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Introduction MDPs Determinization MC Methods

Outline of this lecture

Markov decision processes
Planning via determinization
Monte-Carlo methods
Monte-Carlo Tree Search
Heuristic Search
Trial-based Heuristic Tree Search

Please ask questions at any time!
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Markov decision process

Definition (Markov decision process)
A (finite-horizon) Markov decision process (MDP) is a 6-tuple
M = 〈S,A, T ,R, s0,H〉, where

S is a finite set of states
A is a finite set of actions
T : S× A× S 7→ [0, 1] is the transition function
R : S× A 7→ R is the reward function
s0 ∈ S is the initial state
H ∈ N is the horizon
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Markov decision process: example
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MDPs are acyclic in finite-horizon setting
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Policy

Definition (Policy)
A partial policy for a Markov decision process
M = 〈S,A, T ,R, s0,H〉 is a mapping π : S ×A 7→ [0, 1] ∪ {⊥}.
A partial policy π is executable inM if π(s, a) 6= ⊥ for all states s
and actions a that can be reached by π from s0.

π(s, a) gives probability that action a is executed in state s under
application of policy π
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State- and Action Value

Definition (State- and Action Values)

The state-value Vπ(s) of a state s ∈ S under policy π is

Vπ(s) :=

{
0 if s is terminal
Qπ(s, π(s)) otherwise,

where Qπ(s, a) is the action-value of s and action a ∈ A under π

Qπ(s, a) := R(s, a) +
∑
s′∈S

(
T(s, a, s′) · Vπ(s′)

)
for all state-action pairs (s, a).
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Optimal Policy

policy π is optimal if Vπ(s) and Qπ(s, a) are maximal among
all π (in the following, π?, V?(s) and Q?(s, a))
compute V?(s) and Q?(s, a) as

V?(s) :=

{
0 if s is terminal
maxa∈A Q?(s, a) otherwise

Q?(s, a) := R(s, a) +
∑
s′∈S

(
T(s, a, s′) · V?(s′)

)
.

start with terminal states and proceed backwards in DAG
until initial state
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Optimal solution
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State- and action-values describe expected reward
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Lecture goals

How can we act well despite the complexity of the problem?
Which algorithms for probabilistic planning are there?
Which are their strengths and weaknesses?
What do they have in common, and what are the
differences?
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Anytime Planning: Plan-Execute-Monitor Cycle

size of executable policy exponential in horizon
compact representation of executable policy required to
describe solution⇒ not part of this lecture
instead: perform plan-execute-monitor cycle:

plan action a for the current state s0
execute a
update s0 and H inM
repeat until H = 0
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Anytime Planning: Plan-Execute-Monitor Cycle

Advantages and disadvantages of plan-execute-monitor:
+ avoid loss of precision that often comes with compact

description of executable policy
+ do not waste time with planning for states that are never

reached during execution
- poor decisions can be avoided by spending more time with

deliberation before execution
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Idea

replace probabilistic actions with deterministic ones
leads to classical planning problem
(often) determinization can be solved in practice even if
MDP cannot

How do we come up with a determinization?
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Determinization: Example

Remove all outcomes but one
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Determinization: Single-outcome determinization

Remove all outcomes but one
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All-outcomes determinization: Example

Generate one action per outcome
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Determinization: All-outcomes determinization

Generate one action per outcome
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Single-outcome Determinization: Limitations

Important parts of the MDP can become unreachable
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Single-outcome Determinization: Limitations

Important parts of the MDP can become unreachable
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All-outcomes Determinization: Limitations

All-outcomes determinization is too optimistic
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Determinizations in Probabilistic Planning

in combination with classical planner in plan-execute-monitor
cycle approach

well-suited if uncertainty has certain form (e.g., actions can
fail or succeed)
well-suited if information on probabilities noisy (e.g., path
planning for robots in uncertain terrain)

domain-independent implementation: FF-Replan (Yoon, Fern &
Givan)
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Determinizations in Probabilistic Planning

as subsolver of a more complex system:
FPG (Buffet and Aberdeen) learns a policy utilizing
FF-Replan
RFF (Teichteil-Königsbuch, Infantes & Kuter) extends
determinization-based plan to policy
PROST-2011 (Keller & Eyerich) and PROST-2014 (Keller &
Geißer) use a determinization-based iterative deepening
search as heuristic
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Monte-Carlo Tree Search: Brief History

Starting in the 1930s: first researchers experiment
with Monte-Carlo methods
1998: Ginsberg’s GIB player, based on Hindsight
Optimization, achieves strong performance playing Bridge
2002: Kearns et al. propose Sparse Sampling
2002: Auer et al. present UCB1 action selection
for multi-armed bandits
2006: Coulom coins the term Monte-Carlo Tree Search
(MCTS)
2006: Kocsis and Szepesvári combine UCB1 and MCTS
into the most famous MCTS variant, UCT
2007-2016: Constant progress in MCTS-based Go player
lead to AlphaGo’s defeat of 9-dan Go player Lee Sedol
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Monte-Carlo Methods: Idea

subsume a broad family of algorithms
decisions are based on random samples
results of samples are aggregated by computing the
average
apart from these points, algorithms differ significantly
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Hindsight Optimization: Idea

perform samples as long as resources (deliberation time,
memory) allow:

sample a determinization of the MDP
solve the determinization for each applicable action
update average reward Q̂HOP(s0, a) for each action a with
action-value estimate of a in the sample

execute the action with the highest average reward
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Hindsight Optimization: Example
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0% (0/1)

100% (1/1)

0% (0/1)

50% (1/2)

100% (2/2)

0% (0/2)

67% (2/3)

100% (3/3)

33% (1/3)



Introduction MDPs Determinization MC Methods

Hindsight Optimization: Example

South to play, three tricks to win, trump suit ♣

0% (0/1)

100% (1/1)

0% (0/1)

50% (1/2)

100% (2/2)

0% (0/2)

67% (2/3)

100% (3/3)

33% (1/3)



Introduction MDPs Determinization MC Methods

Hindsight Optimization: Example

South to play, three tricks to win, trump suit ♣

0% (0/1)

100% (1/1)

0% (0/1)

50% (1/2)

100% (2/2)

0% (0/2)

67% (2/3)

100% (3/3)

33% (1/3)



Introduction MDPs Determinization MC Methods

Hindsight Optimization: Example
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Hindsight Optimization: Evaluation

HOP well-suited for some problems
must be possible to solve sampled MDP efficiently:

domain-dependent knowledge (various games and MDPs)
classical planner (FF-Hindsight)
LP solver (Issakkimuthu et al., ICAPS 2015)

What about optimality with unbounded resources?
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Hindsight Optimization: Optimality
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Hindsight Optimization: Optimality
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Hindsight Optimization: Optimality
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Hindsight Optimization: Evaluation

HOP well-suited for some problems,
must be possible to solve sampled MDP efficiently:

domain-dependent knowledge (various games and MDPs)
classical planner (FF-Hindsight, Yoon et. al, AAAI 2008)
LP solver (Issakkimuthu et al., ICAPS 2015)

What about optimality in the limit?
⇒ in many problems not optimal due to assumption of
clairvoyance
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Hindsight Optimization: Clairvoyance

Idea of Hindsight Optimization (Repetition):
perform samples as long as resources (deliberation time,
memory) allow:

sample a determinization of the MDP
solve the determinization for each applicable action
update average reward Q̂HOP(s0, a) for each action a with
action-value estimate of a in the sample

execute the action with the highest average reward
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Hindsight Optimization: Clairvoyance

Idea of Hindsight Optimization (Repetition):
perform samples as long as resources (deliberation time,
memory) allow:

sample a determinization of the MDP
solve the determinization for each applicable action
update average reward Q̂HOP(s0, a) for each action a with
action-value estimate of a in the sample

execute the action with the highest average reward
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Policy Simulation: Idea

separate computation of policy and its evaluation
by simulating the execution of a policy
any base policy can be used
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Optimistic Policy Simulation

perform samples as long as resources (deliberation time,
memory) allow:

sample a determinization of the MDP
compute a policy by solving the determinization for each
applicable action
simulate the policy
update average reward Q̂OPS(s0, a) for each action a with
reward in the simulation

execute the action with the highest average reward
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Optimistic Policy Simulation: Example

s0

s1

s2

s3

s4

s5

s6

a1

10

a2

12

±0

±0

±0

+10

±0

2
5

3
5

+20

±0

+1
2

s1 → s3 in sample
s1 → s4 in sample

s1 → s3 simulation
s1 → s4 in in simulation



Introduction MDPs Determinization MC Methods

Optimistic Policy Simulation: Example
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Optimistic Policy Simulation: Evaluation

Problem: suboptimal base policy is static
no mechansim to overcome weakness of base policy
⇒ repeated suboptimal decisions in simulation affect
Policy Simulation
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Sparse Sampling: Idea

rather than restrict the simulated actions (as in policy
simulation), restrict the simulated outcomes
search tree creation: sample a constant number of
outcomes according to their probability in each state and
ignore the rest
near-optimal: utility of resulting policy close to utility of
optimal policy
runtime independent from the number of states
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Sparse Sampling: Search Tree

Without Sparse Sampling
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Sparse Sampling: Search Tree

With Sparse Sampling
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Sparse Sampling: Problems

independent from number of states, but still exponential in
horizon
constant that gives the number of outcomes large for good
bounds on near-optimality
search time difficult to predict
tree is symmetric⇒ resources are wasted in
non-promising parts of the tree
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Summary

presented several algorithms for probabilistic planning:
Determinizations
Hindsight Optimization
Policy Sampling
Sparse Sampling

there are applications for all where they perform well
but all are suboptimal even if provided with unlimited
resources
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