
SynKit: Finite LTL synthesis as a service

Alberto Camacho†, Christian Muise?, Jorge A. Baier‡, Sheila A. McIlraith†
†Department of Computer Science, University of Toronto

?CSAIL, Massachusetts Institute of Technology
‡Pontificia Universidad Católica de Chile, and Chilean Center for Semantic Web Research

†{acamacho,sheila}@cs.toronto.edu, ?cjmuise@mit.edu, ‡jabaier@ing.puc.cl

Abstract

Automatic synthesis of software from specification is one of
the classical problems in computer science. Recent research
has explored the use of finite linear temporal logic (LTLf) as
a specification language. Engineers, researchers, and practi-
tioners who wish to explore LTLf synthesis must overcome
several barriers, including the lack of convenient tools to syn-
thesize programs. In this paper we present SynKit, a web ser-
vice that provides an LTLf synthesis capability. SynKit aims
to simplify the task of synthesizing programs and debugging
specifications. Offered as a web service, it is very accessible
and does not require installation. SynKit integrates an editor,
a solver, and a strategy visualizer.

Introduction
Automated synthesis of software from specification was pro-
posed by Church in 1957, and is a well-studied problem.
In the context of constructing strategies for reactive sys-
tems, Pnueli and Rosner (1989) adopted Linear Temporal
Logic (LTL) as the specification language. LTL is a modal
logic with logical connectives (∨,¬) and temporal opera-
tors next (d) and until (U). Intuitively, dα denotes that
LTL formula α must hold in the next time step, and αUβ
denotes that α must hold until β holds. Other operators
such as always (�) and eventually (♦) can be defined in
terms of d and U . For many years, the 2-EXP-hardness
of the problem limited LTL synthesis to LTL fragments for
which synthesis could be performed in polynomial time (e.g.
GR(1) (Piterman et al. 2006)). In the last decade, signifi-
cant algorithmic advances have been made, many based on
bounded synthesis techniques (Kupferman and Vardi 2005;
Schewe and Finkbeiner 2007)

Synthesis of Finite LTL specifications
LTL synthesis is conventionally studied with LTL specifi-
cations denoting properties that are interpreted with respect
to infinite realizations of a program. Nevertheless, fields
such as automated planning have a long-standing tradi-
tion of employing LTL interpreted over finite traces (hence-
forth LTLf) to specify temporally extended objectives (e.g.,
(Bacchus and Kabanza 2000; Baier and McIlraith 2006;
Gerevini et al. 2009; Bienvenu et al. 2011)). LTLf has the
same syntax as LTL, with the difference that the truth of
LTLf formulae is evaluated over finite traces.

Figure 1: Capture of SynKit web service for LTLf synthesis.

Recently, De Giacomo and Vardi (2015) studied the com-
plexity of synthesis for LTLf specifications, and determined
the problem to be 2EXP-complete. Following the notation
in (Camacho et al. 2018a; 2018c), an LTLf specification is a
triplet 〈X ,Y, ϕ〉s, where X and Y are disjoint sets of vari-
ables and ϕ is an LTLf formula over X ∪ Y . The synthesis
problem can be characterized as a two-player game where
the environment player controls X and the agent player con-
trols Y . In each turn, players select a subset of the variables
they control. A play yields a sequence w = (x1 ∪ y1)(x2 ∪
y2) · · · of subsets of X ∪ Y . The play is winning for the
agent if w has a finite prefix, say (x1∪y1) · · · (xn∪yn), that
satisfies ϕ. LTLf realizability determines whether the agent
player has a winning strategy for the game; LTLf synthesis
is the problem of computing one such strategy. The order of
turn-taking is relevant, and is indicated with the semantics
of the game, s: if the agent plays first, then s = “Moore”;
otherwise, s = “Mealy”. With Moore semantics, the finite
prefix can have length zero.

Example Consider a variant of the visit-all planning domain
in which the agent can visit any cell ci at a time, denoted by
the LTLf formulaϕagt := �

∧
i(yi → ¬ d¬yi)∧∧i �((¬yi∧dyi) → ∧

j 6=i(yj ↔ dyj)). Intuitively, variable yi denotes
that cell ci has been visited. Initially, all cells are unvisited:
ϕI :=

∧
i ¬yi. At each timestep, some cells may be poi-

soned, indicated by the truth of uncontrollable variables xi.

The objective of the agent is to avoid poisoned cells, and
to visit cells until all unvisited cells are poisoned. This is
captured by LTLf formula ϕG := �(

∧
i(¬yi ∧ dyi) →

¬ dxi) ∧ ♦
∧

i(¬yi → xi). The problem is modeled with
specification 〈{x}i , {y}i , ϕI ∧ ϕagt ∧ ϕG〉Mealy. Winning
strategies visit unpoisoned cells that are unvisited until the
LTL specification is realized. �

To the best of our knowledge, only two LTLf synthesis
tools exist to date: Syft (Zhu et al. 2017) and SynKit (Cama-
cho et al. 2018a). Both reduce synthesis to solving a game
played on finite-state automata. The first tool, Syft, solves
the game using BDDs. The second tool, integrated into
the SynKit web service presented in this paper, solves the
game via reductions to Fully Observable Non-Deterministic
(FOND) planning. It includes a facility to compute cer-
tificates of unrealizability as proposed in (Camacho et al.
2018a). These are environment strategies that prevent the
agent from realizing the specification, and serve to explain
why the specification is unrealizable.

Even though LTLf synthesis is 2EXP, and therefore as
hard as LTL synthesis, algorithms for LTLf synthesis appear
to be more scalable in practice (cf. (Zhu et al. 2017)). Due
to its recent introduction, LTLf synthesis is not as popular
as LTL synthesis. One of our objectives with SynKit is to
enable practitioners to explore LTLf synthesis. Similar tools
exist for planning – e.g. planning.domains (Muise 2016) –
and LTL synthesis – e.g. the Acacia+ online demo.

Finite LTL Synthesis as a Service
Non-expert users that want to use LTLf synthesis tools may
experience a number of difficulties, e.g.:
• Installation: existing implementations do not work on all

platforms, and require a number of dependencies to trans-
form LTLf into automata and solve automata games.

• Computational resources: synthesis of hard specifications
requires a significant amount of computational resources.

• Learning curve: the user not familiar with LTLf and LTLf
synthesis may experience difficulties in writing specifica-
tions and in correctly setting tool parameters.

• Verification and debugging of specification: While LTLf
is a natural formalism for expressing temporal constraints,
it can be hard to capture desired behaviour. Easy verifica-
tion of solutions and easy debugging of specifications are
desirable features of a synthesis tool.

• Strategy export: synthesized strategies have limited use if
not exported in a widely accepted standard format.
The purpose for releasing a tool for LTLf synthesis as a

service is to relief practitioners from these pains, allow for
rapid prototyping and synthesis of controllers, and at the end
contribute towards adoption of synthesis technology.

Functionality
SynKit is a web service for LTL and LTLf synthesis.1 Cur-
rently, SynKit implements the algorithms presented in (Ca-
macho et al. 2018a) for LTLf synthesis and certificate gen-

1SynKit is available through the first author’s webpage, and:
http://www.cs.toronto.edu/~acamacho/synkit

Figure 2: Detail of the options and results panels.

eration, and the algorithms presented in (Camacho et al.
2018b; 2018c) for LTL synthesis. In the following, we dis-
cuss its basic functionality.

Specifications Editor The user can select one of the pre-
loaded benchmarks, or write a custom specification in TLSF
format (Jacobs et al. 2016).

Strategy Generation A graphical menu lets the user gener-
ate winning strategies, or unrealizability certificates (Figure
2). The former option computes a winning strategy if the
specification is realizable, or returns that none exists. The
latter option computes a certificate of unrealizability if the
specification is not realizable, or returns that none exists. Ei-
ther option determines realizability of the specification.
An optional optimization mode augments the scalability of
automata transformations by decomposing the LTLf formula
and transforming it into multiple automata. However, the re-
sulting game played on multiple automata is not necessarily
easier to solve in practice. Another optimization mode forces
a fixed action order in the compiled FOND problems.

Strategy Visualization and File Export Compiled FOND
problems, and synthesized policies that are solution to those
problems can be downloaded.

RESTful API Besides the graphical interface, basic func-
tionalities are accessible via API.

Summary and Future Work

Synthesizing software from specification reduces program-
ming to the task of designing and maintaining specifications.
We presented SynKit, a web service that offers LTL and
LTLf synthesis as a service. SynKit facilitates rapid proto-
typing and debugging of LTLf (and LTL) specifications, all
in an easy-to-use toolkit. Going forward, we plan to improve
the RESTful API, and to enable the export of synthesized
controllers in Verilog format.

References
Fahiem Bacchus and Froduald Kabanza. Using temporal
logics to express search control knowledge for planning. Ar-
tificial Intelligence, 116(1-2):123–191, 2000.
Jorge A. Baier and Sheila A. McIlraith. Planning with
temporally extended goals using heuristic search. In Pro-
ceedings of the 16th International Conference on Automated
Planning and Sched. (ICAPS), pages 342–345, 2006.
Meghyn Bienvenu, Christian Fritz, and Sheila A. McIlraith.
Specifying and computing preferred plans. Artificial Intelli-
gence, 175(7–8):1308–1345, 2011.
Alberto Camacho, Jorge A. Baier, Christian J. Muise, and
Sheila A. McIlraith. Finite LTL synthesis as planning. In
Proceedings of the 28th International Conference on Auto-
mated Planning and Sched. (ICAPS), 2018. To appear.
Alberto Camacho, Jorge A. Baier, Christian J. Muise, and
Sheila A. McIlraith. Synthesizing controllers: On the cor-
respondence between LTL synthesis and non-deterministic
planning. In Advances in Artificial Intelligence – Proceed-
ings of the 31st Canadian Conference on Artificial Intelli-
gence, pages 45–59, 2018.
Alberto Camacho, Christian Muise, Jorge A. Baier, and
Sheila A. McIlraith. LTL realizability via safety and reacha-
bility games. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI), 2018. To ap-
pear.
Alonzo Church. Applications of recursive arithmetic to the
problem of circuit synthesis. Summaries of the Summer In-
stitute of Symbolic Logic, Cornell University 1957, 1:3–50,
1957.
Giuseppe De Giacomo and Moshe Y. Vardi. Synthesis for
LTL and LDL on finite traces. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 1558–1564, 2015.
Alfonso Gerevini, Patrik Haslum, Derek Long, Alessandro
Saetti, and Yannis Dimopoulos. Deterministic planning in
the fifth international planning competition: PDDL3 and ex-
perimental evaluation of the planners. Artificial Intelligence,
173(5-6):619–668, 2009.
Swen Jacobs, Felix Klein, and Sebastian Schirmer. A high-
level LTL synthesis format: TLSF v1.1. In Proceedings
of the 5th Workshop on Synthesis (SYNT), pages 112–132,
2016.
Orna Kupferman and Moshe Y. Vardi. Safraless decision
procedures. In Proceedings of the 46th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 531–542,
2005.
Christian Muise. Planning.Domains. In The 26th Interna-
tional Conference on Automated Planning and Scheduling -
Demonstrations, 2016.
Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of
reactive(1) designs. In Proceedings of the 7th International
Conference on Verification, Model Checking, and Abstract
Interpretation,, pages 364–380, 2006.
Amir Pnueli and Roni Rosner. On the synthesis of a re-
active module. In Conference Record of the 16th Annual

ACM Symposium on Principles of Programming Languages,
pages 179–190, 1989.
Sven Schewe and Bernd Finkbeiner. Bounded synthesis. In
Proceedings of the 5th International Symposium on on Au-
tomated Technology for Verification and Analysis (ATVA),
pages 474–488, 2007.
Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu,
and Moshe Y. Vardi. Symbolic LTLf synthesis. In Proceed-
ings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI), pages 1362–1369, 2017.

