
ICAPS Summer School 2018:
Introduction to Planning under

Uncertainty in MDPs

Scott Sanner

Lecture Goals
1) To understand the ingredients of formal models

for a range of applications in decision-making
under uncertainty

2) To understand fundamental solution algorithms
for these models and their properties

3) To understand how to build complex models
(brief RDDL overview, more in lab)

4) Later MDP lectures: MCTS, RL and beyond

Planning under Uncertainty

• Definition:

Computing sequences of actions to
obtain occasional rewards in a
known, stochastic environment

Reinforcement Learning (RL)

• Definition:

Learning to act from periodic
rewards in an unknown, stochastic
environment

Applications

Elevator Control
• Concurrent Actions

– Elevator: up/down/stay
– 6 elevators: 3^6 actions

• Dynamics:
– Random arrivals (e.g., Poisson)

• Objective:
– Minimize total wait
– (Requires being proactive

about future arrivals)

• Constraints:
– People might get annoyed

if elevator reverses direction

http://www.melsa.com.sa/images/Elevators%20at%20Kingdom%20Centre,%20Riyadh.JPG
http://www.melsa.com.sa/images/Elevators%20at%20Kingdom%20Centre,%20Riyadh.JPG
http://alpha.dickinson.edu/prorg/nectfl/elevators.jpg
http://alpha.dickinson.edu/prorg/nectfl/elevators.jpg

Two-player Games
• Othello / Reversi

– Solved by Logistello!
– Monte Carlo RL (self-play)

+ Logistic regression + Search

• Backgammon
– Solved by TD-Gammon!
– Temporal Difference (self-play)

+ Artificial Neural Net + Search

• Go
– Learning + Search
– AlphaGo (MCTS + deep learning)

recently the world champion

http://en.wikipedia.org/wiki/Image:Backgammon_lg.jpg
http://en.wikipedia.org/wiki/Image:Backgammon_lg.jpg

Multi-player Games: Poker
• Multiagent (adversarial)

– Opponent may abruptly
change strategy

– Might prefer best outcome
for any opponent strategy
(e.g, a Nash equilibrium)

• Multiple rounds (sequential)

• Partially observable!
– Earlier actions may

reveal information
– Or they may not (bluff)

DARPA Grand Challenge
• Autonomous mobile robotics

– Extremely complex task, requires expertise in vision,
sensors, real-time operating systems

• Partially observable
– e.g., only get noisy sensor readings

• Model unknown
– e.g., steering response in different terrain

http://upload.wikimedia.org/wikipedia/commons/0/0c/DesertToCity.jpg
http://upload.wikimedia.org/wikipedia/commons/0/0c/DesertToCity.jpg
http://en.wikipedia.org/wiki/Image:Stanleyrobot.jpg
http://en.wikipedia.org/wiki/Image:Stanleyrobot.jpg
http://en.wikipedia.org/wiki/Image:ElementBlack2.jpg
http://en.wikipedia.org/wiki/Image:ElementBlack2.jpg

How to model
these problems?

Observations, States, & Actions

Observations

State

Actions

Observations

• Observation set O
– Perceptions, e.g.,

• Distance from car to edge of road
• My opponent’s bet in Poker

States

• State set S
– At any point in time, system is in some state

• Actual distance to edge of road
• My opponent’s hand of cards in Poker

Agent Actions
• Action set A

– Actions could be concurrent
– If k actions, A = A1 × … × Ak

• Schedule all deliveries to be made at 10am

Agent Actions
• Action set A

– All actions need not be under agent control

• Other agents, e.g.,
– Alternating turns: Poker, Othello
– Concurrent turns: Highway Driving, Soccer

• Exogenous events due to Nature, e.g.,
– Random arrival of person waiting for elevator
– Random failure of equipment
– If uncontrolled, model as random variables

Observation Function
• How to relate states and observations?

• Not observable:
– O = ∅
– e.g., heaven vs. hell

» only get feedback once you meet St. Pete

• Fully observable:
– S ↔ O … the case we focus on!
– e.g., many board games,

» Othello, Backgammon, Go

• Partially observable:
– all remaining cases
– e.g., driving a car, Poker, the real world!

Recap
• So far

– Actions
– States
– Observations

• How to map between
– Previous states, actions, and future states?
– States and observations?
– States, actions and rewards?
– Sequences of rewards and optimization criteria?

Transition Function
• How do actions take us between states?

– T(s,a,s’) encodes P(s’|s,a)
– Some properties

• Stationary: T does not change over time

• Markovian: Only depends on previous state / action

• If T not Markovian or stationary
– can sometimes achieve by augmenting state description

» e.g., elevator traffic differs throughout day…
encode time in state to make T Markovian!

Goals and Rewards
• Goal-oriented rewards

– Assign any reward value s.t. R(success) > R(fail)
– Can have negative costs C(a) for action a

• What if multiple (or no) goals?
– How to specify preferences?
– R(s,a) assigns utilities to each state s and action a

• Then maximize expected reward (utility)

But, how to trade off
rewards over time?

Optimization: Best Action when s=1?

• Must define objective criterion to optimize!
– How to trade off immediate vs. future reward?
– E.g., use discount factor γ (try γ=.9 vs. γ=.1)

s=1

s=2
R=0

a=stay
R=2

a=change
R=10

s=1

s=2
R=0

a=stay
R=2

a=change
R=10

s=1

s=2
R=0

a=stay
R=2

a=change
R=10

Trading Off Sequential Rewards
• Sequential-decision making objective

– Horizon
• Finite: Only care about h-steps into future
• Infinite: Literally; will act same today as tomorrow

– How to trade off reward over time?
• Expected average cumulative return
• Expected discounted cumulative return

– Use discount factor γ
– Reward t time steps in future discounted by γt

Recap
• Model so far

– Actions A
– States S
– Observation O
– Transition function T: P(s’|s,a)
– Observation function Z: P(o’|s,a) – POMDPs only
– Reward function: R(s,a)
– Optimization criteria

• But are the above
– Known or unknown?

Knowledge of Environment
• Model-known:

– Know observation, transition, & reward functions
– Called: Planning (under uncertainty)

• Planning generally assumed to be goal-oriented
• Decision-theoretic if maximizing expected utility

• Model-free:
– ≥1 unknown: observation, transition, & reward functions
– Called: Reinforcement learning

• Have to interact with environment to obtain samples

• Model-based: approximate model in model-free case
– Permits hybrid planning and learning Saves expensive

interaction!

Finally a Formal Model
• Define the previous model

– MDP: 〈 S, A, T, R 〉
– POMDP: 〈 S, A, O, Z, T, R 〉
– Whether known / unknown

• Characterize the solutions
– And efficiently find them!

Model-based
Solutions to MDPs

MDPs 〈S,A,T,R〉

• S = {1,2}; A = {stay, change}
• Reward

– R(s=1,a=stay) = 2
– …

• Transitions
– T(s=1,a=stay,s’=1) = P(s’=1 | s=1, a=stay) = .9
– …

s=1 s=2 a=stay (P=1.0)
a=change (P=1.0)a=stay (P=0.9)

a=change (P=1.0)
a=stay (P=0.1)

R=10

R=2 R=0

How to act
in an MDP?

Define policy
π: S → A

Note: fully
observable

R=2

What’s the best Policy?

• Must define reward criterion to optimize!
– Discount factor γ important (γ=1.0 vs. γ=0.1)

s=1

s=2
R=0

a=stay (P=.9)
R=2

a=change
R=10

s=1

s=2
R=0

a=stay (P=.9)
R=2

a=change
R=10

s=1

s=2
R=0

a=stay (P=.9)
R=2

a=change
R=10

MDP Policy, Value, & Solution
• Define value of a policy π:

• Tells how much value you expect to get by
following π starting from state s

• Allows us to define optimal solution:
– Find optimal policy π* that maximizes value

– Surprisingly:

– Furthermore: always a deterministic π*

9¼¤: 8s; ¼: V¼¤(s) ¸ V¼(s)

V¼(s) = E¼

hP1
t=0 °t ¢ rt

¯̄
¯s = s0

i

Value Function → Policy
• Given arbitrary value V (optimal or not)…

– A greedy policy πV takes action in each state that
maximizes expected value w.r.t. V:

– If can act so as to obtain V after doing action a in
state s, πV guarantees V(s) in expectation

¼V (s) = argmax
a

(
R(s; a) + °

X

s0

T (s; a; s0)V (s0)

)

If V not optimal, but a lower bound on V*, πV
guarantees at least that much value!

Value Iteration: from finite to ∞ decisions
• Given optimal (t-1)-stage-to-go value function
• How to act optimally with t decisions?

– Take action a then act so as to achieve Vt-1 thereafter

– What is expected value of best action a at decision stage t?

– At ∞ horizon, converges to V*

– This value iteration solution know as dynamic programming (DP)

V t(s) := max
a2A

©
Qt(s; a)

ª
Make sure you

can derive these
equations from
first principles!

Qt(s; a) := R(s; a) + ° ¢
X

s02S

T (s; a; s0) ¢ V t¡1(s0)

lim
t!1

max
s

jV t(s) ¡ V t¡1(s)j = 0

Bellman Fixed Point
• Define Bellman backup operator B:

• ∃ an optimal value function V* and an optimal
deterministic greedy policy π*= πV* satisfying:

8s: V ¤(s) = (B V ¤)(s)

(B V)(s) = max
a

(
R(s; a) + °

X

s0

T (s; a; s0)V (s0)

)

Vt-1

Vt

Bellman Error and Properties

• Define Bellman error BE:

• Clearly:

• Can prove B is a contraction operator for BE:

(BE V) = max
s

j(B V)(s) ¡ V (s)j

(BE (B V)) · °(BE V)

(BE V ¤) = 0

Hmmm…. Does this
suggest a solution?

Value Iteration: in search of fixed-point

• Start with arbitrary value function V0

• Iteratively apply Bellman backup

• Bellman error decreases on each iteration
– Terminate when

– Guarantees ε-optimal value function
• i.e., Vt within ε of V* for all states

Precompute maximum
number of steps for ε?

V t(s) = (B V t¡1)(s)

max
s

jV t(s) ¡ V t¡1(s)j <
²(1 ¡ °)

2°

Look familiar?
Same DP solution

as before.

Single DP Bellman Backup
• Graphical view:

s1

a1

a2

s1

V̂ 0(s1)

Q(s1; a1)

s2

s3

s2

V̂ (s1)

Q(s1; a2)

V̂ (s2)

V̂ (s3)

V̂ (s2)

max

X

s0

T (s; a; s0)¢

X

s0

T (s; a; s0)¢

Current
estimate

Updated
estimate

Synchronous DP Updates (VI)

Asynchronous DP Updates
• Or… can update states in any order:

• Still provably converges!

s
1

a1

a
2

s
1

V̂ 0(s1)

Q(s1; a1)

s2

s
3

s
2

V̂ (s1)

Q(s1; a2)

V̂ (s2)

V̂ (s3)

V̂ (s2)

max

X

s0

T (s; a; s0)¢

X

s0

T (s; a; s0)¢

s
2

a1

a
2

s
1

Q(s1; a1)

s2

s
3

s
2

Q(s1; a2)

V̂ (s2)

V̂ (s3)

V̂ (s2)

max

X

s0

T (s; a; s0)¢

X

s0

T (s; a; s0)¢

s
1

a1

a
2

s
1

V̂ 0(s1)

Q(s1; a1)

s2

s
3

s
2

V̂ (s1)

Q(s1; a2)
V̂ (s3)

V̂ (s2)

max

X

s0

T (s; a; s0)¢

X

s0

T (s; a; s0)¢

Question:
how to order updates to

converge quickly?

Real-time Dynamic Programming
• Reachability and drawbacks of synch. DP (VI)

– Better to think of relevance to optimal policy

• RTDP focuses async. updates on relevant states!

S

F

Policy Evaluation
• Given π, how to derive Vπ?
• Matrix inversion

• Set up linear equality (no max!) for each state

• Can solve linear system in vector form as follows

• Successive approximation
• Essentially value iteration with fixed policy
• Initialize Vπ

0 arbitrarily

• Guaranteed to converge to Vπ

8s: V¼(s) =

(
R(s; ¼(s)) + °

X

s0

T (s; ¼(s); s0)V¼(s0)

)

V¼ = R¼(I ¡ °T¼)¡1

V t
¼(s) :=

(
R(s; ¼(s)) + °

X

s0

T (s; ¼(s); s0)V t¡1
¼ (s0)

)

Guaranteed
invertible.

Policy Iteration
1. Initialization: Pick an arbitrary initial decision pol-

icy ¼0 2 ¦ and set i = 0.

2. Policy Evaluation: Solve for V¼i
(previous slide).

3. Policy Improvement: Find a new policy ¼i+1 that
is a greedy policy w.r.t. V¼i

(i.e., ¼i+1 2 arg max¼2¦ fR¼ + °T¼V¼ig with
ties resolved via a total precedence order over
actions).

4. Termination Check: If ¼i+1 6= ¼i then increment i
and go to step 2 else return ¼i+1.

Between Value and Policy Iteration
• Value iteration

– Each iteration seen as doing 1-step of policy evaluation for
current greedy policy

– Bootstrap with value estimate of previous policy

• Policy iteration
– Each iteration is full evaluation of Vπ for current policy π
– Then do greedy policy update

• Modified policy iteration
– Like policy iteration, but Vπi need only be closer to V* than Vπi-1

• Fixed number of steps of successive approximation for Vπi suffices
when bootstrapped with Vπi-1

– Typically faster than VI & PI in practice

Advanced (PO)MDP
Modeling with RDDL

A Brief History of (ICAPS) Time

STRIPS (1971)
Fikes & Nilsson

Relational

ADL (1987)
Pednault

Cond. Effects
Open World

PDDL 1.2 (1998)
McDermott et al

Univ. Effects

PDDL 2.1, + (2003)
Fox & Long

Numerical fluents,
Conc., Exogenous

PDDL 2.2 (2004)
Edelkamp & Hoffmann
Derived Pred, Temporal

PDDL 3.0 (2004)
Gerevini & Long
Traj. Constraints,

Preferences

PPDDL (2004)
Littmann & Younes

Prob. Effects

RDDL (2010)
Sanner

PDDL 2.2 × DBN++

Dynamic Bayes Nets (1989)
Dean and Kanazawa

Factored Stochastic Processes

Big
Bang

SPUDD, Sym. Perseus (1999,
2004) Hoey, Boutilier, Poupart
DBN + Utility: Fact. (PO)MDP

ICAPS

UAI

3.2

Relational!

PDDL history from: http://ipc.informatik.uni-freiburg.de/PddlResources

http://ipc.informatik.uni-freiburg.de/PddlResources

What is RDDL?
• Relational Dynamic

Influence Diagram
Language

– Relational
[DBN + Influence Diagram]

– Everything is a fluent!
• states
• observations
• actions

– Conditional distributions are
probabilistic programs

t t+1

a

x1

x2

r

x1’

x2’

o1 o2

Wildfire Domain (today’s lab)

• Contributed by Zhenyu Yu (School of Economics
and Management, Tongji University)
– Karafyllidis, I., & Thanailakis, A. (1997). A model for

predicting forest fire spreading using gridular
automata. Ecological Modelling, 99(1), 87-97.

Wildfire in RDDL
cpfs {

burning'(?x, ?y) =

if (put-out(?x, ?y))

then false
else if (~out-of-fuel(?x, ?y) ^ ~burning(?x, ?y))

then Bernoulli(1.0 / (1.0 + exp[4.5 - (sum_{?x2: x_pos, ?y2: y_pos}
(NEIGHBOR(?x, ?y, ?x2, ?y2) ^ burning(?x2, ?y2)))]))

else
burning(?x, ?y); // State persists

out-of-fuel'(?x, ?y) = out-of-fuel(?x, ?y) | burning(?x,?y);

};

reward =

[sum_{?x: x_pos, ?y: y_pos} [COST_CUTOUT*cut-out(?x, ?y)]]
+ [sum_{?x: x_pos, ?y: y_pos} [COST_PUTOUT*put-out(?x, ?y)]]
+ [sum_{?x: x_pos, ?y: y_pos} [COST_NONTARGET_BURN*[burning(?x, ?y) ^ ~TARGET(?x, ?y)]]]
+ [sum_{?x: x_pos, ?y: y_pos}

[COST_TARGET_BURN*[(burning(?x, ?y) | out-of-fuel(?x, ?y)) ^ TARGET(?x, ?y)]]];

Facilitating Model Development by Writing Simulators:
Relational Dynamic Influence Diagram Language (RDDL)

Write
probabilistic
programs for

transitions

Automatic
Translation

Sanner (2010)

RDDLSim Software
Open source & online at

http://code.google.com/p/rddlsim/

http://code.google.com/p/rddlsim/

RDDL Software Overview
• BNF grammar and parser

• Simulator

• Automatic compilation / translations
– LISP-like format (easier to parse)
– SPUDD & Symbolic Perseus (boolean subset)
– Ground PPDDL (boolean subset)

• Client / Server
– Java and C/C++ sample clients
– Evaluation scripts for log files

• Visualization
– DBN Visualization
– Domain Visualization – see how your planner is doing

Initial Use of RDDL
• Have run two major competitions at ICAPS

• Translations to draw in different communities
– UAI Factored MDP / POMDP community
– ICAPS PPDDL community
– 11 competitors in 2011, 6 competitors in 2014

• Competitions drive research progress!
– Historically, ICAPS focused on deterministic replanning
– With RDDL + new domains, MCTS dominates

(namely PROST system by Thomas Keller et al)

Recap: Lecture Goals
1) To understand the ingredients of formal models

for a range of applications in decision-making
under uncertainty

2) To understand fundamental solution algorithms
for these models and their properties

3) To understand how to build complex models
(brief RDDL overview, more in lab)

4) Upcoming MDP lectures: MCTS, RL, …

	Slide Number 1
	Lecture Goals
	Planning under Uncertainty
	Reinforcement Learning (RL)
	Applications
	Elevator Control
	Two-player Games
	Multi-player Games: Poker
	DARPA Grand Challenge
	How to model � these problems?
	Observations, States, & Actions
	Observations
	States
	Agent Actions
	Agent Actions
	Observation Function
	Recap
	Transition Function
	Goals and Rewards
	Optimization: Best Action when s=1?
	Trading Off Sequential Rewards
	Recap
	Knowledge of Environment
	Finally a Formal Model
	Model-based �Solutions to MDPs
	MDPs S,A,T,R
	What’s the best Policy?
	MDP Policy, Value, & Solution
	Value Function  Policy
	Value Iteration: from finite to  decisions
	Bellman Fixed Point
	Bellman Error and Properties
	Value Iteration: in search of fixed-point
	Single DP Bellman Backup
	Synchronous DP Updates (VI)
	Asynchronous DP Updates
	Real-time Dynamic Programming
	Policy Evaluation
	Policy Iteration
	Between Value and Policy Iteration
	Advanced (PO)MDP Modeling with RDDL
	A Brief History of (ICAPS) Time
	What is RDDL?
	Wildfire Domain (today’s lab)
	Wildfire in RDDL
	Facilitating Model Development by Writing Simulators:�Relational Dynamic Influence Diagram Language (RDDL)
	RDDLSim Software
	RDDL Software Overview
	Initial Use of RDDL
	Recap: Lecture Goals

