ICAPS Summer School 2018: Introduction to Planning under Uncertainty in MDPs

Scott Sanner

Lecture Goals

- 1) To understand the ingredients of formal models for a range of applications in decision-making under uncertainty
- 2) To understand fundamental solution algorithms for these models and their properties
- 3) To understand how to build complex models (brief RDDL overview, more in lab)
- 4) Later MDP lectures: MCTS, RL and beyond

Planning under Uncertainty

• Definition:

Computing sequences of actions to obtain occasional rewards in a known, stochastic environment

Reinforcement Learning (RL)

• Definition:

Learning to act from periodic rewards in an unknown, stochastic environment

Applications

Elevator Control

Concurrent Actions

- Elevator: up/down/stay
- 6 elevators: 3^6 actions

• Dynamics:

- Random arrivals (e.g., Poisson)

• Objective:

- Minimize total wait
- (Requires being proactive about future arrivals)

• Constraints:

 People might get annoyed if elevator reverses direction

Two-player Games

• Othello / Reversi

- Solved by Logistello!
- Monte Carlo RL (self-play)
 + Logistic regression + Search

Backgammon

- Solved by TD-Gammon!
- Temporal Difference (self-play)
 + Artificial Neural Net + Search

• Go

- Learning + Search
- AlphaGo (MCTS + deep learning) recently the world champion

Multi-player Games: Poker

Multiagent (adversarial)

- Opponent may abruptly change strategy
- Might prefer best outcome for *any* opponent strategy (e.g, a Nash equilibrium)
- Multiple rounds (sequential)
- Partially observable!
 - Earlier actions may reveal information
 - Or they may not (bluff)

DARPA Grand Challenge

- Autonomous mobile robotics
 - Extremely complex task, requires expertise in vision, sensors, real-time operating systems
- Partially observable
 - e.g., only get noisy sensor readings

Model unknown

- e.g., steering response in different terrain

How to model these problems?

Observations, States, & Actions

Observations

- Observation set O
 - Perceptions, e.g.,
 - Distance from car to edge of road
 - My opponent's bet in Poker

States

• State set S

- At any point in time, system is in some state

- Actual distance to edge of road
- My opponent's hand of cards in Poker

Agent Actions

Action set A

- Actions could be concurrent

- If k actions, $\mathbf{A} = \mathbf{A}_1 \times \dots \times \mathbf{A}_k$
 - Schedule all deliveries to be made at 10am

Agent Actions

Action set A

- All actions need not be under agent control

- Other agents, e.g.,
 - Alternating turns: Poker, Othello
 - Concurrent turns: Highway Driving, Soccer
- Exogenous events due to Nature, e.g.,
 - Random arrival of person waiting for elevator
 - Random failure of equipment
 - If uncontrolled, model as random variables

Observation Function

- How to relate states and observations?
 - Not observable:
 - $-\mathbf{0} = \emptyset$
 - e.g., heaven vs. hell
 - » only get feedback once you meet St. Pete
 - Fully observable:
 - $\textbf{S}\leftrightarrow\textbf{O}$... the case we focus on!
 - e.g., many board games,
 - » Othello, Backgammon, Go

• Partially observable:

- all remaining cases
- e.g., driving a car, Poker, the real world!

Recap

- So far
 - Actions
 - States
 - Observations
- How to map between
 - Previous states, actions, and future states?
 - States and observations?
 - States, actions and rewards?
 - Sequences of rewards and optimization criteria?

Transition Function

- How do actions take us between states?
 - T(s,a,s') encodes P(s'|s,a)
 - Some properties
 - Stationary: T does not change over time
 - Markovian: Only depends on previous state / action
 - If T not Markovian or stationary
 - can sometimes achieve by augmenting state description
 - » e.g., elevator traffic differs throughout day... encode time in state to make T Markovian!

Goals and Rewards

- Goal-oriented rewards
 - Assign any reward value s.t. R(success) > R(fail)
 - Can have negative costs C(a) for action a
- What if multiple (or no) goals?
 - How to specify preferences?
 - R(s,a) assigns utilities to each state s and action a
 - Then maximize expected reward (utility)

But, how to trade off rewards over time?

Optimization: Best Action when s=1?

- Must define objective criterion to optimize!
 - How to trade off immediate vs. future reward?
 - E.g., use discount factor γ (try γ =.9 vs. γ =.1)

Trading Off Sequential Rewards

• Sequential-decision making objective

– Horizon

- *Finite*: Only care about h-steps into future
- Infinite: Literally; will act same today as tomorrow
- How to trade off reward over time?
 - Expected average cumulative return
 - Expected discounted cumulative return
 - Use discount factor γ
 - Reward t time steps in future discounted by γ^t

Recap

- Model so far
 - Actions A
 - States S
 - Observation O
 - Transition function T: P(s'|s,a)
 - Observation function Z: P(o'|s,a) POMDPs only
 - Reward function: R(s,a)
 - Optimization criteria
- But are the above
 - Known or unknown?

Knowledge of Environment

• Model-known:

- Know observation, transition, & reward functions
- Called: *Planning (under uncertainty)*
 - Planning generally assumed to be goal-oriented
 - Decision-theoretic if maximizing expected utility

• Model-free:

- ≥ 1 unknown: observation, transition, & reward functions
- Called: *Reinforcement learning*
 - Have to interact with environment to obtain samples

• Model-based: approximate model in model-free case

Permits hybrid planning and learning —

Saves expensive interaction!

Finally a Formal Model

- Define the previous model
 - -MDP: \langle S, A, T, R \rangle
 - -POMDP: \langle S, A, O, Z, T, R \rangle

- Whether known / unknown

Characterize the solutions

 And efficiently find them!

Model-based Solutions to MDPs

- Reward
 - R(s=1,a=stay) = 2
 - ...
- Transitions
 - T(s=1,a=stay,s'=1) = P(s'=1 | s=1, a=stay) = .9

How to act in an MDP? Define policy $\pi: S \rightarrow A$

What's the best Policy?

• Must define reward criterion to optimize! – Discount factor γ important (γ =1.0 vs. γ =0.1)

MDP Policy, Value, & Solution

• Define value of a policy π :

$$V_{\pi}(s) = E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \cdot r_t \middle| s = s_0 \right]$$

- Tells how much value you expect to get by following π starting from state s
- Allows us to define optimal solution:
 - Find optimal policy π^* that maximizes value
 - Surprisingly: $\exists \pi^* . \forall s, \pi . V_{\pi^*}(s) \geq V_{\pi}(s)$
 - Furthermore: always a *deterministic* π^*

Value Function \rightarrow Policy

- Given arbitrary value V (optimal or not)...
 - A greedy policy π_V takes action in each state that maximizes expected value w.r.t. V:

$$\pi_V(s) = \arg\max_a \left\{ R(s,a) + \gamma \sum_{s'} T(s,a,s') V(s') \right\}$$

- If can act so as to obtain V after doing action a in state s, π_V guarantees V(s) in expectation

If *V* not optimal, but a *lower bound* on V^* , π_V guarantees at least that much value!

Value Iteration: from finite to ∞ decisions

- Given optimal (t-1)-stage-to-go value function
- How to act optimally with *t* decisions?
 - Take action a then act so as to achieve V^{t-1} thereafter

$$Q^t(s,a) := R(s,a) + \gamma \cdot \sum_{s' \in S} T(s,a,s') \cdot V^{t-1}(s')$$

– What is expected value of best action a at decision stage t?

$$V^t(s) := \max_{a \in A} \left\{ Q^t(s, a) \right\}$$

– At ∞ horizon, converges to V*

$$\lim_{t \to \infty} \max_{s} |V^{t}(s) - V^{t-1}(s)| = 0$$

Make sure you can derive these equations from first principles!

- This value iteration solution know as dynamic programming (DP)

Bellman Fixed Point

• Define *Bellman backup* operator *B*:

$$\underbrace{(BV)}_{V^{t-1}}^{V^{t}}(s) = \max_{a} \left\{ R(s,a) + \gamma \sum_{s'} T(s,a,s') V(s') \right\}$$

∃ an optimal value function V* and an optimal deterministic greedy policy π*= π_{V*} satisfying:

$$\forall s. \ V^*(s) = (B \ V^*)(s)$$

Bellman Error and Properties

• Define *Bellman error BE*:

 $(BEV) = \max_{s} |(BV)(s) - V(s)|$

• Clearly:

 $(BE V^*) = 0$

• Can prove *B* is a contraction operator for *BE*:

 $(BE(BV)) \le \gamma(BEV)$

Hmmm.... Does this suggest a solution?

Value Iteration: in search of fixed-point

- Start with arbitrary value function V⁰
- Iteratively apply Bellman backup

 $V^t(s) = (B V^{t-1})(s) \checkmark$

Look familiar? Same DP solution as before.

- Bellman error decreases on each iteration
 - Terminate when

$$\max_{s} |V^{t}(s) - V^{t-1}(s)| < \frac{\epsilon(1-\gamma)}{2\gamma}$$

- Guarantees ϵ -optimal value function
 - i.e., V^t within ε of V^* for all states

Precompute maximum number of steps for ϵ ?

Single DP Bellman Backup

• Graphical view:

Current estimate

Synchronous DP Updates (VI)

Asynchronous DP Updates

• Or... can update states in any order:

Still provably converges! ^{*}

Question:

how to order updates to converge quickly?
Real-time Dynamic Programming

• *Reachability* and drawbacks of synch. DP (VI)

- Better to think of *relevance* to optimal policy
- RTDP focuses async. updates on relevant states!

Policy Evaluation

- Given π , how to derive V_{π} ?
- Matrix inversion
 - Set up linear equality (no max!) for each state

$$\forall s. \ V_{\pi}(s) = \left\{ R(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}(s') \right\}$$

• Can solve linear system in vector form as follows

$$V_{\pi} = R_{\pi} (I - \gamma T_{\pi})^{-1}$$

Guaranteed invertible.

1

7

- Successive approximation
 - Essentially value iteration with fixed policy
 - Initialize V_{π}^{0} arbitrarily

$$V_{\pi}^{t}(s) := \left\{ R(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}^{t-1}(s') \right\}$$

• Guaranteed to converge to V_{π}

Policy Iteration

- 1. *Initialization:* Pick an arbitrary initial decision policy $\pi_0 \in \Pi$ and set i = 0.
- 2. *Policy Evaluation:* Solve for V_{π_i} (previous slide).
- 3. *Policy Improvement:* Find a new policy π_{i+1} that is a greedy policy w.r.t. V_{π_i}

(i.e., $\pi_{i+1} \in \arg \max_{\pi \in \Pi} \{R_{\pi} + \gamma T_{\pi} V_{\pi_i}\}$ with ties resolved via a total precedence order over actions).

4. Termination Check: If $\pi_{i+1} \neq \pi_i$ then increment *i* and go to step 2 else return π_{i+1} .

Between Value and Policy Iteration

- Value iteration
 - Each iteration seen as doing 1-step of policy evaluation for current greedy policy
 - Bootstrap with value estimate of previous policy
- Policy iteration
 - Each iteration is full evaluation of V $_{\pi}$ for current policy π
 - Then do greedy policy update
- Modified policy iteration
 - Like policy iteration, but $V_{\pi i}$ need only be closer to V* than $V_{\pi i-1}$
 - Fixed number of steps of successive approximation for $V_{\pi i}$ suffices when bootstrapped with $V_{\pi i\text{-}1}$
 - Typically faster than VI & PI in practice

Advanced (PO)MDP Modeling with RDDL

A Brief History of (ICAPS) Time

PDDL history from: <u>http://ipc.informatik.uni-freiburg.de/PddlResources</u>

What is RDDL?

- Relational Dynamic Influence Diagram Language
 - Relational
 [DBN + Influence Diagram]
 - Everything is a fluent!
 - states
 - observations
 - actions
 - Conditional distributions are probabilistic programs

Wildfire Domain (today's lab)

- Contributed by Zhenyu Yu (School of Economics and Management, Tongji University)
 - Karafyllidis, I., & Thanailakis, A. (1997). A model for predicting forest fire spreading using gridular automata. Ecological Modelling, 99(1), 87-97.

Wildfire in RDDL

cpfs {

else

burning(?x, ?y); // State persists

```
out-of-fuel'(?x, ?y) = out-of-fuel(?x, ?y) | burning(?x,?y);
```

};

```
reward =
    [sum_{?x: x_pos, ?y: y_pos} [ COST_CUTOUT*cut-out(?x, ?y) ]]
+ [sum_{?x: x_pos, ?y: y_pos} [ COST_PUTOUT*put-out(?x, ?y) ]]
+ [sum_{?x: x_pos, ?y: y_pos} [ COST_NONTARGET_BURN*[ burning(?x, ?y) ^ ~TARGET(?x, ?y) ]]]
+ [sum_{?x: x_pos, ?y: y_pos}
    [ COST_TARGET_BURN*[ (burning(?x, ?y) | out-of-fuel(?x, ?y)) ^ TARGET(?x, ?y) ]]];
```

Facilitating Model Development by Writing Simulators: Relational Dynamic Influence Diagram Language (RDDL)

RDDLSim Software

Open source & online at http://code.google.com/p/rddlsim/

RDDL Software Overview

- BNF grammar and parser
- Simulator
- Automatic compilation / translations
 - LISP-like format (easier to parse)
 - SPUDD & Symbolic Perseus (boolean subset)
 - Ground PPDDL (boolean subset)
- Client / Server
 - Java and C/C++ sample clients
 - Evaluation scripts for log files

Visualization

- DBN Visualization
- Domain Visualization see how your planner is doing

Initial Use of RDDL

- Have run two major competitions at ICAPS
- Translations to draw in different communities
 - UAI Factored MDP / POMDP community
 - ICAPS PPDDL community
 - 11 competitors in 2011, 6 competitors in 2014
- Competitions drive research progress!
 - Historically, ICAPS focused on deterministic replanning
 - With RDDL + new domains, MCTS dominates (namely PROST system by Thomas Keller *et al*)

Recap: Lecture Goals

- 1) To understand the ingredients of formal models for a range of applications in decision-making under uncertainty
- 2) To understand fundamental solution algorithms for these models and their properties
- 3) To understand how to build complex models (brief RDDL overview, more in lab)
- 4) Upcoming MDP lectures: MCTS, RL, ...