φ) ≤
Aut(CG(Π)).

Proof. Once again, let Π be a planning task with variables
V and actions A. First, let us prove that σV is an auto-
morphism. Let (u, v) ∈ E be an edge in CG(Π). Hence,
exists a ∈ A, s.t. u ∈ vars(pre(a)) ∪ vars(eff(a)) and
v ∈ vars(eff(a)). And therefore, for each σ ∈ Aut(Π)
it holds that σ(u) ∈ vars(pre(σ(a))) ∪ vars(eff(σ(a)))
and σ(v) ∈ vars(eff(σ(a))). From which follows that
(σV(u), σV(v)) ∈ E . The converse is true, since each σ−1

is also an automorphism.
Second, φ is a homeomorphism, since for each σ, σ′ ∈

Aut(Π), it holds that φ(σ)φ(σ′) = σVσ′V = (σσ′)V =
φ(σσ′), given that φ is a restriction to variables.

Now, ker(φ) = {σ ∈ Aut(Π) | σ = idV}, and by
the first isomorphism theorem it holds that Aut(Π)/ker(φ) =
φ(Aut(Π)) ≤ Aut(CG(Π)).

Following the intuition of Lemma 1, in the Theorem be-
low we construct a planning task that has no “inner” auto-
morphism. The automorphism group of such task should be
isomorphic to the automorphism groups of its causal graph.
The theorem is the main result of this section.
Theorem 2. Let G be a directed graph without loops, then
there exists a planning task Π, s.t. G = CG(Π), Aut(G) =
Aut(Π).

Proof. In this proof, given a directed graph G = 〈N,E〉, we
should construct a planning task Π that satisfies the condi-
tions of the Theorem. First, it’s clear that vertex x ∈ N
should correspond a variable v ∈ V . Now, since we
would like to use Lemma 1, the kernel of the homomor-
phism φ should be trivial. Thus, we set Dv = {T, F},
and add an action av:F→v:T := 〈{〈v, F 〉}, {〈v, T 〉}〉, s. t.
for each σ ∈ Aut(Π) holds σ(〈v, F 〉) 6= 〈v, T 〉. For each
(x, y) ∈ E, let v and u be the corresponding variables in
V . To ensure that G = CG(Π), we add a unique action
au:F→v:F := 〈{〈u, F 〉}, {〈v, F 〉}〉, which, in turn, assures
that if σ(au:F→v:F) 6= au:F→v:F , then either σ(v) 6= v or
σ(u) 6= u. In addition, we need to specify an initial state,
and a goal description. Let those two be full assignments
I := {〈v, F 〉 | v ∈ V} and G := {〈v, T 〉 | v ∈ V}. Since,

by construction of Π, σ never maps T to F , this leaves the
automorphism group Aut(Π) unchanged. To summarize,
the constructed planning task Π = 〈V,A, I, G〉 looks as fol-
lows:

1. V = {v | v ∈ N}, with Dv = {T, F} for each v,
2. A = {av:F→v:T | v ∈ V } ∪ {av:F→u:F | (v, u) ∈ E},
3. I = {〈v, F 〉 | v ∈ V}, and
4. G = {〈v, T 〉 | v ∈ V}.
Since the algebraic mapping can be hard to imagine, the
PDG structure of edge (u, v) is depicted in Figure 2.

Now let φ be a homomorphism as defined is Lemma 1.
By construction of Π, φ is surjective and ker(φ) = idG ,
thus Aut(G) = Aut(Π).

v u

F T F T

v u

Figure 2: Illustration of a mapping of a single edge in a graph for
Theorem 2: Once again, the graph with the white nodes represents
the PDG of and edge (v, u) (depicted by filled nodes). Here it easy
to see that there no “inner” symmetries, and the planning variable
(v,D(v)) can be mapped into a planning variable (u,D(u)) ex-
actly in one way.

Now what is left to show, is that there is an automorphism
group preserving reduction from a undirected graphs to di-
rected graphs.

Proposition 1. Let G be a undirected graph, then there ex-
ists directed graph G, s.t. Aut(G) = Aut(G).

The proof of this statement is not new, but we will use it
later on to show that even special cases of planning tasks are
difficult to solve, in the sense of finding the automorphism
group.

Proof. Let G = 〈N,E〉 be an undirected graph. Let us de-
fine G = 〈V, E〉 as follows:

1. V := N ∪ E, and
2. E := {(e, x), (e, y) | e = {x, y} ∈ E}.
Note, that for the vertices in V for x ∈ N and e ∈ E,
degout(x) = degin(e) = 0. The graphic example of
this construction can be seen if Figure 3. Hence, for each
σ ∈ Aut(G) holds that σ(N) = N and σ(E) = E, where
N and E are both sets of vertices in G. Moreover, for each
edge e = {x, y} in E correspond to edges (e, x), (e, y) in
G. Thus, for σ ∈ Aut(G), e = {x, y} ∈ E iff σ(e) =
{σ(x), σ(y)} ∈ E which corresponds to (e, x), (e, y) ∈ E

69

iff (σ(e), σ(x)), (σ(e), σ(y)) ∈ E . Using this, we will de-
fine φ : Aut(G)→ Aut(G):

φ(σ) =

{
σ(x) if x ∈ N,
σ(e) = {σ(x), σ(y)} if e = {x, y} ∈ E.

Now, to prove that φ is an isomorphism we need to prove that
φ is surjection, and that ker(φ) = {idG}. First, for each τ ∈
Aut(G), φ−1(τ) = τ |N ∈ Aut(G). Second, φ−1(idG) =
idG|N = idG . Thus, by the first isomorphism theorem it
holds that Aut(G)/{idG} = Aut(G) = Aut(G).

x

y

x

ex,y

y

Figure 3: Illustration of a mapping of a single edge in a graph for
Proposition 1: edge ex,y = {x, y} ∈ E is mapped to a vertex
ex,y ∈ V and two edges (e, x), (e, y) ∈ E .

The next Corollary is the immediate consequence of
Proposition 1 and Theorem 2.
Corollary 1. Given a planing task Π, computing Aut(Π)
is as equivalent to computing Aut(G) for some undirected
graph G.

Proof of Proposition 1 also show thats even planning tasks
that have a bipartite one-way directed causal graphs (fork
decomposition by Katz and Domshlak (2008)) may have an
arbitrary finite automorphism group, which follows from the
next theorem proven by Frucht (1949)
Theorem 3 (Frucht’s theorem). Every finite group is the au-
tomorphism group of a finite undirected graph.

Reduction to singe variable domain
As for now, we have seen that given an undirected graph G
we can construct a planning task Π with the same automor-
phism group, and where each vertex in the graph G corre-
sponds with a bounded variable in a task Π. In this section
we show, that if we remove the bounded domains condition,
only one variable for such a task will suffice.

Zemlyachenko et al. (1985) showed that finding an iso-
morphism of a connected graph is a GI-complete problem.
Therefore, to prevent the task from being reducible via stan-
dard preprocessing we will take the graph G to be a con-
nected undirected graph.
Proposition 2. Let G be a connected undirected graph, then
there exists planning task Π = 〈V,A, I, G〉, s.t. Aut(G) =
Aut(Π) and |V| = 1.

Proof. Let 〈N,E〉 be the vertices and edges of G, corre-
spondingly, and let V = v be single variable in the task Π.
We will define the domain on v to be D(v) := {vx | x ∈
N}∪{vg}, where vg is the goal value of v (G := {〈v, vg〉}).
Now, since the structural symmetries ignore the initial state,

all is left to do is to define the actions of this task. Since
we have only one variable we will use the following nota-
tion avx→vy := 〈{〈v, vx〉}, {〈v, vy〉}〉. The actionsA of our
task will be divided into two sets:

1. AE := {avx→vy , avy→vx | e = {x, y} ∈ E}, and
2. Ag := {avx→vg | x ∈ N}.
Now, let us look at the map ψ : N → {〈v, d〉 | d ∈
D(v)}, by construction ψ is injective. Therefore the map
φ : Aut(G)→ Aut(Π):

φ(σ) =

{
σ(ψ(x)) if x ∈ N,
〈v, vg〉 otherwise

is also injective, since it’s easy to see that ψ preserves the
relation on the edges, ψ : E → AE set-wise. The injection
follows from the fact that 〈v, vg〉 is a unique goal fact that
can be mapped by σ only upon itself, and ψ : N → Ag is a
bijection. Thus we get the desired Aut(G) = Aut(Π).

x

y

v

vx vy

vg

Figure 4: Illustration of a mapping of a single edge in a graph for
Proposition 2: vertices x, y ∈ N ,and an edge ex,y = {x, y} ∈ E
are mapped to value vertices vx, vy and two dashed action edges
(vx, vy), (vy, vx), correspondingly. in addition, to preserve the
PDG structure, each PDG graph will have a single variable vertex
v, a single goal value vg , and an edge (vx, vg) for each x ∈ N .

Group Presentation
In this section we will discuss the presentation of symmetry
groups, and show that for some planning domains this task
may be quite difficult.

Most of the tools for computing automorphism groups,
such as Bliss (Junttila and Kaski 2007), nauty (McKay and
Piperno 2014), and saucy (Darga et al. 2008), report the
set of generators required to produce the Aut(G) automor-
phism group of a given graph G. Thus, in some works, the
authors (Sievers et al. 2015; 2017) chose to report this num-
bers for each group, or even for each planning domain in the
experimental benchmarks. In this subsection we will show
the faults in this approach. To do so, we will need some
standard definitions:

Definition 5. LetG be a group. We say thatG has a presen-
tation 〈S | R〉, where S is a set of generators so that every
element of the group can be written as a product of pow-
ers of some of these generators, and R is a set of relations
among those generators.

Let F (S) be a free group on S (all finite words of S with
the relation suu−1t = st). The set of relations R is the
subset of F (S).

70

The group G is said to have the above presentation if it is
isomorphic to the quotient of F (S) by the minimal normal
subgroup that contains the set R.

We say that presentation 〈S | R〉 of group G is ir-
reducible if for no S′ (S holds that G isomorphic to
〈S′ | R|S′〉.

From the First isomorphism theorem follows that every fi-
nite group has a presentation. And as corollary of this state-
ment, easily obtained, that every finite group is finitely gen-
erated, since S can be taken to be G itself. To get a better
grip on this definition we will present an couple of examples,
that will be use further in this section.

Example 1. The cyclic group is a group generated by a sin-
gle element. The group Ck can be presented as 〈S | R〉
where:

• S := {σ};
• R := {σk}.

It is easy to see that for a given k ∈ N, it holds that
|Ck| = k, and only one generator. Example 1 provides us
the fact that the number of generators does not ensure the
upper bound on the size of the group. To calculate the lower
bound we will prove the following lemma2:

Lemma 2. Let G be a group with presentation 〈S | R〉,
and let be S = {g1, . . . , gn} set of n irreducible generators.
Then, |G| ≥ 2n.

Proof. Let Gm be a subgroup of G that has a set of gen-
erators {g1, . . . gm}, for 1 ≤ m < n. Since the set S is
irreducible with respect to G, every subset of S is also ir-
reducible with respect to the subgroup of G it generates,
thus gm+1 /∈ Gm. Therefore, Gm+1 has at least two cosets
eGm = Gm and gm+1G

m. By definition of cosets it holds
that Gm ∩ gm+1G

m = ∅. Which leads to |Gm+1| ≥ 2|Gm|.
Thus, by induction on m we have that Gn ≥ 2n.

The equality for the Lemma above is achieved on the
group Cn2 ∼= Zn2 =

∏n
i=1 Z2. Giving us that the amount

of elements (order) of a finite group, is at least exponential
in the size of group generators.

To show that group structure is not defined by the number
of generators we will need at least one another group, that
is not cyclic. For that we will define the symmetric group.
Note, that in literature symmetry group is often used as a
synonym to the automorphism group of some mathematical
object, symmetric group, on the other hand, is a group of all
permutations of some n identical objects.

Example 2. The symmetric group Sn on a finite set of n
symbols is the group whose elements are all the permuta-
tions on n distinct symbols. The group Sn can be written as
〈S | R〉 where:

• S := {σi|i ∈ [n− 1]};
• R := {σ2

i |i ∈ [n − 1]} ∪ {σiσjσ−1
i σ−1

j |i 6= j ± 1} ∪
{(σiσj)3|i, j ∈ [n− 1]}
2This result is well known in group theory, but unfortunately

we haven’t found citing source.

It’s important to point out (and easy to check) that Sn has
n! elements. Using the cyclic notation, each element in the
presentation can be written as σi = (i, i + 1), which means
that σi maps the element i to element i+ 1, element i+ 1 is
mapped to i, and other elements are mapped to itself. This
presentation is irreducible (Alperin and Bell 1995), meaning
that non of the permutations can be excluded from the set S,
where |S| = n− 1.

As we showed a bit earlier in this section the group Cn2
also has n generators, each of order two3. However, it is
obvious that Cn2 6∼= Sn+1, since 2n 6= (n+ 1)!, for n > 1.

By this example, reporting the number of generator per
domain, or even for a specific group (even with order of
these generators) is not very informative, since this num-
bers reports us almost nothing on the size and structure of
the group. Note that the group 〈a, b | a2, b2〉 is of an infi-
nite size (as an intuition, consider the following elements
a, ab, aba, abab, . . .).

Another way to write the cyclic group Sn, may be given
with only two cyclic generators (1, 2) and (2, . . . , n), which
is also irreducible (Alperin and Bell 1995). Note that in the
first cyclic presentation of Sn each generator has an order
of 2, and in the second the first cycle is of order 2, and the
second one is of order n − 1. As we can see, each group
may have more than one presentation. And calculating the
minimal number of these generators per group is known to
be at most O(log2 n) space (Arvind and Torán 2006).

Conclusion
An automorphism group of a planning task can be seen as
permutation on objects involved in this task, and thus it con-
stitutes a subgroup of some symmetric group. In this sense,
our results coincide with the famous Cayley’s theorem (Her-
stein 1975).
Theorem 4 (Cayley’s theorem). Every group G is isomor-
phic to a subgroup of the symmetric group acting on G.

The obvious corollary of this theorem is that, every finite
group is isomorphic to a subgroup of the symmetric group.

One may have an intuition, that since planning tasks are
constructed from objects, the symmetry groups of such tasks
can be subjects to a special treatment. This is apparently
false in the general case. Thus, we want to conclude this
unoptimistic paper by a quote from the book “Groups and
representations” by Alperin and Bell (1995): “in general the
fact that finite groups are embedded in symmetric groups has
not influenced the methods used to study finite groups”. Un-
fortunately, by reduction we showed in the previous Section,
this statement also holds for the automorphism groups of the
tasks in classical planning.

References
J.L. Alperin and R.B. Bell. Groups and representations.
Graduate texts in mathematics. Springer, 1995.
Vikraman Arvind and Jacobo Torán. The complexity of
quasigroup isomorphism and the minimum generating set
problem. In ISAAC, 2006.

3Order of an element g is the minimal number m s.t. gm = e.

71

László Babai and Eugene M. Luks. Canonical labeling of
graphs. In Proceedings of the 15th Annual ACM Symposium
on Theory of Computing, 25-27 April, 1983, Boston, Mas-
sachusetts, USA, pages 171–183, 1983.
László Babai. Graph isomorphism in quasipolynomial time.
CoRR, abs/1512.03547, 2015.
Fahiem Bacchus and Qiang Yang. Downward refinement
and the efficiency of hierarchical problem solving. AIJ,
71(1):43–100, 1994.
Christer Bäckström and Bernhard Nebel. Complexity results
for SAS+ planning. Computational Intelligence, 11(4):625–
655, 1995.
Paul T. Darga, Karem A. Sakallah, and Igor L. Markov.
Faster symmetry discovery using sparsity of symmetries. In
Proceedings of the 45th Annual Design Automation Confer-
ence, DAC ’08, pages 149–154, New York, NY, USA, 2008.
ACM.
Carmel Domshlak and Ronen I. Brafman. Structure and
complexity in planning with unary operators. In Malik Ghal-
lab, Joachim Hertzberg, and Paolo Traverso, editors, Pro-
ceedings of the Sixth International Conference on Artificial
Intelligence Planning Systems, April 23-27, 2002, Toulouse,
France, pages 34–43. AAAI Press, 2002.
Carmel Domshlak, Michael Katz, and Alexander Shleyf-
man. Enhanced symmetry breaking in cost-optimal plan-
ning as forward search. In Blai Bonet, Lee McCluskey,
José Reinaldo Silva, and Brian Williams, editors, Proceed-
ings of the 22nd International Conference on Automated
Planning and Scheduling (ICAPS’12). AAAI Press, 2012.
E. Allen Emerson and A. Prasad Sistla. Symmetry and
model-checking. 9(1/2):105–131, 1996.
Maria Fox and Derek Long. The detection and exploitation
of symmetry in planning problems. In Thomas Dean, edi-
tor, Proceedings of the Sixteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI 1999), pages 956–961.
Morgan Kaufmann, 1999.
Robert Frucht. Graphs of degree three with a given abstract
group. 1(??):365–378, 1949.
Malte Helmert. The Fast Downward planning system. JAIR,
26:191–246, 2006.
Malte Helmert. Landmark heuristics for the pancake prob-
lem. In Ariel Felner and Nathan Sturtevant, editors, Pro-
ceedings of the Third Annual Symposium on Combinatorial
Search (SoCS 2010), pages 109–110. AAAI Press, 2010.
I.N. Herstein. Topics in algebra. Xerox College Pub., 1975.
Tommi Junttila and Petteri Kaski. Engineering an effi-
cient canonical labeling tool for large and sparse graphs.
In David Applegate, Gerth Stølting Brodal, Daniel Panario,
and Robert Sedgewick, editors, Proceedings of the Ninth
Workshop on Algorithm Engineering and Experiments and
the Fourth Workshop on Analytic Algorithms and Combina-
torics, pages 135–149. SIAM, 2007.
Michael Katz and Carmel Domshlak. Structural patterns
heuristics via fork decomposition. In Jussi Rintanen, Bern-
hard Nebel, J. Christopher Beck, and Eric Hansen, editors,
Proceedings of the Eighteenth International Conference on

Automated Planning and Scheduling (ICAPS 2008), pages
182–189. AAAI Press, 2008.
Craig A. Knoblock. Automatically generating abstractions
for planning. AIJ, 68(2):243–302, 1994.
R. Mathon. A note on the graph isomorphism counting prob-
lem. Information Processing Letters, 8:131–132, 1979.
Brendan D. McKay and Adolfo Piperno. Practical graph iso-
morphism, {II}. Journal of Symbolic Computation, 60(0):94
– 112, 2014.
E. Noether. Abstrakter aufbau der idealtheorie in algebrais-
chen zahl- und funktionenkörpern. Mathematische Annalen,
96:26–61, 1927.
Nir Pochter, Aviv Zohar, and Jeffrey S. Rosenschein. Ex-
ploiting problem symmetries in state-based planners. In
Wolfram Burgard and Dan Roth, editors, Proceedings of the
25th National Conference of the American Association for
Artificial Intelligence (AAAI’11), San Francisco, CA, USA,
July 2011. AAAI Press.
J. Rintanen. Symmetry reduction for SAT representations of
transition systems. In Enrico Giunchiglia, Nicola Muscet-
tola, and Dana Nau, editors, Proceedings of the 13th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’03), pages 32–41, Trento, Italy, 2003.
Alexander Shleyfman, Michael Katz, Malte Helmert, Silvan
Sievers, and Martin Wehrle. Heuristics and symmetries in
classical planning. In Blai Bonet and Sven Koenig, editors,
Proceedings of the 29th AAAI Conference on Artificial Intel-
ligence (AAAI’15), pages 3371–3377. AAAI Press, January
2015.
Silvan Sievers, Martin Wehrle, Malte Helmert, and Michael
Katz. An empirical case study on symmetry handling
in cost-optimal planning as heuristic search. In Steffen
Hölldobler, Markus Krötzsch, Rafael Peñaloza, and Sebas-
tian Rudolph, editors, KI 2015: Advances in Artificial In-
telligence - 38th Annual German Conference on AI, Dres-
den, Germany, September 21-25, 2015, Proceedings, vol-
ume 9324 of Lecture Notes in Computer Science, pages 166–
180. Springer, 2015.
Silvan Sievers, Gabriele Röger, Martin Wehrle, and Michael
Katz. Structural symmetries of the lifted representation of
classical planning tasks. In HSDIP 2017, 2017.
Peter Starke. Reachability analysis of petri nets using sym-
metries. Journal of Mathematical Modelling and Simulation
in Systems Analysis, 8(4/5):293–304, 1991.
Martin Wehrle, Malte Helmert, Alexander Shleyfman, and
Michael Katz. Integrating partial order reduction and sym-
metry elimination for cost-optimal classical planning. In
Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, pages 1712–1718, 2015.
V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshke-
vich. Graph isomorphism problem. Journal of Soviet Math-
ematics, 29(4):1426–1481, May 1985.

72

Representing General Numeric Uncertainty in Non-Deterministic Forwards
Planning

Liana Marinescu and Andrew Coles
Department of Informatics,
King’s College London, UK

firstname.lastname@kcl.ac.uk

Abstract

Many interesting applications of planning exhibit numeric
uncertainty. Prior work in forwards planning approximates
uncertain values as Gaussian distributions, but this is not al-
ways accurate. We explore a novel way to represent numeric
uncertainty more generally. Our approach allows us to sample
non-deterministic action effects from any probability distri-
bution without sacrificing computational time. We integrate
our approach into an existing policy-building setting, and use
it to improve how well the states expanded by search reflect
reality. This is part of a work in progress, and will provide
new insights into the amount of detail about uncertainty nec-
essary to obtain robust plans.

1 Introduction
1.1 Context
Planning under uncertainty is a compelling research area due
to its role in broadening the range of problems that auto-
mated planners can tackle. Common situations where uncer-
tainty arises include noisy sensors, unpredictable environ-
ments, and limited domain knowledge. For example, after
each stretch of driving on rough terrain, a car may or may not
have suffered a flat tyre - this is a case of propositional uncer-
tainty. Or, after navigating through more or less favourable
currents, a submarine may have used a non-deterministic
amount of fuel - this is a case of numeric uncertainty. In this
paper we focus on the latter, and in particular on the repre-
sentation of non-deterministic numeric effects as probability
distributions.

There is no question that plan robustness benefits from
taking uncertainty into account. While it is possible to ig-
nore uncertainty and assume all non-deterministic numeric
effects take the median value every time, this simplification
can have serious consequences for plan success. For exam-
ple, a mission-critical action might cost 10 units of fuel; the
planner might use the median value of all effects so far to
calculate that the fuel remaining is exactly 10; it will then
consider it safe to take the mission-critical action. In reality
though, there might be 8.5 (or 9, or 10.7) fuel remaining, so
there is a risk that the mission-critical action will fail. Plan-
ning under uncertainty aims to address this problem.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1.2 Prior Work
There is a rich body of prior work which tackles uncertainty
from several angles.

Providing an excellent starting point for our contribu-
tions, work by (Beaudry, Kabanza, and Michaud 2010) uses
a Bayesian network to model resources and time based on
continuous random variables. They introduce the idea of
querying the Bayesian network to check the likelihood of
the variables remaining in a valid state. We base our plan-
ning kernel on their approach, as described further in this
paper.

(Coles 2012) adapted the work of (Beaudry, Kabanza, and
Michaud 2010) to assuming for heuristic purposes that vari-
ables take their median value. They proposed a method to
first generate plans that are conservative about resource us-
age, and then to create branches that can exploit situations
where resource usage is less than pessimistically expected.
This approach to branching inspired part of our work as well.

Building on top of (Coles 2012) is the paper by (Mari-
nescu and Coles 2016a), which employs the median in the
calculation of the heuristic, and additionally introduces the
concept of an offset – a safety margin by which precondi-
tions must be met some given percentage of the time. They
compute this margin based on Gaussian uncertainty in the
problem model, and enable the planner to consider actions
that reduce uncertainty.

For propositional uncertainty (where actions have many
discrete outcomes), work by (Muise, McIlraith, and Beck
2012) and (Muise, Belle, and McIlraith 2014) on the planner
PRP builds a policy by making repeated calls to a determin-
istic planning kernel. This kernel finds weak plans, which
assume the non-deterministic action outcome can be cho-
sen. They incrementally build a policy to cover the outcomes
that were not chosen, and recurse. Their approach scales re-
markably well due to the use of regression to keep only the
relevant parts of a state, leading to a compact policy repre-
sentation.

Building on the work of (Muise, McIlraith, and Beck
2012) on propositional uncertainty, (Marinescu and Coles
2016b) extend the policy-building process to numeric uncer-
tainty. They achieve this by defining the process of regres-
sion through non-deterministic numeric effects. This offers
them the additional benefit of generalising numeric dead-
ends in order to prune them more efficiently. The limitation

73

here is that the approach only works if the effects are repre-
sented as Gaussian probability distributions. We aim to ad-
dress this limitation with our current work.

There are many other compelling approaches to planning
with numeric uncertainty. For example, work by (Beck and
Wilson 2007) solves the job shop scheduling problem in the
case where durations are drawn from Gaussian distributions.
(Babaki, Guns, and Raedt 2017) integrate a probabilistic en-
gine with constraint programming in order to acommodate
uncertain demand or processing times in decision-making
problems. Optimal planning in stochastic domains with re-
source constraints is addressed with a novel algorithm by
(Meuleau et al. 2009). POMDPs are used to model the prob-
lem of maximising performance while bounding risk with a
safety threshold by (Santana, Thiebaux, and Williams 2016).

1.3 Our work
We aim to tackle one of the main drawbacks of prior work on
policy-bulding for non-deterministic numeric planning – the
fact that it is limited in scope when it comes to the types of
probability distributions it can accommodate. General distri-
butions are acknowledged but they are not focused on, with
approaches so far concentrating only on Gaussian distribu-
tions.

In (Marinescu and Coles 2016b) the outcome of a non-
deterministic action can be chosen when starting to build
the policy. For example, if an action has three modes (lucky,
normal, and unlucky) the weak plan would always choose
the lucky outcome and leave the other outcomes to be filled
in later.

In our approach however, the user should not be telling the
planner control knowledge, so we don’t require the outcome
modes to be specified in the domain file. In fact we expend
no computational effort on discovering what the modes of
a certain action might be – especially since the most suit-
able modes to branch on may differ at different points in the
plan for the same action. We instead rely on branching as
necessary in order to meet the certainty requirements, as we
explain further below.

One novel element in the context of general probability
distributions is enabling the planner to be proactive about
improving on its initial solution. It can start by finding a pol-
icy which meets a given certainty threshold, and continue by
incrementally refining the solution in order to nudge up the
certainty.

An obvious question to pre-empt would be the following
– won’t we sacrifice computational time in order to accom-
modate any probability distributions in the policy-building
process? We explore this concern later in the paper through
the use of parallel computation in order to speed up our ex-
tended regression algorithm.

In the following, we first define the non-deterministic
planning formalism we use, and the policy-building process
on top of which we build our work. We then present our con-
tribution and discuss our implementation and our extension
to prior work.

As this is a work in progress, we can only provide our
best estimates regarding experimental performance, and we

put forth our ideas on both ways our approach could perform
– faster or slower than the Gaussian-only approach.

2 Background
2.1 Planning with Numeric Uncertainty
The formalism we use in this work is based on that of
(Beaudry, Kabanza, and Michaud 2010), adapted so that
actions can have multiple outcomes, to support the policy-
building mechanics we will detail in Section 2.2. A planning
problem is thus a tuple 〈F,v, I, G,A, θ〉 where:

• F is a set of propositional facts.

• v is a vector of numeric variables.

• I is the initial state: a subset of F and values of variables
in v.

• Conditions are conjunctions of facts from F and Linear
Normal Form constraints on v, each written: (w.v ≥ c),
where c ∈ <, and w is a vector of real values.

• G describes the goals: a set of conditions.

• A is a set of actions, with each a ∈ A having:

– Pre(a): a (pre)condition on its execution;
– Eff (a): a list of outcomes. Each o ∈ Eff (a) is a tuple
〈Eff +,Eff −,Eff num〉 where:
∗ Eff +,Eff −: a set of facts added (deleted) by that out-

come;
∗ Eff num : a set of numeric variable updates triggered

by that outcome, each of the form 〈v op D(v)〉 where
op ∈ {+=,=} and D is a (possibly deterministic)
probability distribution that governs the range of the
numeric effect. For instance, 〈battery +=N (−10, 22)〉
means ‘decrease battery by an amount with mean 10
and standard deviation 2’.

• θ ∈ [0.5, 1) is a confidence level that Pre(a) must meet to
be considered true (this is necessary due to the uncertainty
in effects).

Because there is uncertainty on numeric variables (due to
the distributions D in Eff num), it is not possible to be ab-
solutely certain that numeric conditions are satisfied. Thus,
(Beaudry, Kabanza, and Michaud 2010) uses a Bayesian
Network (BN) to model this uncertainty, and check that nu-
meric conditions are satisfied with the prescribed confidence
level θ. When each action has only a single outcome, the task
of planning is to find a sequence of steps [a0, .., an], giving
a state trajectory [I, S0, .., Sn]; with the BN ensuring that,
with confidence θ, each action’s preconditions are true and
Sn satisfies the goals G.

Work by (Marinescu and Coles 2016a) looks at Gaussian
vs non-Gaussian distributions in the context of heuristics.
In particular, they intoduce a heuristic which is admissi-
ble for monotonically worsening uncertainty, based on the
difference between the median and the θ’th percentile of a
distribution. Using this difference (offset) they can evaluate
whether numeric preconditions are true. In the case where
an effect would have influence the uncertainty of a vari-
able non-monotonically (e.g. assigns it a value rather than

74

Algorithm 1: Generating a Strong-Cyclic Plan in PRP
(Muise et al. 2012)

Data: A planning task, with initial state I and goals G
Result: A policy P
P ← {}; Open ← [I]; Seen ← {};1
while Open is not empty do2

S ← Open .pop();3
if (S ∈ Seen) ∨ (S � G) then continue;4
Seen ← Seen ∪ S;5
if ∃〈ps, a〉 ∈ P such that S � ps then6

for S′ ∈ apply outcomes(S, a) do7
Open .push(S′);8

else9
(weak plan, G′)← run planning kernel from10
S;
if planning kernel could not solve problem then11

ps dead ← generalise dead end(S);12
generate forbidden state–action pairs from13
psdead ;
P ← {}; Open ← [I]; Seen ← {};14

else15
PS ← regress G′ through weak plan to16
generate partial-state–action pairs;
P ← P ∪ PS ;17
for S′ ∈ apply outcomes(S,weak plan0)18
do

Open .push(S′);19

return P20

increases it by a value), then then in the heuristic the offset
is reset back to zero.

2.2 Policy-Building for Uncertainty
As noted in the formalism above, actions can have multiple
outcomes, and each outcome has a set of associated effects.
A solution to problems containing such actions can be rep-
resented by using a policy – a set of rules that dictates what
should be done in each state. For our policies, we assume
states are fully observable, i.e. we know which action out-
come occurred at any point.

In the presence of multiple outcomes, a weak plan corre-
sponds to a single trajectory of actions that leads from the
initial state to a goal state, assuming it is possible to choose
which action outcome occurs at each point (i.e. to be opti-
mistic). In the propositional case, weak plans can be found
using a deterministic planner which is given as input the all
outcomes determinisation. This means that each action with
preconditions Pre(a) and effects Eff (a) is replaced by sev-
eral actions, one for each o ∈ Eff (a), whose preconditions
are Pre(a) and whose effects are just those corresponding
to o.

(Muise, McIlraith, and Beck 2012) present an approach
where, by repeatedly invoking a deterministic planner to find
weak plans, it is possible to incrementally build a policy.
The core of this approach is set out in Algorithm 1. Key to

the success of their approach is exploiting relevance – by
regressing the goal through a weak plan step-by-step, they
determine which facts at each point are relevant to plan suc-
cess.

Regression takes as input a partial state ps – here, a set of
literals. It then applies an action ‘backwards’ to it, yielding a
new partial state ps ′ that has to be satisfied prior to the action
being applied. That is, applying the action in ps ′ returns us
to ps .

The process begins from the goals, i.e. initially ps = G.
Regressing ps through a step a of a weak plan, with pre-
conditions Pre(a) and a single outcome with add effects
Eff +(a) yields a partial state ps ′ where:

ps ′ = (ps \ Eff +(a)) ∪ Pre(a)

Each of these pairs 〈ps ′, a〉 is added to the policy (line
17). If policy-building reaches a state S that matches some
known partial-state–action pair (line 6), then all the out-
comes of the corresponding action are applied. Otherwise, if
there is no such match, the planning kernel is invoked from
S. Ideally, this produces a weak plan, either to the goals G
or to some other partial state which is already in the policy
(G′), in which case the partial-state–action pairs from this
weak plan are added to the policy.

Policy-building terminates when the open list is empty,
hence ∃〈ps, a〉 such that S � ps for all states S reachable
from the initial state via the policy. Alternatively, if no strong
cyclic plan exists, all actions that could be applied in the ini-
tial state are forbidden, and planning terminates with failure.

The numeric extension to this algorithm has been pro-
posed by (Marinescu and Coles 2016b), where regression
is performed through successive Gaussian effects by taking
advantage of these distributions’ analytical form.

3 Approach
3.1 Focus of the Paper
Our goal is to introduce a general representation of uncertain
numeric effects in non-deterministic planning. We aim to al-
low effects to be sampled from any probability distribution,
without incurring a high computational cost. Our represen-
tation allows the planner to find robust solutions which meet
a given certainty threshold.

Below we present how the policy-building process de-
scribed in Section 2.2 can be extended to incorporate a wider
range of uncertain action effects. Specifically, our novel
representation of uncertainty allows regression to be done
through a sequence of actions with non-Gaussian effects.

The propositional elements of regression stay the same
as in prior work by (Muise, McIlraith, and Beck 2012).
We leverage, among other things, their approach to propo-
sitional uncertainty, for its notable speed when triaging pos-
sible matches to a given partial state.

The numeric elements of regression are the focus of our
work. We show that it is computationally feasible to perform
regression through non-Gaussian effects, and provide an ef-
ficient implementation to do so.

75

S0

S2S1 S3

move action S0

S1

move action

Figure 1: Multiple modes (left) vs single mode (right).

3.2 Multiple Modes vs Single Mode
One of the factors contributing to the success of prior work
by (Marinescu and Coles 2016b) was the existence of ex-
plicit modes in non-deterministic action effects. For exam-
ple, the move action had three different outcomes hard-
coded in the PDDL domain file. One lucky mode (using
less energy than nominally), one nominal mode, and one un-
lucky mode (using more energy than nominally). The exis-
tence of these modes allowed the planner to do two things.
First, to perform an all-outcomes determinisation on the
non-deterministic effects (cf. (Muise, McIlraith, and Beck
2012)), which resulted in a favourable weak plan (as it could
choose all the lucky action outcomes). Second, to recur-
sively branch off from the weak plan at those lucky points in
order to solve for all the unfavourable outcomes as well.

However, there is a problem with these hard-coded modes
– the user needs to specify them in the beginning. This is
often impractical, as it forces the user to guess how an un-
certain environment might react. It also implies giving the
planner additional control knowledge, essentially offering it
hints without being certain these hints are correct. We expect
better performance when allowing the planner to decide by
itself when branching an outcome into several modes is nec-
essary.

The question then becomes, if we don’t want to rely on
the user to specify modes, how can we still leverage the prior
work and its fast policy-building process? We need to infer
the modes automatically, without extra information from the
user. We also need to infer them efficiently – it would be in-
efficient for example to always branch 3 ways (or some other
arbitrarily chosen number); it might not always be necessary
to branch, as we explain below.

We propose to dynamically generate branches as needed.
We do this by successively bisecting the probability distri-
bution of the non-deterministic effect. Whether we generate
a branch or not will depend on the success or failure of the
weak plan from that branch outcome to the goal. This suc-
cess or failure is dictated by θ as described in Section 2.

3.3 Representing the Single Mode
The core motivation of our work is to allow the representa-
tion of any probability distribution – not just a set of Gaus-
sians – in non-deterministic action effects. We demonstrate
that our ambition is computationally feasible and effective
by using it to improve the policy-building process of prior
work. Thus, we face the question – how do we represent
a single, general probability distribution such that policy-

building still works as efficiently as it did with Gaussian dis-
tributions?

We introduce the concept of a Bayesian Plan Network
(BPN) as a representation of uncertainty at any point in the
reachable search space. Its purpose is to check whether an
action precondition holds given the uncertainty at the point
of application.

The answer to the computation done by the BPN (a
boolean – precondition holds or does not hold) is used to
better inform state expansion about the uncertain environ-
mental conditions. This is the case both in search and in
RPG building. As part of this computation we use the cer-
tainty cutoff value θ explained in Section 2. We use the value
θ = 0.9 throughout the following to illustrate our approach.
This is for demonstration purposes – the concepts we intro-
duce work the same regardless of the value of θ.

3.4 Building a Bayesian Plan Network
The BPN can be described as a directed graph of nodes,
where each node represents either a probability distribu-
tion d or a variable v. A BPN that corresponds to a given
plan contains all the variables affected by that plan as they
go through sequential changes (actions affecting them), to-
gether with their corresponding distributions (if an effect is
not uncertain, its distribution is degenerate). The graph is
weighted – coefficients from action effects are used to indi-
cate how a variable depends on previous variables multiplied
by constants.

The distribution nodes can be described as source nodes
– they have no parent nods, as their value does not depend
on other variables in the plan. They are akin to buckets of
samples (whether described analytically, like the shape of a
Gamma function, or empirically, like a collection of sensor
measurements).

The variable nodes are essentially addition nodes. They
have at least one parent node (which can be a distribution,
or another variable). If a variable node is queried to obtain
a sample of its value, it will in turn query its parents – this
operation recursively all nodes in the PN once.

The steps for building a BPN are as follows:

1. Input a problem description and a weak plan found by the
planning kernel.

2. For each variable set in the initial state, create one vari-
able node and one distribution node for each one. Each
distribution node is the parent of its corresponding vari-
able node, and represents a degenerate distribution (only
contains one sample, the value set by the initial state).

3. For each action in the weak plan, loop through its effects.

4. For each effect, create one new variable node for the af-
fected variable. Then create parent links between the new
node and all the variable nodes whose values are used by
that effect (with their respective weights assigned to the
parent link). Note that we keep track of the latest variable
nodes at all times, to ensure the sequential changes to the
variables are accurate.

5. If the effect above is non-deterministic, then create one

76

S2
transmit
-1 data S3

move
-10(ish) fuel S4

drill
-50(ish) fuel, +1 data S5S0

move
-10(ish) fuel S1

move
-10(ish) fuel

V_fuel_3
1

V_fuel_4V_fuel_0
1

V_fuel_1

D_move_fuel

1

D_drill_fuel

1

D_move_fuel

1

D_move_fuel

1

V_data_1 1 V_data_2V_data_0 1

V_fuel_2
11

Figure 2: Weak plan and its corresponding BPN.

new distribution node containing the samples correspond-
ing to that effect.

6. If the effect above uses a constant, then create one new
distribution node containing a degenerate distribution
(only contains one sample, the constant itself).

7. Each time a new node is created, sample its value a given
N number of times and compute the median value. This
median will be necessary when defining the regression
operation in Section 3.5.

8. Each time an action with two modes (outcomes) is en-
countered, apply the operations above for each mode, then
create one new variable node whose parents are the vari-
able nodes of each mode, weighted equally at 0.5 each.
This situation can arise when our algorithm cannot find a
solution by using a single mode, and bisects the probabil-
ity distribution at its median.

3.5 Integrating a Bayesian Plan Network with
Prior Work

As the purpose of our work here is to allow the prior policy-
building work to deal with general probability distributions,
we present below how this can be achieved. Specifically, we
introduce a novel way to perform regression.

The core idea of our contribution is to build a BPN and
sample it to check whether an action’s preconditions hold at
any given stage.

The steps for building a policy by using the BPN to in-
clude general probability distributions are as follows:

1. Use the planning kernel to find a weak plan.
2. Use the weak plan to build a BPN as described in Section

3.4.
3. Use the BPN in the regression stepo to build a policy. This

is where we use the BPN to check if preconditions hold,
not with a Gaussian offset as in prior work, but with an
offset obtained through repeated sampling of the BPN. We
will expand on this step below.

4. Use the policy to decide which actions the planner should
take.
Instead of the (partial state, action) pairs described in Sec-

tion 2.2, the policy will now contain (partial state, list of ac-
tions) pairs. We obtain this list by storing the steps in the
weak plan created when the partial state is expanded.

When checking if the policy knows what to do in a partic-
ular state, we first do the propositional triage. We look for all
the partial states in the policy which match the facts in our
particular state, and thus obtain a list of candidate matches.

To choose a candidate match, we need to recreate the
functionality of regression, as we no longer have the op-
tion of computing regression analytically based on all uncer-
tainty being Gaussian. We build a BPN from the actions in
the plan-so-far up to our particular state, concatenated with
the list of actions from our particular state to the goal (as
mentioned above, the list of actions is found in the candidate
pair). We then sample the BPN a certain amount of times –
in our preliminary experiments, an amount of 1000 was suit-
able. By sampling the BPN we refer to sampling the goal
state in the BPN, which will propagate backwards and even-
tually sample all nodes in the network. After each sampling,
we loop through the plan that generated the BPN and check
if at each step the preconditions hold, keeping track of each
precondition’s status with a counter. At the end of the 1000
sampling steps, we check if all the preconditions are satis-
fied with the required degree of certainty θ, e.g. if they are
satisfied at least 90% of the time during those 1000 samples,
based on our counters.

To improve the process of choosing a candidate match, we
also order the list of candidates by heuristic value (Metric-
RPG).

3.6 Representing a Plan Network Efficiently
The graphical representation of the BPN described in the
previous section is useful to intuitively understand how the
network functions. However, the sequential computations
based on this representation slow down our approach and
make it less competitive with prior work.

We thus propose a matrix representation in order to ef-
ficiently compute the answer to the central question in the
section above – are all the preconditions in a given plan sat-
isfied with certainty θ? Our method will allow each sample
run to happen concurrently rather than sequentially, signifi-
cantly reducing the time taken to compute the final answer.

The structure of the matrix stems from the topological or-
der traversal of the BPN. Each row is a node, and each col-
umn is a sample run. For each distribution node we have a
value of 1 in the column that corresponds to a sample from
that distribution, and a value of 0 everywhere else. For each

77

variable node we have non-zero values in the columns that
define that node’s value in relation to the edges coming into
it.

Then, to check if that BPN’s corresponding plan is satis-
fied with certainty θ, we multiply our matrix representation
with a matrix containing all the sampled values for all un-
certain variables. We then use the result to count the number
of sample runs in which all the preconditions were satisfied,
as in Section 3.5.

3.7 Example
Consider a simple robot-waiter domain with two actions:

• The robot can move from the customer to the kitchen.
This has deterministic propositional effects.

• The robot can move from kitchen to the customer, and
pass the butter. The amount of butter passed is non-
deterministic, according to some distribution, due to the
accuracy of the robot’s actuators.

From a modelling point of view, there is a single outcome
mode for second of these actions: that some amount of butter
is passed. In prior work (Marinescu and Coles 2016b) one
would represent that as a single Gaussian-distributed out-
come – there is no reason per se to use multiple Gaussian
outcomes in the effect list of passing butter.

To ensure that enough butter is passed, with sufficient
confidence, a strong plan could then be [move, pass-butter,
move, pass-butter]. In the absence of multiple outcomes on
passing butter (because there is no need to hand-prescribe
multiple outcomes, from a user point-of-view), there would
be no branching. As such, regardless of how much butter
was passed, the expected solution length is four actions. A
more efficient outcome would be to branch on the outcome
of butter passing within the planner, rather than expecting
this in the model. For instance, if with P(0.5) enough but-
ter is passed, then a branch to execute the second round of
moving and passing butter would reduce the expected solu-
tion length to (0.5× 2) + (0.5× 4) = 3 actions.

4 Evaluation
4.1 Evaluation Plan
As our work is still in progress, we will confine this section
to presenting our evaluation plan.

First, we will compare our planner with the one used by
(Marinescu and Coles 2016a). We will use the same nu-
meric planning domains (such as rovers) for both plan-
ners, while taking into account that information about un-
certainty is conveyed differently to these two planners. In
prior work, the PDDL domain file contains the parame-
ters of the Gaussian distribution associated with each non-
deterministic effect. In our work, an additional data file con-
tains a set of samples taken from a Gaussian distribution in
a preprocessing phase.

This first comparison will establish whether our plan-
ner performs as well as prior work or better in problems
where the uncertainty is genuinely a Gaussian (rather than
poorly approximated as one). We expect these tests to con-
firm the computational feasibility of our work – even facing

off against the fast analytical mathematics that are possible
with Gaussians.

Second, we will take the prior work from (Marinescu and
Coles 2016b) and compare it with our work in order to
measure the impact of multi-mode versus single-mode ac-
tion outcomes. As before, information about uncertainty is
conveyed differently. The prior work once again hard-codes
both the Gaussian parameters and the outcome modes into
the PDDL domain file. For our work, we take in a data file
containing samples from all the outcome modes (assuming
that, for N modes, each mode has a 1/N likelihood to oc-
cur).

We make this second comparison in order to check how
the removal of the hard-coded clues (the modes) impacts
planner performance and solution certainty. One interesting
metric to look at will be the expected probabilistic cost of
the plan, as mentioned in Section 3.7.

Another useful indicator of performance will be the com-
putational cost of planning. We are interested in comparing
the process of finding a plan for the Gaussian case versus
finding a plan for the general case. This will indicate whether
the extra detail present in the general probability distribution
impacts planner running time. We expect this not to be the
case, due to the parallel computation approach we described
in Section 3.6.

4.2 Potential Domains
We initially aim to test our planner on the same domains as
prior work, namely:

1. Rovers from (Coles 2012), where the move action ex-
hibits Gaussian uncertainty due to soil characteristics and
potentially incomplete data on obstacles.

2. AUV from (Coles 2012) (modified to no longer be an over-
subscription problem), where the move action outcome
is drawn from a general probability distribution reflecting
the influence of stochastic ocean currents.

3. TPP from (Gerevini et al. 2009), where the purchase
action is drawn from a general probability distribution
simulating the honesty of the merchants.

We are also actively seeking out domains from the plan-
ning applications community, in order to best illustrate the
types of problems our approach is suitable for. Of particu-
lar interest are situations where probability distributions are
skewed to either side of the median line, or exhibit modes
(distinct areas on the graph) that are not easily distinguish-
able when modelling the problem. Intuitively, in these cases
Gaussian approximations are not adequate.

4.3 Potential Outcomes
Extrapolating from the improvements obtained in (Mari-
nescu and Coles 2016a) by adding approximate information
about uncertainty into the heuristic, we expect that adding
more accurate information about uncertainty into the heuris-
tic will enhance the already-existing benefits. For example,
we expect a more informed heuristic to discover dead ends
faster (as it is not likely to lead search down risky paths).
We also expect that, if placed side-by-side in a simulator,

78

our work would find more reliable solutions than (Marinescu
and Coles 2016a) when measured by how frequently the so-
lution obeyed the certainty threshold θ in the simulator.

Compared to the work in (Marinescu and Coles 2016b),
on top of more accurate information about uncertainty, we
expect our single-mode outcomes to lower the expected
probabilistic cost of solution plans. We believe this is the
case due to the planner only branching as-needed depending
on the certainty threshold, rather than always branching on
multiple pre-specified modes.

If the improvements outlined above do not occur, then our
work provides evidence that the Gaussian approach taken in
(Marinescu and Coles 2016b) is a good enough approxima-
tion of uncertainty – with the drawback of being reliant on
explicit information on modes from the user.

Additionally, we expect the computational cost to be
lower due to the efficient matrix implementation of the Plan
Network outlined in Section 3.6.

If instead this cost turns out to be higher, it would mean
that our implementation, in spite of parallel computing, can-
not surpass the advantages offered by using analytic Gaus-
sian mathematics.

5 Conclusions

5.1 Summary

In this paper, we introduced a novel way to represent nu-
meric uncertainty at any point in the reachable search space.
Our representation allows non-deterministic numeric effects
to be drawn from any probability distribution, specified ei-
ther in analytic form or as a collection of data samples. We
described an efficient way to implement this representation
that uses parallel computation and can make the most of
GPU hardware. We integrated our approach with prior work
on policy-building for non-deterministic planning, defining
the regression operation through non-Gaussian effects.

While this is a work in progress and experimental evalua-
tion is still pending, our research is an excellent opportunity
to examine the precision / speed trade-off when it comes to
generality. Accommodating general probability distributions
requires less effort in terms of domain modelling and user
input. Our work is able to take the most accurate probabil-
ity distribution available (perhaps obtained by sampling data
from previous runs), and make the most of that information,
efficiently creating branches in non-deterministic outcomes
as necessary to meet the certainty requirements.

According to our research, if information about uncertain
probability distributions is available when writing the do-
main model, the planner should use it in its entirety rather
than abstract it into a Gaussian distribution, or to a single
median. With our implementation, it’ll be tractable to do so,
taking advantage of all available information.

If on the other hand information is not available to be-
gin with, our approach is able to start out with a uniform or
degenerate probability distribution, and refine it with time
as more information is obtained (typically at plan running
time).

5.2 Future Work
While at present the main application of our contribution is
the policy-building process outlined in Section 3.5, our work
can be used in the future to generate strong plans, in a similar
vein to (Coles 2012) and (Marinescu and Coles 2016a).

In addition, our architecture allows the planner to not only
generate a plan with θ certainty, but also to bump up θ to the
highest value it can take under the given uncertain numeric
effects. This is fairly straightforward to achieve – the query
to the Plan Network that indicates success or failure can be
modified to instead return the number of successful sample
runs out of the total ones attempted.

The opposite of the above is also achievable in a similar
fashion. If a solution with certainty θ is not found, our plan-
ner can be modified to return an alternative, lower value of
θ for which a solution is found.

Another highly promising avenue for future work is learn-
ing probability distributions during execution. We can start
out with a rough idea of a probability distribution – perhaps
a Gaussian or a degenerate one if we lack any insight about
the problem. We can then refine it to a more accurate distri-
bution in a live feedback loop during plan execution. Our ar-
chitecture allows changing distribution samples and param-
eters easily, so we expect the learning aspect to be a major
selling point of our future work.

Acknowledgements
We would like to thank Amanda Coles for her insight into
branching in the presence of uncertainty, and also for her
critical analysis of our work.

Liana Marinescu’s research is funded by a scholarship
awarded by the Department of Informatics at King’s College
London.

References
Babaki, B.; Guns, T.; and Raedt, L. D. 2017. Stochastic
constraint programming with and-or branch-and-bound. In
Proceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence.
Beaudry, E.; Kabanza, F.; and Michaud, F. 2010. Planning
with concurrency under resources and time uncertainty. In
Proceedings of the Nineteenth European Conference on Ar-
tificial Intelligence.
Beck, J. C., and Wilson, N. 2007. Proactive algorithms for
job shop scheduling with probabilistic durations. Journal of
Artificial Intelligence Research.
Coles, A. J. 2012. Opportunistic branched plans to max-
imise utility in the presence of resource uncertainty. In Pro-
ceedings of the Twentieth European Conference on Artificial
Intelligence.
Gerevini, A.; Long, D.; Haslum, P.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth In-
ternational Planning Competition: PDDL3 and experimental
evaluation of the planners. Artificial Intelligence.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research.

79

Hoffmann, J. 2003. The Metric-FF planning system: Trans-
lating ignoring delete lists to numeric state variables. Jour-
nal of Artificial Intelligence Research.
Marinescu, L., and Coles, A. I. 2016a. Heuristic guidance
for forward-chaining planning with numeric uncertainty. In
Proceedings of the Twenty-Sixth International Conference
on Automated Planning and Scheduling.
Marinescu, L., and Coles, A. I. 2016b. Non-deterministic
planning with numeric uncertainty. In Proceedings of the
Twenty-Second European Conference on Artificial Intelli-
gence.
Marinescu, L., and Coles, A. I. 2016c. Non-deterministic
planning with numeric uncertainty. Technical report, King’s
College London.
Meuleau, N.; Benazera, E.; Brafman, R. I.; Hansen, E. A.;
and Mausam, M. 2009. A heuristic search approach to plan-
ning with continuous resources in stochastic domains. Jour-
nal of Artificial Intelligence Research.
Muise, C. J.; Belle, V.; and McIlraith, S. A. 2014. Comput-
ing contingent plans via fully observable non-deterministic
planning. In Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence.
Muise, C. J.; McIlraith, S. A.; and Beck, C. J. 2012. Im-
proved non-deterministic planning by exploiting state rele-
vance. In Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling.
Santana, P.; Thiebaux, S.; and Williams, B. 2016. RAO*: an
algorithm for chance constrained POMDPs. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence.

80

Reformulating Oversubscription Planning Tasks
Michael Katz
IBM Research

Yorktown Heights, NY, USA
michael.katz1@ibm.com

Vitaly Mirkis
Amazon Research

Haifa, Israel∗
vitamin@amazon.com

Florian Pommerening
University of Basel
Basel, Switzerland

florian.pommerening@unibas.ch

Dominik Winterer
Unaffiliated
Germany†

dominik winterer@gmx.de

Abstract

Most modern heuristics for classical planning are specified
in terms of minimizing the summed operator costs. Heuris-
tics for oversubscription planning (OSP), on the other hand,
maximize the utility on states. In this work we aim to pro-
vide the grounds for the adaptation of existing heuristics for
classical planning to the OSP setting. To this end, we re-
formulate the OSP task to a classical planning task extended
with an additional operator costs function, reflecting the util-
ity information fully. We exemplify how existing heuristics
from classical planning can be adapted to such a setting with
a merge-and-shrink heuristic and empirically validate the fea-
sibility of our approach.

Introduction
The field of automated planning is concerned with the prob-
lem of finding a course of action satisfying certain prede-
fined goals. While the classical planning problem requires
achieving all goals, partial satisfaction planning relaxes this
restriction, allowing to achieve a subset of the goals. As
a result, even an empty plan is a trivial valid solution, and
therefore the aim of partial satisfaction planning is to obtain
solutions of best possible quality. In net-benefit planning
(van den Briel et al. 2004), a subfield of partial satisfaction
planning, the assumption is that the solution cost and state
values are comparable. As a consequence, the solution qual-
ity is measured as the net difference between the value of the
obtained end state and the solution cost. In oversubscription
planning (Smith 2004), on the other hand, the solution cost
and state values are assumed to be incomparable. Thus, to
take the cost into account, a bound on the cost or a budget
is introduced (Smith 2004), and the objective is to maximize
the value of the obtained end state, while constraining the
solution cost.

Heuristic search is among the best performing approaches
to both classical and net-benefit planning, with many search
guiding heuristics developed over the years. These heuristics
are typically classified into four families: abstractions, (e.g.,
Culberson and Schaeffer 1998; Edelkamp 2001; Helmert et
al. 2014; Katz and Domshlak 2010a), delete relaxations,

∗The participation in this work was done prior current position.
†The contribution to this work was done in a Master thesis at

Universities of Basel and Freiburg.

(e.g., Bonet and Geffner 2001; Hoffmann and Nebel 2001;
Keyder and Geffner 2008; Domshlak et al. 2015), crit-
ical paths (Haslum and Geffner 2000), and landmarks,
(e.g., Richter et al. 2008; Karpas and Domshlak 2009;
Helmert and Domshlak 2009; Keyder et al. 2010). The
basic principle behind all these heuristics is the same – re-
laxing the task at hand to fit some tractable fragment of the
planning problem. In net-benefit planning, these heuristics
are often applied not directly to the net-benefit task, but to
a reformulation into classical planning (Keyder and Geffner
2009).

In optimal oversubscription planning, however, not much
work was focused on heuristic search, and the progress was
somewhat slower. A significant performance improvement
was first reported by Mirkis and Domshlak (2013). They
exploited explicit abstractions (Edelkamp 2001), which are
tractable due to their small size. The abstract oversubscrip-
tion planning problems were additively composed into in-
formative admissible estimates which are then used to prune
states in a branch-and-bound search. The approach turned
out to work well in practice: in some cases the search space
was reduced by three orders of magnitude compared to the
baseline algorithm. Later, Mirkis and Domshlak (2014) ex-
ploit the notion of landmarks for task reformulation, en-
riching the task with reachability information. Katz and
Mirkis (2016) characterize tractable fragments of oversub-
scription planning tasks according to causal graph structure
and variable domain sizes, and derive admissible estimates
from these fragments. Unfortunately, even the simplest frag-
ment under this characterization was found to be not solv-
able in polynomial time. Thus, additional restrictions are re-
quired to achieve tractability, similarly to the ones that were
previously exploited in deriving heuristics for classical plan-
ning.

Our aim in this work is to lay grounds for adapting many
existing and future heuristics for classical planning to over-
subscription planning. In order to do that, similarly in spirit
to what was done for net-benefit planning by Keyder and
Geffner (2009), we suggest a reformulation of an oversub-
scription planning task to a classical planning task with two
cost functions on operators. The first one corresponds to the
original operator costs and is intended for restricting the set
of feasible solutions. The second one corresponds to the net
difference in state values. We then search for an optimal

81

feasible solution of the reformulated planning task accord-
ing to the second cost function. Using merge-and-shrink ab-
straction heuristics (Helmert et al. 2014) as an example, we
show how this reformulation can exploit existing heuristics.
Another contribution of our work is the first attempt at stan-
dardizing the benchmark set for oversubscription planning.
For that, we introduce additional sections to PDDL intended
to specify state-additive utility functions and a cost budget.
Further, we adapt the Fast Downward translator (Helmert
2006) to parse these sections, and we create a collection
of oversubscription planning benchmarks from the classi-
cal STRIPS domains used in International Planning Compe-
titions.

Background
In line with the SAS formalism1 for deterministic planning
(Bäckström and Klein 1991), a planning task structure is
given by a pair xV,Oy, where V is a set of state variables,
and O is a finite set of operators. Each state variable v P V
has a finite domain dompvq. A pair xv, ϑy with v P V and
ϑ P dompvq is called a fact. A partial assignment to V is
called a partial state. The subset of variables instantiated by
a partial state p is denoted by Vppq Ď V . Often it is conve-
nient to view partial state p as a set of facts with xv, ϑy P p
iff prvs “ ϑ. We say a partial state s is a state iff Vppq “ V .
Partial state p is consistent with state s if s and p agree on all
variables in Vppq. We denote the set of states of a planning
task structure xV,Oy by S.

Each operator o is a pair xprepoq, effpoqy of partial states
called preconditions and effects. We assume that all oper-
ators are in SAS format i.e. Vpeffpoqq Ď Vpprepoqq for all
o P O. An operator cost function is a mapping C : O Ñ R.
While in classical planning the operator cost functions C are
typically assumed to be non-negative, we emphasize that in
general cost functions C can take negative values as well.

An operator o is applicable in a state s P S iff srvs “
prepoqrvs for all v P Vpprepoqq. Applying o changes the
value of each v P Vpeffpoqq to effpoqrvs. The resulting state
is denoted by sJoK. An operator sequence π “ xo1, . . . , oky
is applicable in s if there exist states s0, ¨ ¨ ¨ , sk such that (i)
s0 “ s, and (ii) for each 1 ď i ď k, oi is applicable in si´1

and si “ si´1JoiK. We denote the state sk by sJπK and call
it the end state of π.

Oversubscription Planning An oversubscription plan-
ning (OSP) task ΠOSP “ xV ,O, sI , C , u,By extends a plan-
ning task structure xV,Oy with an initial state sI P S, a
non-negative operator cost function C and a utility function
u : S Ñ R0`, and a cost bound B P R0`.

An operator sequence π is called an s-plan for ΠOSP if it
is applicable in sI , and

ř
oPπ Cpoq ď B. We call an sI -plan

a plan for ΠOSP . By the value ûpπq of a plan we refer to
the value of the end-state of π, that is, ûpπq “ upsIJπKq. A
plan π for ΠOSP is optimal if ûpπq is maximal among all the
plans. While an empty operator sequence is a plan for every
OSP task, the objective in oversubscription planning is to

1Not to be confused with the more commonly used SAS` for-
malism (Bäckström and Nebel 1995).

find a plan achieving a state of high utility and optimal over-
subscription planning is devoted to searching for optimal
plans only. In what follows, we restrict our attention to addi-
tive utility function, computed as a sum over the state facts.
Such value functions have the form upsq “ ř

fPs u1pfq,
where u1 is a function mapping facts to non-negative real
values. Slightly abusing the notation, we denote u1 by u in
the following.

A heuristic for the OSP task ΠOSP “ xV ,O, sI , C , u,By
over states S is a mapping h : SˆR0` ÞÑ R0`Yt8u from
state-budget pairs to a non-negative real value or infinity.
The perfect heuristic h˚ maps each state s P S and bound
b P R0` to the utility ûpπ˚q of an optimal plan π˚ for the
OSP task xV,O, s, C, u, by or to ´8 if no such plan exists.
A heuristic h is admissible if h ě h˚. Note that admissible
heuristics overestimate the optimal utility instead of under-
estimating the optimal plan cost as in classical planning.

Multiple Cost Function Planning
We now present an extended classical planning formalism
that limits the set of feasible solutions with secondary cost
functions and can have negative values in the primary cost
function.
Definition 1. A multiple cost function (MCF) planning task
is a tuple ΠMCF “ xV,O, sI , G, C0,C y, where xV,Oy is a
planning task structure and
• sI is a state, called initial state
• G is a partial state, called goal state
• C0 is a cost function
• C “ txCi,Biy | 1 ď i ď nu where Ci is a non-negative

cost function and Bi P RY t8u.
We call the cost function C0 the primary cost function and

each cost function Ci with 1 ď i ď n a secondary cost func-
tion. An operator sequence π is a plan for ΠMCF if G is
consistent with sJπK and

ř
oPπ Cipoq ď Bi for 1 ď i ď n.

A plan is optimal if it has minimal primary cost among
all plans of ΠMCF. A heuristic for MCF planning task
ΠMCF “ xV,O, sI , G, C0,C y with states S is a mapping
h : S ˆ R|C | ÞÑ R Y t´8,8u. The perfect heuristic h˚
maps a state s and a vector of bounds b to the primary cost
C0pπ˚q of an optimal plan π˚ for the MCF planning task
xV,O, s,G, C0,C 1y, with C 1 “ txCi,biy | xCi,Biy P C u
or to 8 if no such plan exists. A heuristic h is admissible if
h ď h˚.

A classical planning task is an MCF planning task
Π “ xV,O, sI , G, C0,Hy with C0 being non-negative.
As the set of secondary cost functions only constrains
the set of plans, every plan for an MCF task ΠMCF “
xV,O, sI , G, C0,C y is also a plan for the classical planning
task Π “ xV,O, sI , G, C0,Hy.

In classical planning, abstractions can be obtained by
e.g. projecting the problem on a subset of its variables
(Edelkamp 2001), or through a merge-and-shrink process
(Helmert et al. 2007; 2014). One of the strengths of abstrac-
tion heuristics in classical planning is their low per-node
computation time during search. For explicit abstractions,
such as projections and merge-and-shrink, the computation

82

(a) s0

ups0q
s1

ups1q
s2

ups2q
. . . sn

upsnq
o1 o2 on

(b) s0 s1 s2 . . . sn
o1 o2 on

ups1q ´ ups0q ups2q ´ ups1q upsnq ´ upsn´1q

(c) s0 s1 s2 . . . sn
o1 o2 on

upo1q upo2q uponq

Figure 1: The figures show the idea behind reformulating an operator sequences with a state dependent utility function (a) into
an operator sequences where a cost function reflects the utility difference between two successive states (b). The additive utility
function allows for a state-independent cost function (c).

is basically a linear-time lookup. For implicit abstractions
(Katz and Domshlak 2010a), the computation is more com-
plicated, but is still of low polynomial time.

Abstractions for MCF planning generalize the definition
for classical planning (Helmert et al. 2007) by additionally
requiring reachable abstract state distances under the sec-
ondary cost functions to be below their respecive bounds.
Formally, a (labeled) transition system (with multiple cost
functions) is a tuple Θ “ xS,L, c, T, s0, S˚y where S is a
finite set of states, L is a finite set of labels, c “ xc0, ¨ ¨ ¨ , cny
are functions ci : L ÞÑ R (1 ď i ď n), T Ď S ˆ L ˆ S a
set of labeled transitions, s0 the initial state and S˚ the goal
states.

The induced transition of an MCF task ΠMCF “
xV,O, sI , G, C0,C y is the transition system ΘΠMCF “
xS1, L1, c1, T 1, s10, S 1̊ ywhere S1 are the states of ΠMCF, L1 “
O, cipoq “ Cipoq, ps, o, tq P T 1 iff s is consistent with prepoq
and t is consistent with effpoq, s10 is the initial state of the
planning task and S 1̊ are the goal states of the planning task.
An abstraction is a mapping α : S1 ÞÑ Sα where Sα are the
states of the transition system Θα “ xSα, L, c, Tα, sα0 , Sα˚ y
with Tα “ txαpsq, o, αptqy | ps, o, tq P T u, sα0 “ αps0q and
Sα˚ “ tαpsq | s P Su. Θα is called the abstract transition
system.

For this paper, we assume MCF tasks with at most one
secondary cost function, i.e., having |C | ď 1.

Reformulation
We now show how to reformulate an OSP task into an MCF
task. The key idea here is to compile the (additive) utility
function into the primary cost function of an MCF planning
task. We start by noting that for an additive state value func-
tion u, there is an easily computable finite upper bound

M :“
ÿ

vPV
max

ϑPdompvq
upxv, ϑyq.

This upper bound allows us to switch from maximization
to minimization of the utility value. Thus, our first step in
the formulation is to switch to a new state value function
u : S Ñ R0` defined by upsq “M´upsq, and the objective

of the new task is to find a plan π minimizing the value ûpπq.
The idea behind our reformulation, illustrated in Figure 1, is
to compute by how much each operator changes the utility
of a state, if applied. In other words, for a state s and an
operator o applicable in s, we compute the value ups, oq :“
upsJoKq ´ upsq.
Theorem 1. The value ups, oq is independent of the state s.

Proof. By definition of SAS, Vpeffpoqq Ď Vpprepoqq for ev-
ery operator o P O. For a variable v P V zVpeffpoqq, we have
srvs “ sJoKrvs and hence upxv, srvsyq ´ upxv, sJoKrvsyq “
0. Therefore, it suffices to consider variables v P Vpeffpoqq:
ups, oq “ pM ´ upsJoKqq ´ pM ´ upsqq

“
ÿ

vPV
upxv, srvsyq ´ upxv, sJoKrvsyq

“
ÿ

vPVpeffpoqq
upxv, srvsyq ´ upxv, sJoKrvsyq

“
ÿ

vPVpeffpoqq
upxv, prepoqrvsyq ´ upxv, effpoqrvsyq.

Thus, we can define a (state-independent) cost function
over operators u : O Ñ R as

upoq “
ÿ

vPVpeffpoqq
upxv, prepoqrvsyq ´ upxv, effpoqrvsyq.

Note that the cost function u may have negative values.
We say that an operator o achieves utility if upoq ă 0 and o
destroys utility if upoq ą 0.
Theorem 2. For a sequence of operators π applicable in
state s, we have upsq `ř

oPπ upoq “ upsJπKq.
The proof is straightforward from the definition of u on

operators. Thus, finding a sequence of operators leading to a
state with the minimal value u corresponds exactly to finding
a sequence of operators of a minimal summed cost u. We
can thus solve the OSP task as a classical with multiple cost
functions and an empty goal.

83

Definition 2. Let ΠOSP “ xV ,O, sI , C , u,By be an over-
subscription planning task. The multiple cost function re-
formulation ΠR

MCF “ xV,O, sI , G, C0, txC,Byuy of ΠOSP is
the MCF planning task, where

• G “ H, and
• C0poq “ ř

vPVpeffpoqq
upprepoqrvsq ´ upeffpoqrvsq, for o P O.

Theorem 3. Let ΠOSP be an oversubscription planning task
and ΠMCF its multiple cost function reformulation. If π is a
plan of ΠOSP with utility ûpπq then π is a plan of ΠMCF with
cost C0pπq “ upsIq ´ ûpπq and vice versa.

Proof. Operator applicability is defined in the same way for
ΠOSP and ΠMCF, so if π is a plan in one task, it is certainly
applicable in the other task and ends in the same state, i.e.
sIJπK is well-defined and the same state in both tasks.

The operator sequence π respects the bounds of ΠOSP iffř
oPπ Cpoq ď B iff π respects the bounds of the (only) sec-

ondary cost function of ΠMCF. Therefore, and because all
states are goal states in ΠMCF, π is a plan in ΠOSP iff it is a
plan in ΠMCF.

The primary cost of π is C0pπq “ ř
oPπ upoq, which is

equal to upsIJπKq ´ upsIq “ upsIq ´ ûpπq according to
Theorem 2.

As upsIq is constant, a plan π maximizes ûpπq iff it mini-
mizes C0pπq and the following result directly follows:

Corollary 1. An oversubscription planning task and its
multiple cost function reformulation have the same optimal
plans.

Heuristics for OSP via Reformulation
Having proposed the OSP reformulation, we now turn our
attention to devising heuristics for MCF planning. We start
by clarifying how heuristics from MCF planning can be in-
tegrated into an OSP approach.

Definition 3. Let ΠOSP be an OSP task, ΠMCF its multi-
ple cost function reformulation, and S the states of ΠOSP.
Let hMCF : S ˆ R ÞÑ R Y t´8,8u be a heuristic for
ΠMCF. The multiple cost function reformulation heuristic
of hMCF, denoted by hR

MCF is defined by hR
MCFps, bsq “

upsq ´ hMCFps, bsq.
Multiple cost function reformulation heuristics are heuris-

tics for OSP tasks. The following lemma establishes the con-
nection between the informativeness of heuristics for MCF
planning tasks and their multiple cost function reformulation
heuristics.

Lemma 1. For an OSP task ΠOSP and ΠMCF “ ΠR
MCF, we

have hΠ̊OSP
“ phΠ̊MCF

qR.

The lemma is a direct outcome from Theorem 3. We use
it in order to show the following main result.

Theorem 4. Let ΠOSP “ xV ,O, sI , C , u,By be an OSP
task, ΠMCF its multiple cost function reformulation, and
hMCF an admissible heuristic for ΠMCF. Then hR

MCF is an
admissible heuristic for ΠOSP.

Proof. Let hM̊CF be the perfect heuristic for ΠMCF and hO̊SP
the perfect heuristic for ΠOSP. With Definition 3, we can
rewrite hM̊CFps, bsq as upsq ´ phM̊CFqRps, bsq, which is
upsq ´ hO̊SPps, bsq according to Lemma 1.

From Definition 3 we have

hR
MCFps, bsq “ upsq ´ hMCFps, bsq,

and from admissibility of hMCF we have

hMCFps, bsq ď hM̊CFps, bsq,
so

hR
MCFps, bsq ě upsq ´ hM̊CFps, bsq

“ upsq ´ pupsq ´ hO̊SPps, bsqq
“ hO̊SPps, bsq.

Abstraction Heuristics for MCF Planning
Having established how admissible heuristics of MCF plan-
ning tasks can be exploited for deriving admissible heuristics
of OSP tasks, we now show a concrete example of this by
deriving a merge-and-shrink heuristic for OSP. We start by
introducing a generic scheme for abstraction heuristics.

Definition 4. Let ΠMCF be an MCF task, α be an abstrac-
tion and Θα its abstract transition system. The heuristic
hαΘ : pS ˆ Rnq ÞÑ R Y t´8,8u is the MCF planning ab-
straction heuristic of ΠMCF if it maps a state s P S and
bounds b1, . . . bn to the cost of a path ρ in the abstract tran-
sition system Θα, such that

• for all 1 ď i ď n, Cipρq ď bi, and
• ρ is cost-minimal among such paths according to the pri-

mary cost C0.

If no such path to an abstract goal state exists, the heuris-
tic value is 8. Otherwise, if there exists such a path that
contains a cycle of a negative total cost under C0, then the
heuristic value is ´8.

For an MCF planning task with one secondary cost func-
tion, an abstraction heuristic hαΘps, bq can be computed us-
ing the following scheme:

(I) Construct abstract transition system Θα,

(II) Compute shortest path distances from αpsIq to all abstract
states in Θα according to the secondary cost function C1

and discard abstract states with abstract distances strictly
larger than b, and

(III) Compute shortest path distances from all remaining ab-
stract states to some abstract goal state, according to the
primary cost function C0.

There are essentially two challenges in turning this
scheme into an abstraction heuristic. First, since the primary
cost function is potentially negative, there might be reach-
able cycles of total negative cost in Θα resulting in a un-
informative heuristic. Concrete choice of methods for con-
structing Θα in step (I) should aim at preventing or at least

84

alleviate this problem. In this work, we use existing meth-
ods for constructing merge-and-shrink abstractions (Sievers
et al. 2014), leaving the methods for constructing abstrac-
tions that avoid negative cost cycles for future work.

The second challenge lies in the runtime complexity of
heuristic computation. The reachable abstract states in step
(II) depend on the budget b, and for maximizing the informa-
tiveness of the heuristic, step (III) should be performed for
every evaluated state, given the reachability of abstract states
under the budget b for that concrete state. Additionally, the
possibly negative cost function madates the use of a short-
est path algorithm that supports negative weights. Such al-
gorithms are computationally more expensive than the typi-
cally used shortest path algorithms for non-negative weights.
We alleviate this problem by performing the computation in
step (III) only once, for reachability defined under the initial
budget b0.

Experimental Evaluation
To empirically evaluate the practical potential of our ap-
proach, we first create a benchmark set for oversubscription
planning.

Creating a Benchmark Set for OSP
Since no official, publicly available benchmark set for over-
subscrition planning is currently available, we had to create
one. We created a benchmark suite similar to Domshlak and
Mirkis (2015), based on the collection of classical Interna-
tional Planning Competition (IPC) domains. However, in
contrast to previous approaches, we consider all planning
tasks for which any solution is known, not only a prov-
ably optimal one. Such upper bounds on solution costs can
be obtained from the information available at planning.
domains (Muise 2016), a repository of planning bench-
marks to which researchers are contributing meta-data on
solved planning problems. We set the bounds for oversub-
scription planning tasks to either 25%, 50%, 75%, or 100%
of the best known solution cost for the classical planning
task, resulting in four variants for each classical planning
domain. In the following, we refer to these numbers as dif-
ferent domain suites. Every fact in the goal of the classical
planning task, we assigned the utility of 1, every other fact
the value of 0.

We briefly describe how we modified the PDDL specifi-
cation. We extended PDDL by two additional sections in
the problem file. The first section p:BOUND contains the
bound on the solution cost, while the second section con-
tains the utility function. The second section (:UTILITY al-
lows to provide a collection of function assignments of nu-
meric values to grounded predicates, e.g., (= (ON C B) 1).
To translate the PDDL instances to a multi-valued formal-
ism, we adapted the translator of the Fast Downward plan-
ning system to handle oversubscription planning tasks. Both
the PDDL domain collection and the adapted translator are
available on demand.

Transforming SAS` to SAS
Fast Downward translates PDDL into SAS` representation,
which is more compact than SAS. Thus, to apply our tech-

25% 50% 75% 100%

Coverage Bl M&S Bl M&S Bl M&S Bl M&S
airport 20 9 16 9 15 9 15 9
miconic 85 85 56 55 50 49 45 45
mprime 13 12 10 9 7 7 6 6
mystery 10 10 9 8 7 7 7 7
scanalyzer08 13 12 12 12 12 11 12 11
scanalyzer11 10 9 9 9 9 8 9 8
tetris14 17 2 14 2 10 2 8 2
tidybot11 20 1 20 1 16 1 13 1
tidybot14 20 0 17 0 12 0 6 0
woodwork08 25 24 12 12 9 9 7 7
woodwork11 18 17 7 7 4 4 2 2
pipes-notank 40 18 29 18 20 17 14 15
pipes-tank 28 25 18 19 14 15 11 10
depot 15 15 8 9 6 8 4 6
openstacks08 29 30 24 27 23 26 22 25
openstacks11 20 20 17 18 17 18 17 18
openstacks14 19 19 10 11 5 9 3 8
parcprinter08 15 16 12 13 10 12 9 10
parcprinter11 11 12 8 9 6 8 5 6
parking11 10 10 1 2 0 2 0 2
parking14 11 11 0 4 0 4 0 4
satellite 8 9 6 6 3 3 3 3
Sum equal 587 587 450 450 376 376 349 349
Sum all 1044 953 765 710 631 605 567 554

Table 1: Per-domain coverage comparison of the blind
heuristic (Bl) and merge-and-shrink (M&S) for the four do-
main suites. Top part depicts domains with advantage to
the blind heuristic in all suites, middle part depicts domains
with mixed results, while bottom parts shows domains with
advantage to the merge-and-shrink heuristic in all suites.

niques to the problems in our benchmark set, we need to
transform these tasks to the SAS format. To achieve that, we
need to modify operators with preconditions not specified
for some effect variables. We used a procedure similar to the
transition normalization (Pommerening and Helmert 2015)
for this purpose. As the transition normalization increases
the state space exponentially, we propose an optimization to
moderate that increase. Note that our reformulation restricts
the preconditions to be specified on effect variables only for
variables with specified utility on at least one value. Thus,
we do not modify the variables whose values do not have
utilities specified.

Comparison to a Baseline
In our experiments, we compare different heuristics within
a best-first branch-and-bound (BFBB) search, which we im-
plemented in Fast Downward planning system. BFBB uses
two heuristic functions. One is for choosing the next node
to expand (guidance heuristic), and another one for pruning
the nodes (pruning heuristic). We compare the following
configurations differing in their pruning heuristic:

85

100 102 104 106

100

102

104

106

un
s.

uns.

blind

m
er

ge
-a

nd
-s

hr
in

k

100 102 104 106

100

102

104

106

un
s.

uns.

blind
m

er
ge

-a
nd

-s
hr

in
k

100 102 104 106

100

102

104

106

un
s.

uns.

blind

m
er

ge
-a

nd
-s

hr
in

k

100 102 104 106

100

102

104

106

un
s.

uns.

blind

m
er

ge
-a

nd
-s

hr
in

k

(a) (b) (c) (d)

Figure 2: Comparison of the number of expansions performed with the blind and the merge-and-shrink heuristics for different
problem suites, (a) 25%, (b) 50%, (c) 75%, and (d) 100%.

100 102 104 106

100

102

104

106

un
s.

uns.

blind

m
er

ge
-a

nd
-s

hr
in

k

depot freecell nomystery11 openstacks08
openstacks11 openstacks14 parcprinter08 parcprinter11
parking11 parking14 pipes-notank pipes-tank
sokoban08 trucks other

Figure 3: Domain-wise comparison of the number of ex-
pansions performed with the blind and the merge-and-shrink
heuristics for the 100% problem suite. Domains where
merge-and-shrink exhibits better performance in terms of
the number of expansions are emphasized.

Bl Blind heuristic hBlps, bq “M

M&S A merge and shrink approach to compute hαΘps,bq.
For step (I) we used the bisimulation based shrinking, and
as merge strategy SCC-DFP (Sievers et al. 2014) accord-
ing to secondary cost function C1. For step (III) we used
the Bellman-Ford algorithm (Shimbel 1954) to compute
(possibly negative) shortest path distances. For better run-
time complexity, we do step (III) only once, with fixed
budget B0. The heuristic hαΘps,bq is reformulated into an

OSP heuristic according to Definition 3.

For a fair comparison, we set the guidance heuristic in all
our approaches to the blind heuristic. To compare to pre-
vious state-of-the-art approaches to OSP, much work is still
needed to adapt these techniques to work in an out-of-the-
box fashion. For instance, the planner of Mirkis and Domsh-
lak (2013) requires a specification of variable patterns to be
used in their PDB heuristic. Similarly, the approach de-
scribed in Mirkis and Domshlak (2014) also did not work
out-of-the-box, since it is based on the previous one. How-
ever, the performance of these approaches is not too far from
the simple blind heuristic, always returning the maximal
utility, and therefore we use the blind heuristic as our base-
line. The experiments were performed on Intel(R) Xeon(R)
CPU E7-8837 @ 2.67GHz machines, with the time and
memory limit of 30min and 2GB, respectively.

Results
Table 1 shows the per-domain coverage, comparing our ap-
proach to the baseline. On many domains, the performance
of both approaches in terms of coverage is the same, for all
suites. These rows are not shown in the table and summed in
the “Sum equal” row. Overall, the baseline still achieves the
higher coverage, with the difference getting smaller towards
suites with larger cost bounds, namely, 91 for suite 25, 55 for
suite 50, 26 for suite 75, and 13 for suite 100. We note that
the domains AIRPORT, TETRIS, TIDYBOT11, TIDYBOT14,
PIPESWORLD-NOTANKAGE, and PIPESWORLD-TANKAGE
are responsible for most of the difference, due to the con-
struction of merge-and-shrink abstraction not being finished
within the time bound. With the exception of these 6 do-
mains, merge-and-shrink loses at most one task in cover-
age per suite. Looking at the bottom part of the table, there
are several domains where the performance improves signif-
icantly, across the suites. The improvement is getting larger
towards suites with larger cost bounds. This is consistent
with the overall results, hinting that merge-and-shrink would
be beneficial for larger cost bounds.

In order to look beyond the coverage, Figure 2 depicts
the comparison in terms of the number of node expansions

86

performed by the branch-and-bound search algorithm. The
cost bound increases, from left to right. Figure 2 (a) shows
the expansions for the suite 25, where there is a clear advan-
tage to the blind heuristic, but as we move to larger bounds,
the advantage becomes moderate, and then turns into some-
what complementary results in Figure 2 (d) for suite 100.
Note that, in contrast to the classical optimal planning with
A˚, here a dominating heuristic does not guarantee a smaller
number of expansions. However, when the blind heuristic
has a smaller number of expansions, it is always within one
order of magnitude. For the other case, when merge-and-
shrink dominates in the number of expansions, it can get to
two orders, and more.

Further focusing on suite 100, the per-domain expan-
sions can be observed in Figure 3. Improvement over the
baseline can be observed in many domains, in particular in
some domains where this improvement is not reflected in
the overall coverage, probably due to the costly pre-search
abstraction computation. These include FREECELL, NO-
MYSTERY, PIPESWORLD-NOTANKAGE, PIPESWORLD-
TANKAGE, SOKOBAN08, and TRUCKS. There are ad-
ditional 8 domains where the improvement in expansions
is reflected in the coverage, namely DEPOTS, OPEN-
STACKS08, OPENSTACKS11, OPENSTACKS14, PARC-
PRINTER08, PARC-PRINTER11, PARKING11, and PARK-
ING14.

Conclusions and Future Work
In this work we have introduced a reformulation of an over-
subscription planning task to a classical planning task with
two cost functions on operators, allowing to ease the adap-
tation of the existing heuristics for classical planning to the
oversubscription planning setting. We have shown with the
merge-and-shrink heuristic how such an adaptation can be
done. Our experimental evaluation shows the feasibility of
such an approach. In order to perform the experimental
evaluation, in the absense of a standard benchmark set and
a PDDL fragment for describing oversubscription planning
tasks, we have introduced such a fragment and created the
benchmark set, as well as provided a translator from PDDL
to a multi-valued variables formalism SAS, which is used
internally by most modern planners. By adapting the Fast
Downward planning framework, with many classical plan-
ning heuristics implemented, to oversubscription planning
formalism we have simplified the future adaptation of clas-
sical planning heuristics to oversubscription planning via the
suggested reformulation.

In future work we intend to investigate such adapta-
tions. Further, we intend to investigate the interplay be-
tween the reformulation and heuristics additivity criteria,
such as action cost partitioning (Katz and Domshlak 2008;
2010b) or disjointness for pattern databases (Haslum et al.
2007). We would also like to integrate and automate the
approach of Mirkis and Domshlak (Mirkis and Domshlak
2013; 2014) and explore the connections between the refor-
mulation and their approach. In addition, we would like to
explore various heuristics for nodes ordering in the branch-
and-bound search. Last, but not least, we would like to adapt
the existing search pruning techniques for classical planning

(Domshlak et al. 2012; Alkhazraji et al. 2012) to the branch-
and-bound search over the oversubscription planning tasks.

References
Yusra Alkhazraji, Martin Wehrle, Robert Mattmüller, and
Malte Helmert. A stubborn set algorithm for optimal plan-
ning. In Luc De Raedt, Christian Bessiere, Didier Dubois,
Patrick Doherty, Paolo Frasconi, Fredrik Heintz, and Peter
Lucas, editors, Proceedings of the 20th European Confer-
ence on Artificial Intelligence (ECAI 2012), pages 891–892.
IOS Press, 2012.
Christer Bäckström and Inger Klein. Planning in polynomial
time: the SAS-PUBS class. Computational Intelligence,
7(3):181–197, 1991.
Christer Bäckström and Bernhard Nebel. Complexity results
for SAS` planning. Computational Intelligence, 11(4):625–
655, 1995.
Blai Bonet and Héctor Geffner. Planning as heuristic search.
Artificial Intelligence, 129(1):5–33, 2001.
Joseph C. Culberson and Jonathan Schaeffer. Pattern
databases. Computational Intelligence, 14(3):318–334,
1998.
Carmel Domshlak and Vitaly Mirkis. Deterministic over-
subscription planning as heuristic search: Abstractions and
reformulations. Journal of Artificial Intelligence Research,
52:97–169, 2015.
Carmel Domshlak, Michael Katz, and Alexander Shleyf-
man. Enhanced symmetry breaking in cost-optimal plan-
ning as forward search. In Lee McCluskey, Brian Williams,
José Reinaldo Silva, and Blai Bonet, editors, Proceedings of
the Twenty-Second International Conference on Automated
Planning and Scheduling (ICAPS 2012), pages 343–347.
AAAI Press, 2012.
Carmel Domshlak, Jörg Hoffmann, and Michael Katz. Red-
black planning: A new systematic approach to partial delete
relaxation. Artificial Intelligence, 221:73–114, 2015.
Stefan Edelkamp. Planning with pattern databases. In
Amedeo Cesta and Daniel Borrajo, editors, Proceedings of
the Sixth European Conference on Planning (ECP 2001),
pages 84–90. AAAI Press, 2001.
Patrik Haslum and Héctor Geffner. Admissible heuristics for
optimal planning. In Steve Chien, Subbarao Kambhampati,
and Craig A. Knoblock, editors, Proceedings of the Fifth In-
ternational Conference on Artificial Intelligence Planning
and Scheduling (AIPS 2000), pages 140–149. AAAI Press,
2000.
Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and
Sven Koenig. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial
Intelligence (AAAI 2007), pages 1007–1012. AAAI Press,
2007.
Malte Helmert and Carmel Domshlak. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioannis

87

Refanidis, editors, Proceedings of the Nineteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2009), pages 162–169. AAAI Press, 2009.
Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flex-
ible abstraction heuristics for optimal sequential planning.
In Mark Boddy, Maria Fox, and Sylvie Thiébaux, editors,
Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling (ICAPS 2007), pages
176–183. AAAI Press, 2007.
Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nis-
sim. Merge-and-shrink abstraction: A method for generat-
ing lower bounds in factored state spaces. Journal of the
ACM, 61(3):16:1–63, 2014.
Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research, 26:191–246, 2006.
Jörg Hoffmann and Bernhard Nebel. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research, 14:253–302, 2001.
Erez Karpas and Carmel Domshlak. Cost-optimal planning
with landmarks. In Craig Boutilier, editor, Proceedings of
the 21st International Joint Conference on Artificial Intelli-
gence (IJCAI 2009), pages 1728–1733. AAAI Press, 2009.
Michael Katz and Carmel Domshlak. Optimal additive
composition of abstraction-based admissible heuristics. In
Jussi Rintanen, Bernhard Nebel, J. Christopher Beck, and
Eric Hansen, editors, Proceedings of the Eighteenth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2008), pages 174–181. AAAI Press, 2008.
Michael Katz and Carmel Domshlak. Implicit abstrac-
tion heuristics. Journal of Artificial Intelligence Research,
39:51–126, 2010.
Michael Katz and Carmel Domshlak. Optimal admissible
composition of abstraction heuristics. Artificial Intelligence,
174(12–13):767–798, 2010.
Michael Katz and Vitaly Mirkis. In search of tractability for
partial satisfaction planning. In Subbarao Kambhampati, ed-
itor, Proceedings of the 25th International Joint Conference
on Artificial Intelligence (IJCAI 2016), pages 3154–3160.
AAAI Press, 2016.
Emil Keyder and Héctor Geffner. Heuristics for planning
with action costs revisited. In Proceedings of the 18th Eu-
ropean Conference on Artificial Intelligence (ECAI 2008),
pages 588–592, 2008.
Emil Keyder and Héctor Geffner. Soft goals can be compiled
away. Journal of Artificial Intelligence Research, 36:547–
556, 2009.
Emil Keyder, Silvia Richter, and Malte Helmert. Sound and
complete landmarks for and/or graphs. In Helder Coelho,
Rudi Studer, and Michael Wooldridge, editors, Proceedings
of the 19th European Conference on Artificial Intelligence
(ECAI 2010), pages 335–340. IOS Press, 2010.
Vitaly Mirkis and Carmel Domshlak. Abstractions for over-
subscription planning. In Daniel Borrajo, Subbarao Kamb-
hampati, Angelo Oddi, and Simone Fratini, editors, Pro-
ceedings of the Twenty-Third International Conference on

Automated Planning and Scheduling (ICAPS 2013), pages
153–161. AAAI Press, 2013.
Vitaly Mirkis and Carmel Domshlak. Landmarks in
oversubscription planning. In Torsten Schaub, Gerhard
Friedrich, and Barry O’Sullivan, editors, Proceedings of the
21st European Conference on Artificial Intelligence (ECAI
2014), pages 633–638. IOS Press, 2014.
Christian Muise. Planning.Domains. In 26th International
Conference on Automated Planning and Scheduling, System
Demonstrations and Exhibits, 2016.
Florian Pommerening and Malte Helmert. A normal form
for classical planning tasks. In Ronen Brafman, Carmel
Domshlak, Patrik Haslum, and Shlomo Zilberstein, edi-
tors, Proceedings of the Twenty-Fifth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2015),
pages 188–192. AAAI Press, 2015.
Silvia Richter, Malte Helmert, and Matthias Westphal.
Landmarks revisited. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence (AAAI 2008),
pages 975–982. AAAI Press, 2008.
Alfonso Shimbel. Structure in communication nets. Pro-
ceedings of the symposium on information networks, 4,
1954.
Silvan Sievers, Martin Wehrle, and Malte Helmert. Gener-
alized label reduction for merge-and-shrink heuristics. In
Proceedings of the Twenty-Eighth AAAI Conference on Ar-
tificial Intelligence (AAAI 2014), pages 2358–2366. AAAI
Press, 2014.
David E. Smith. Choosing objectives in over-subscription
planning. In Shlomo Zilberstein, Jana Koehler, and Sven
Koenig, editors, Proceedings of the Fourteenth International
Conference on Automated Planning and Scheduling (ICAPS
2004), pages 393–401. AAAI Press, 2004.
Menkes van den Briel, Romeo Sanchez, Minh B. Do, and
Subbarao Kambhampati. Effective approaches for partial
satisfaction (over-subscription) planning. In Proceedings
of the Nineteenth National Conference on Artificial Intelli-
gence (AAAI 2004), pages 562–569. AAAI Press, 2004.

88

