
ICAPS’18 summer school Lab 3

Lab 3.

The following exercises contain alternative sub-tasks of varying effort and difficulty. You
are free to choose any sub-task that you want to do. We distinguish between simple (∗),
more involved (∗∗), and challenging / time-consuming (∗ ∗ ∗) tasks. We recommend to
start with the simple or more involved exercises, and move on to the challenging exercises
only if time allows.1

All instructions below assume that you are in directory /vagrant/fast-downward, i.e.,
all paths are relative to this base path, unless stated otherwise.
If you make changes to the planning system, you need to recompile it with� �
./build.py release64� �
from the base path.

Exercise 1. Modeling PDDL: Sokoban

Legend: – Player – Crate – Wall – Goal

Figure 1: Two initial states for Sokoban

Sokoban (https://en.wikipedia.org/wiki/Sokoban) is a puzzle where the player
needs to push crates from their initial position to designated goal locations (marked by
blue dots).
The game is played on a grid, where some positions are blocked by walls. The player can
move horizontally and vertically but cannot walk through a wall or enter a position that is
blocked by a crate. If the player stands next to a crate and the position behind this crate

1Sample solutions to all exercises are provided with the repository. To check-out the solution of a specific
exercise, run hg revert -r summer_school_18_solution PATH where PATH is replaced by the
path to the file(s) of the respective exercise. Do not run this command without specifying PATH, unless you
want to checkout the solutions to all exercises.

1

https://en.wikipedia.org/wiki/Sokoban

is empty, it can push the crate to this position (which leaves the player at the original
position of the crate). It is not possible to push several crates at once or to pull a crate.
At the end, each crate should rest on a goal position, but it does not matter which crate
ends up on which position. The solution quality is measured by the number of pushes.
In this exercise, you will solve some instances of the puzzle with the Fast Downward
planning system.

1.) Create the model (∗∗) In a first step, we need to model the game in PDDL. Extend
the domain file in models/sokoban-pddl/domain.pddl with suitable predicates
and actions. Then encode the instance from the left example picture in models/
sokoban-pddl/small.pddl by specifying suitable objects, the initial state and
the goal condition (using your predicates).

For debugging, you can use the tool parser from the plan validation tool VAL or
(much less verbose, not reporting all errors) the validate tool itself with the -v
option:� �
VAL/parser domain.pddl small.pddl
VAL/validate -v domain.pddl small.pddl� �
(∗) If you prefer to solve a simpler variant of this exercise, you can retrieve the
solution1 for models/sokoban-pddl/small.pddl and use the predicates from
there in the domain file.

If you are done, you can model the right example task in file models/sokoban-pddl/
medium.pddl (or retrieve it from the solution branch). Note that in the picture of
this example task, one of the goal positions is obscured by a crate sitting on top of
it. The fourth goal position is the one where the rightmost crate is located in the
picture.

2.) Run the planner (∗) Now you can run the planner on your instances, for example
on the small instance with the A∗-algorithm and the LM-Cut heuristic:� �

./fast-downward.py --build=release64 \
models/sokoban-pddl/domain.pddl \
models/sokoban-pddl/small.pddl \
--search "astar(lmcut())"� �

Have a look at the output, which (besides some other information) contains the plan
and some statistics on the search. Is the plan optimal or is there a cheaper solution?

You find the list of implemented search engines and heuristics at http://www.
fast-downward.org/. What happens to plan length and search time if you use
other configurations, e.g. greedy best first search with the FF heuristic (this is less
interesting with the small instance, which is naturally very easy)?

2

http://www.fast-downward.org/
http://www.fast-downward.org/

3.) Connect your model to the GUI (∗ ∗ ∗) The summer school version of the plan-
ner already ships a graphical front-end for Sokoban, allowing you to see the different
planner configurations in action. To use it with your model, you need to imple-
ment an interface to your encoding of the Sokoban board. The implementation is
in src/search/sokoban/interface.cc. In a nutshell, you will have to parse
predicate instantiations, facts, and action instantiations of your model, and translate
them to provided concepts. TODO and comments in the source file give more infor-
mation on what needs to be implemented. Note that the same GUI will be used for
the probabilistic planning exercises 3 and 4. You can ignore the aspects of the code
that relate to probabilistic extensions of Sokoban (see following exercises).

With� �
hg revert -r summer_school_18_solution \

src/search/sokoban/interface.cc� �
you can get the implementation for the reference Sokoban encoding (which might not
work though with your model). You can start the GUI as follows:� �
Starting the graphical Sokoban simulator,
using A* with the LM-Cut heuristic.

./fast-downward.py --build=release64 \
models/sokoban-pddl/domain.pddl \
models/sokoban-pddl/small.pddl \
--search "sokoban(astar(lmcut()))"� �

The speed of the simulation can be controlled via number keys 0 – 6. Space starts
and pauses the simulation. ESC closes the window.

Exercise 2. Classical Planning: Network Flow Heuristic (∗ ∗ ∗)

To solve this exercise, you must have installed the SOPLEX LP solver (following the
instructions from the email). If you have not done this already, we recommend to continue
with some other exercise because compiling everything takes quite some time.
In this exercise you will implement the network flow heuristic in Fast Downward. The
planner already comes with a framework for so-called operator counting heuristics. To add
a new heuristic, you only need to implement the setup of the constraints. You find a stub for
your implementation in file search/operator_counting/flow_constraints.cc.

1.) Preparation It makes sense to precompute some information before setting up the
linear program. The AtomInfo stores for each atom the actions that produce and

3

consume it (and will also remember the index of the corresponding constraint). Com-
plete FlowConstraints::build_atom_information so that it precomputes
the relevant action sets.

2.) Set up the constraints In the next step in the heuristic initialization we actually
add the constraints. Note that in the definition of the constraints (in the slides)
the current state is only relevant for the (lower) bound. For this reason, we add
the constraints once and only update the bounds for each heuristic computation.
This makes the implementation more efficient and is also very beneficial for the
performance of the LP solver.

Finish the implementation of FlowConstraints::add_constraints.

3.) Update constraints If an operator counting heuristic gets evaluated on a state it
first calls update_constraints and then runs the LP solver. In the case of the
network flow constraints, we only need to set the lower bound for each constraint.

Complete the implementation in FlowConstraints::update_constraints.

4.) Run it! You can run your implementation with:� �
Running A* with the Network Flow Heuristic
./fast-downward.py --build=release64 \

models/sokoban-pddl/domain.pddl \
models/sokoban-pddl/small.pddl --search \
"astar(operatorcounting([flow_constraints()], lpsolver=soplex))"� �

For comparison, you can run the original implementation using state_equation_
constraints instead of flow_constraints. If your implementation is correct,
you will see the same number of expanded states on each f-layer
(f = ... [... expanded ...]).

The operator counting framework allows to combine constraints from different sources.
For example, using [flow_constraints(),lmcut_constraints()] includes
also some landmark constraints, strengthening the heuristic.

Exercise 3. Modeling PPDDL: Probabilistic Sokoban

Create a PPDDL2 Sokoban model by extending the Sokoban PDDL model that you have
designed in an earlier exercise with the probabilistic action effects listed below. In all

2http://reports-archive.adm.cs.cmu.edu/anon/2004/CMU-CS-04-167.pdf

4

http://reports-archive.adm.cs.cmu.edu/anon/2004/CMU-CS-04-167.pdf

Legend: – Player – Crate – Wall – Goal – Rough – Depot – Frozen

Figure 2: Two initial states for probabilistic Sokoban: (left) 8 × 7 board, requires rough
ground; (right) 9 × 7 board, requires rough and frozen ground. Depending on the type of
the modeled repair action, the depot cell can be left out.

succeeding exercises involving any probabilistic Sokoban version, we are interested in min-
imizing the expected cost to reach the goal (ExpCost). Note that in probabilistic Fast-
Downward (P-FD), ExpCost is internally represented as reward-maximization, where action
rewards are given by their negative cost. To ensure that the SSP requirements are met,
P-FD automatically introduces a give-up action with cost 1000 that is applicable in every
state, and leads to a goal state. Consequently, the minimal expected cost to reach the goal
is bounded from above by 1000 for every state.
Store your PPDDL domain file in models/sokoban-ppddl/domain.ppddl. We will
refer to this path by domain.

1.) Rough ground Certain cells of the Sokoban board may have rough ground. Pushing
a crate onto cells with rough ground has a chance of 30% to damage the crate.
Damaged crates cannot be pushed any further. To deal with damaged crates, you
can choose to implement one of the two following actions:

(∗) A player can repair a damaged crate if the crate is located next to the current
player position (in one of the four directions: up, down, left, right). Repairing
a crate has cost 10.

(∗∗) Repairing a crate additionally requires the player to have a repair-kit. Repair-
kits can be picked up by a player at certain depot cells (the player must be located
at such a cell in order to pick-up a repair-kit). The repair-kit is consumed when
the player repairs a damaged crate. Every player can carry at most one repair-
kit at any time. Repairing a crate has cost 5, picking up a repair kit has cost
2.

Model the instance shown in Figure 2 (left), and store the PPDDL problem file in
models/sokoban-ppddl/small.ppddl. We refer to this path by small. Solve
this instance optimally using LRTDP:� �
./fast-downward.py --build=release64 domain small --search "lrtdp"� �

5

The minimal expected cost value for the initial state should be 39 for the simple
repair action and 37.14 otherwise.

2.) Frozen ground Certain cells of the Sokoban board might be frozen. Pushing crates
onto frozen cells has a chance of 50% to push the crate one cell further, i.e., to the
next neighboring cell of the frozen cell in push direction, if that cell is not blocked.
(If the next neighboring cell is blocked, the crate cannot slip on, and is guaranteed
to move onto the frozen cell with probability 1.)

(∗∗) You can assume that every cell that is adjacent to some frozen cell is not frozen.

(∗ ∗ ∗) If the crate slips on to the neighboring cell of the frozen cell and this cell is
frozen too, there is another chance of 50% that the crate moves even further.
This scheme continues until the neighboring cell is either not frozen, or is blocked
by a wall or other object. (Hint: it might make sense to model this not as a
single action, but multiple actions, some of which have 0-cost.) In the VM, you
can get the solution as well as an example instance by running the following
command in the fast-downward folder:� �
hg revert -r summer_school_18_solution \

models/sokoban-ppddl/domain-skate.ppddl \
models/sokoban-ppddl/skate.ppddl� �

Model the instance shown in Figure 2 (right), and store the PPDDL problem file
in models/sokoban-ppddl/medium.ppddl. We refer to this path by medium.
Solve this instance optimally using LRTDP:� �
./fast-downward.py --build=release64 domain medium --search "lrtdp"� �
The minimal expected cost value for the initial state should be 53 for the simple
repair action and 51.59 otherwise.

Connect your model to the GUI, continuation of Exercise 1.3 (∗ ∗ ∗) Extend your
implementation of the interface to the GUI from Exercise 1.3 to the probabilistic
Sokoban extensions.

The reference solution of this exercise works for the reference solution for the PPDDL
model from Exercises 3.1 and 3.2. You can obtain it with� �
hg revert -r summer_school_18_solution \

src/search/sokoban/interface.cc� �
Don’t forget to rebuild with ./build.py release64. You can start the GUI as
follows:

6

� �
Starting the graphical Sokoban simulator,
using LRTDP to decide which action to take when
num=20 lets the simulator run a total of 20 simulations of the
policy and average the results
./fast-downward.py --build=release64 domain small \

--search "sokoban_simulator(offline(lrtdp()), num=20)"� �
The speed of the simulation can be controlled via number keys 0 – 6. Space pauses
the simulation. ESC closes the window.

Exercise 4. Implementing an MDP Solver

In the following, you will be implementing your own MDP solver with the help of classical
planners. You may want to use the reference Sokoban model as well as the interface from the
solution branch if you want to have a graphical representation of what your implementation
is doing. Remember though to backup your own model before running hg revert.

1.) All-outcomes determinization (∗) Implement the all-outcomes determinization in
P-FD. The all-outcomes determinization allows to connect heuristics from classical
planning with MDP heuristic search algorithms (such as LRTDP), and builds the ba-
sis for the next exercise. The implementation is in src/search/probabilistic/
determinization/all_outcomes_determinization.cc. Follow the TODO

and comments in the source file.� �
Run LRTDP using the FF heuristic on domain and medium
./fast-downward.py --build=release64 domain medium \

--determinization all_outcomes \
--search "lrtdp(eval=classic(ff))"� �

2.) FF-Replan (∗∗) Implement an online MDP solver that is based on replanning. More
precisely, implement an engine that given a state, decides the action to be executed in
this state based on a classical plan for that state. Classical plans are obtained from
running a classical planner on the all-outcomes determinization. The implemen-
tation is in src/search/probabilistic/engines/ff_replan/ff_replan.
cc. Follow the TODO and comments in the source file.

a) Caching (∗∗) To improve efficiency, you may want to cache the state-action as-
signments that are induced by the computed plans. For that you need to re-
execute the plan step-by-step, and for each touched state store the respective

7

action given by the plan. Then, whenever a state is considered for which an ac-
tion has already been cached, that action can be returned immediately, sparing
calls to the classical planner.

b) Run it! (∗) Run your implementation on the instances you have modeled before,
and compare it to LRTDP:� �
Get the average expected cost after 1000 simulation runs
for the policy computed by LRTDP with the FF heuristic
./fast-downward.py --build=release64 domain medium \

--determinization all_outcomes \
--search "simulate(engine=offline(lrtdp(eval=classic(ff))))"

Run 1000 simulation runs, using your replanning engine
to decide which actions to take
./fast-downward.py --build=release64 domain medium \

--determinization all_outcomes \
--search "simulate(engine=ff_replan())"

Run your replanning engine inside the GUI (if you have
already implemented the interface) for 20 simulation runs
./fast-downward.py --build=release64 domain medium \

--determinization all_outcomes \
--search "sokoban_simulator(engine=ff_replan(), num=20)"� �

The default configuration uses Dijkstra search to compute plans. You can choose
different configurations via the classical planner option, e.g.,� �

ff_replan(classical_planner=\"eager_greedy(evals=[ff])\")� �
using greedy best first search with the FF heuristic (note that you have to
encapsulate the configuration with quotation marks).

c) New Sokoban instance (∗∗) Design a new probabilistic Sokoban instance (us-
ing the modifications from before) where completely ignoring probabilistic effects
and greedily following classical plans has a high chance of resulting in dead-end
states (states without path to the goal), while in an optimal policy one can avoid
visiting such states. Ideally, your model should be small enough so that LRTDP
can still solve it. To get the solution, run� �
hg revert -r summer_school_18_solution \

models/sokoban-ppddl/replan.ppddl� �
3.) FF-Hindsight (∗ ∗ ∗) Implement a simplified version of FF-Hindsight, where the next

action to take is not computed from a single plan as in FF-Replan but from multiple
plans. Instead of using the all-outcomes determinization for the plan computation,

8

implement and use the sampled-outcome determinization. The sampled-outcome de-
terminization has one deterministic action for each probabilistic action, corresponding
to a randomly sampled outcome of the probabilistic action (simplifying here the orig-
inal FF-Hindsight approach by ignoring the timestep, i.e., assuming that the same
outcome happens at all future action applications).

To decide the action abest to take in the given state s, proceed as follows. Let
Π̂ denote any sampled-outcome determinization. Let a be any probabilistic action
that is applicable in s, let â denote the respective determinized action in Π̂, and
let s′ be the state resulting from applying â to s. The value of s and a in Π̂ is
then given by V̂ (s, a, Π̂) = costπ for some deterministic plan π for s′ in Π̂; and
V̂ (s, a, Π̂) = costgive-up = 1000 if no such plan was found. abest is given by

abest := arg min
a applicable in s

∑
considered Π̂

V̂ (s, a, Π̂)

where the sum is over a set of w randomly chosen sampled-outcome determinizations.

Your implementation can be called as follows:� �
Run 1000 simulation runs, using your FF-Hindsight engine
to decide which actions to take
./fast-downward.py --build=release64 domain medium \

--search "simulate(engine=ff_hindsight())"� �
This call defaults to w = 5 and uses again Dijkstra search to compute plans. You
can control those parameters via width and classical planner, e.g.,� �

ff_hindsight(classical_planner=\"eager_greedy(evals=[ff])\"))� �
The implementation of the sampled-outcome determinization is in src/search/probabilistic/

engines/ff_hindsight/hindsight_determinization.cc, that for FF-Hindsight is in
src/search/probabilistic/engines/ff_hindsight/ff_hindsight.cc. Follow the TODO

and comments in the source file.

9

