
Abstract

This demonstration will show a suite of tools that
form a end-to-end PDDL2.2 developer
environment. Its shape was driven by dual
purpose: to help the novice to learn faster and
empower the expert to validate models at scale
and integrate them to a larger software solution.
This toolset takes a shape of an extension for a
popular, cross-platform, light-weight and freely
available Visual Studio Code editor.

1 Introduction

Planning Domain Definition Language (PDDL2.2)
(Edelkamp et al., 2004) has a simple and well described
syntax, but learning to encode domain processes in it is still
daunting especially when considering the numeric and
temporal component of the language. It was already
demonstrated by (Brom et al., 2012) that such a PDDL
integrated developer environment can be implemented, but
it is hard to maintain over time and remains isolated from
the other architectural components in the overall software
solution.

It was also demonstrated by (planning.domains, 2015)
how a light-weight authoring environment may be
deployed to any device via a web browser, but as such it
lacks advanced language support features available for
other programming languages like C++ or Javascript.

While the impact of the two implementations may
arguably still be limited, the drivers remain valid and their
importance grows over time as the AI Planning technology
proves viable in a growing number of industrial
applications and the largest bottleneck became the speed of
adoption.

2 Accelerating the Learning Curve

The fastest way to train people is to bring the training to the
very environment where they do their work. While the
syntax is clearly described in number of papers and
turorials and the most commonly used syntax fits one cheat
sheet, it is far more effective to bring it directly to their
finger tips and make it context sensitive to what they are
doing, e.g. different syntax is applicable in different
sections.

1.1 Understanding PDDL syntax

Example of the tools for the PDDL novice are:

• Syntax highlighting
• Snippets for :domain, :problem, :action, :durative-

action, etc… blocks
• Auto-completion for keywords with intelligent

snippets guiding them through the different parts,
• Auto-completion for predicate and function

names including the developer documentation
comment

• Hover-over tooltip for keywords, predicates and
functions

• Jump to predicate/function declaration
• Find all references to a predicate/function/type

In addition, any syntax errors flagged by a PDDL Parser
are flagged in the PDDL code using the red squiggly line
and listed in a dedicated UI panel.
For convenience, a PDDL planner can be invoked right
from the active editor.

1.2 Understanding PDDL Plans

Plans displayed as text demand human-intensive analysis
to confirm whether the plan meets the expectation.
Especially when it comes to temporal planning a picture is
worth thousand printouts. The features demonstrated
include:

• Simple clickable Gantt chart
• Swim lane view per object type and optionaly
• Line plot displaying numeric values over time

If the configured planning engine is capable of outputting
multiple plans, the PDDL modeler can review and compare
all of them.

2 Empowering the Expert

PDDL domain models are usually implemented by
gradually increasing their fidelity (and complexity). The
testing is done by augmenting the problem file with the new
scope and re-testing after every modification. This works
for a single person prototyping a domain model for a demo,
but is not sustainable when either:

• The scope and complexity grows,
• Multiple PDDL authors need to collaborate or
• Infrequent maintenance causes regression.

As the attention of the PDDL author shifts to the more
and more complex aspects, it is essential to keep verifying
that all the simple cases still work too (i.e. they should be
regression tested). Besides that, once the PDDL domain
model works for one or two problem files, they should be

PDDL Authoring and Validation Environment for Building end-to-end Planning
Solutions

Jan Dolejsi and Derek Long and Maria Fox and Gilles Besançon
{JDolejsi, DLong6, MFox2, GBesancon}@slb.com

Schlumberger, UK

tested on a range of test cases with increasing scale (i.e.
scalability testing).

2.1 Regression testing

This PDDL toolset, as all modern integrated developer
environments enable:

1. Discovering and enumerating all declared test
cases in a workspace,

2. Executing them individually or as a suite,
3. Summarizing the results along with performance

characteristics (pass/fail, elapsed time)
4. Defining test assertion (i.e. how is the expected

plan supposed to look).
This is done by enumerating test cases in a manifest file
using a simple JSON schema.

{

 "defaultDomain": "trucks.pddl",

 "cases": [

 {

 "label": "Problem #1",

 "problem": "trucksp0.pddl",

 "expectedPlans": [

 "trucksp0-1.plan"

]

 },

 …

]
}

Figure 1 Interacting with regression test cases

2.2 PDDL Problem File Generation

While introducing PDDL into industrial software projects,
we have discovered that authoring the domain is not as
labor intensive as maintaining a steadily growing set of
problem files to test it. Some re-curring patterns can be
facilitated by a smart snippet:

• Symmetric predicate/function initialization i.e.:
(connected a b)(connected b a)

• Sequence of predicates initialization i.e.
(next stop1 stop2)…(next stop8 stop9)

However, this is very limited in scope and however smart
those snippets are, they still generate static PDDL code,
which is hard to maintain by hand afterwards.
 Instead, we propose templating the PDDL problem file
using an approach popular among web developers to
generate web pages. To illustrate, this is how to generate
the (:objects section from a list of items defined in a
JSON file:

(:objects
{% for object in json.objects %}
 {{object.name}} - {{object.type}}
{% endfor %}
)

Several popular templating languages are supported out
of the box (Jinja2 and Nunjucks), but the support also
includes custom Python scripts or any shell script or custom
program that may be appropriate to implement complex
data transformations outside of the planning domain’s
scope. With both Jinja2 and Nunjucks, the data is expected
in a .json file.

Figure 2 Flow chart of templated problem file

generation

This approach is siutable in the context of prototyping the
domain model, but can also be used at runtime as part of
the overall software solution, where data may be extracted
from an operational database instead of static .json files.
 Finally, leveraging the regression test framework
described above, templated PDDL helps auto-generating a
suite of scalability tests that are easy to maintain.

3. Conclusion

To industrialize PDDL without over-investing into
dedicated environment, we opted for (Visual Studio Code),
which is a light-weight, free, cross-platform editor already
fully featured for end-to-end developer workflows and
implemented the (PDDL Extension for VS Code). This
facilitated classroom training as well as PDDL self-study
on one hand and enabled building a full scope plan-based
automation solution coded in PDDL, Python and Javascript
developed and tested cohesively in a single environment.
To make it versatile, we made the PDDL Extension highly
configurable for use with different (parser) and (planner)
executables or online services.

Domain

Tem-

plated

Problem
Pre-

processor
Problem Planner

Data.json

Jinja2, Nunjucks,

Python, shell script,

…

References

[Edelkamp et al., 2004] Edelkamp, S., and Hoffmann, J.
2004. PDDL2.2: the language for the classical part of
the 4th international planning competition. Technical
Report 195, ALU Freiburg.

[Brom et al., 2012] Mgr. Cyril Brom Ph.D, PDDL Studio,
https://amis.mff.cuni.cz/PDDLStudio/.

[Strobel Kirsch, 2015] Volker Strobel, Alexandra Kirsch,
MYPDDL,
https://www.researchgate.net/publication/284788212_
Planning_in_the_Wild_Modeling_Tools_for_PDDL

[planning.domains, 2015] Andrew Coles, Christian Muise,
Kristie Taylor-Muise, http://planning.domains/.

[Visual Studio Code] Microsoft,
https://code.visualstudio.com/.

[PDDL extension for VS Code],
https://marketplace.visualstudio.com/items/jan-
dolejsi.pddl/

[Jinja2] http://jinja.pocoo.org/docs/2.10/templates/

[Nunjucks] https://mozilla.github.io/nunjucks/

[parser] Parser configuration guidelines for PDDL VS
Code extension:
https://github.com/jan-dolejsi/vscode-
pddl/wiki/Configuring-the-PDDL-parser

[planner] Planner configuration guidelines for PDDL VS
Code extension:
https://github.com/jan-dolejsi/vscode-
pddl/wiki/Configuring-the-PDDL-planner

https://amis.mff.cuni.cz/PDDLStudio/
https://www.researchgate.net/publication/284788212_Planning_in_the_Wild_Modeling_Tools_for_PDDL
https://www.researchgate.net/publication/284788212_Planning_in_the_Wild_Modeling_Tools_for_PDDL
http://planning.domains/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items/jan-dolejsi.pddl/
https://marketplace.visualstudio.com/items/jan-dolejsi.pddl/
http://jinja.pocoo.org/docs/2.10/templates/
https://mozilla.github.io/nunjucks/
https://github.com/jan-dolejsi/vscode-pddl/wiki/Configuring-the-PDDL-parser
https://github.com/jan-dolejsi/vscode-pddl/wiki/Configuring-the-PDDL-parser
https://github.com/jan-dolejsi/vscode-pddl/wiki/Configuring-the-PDDL-planner
https://github.com/jan-dolejsi/vscode-pddl/wiki/Configuring-the-PDDL-planner

