
The 28th International Conference on Automated Planning and Scheduling
 June 24 – 29, 2018, Delft, The Netherlands

Proceedings of the ICAPS 2018
Doctoral Consortium
Mentoring Program

Dissertation Abstract: Deep Probabilistic Planning

Thiago P. Bueno

Department of Computer Science
Institute of Mathematics and Statistics

University of São Paulo, Brazil

Abstract

Deep Probabilistic Planning combines gradient-based
optimization in deep neural nets with ideas from proba-
bilistic planning in order to efficiently solve continuous
sequential decision-making problems in discrete-time,
dynamic domains. The basic approach is to explicitly
encode a policy as a deep reactive net and to formulate
a probabilistic planning problem as an optimization task
defined over a suitable stochastic computation graph
that shall be solved by gradient-based policy search
methods, such as gradient ascent algorithms. In this
PhD project, we propose: (i) to extend previous works
on planning through back-propagation to the more gen-
eral case of stochastic transitions; and (ii) to investigate
the applicability of model-based ideas of probabilis-
tic planning (e.g., heuristic search, re-planning, reach-
ability analysis) to improve convergence properties. We
shall focus on domains exhibiting nonlinear dynamics,
which state-of-the-art planners struggle to solve due to
computational issues or representational limitations.

Introduction

Planning is one of the oldest disciplines in Artificial Intelli-
gence (AI). It is concerned with domain-independent meth-
ods for generating agents that exhibit intelligent decision-
making behavior. The main feature that distinguishes the
area of planning from other related fields is that the planner
has direct access to a precise model of how actions induce
state transitions and observations provide information about
the current situation of a given environment. In other words,
planning is the model-based approach to the problem of au-
tonomous behavior in dynamic systems.

When the model allows actions to have uncertain out-
comes, we are dealing with a probabilistic planning prob-
lem. Markov Decision Process (MDP) (Puterman 2014) is
the de facto mathematical formalism for modeling such se-
quential decision-making problems under uncertainty. How-
ever, it is known that optimal algorithms for MDPs are in-
tractable in the worst case (Littman, Dean, and Kaelbling
1995) when the model is represented in compact form. This
complexity result is sometimes stated informally as the curse
of dimensionality. To this end, there has been a growing

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

interest in alternative approaches leveraging Monte-Carlo
sampling (Keller and Eyerich 2012) or re-planning tech-
niques (Yoon, Fern, and Givan 2007), as observed in recent
ICAPS competitions.

Although these state-of-the-art planners are able to solve
large complex MDPs, they are usually constrained to do-
mains with discrete action spaces due to limitations on how
to deal with infinite branching factors. Additionally, when
the model’s transition dynamics are high-dimensional or
nonlinear, even specially-designed extensions for continu-
ous actions (Weinstein and Littman 2012) have scalabil-
ity issues. Hence, if one is concerned with large sequential
decision-making under uncertainty in continuous discrete-
time environments, different methods have to be considered.

Inspired by recent advances in Deep Learning (DL) (Le-
Cun, Bengio, and Hinton 2015; Goodfellow et al. 2016),
we propose to investigate the opportunities and limitations
of formulating continuous probabilistic planning problems
as gradient-based optimization tasks. DL methods has re-
cently achieved remarkable success (Krizhevsky, Sutskever,
and Hinton 2012; Sutskever, Vinyals, and Le 2014) in a
variety of non-convex optimization tasks using deep neu-
ral nets (Schmidhuber 2015). Particularly, when it comes to
decision-making, Deep Reinforcement Learning (Deep RL)
(Silver et al. 2016) leverages these neural models as param-
eterized approximators of value functions and/or policies in
order to derive locally-optimal behaviors for agents interact-
ing with dynamic environments.

Policy-gradient methods (Buffet, Aberdeen, and others
2007; Silver et al. 2014), one of the most researched ap-
proaches in Deep RL, have been shown to successfully solve
large, high-dimensional continuous control problems. The
overall approach is grounded in the observation that it is
possible to estimate the gradient of the policy’s performance
w.r.t. its parameters without explicit knowledge of the sys-
tem’s transition and to apply these estimates to improve the
policy over time given sufficient amount of sampled data.

However, a natural question arises when formal knowl-
edge of the system is available: can policy-gradient meth-
ods be effectively applied in a model-based setting? This
PhD project aims at positively answering this question when
policy-gradient is combined with ideas from the literature of
probabilistic planning, especially those derived from heuris-
tic search, re-planning and reachability analysis.

Proceedings of the ICAPS 2018 DC Mentoring Program

1

this problem, most methods use baselines (Weaver and Tao
2001) (also known as control variate in optimal control) that
do not add bias, but considerably reduce the variance of the
gradient estimator.

In general, baseline functions are purely statistical in the
sense that they do not explicitly exploit any knowledge of
the underlying model. However, we shall propose investigat-
ing the use of the solution of a relaxed MDP MDET obtained
through determinization techniques as a baseline. A possi-
ble research direction is to follow a similar approach of the
FF-Replan (Yoon, Fern, and Givan 2007), which derives the
MDP MDET by only considering the effects of actions with
highest probabilities (i.e, most-likely determinization).

Assuming that the probability density transition function
of the original MDP is part of a location-scale family of dis-
tributions, we can use the re-parametrization trick to control
the determinization. Therefore, by controlling the noise ⇠

we can induce different levels of determinization, and in the
limit ⇠ ! 0 we obtain the most-likely determinization.

Once we got MDET we can leverage a recently proposed
approach based on planning through back-propagation (Wu,
Say, and Sanner 2017) to obtain a locally-optimal plan cost
cDET(s0) =

P
H

t=0 r̄t for the initial state s0 and use it as a
baseline b(s0) = cDET(s0). Finally, we substitute the advan-
tage function Âi,t+1 = Q̂i,t+1 � bt+1(s0) in Equation 7
in place of the reward-to-go Q̂i,t+1 to hopefully reduce the
variance of the gradient estimator.

Conclusion

This research proposal combines several ideas from a num-
ber of complementary areas in AI (e.g., probabilistic plan-
ning, statistical gradient-based optimization, and deep neu-
ral nets from machine learning). Although there has been
some cross-fertilization between these research communi-
ties in recent years, few works have especially focused on
bringing together advances of deep learning to model-based
decision-making methods. Conversely, a wealth of tech-
niques typically studied in the planning community (i.e.,
heuristic search, determinization, reachability analysis) has
yet to bear fruits inside more data-driven approaches such
as gradient-based optimization in terms of better data effi-
ciency and state exploration. Therefore, we strongly believe
that more work on Deep Probabilistic Planning can have a
positively great impact on the planning community.

References

Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen,
Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin,
M.; et al. 2016. Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.
Buffet, O.; Aberdeen, D.; et al. 2007. FF+ FPG: Guiding a
Policy-Gradient Planner. In ICAPS, 42–48.
Faulwasser, T., and Findeisen, R. 2009. Nonlinear model
predictive path following control. Nonlinear Model Predic-
tive Control 384:335–343.

Goodfellow, I.; Bengio, Y.; Courville, A.; and Bengio, Y.
2016. Deep learning, volume 1. MIT press Cambridge.
Greensmith, E.; Bartlett, P. L.; and Baxter, J. 2004. Vari-
ance reduction techniques for gradient estimates in rein-
forcement learning. Journal of Machine Learning Research
5(Nov):1471–1530.
Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Plan-
ning Based on UCT. In ICAPS.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
nature 521(7553):436.
Littman, M. L.; Dean, T. L.; and Kaelbling, L. P. 1995. On
the complexity of solving Markov decision problems. In
Proceedings of the Eleventh conference on Uncertainty in
artificial intelligence, 394–402. Morgan Kaufmann Publish-
ers Inc.
Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Schmidhuber, J. 2015. Deep learning in neural networks:
An overview. Neural networks 61:85–117.
Schulman, J.; Heess, N.; Weber, T.; and Abbeel, P. 2015.
Gradient estimation using stochastic computation graphs. In
Advances in Neural Information Processing Systems, 3528–
3536.
Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; and
Riedmiller, M. 2014. Deterministic policy gradient algo-
rithms. In Proceedings of the 31st International Conference
on Machine Learning (ICML-14), 387–395.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of Go with deep neural networks and tree search.
nature 529(7587):484–489.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems, 3104–3112.
Weaver, L., and Tao, N. 2001. The optimal reward baseline
for gradient-based reinforcement learning. In Proceedings
of the Seventeenth conference on Uncertainty in artificial in-
telligence, 538–545. Morgan Kaufmann Publishers Inc.
Weinstein, A., and Littman, M. L. 2012. Bandit-Based Plan-
ning and Learning in Continuous-Action Markov Decision
Processes. In ICAPS.
Wu, G.; Say, B.; and Sanner, S. 2017. Scalable Planning
with Tensorflow for Hybrid Nonlinear Domains. In Guyon,
I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vish-
wanathan, S.; and Garnett, R., eds., Advances in Neural In-
formation Processing Systems 30. Curran Associates, Inc.
6276–6286.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
Baseline for Probabilistic Planning. In ICAPS, volume 7,
352–359.

Proceedings of the ICAPS 2018 DC Mentoring Program

4

Action Schema Splitting
(ICAPS 2018 - Doctoral Consortium & Mentoring Program)

Bustos Facundo
UNC - FAMAF

Cordoba, Argentina
facundojosebustos@gmail.com

Abstract
As modeling details can have a large impact on planner per-
formance, domain compilation has been a traditional subject
of interest in the planning community not only between lan-
guages, but also within languages. In this dissertation, I will
talk about intra-language compilation method that has as yet
been applied only manually, and that has never been formally
described: Action Schema Splitting, which transforms an ac-
tion schema with a large interface (many parameters) into
several schemas with shorter interfaces, exponentially reduc-
ing the number of ground actions. We spell out this method,
characterizing exactly the choice of splits preserving equiv-
alence to the original schema. Making that choice involves
a trade-off between interface size and plan length, which we
explore by designing automatic domain compilation method.
Our experiments show that this technique may be very usefull
mainly on those domains where planner preprocessing fails.

Introduction
Automatic domain compilation has been a topic of inter-
est for a long time. The general idea behind of any do-
main compilation is transform a planning task into a sim-
pler or more suitable model easier to deal with. For ex-
ample, it has been considered to remove redundant actions
(Haslum and Jonsson 2000) in order to reduce the branching
factor or inversely add additional redundant macro-actions
in order to reduce distance-to-goal (Botea et al. 2005;
Newton et al. 2007), with the objective of improve the
planner’s performance. In this work we propose an intra-
language compilation that has not, as yet, been systemati-
cally investigated, which consists basically in: given an ac-
tion schema a[X], i. e., a PDDL-like action with parame-
ters (variables) X ranging over objects, create several sub-
action schemas a1[X1], . . . , ak[Xk] whose combination cor-
responds exactly to a[X] in any valid plan. The key advan-
tage of such split is the reduction in the number of ground
actions. For example, if each x ∈ X can be instantiated with
100 objects, |X| = 3, and |Xi| = 1, then we reduce that
number from 1000000 to 300.

We spell out formally what a valid action schema split
is, devising a general compilation method. Specifically, we
show that, given a schema a[X], one can choose any split
a1[X1], . . . , ak[Xk] that preserves the intended order among
potentially identical preconditions/adds/deletes in the origi-
nal schema (e. g., preconditions need to be checked before

corresponding deletes are applied, or else the split schema
may not be applicable even though the original schema
is). Choosing a1[X1], . . . , ak[Xk] constitutes a trade-off be-
tween minimizing interface size maxi |Xi| and thus the
number of ground actions, vs. minimizing split size k and,
therewith, plan length. We design automatic domain compi-
lation techniques addressing that trade-off.

Valid Splits
One of the most important properties of our technique is that,
the compilation was designed such that the plans in a com-
piled planning task are in one-to-one correspondence with
those in the original task. To ensure this, we need to guar-
antee: 1) Correctness: every plan of the compiled task is a
split of a plan of the orignal task, (i. e., we don’t add plans).
2) Completeness: for all plan of the original task, its split is a
plan of the compiled task, (i. e.we don’t delete plans). When
a split satisfies both properties, we say that it is valid. To
achive valid splitting, the following issues must be tackled:

1. Nothing ensures that the two sub-schemas are instantiated
consistently, i. e., assign the same object to the shared pa-
rameters.

2. Nothing ensures that the sub-schemas of the same action
are executed en-block, i. e., all together and without any
other subactions from other action inserted in between.

3. Nothing ensures that preconditions be checked before cor-
responding identical deletes or add effects are applied.
Also nothing ensures that deletes effects be applied be-
fore corresponding identical add effects is applied.

Issues (1) and (2) are easy to fix, for arbitrary splits,
by decorating the sub-schemas with new atoms ensuring
consistent instantiation and en-block execution. Issue (3) is
more subtle, and is the only one restricting the set of splits
we can choose from.

Example 1 As an illustrating running example, we will con-
sider the action schema moving block x from block y to block
z. We can write this in STRIPS notation as:

Move(x, y, z)
pre : {on(x, y), clear(x), clear(z)}
add : {on(x, z), clear(y)}
del : {on(x, y), clear(z)}

A tentative split into sub-schemas could be:

Proceedings of the ICAPS 2018 DC Mentoring Program

5

Move1(x, y) Move2(x, z)
pre : {on(x, y), clear(x)} pre : {clear(z)}
add : {clear(y)} add : {on(x, z)}
del : {on(x, y)} del : {clear(z)}

The correspondence of this split schema to the original
one appears obvious, and one may be tempted to conclude
that action schema splitting is trivial. However, note that the
split shown is not actually valid due: the shared parameter x
may be instantiated to different objects in both sub-actions.
Also, add clear(y) of Move1(x, y) is applied before precon-
dition clear(z) of Move2(x, z), then if y and z are instanti-
ated with the same object, then, in any reachable state s, the
original schema will not be applicable because we cannot
have on(x, y) and clear(y) at the same time, while in the
split schema, however, the add of Move1(x, y) will establish
that atom, rendering Move2(x, z) (and therewith the overall
split schema) applicable.

Characterizing Valid Splits
We have now identified exactly which splits can be chosen
(namely, the valid ones). Remains the question, how to ac-
tually find such splits? Does there even always exist a non-
trivial split, with more than a single sub-schema? Both ques-
tions are easily answered; we start with the latter one:

Definition 1 Let a[X] be an action schema. Then its Triv-
ial Split, denoted TrivialSplit(a[X]), is the one that assigns
every atom to the same single sub-schema. Its Atom Split de-
noted AtomSplit(a[X]), is the one that assigns every atom
to a separate sub-schema.

Obviously, TrivialSplit(a[X]) and AtomSplit(a[X]) are
both valid for any action schema a[X]. Towards answering
the question how to find more general valid splits, note first
that splits naturally form a hierarchy: the unique coarsest
split is the Trivial Split, and the unique finest split (i. e., the
least coarse one) is the Atom Split. We can travel between
these two extremes by iteratively merging sub-schemas. Iter-
ating such merging steps, starting from the Atom Split, un-
derlies our search methods for valid splits. This is suitable
because:

Theorem 1 Let a[X] be an action schema. Then any split
constructed by starting with AtomSplit(a[X]), and itera-
tively merging mergeable sub-schemas, is valid. Vice versa,
any valid split can be constructed in this way.

Computing Valid Splits
We still need to design automatic methods for applying that
machinery automatically: How to find good splits automat-
ically? And what are “good splits” anyhow? As we move
up and down in the hierarchy for an action schema a[X],
coarser splits have less sub-schemas and therefore tend to
result in shorter plans using the split domain; and finer
splits have smaller interfaces and therefore tend to result in
less ground actions. We capture this in terms of the split’s
size, SplitSize(a1[X1], . . . , ak[Xk]) = k, and interface size,
IntSize(a1[X1], . . . , ak[Xk])) = maxi |Xi|. Plan length in-
creases linearly in SplitSize (if the underlying action indeed
participates in the plan), and the number of ground actions

decreases exponentially in |X| − IntSize . The Trivial Split
is optimal in split size, the Atom Split is optimal in interface
size. In practice, we need to find a good trade-off between
these two extremes. Unsurprisingly, doing so optimally is
hard:

Theorem 2 Let Split Optimization be the prob-
lem of deciding, given an action schema a[X]
as well as natural numbers K and N , whether
there exists a valid split a1[X1], . . . , ak[Xk] such
that SplitSize(a1[X1], . . . , ak[Xk]) ≤ K and
IntSize(a1[X1], . . . , ak[Xk]) ≤ N . Then split optimization
is NP-complete.

We approximate that optimization problem through of
hill-climbing in the split hierarchy, starting at the finest split
and moving to coarser ones. In detail, we instantiate hill-
climbing as follows:

• Start node: s = AtomSplit(a[X]).

• Successor function: SuccFn(a1[X1], . . . , ak[Xk]) =
{a′1[X ′1] . . . , a′k−1[X ′k−1] | a′1[X ′1] . . . , a′k−1[X ′k−1] is a
merged valid split of a1[X1], . . . , ak[Xk]}.

• Evaluation function: f(a1[X1], . . . , ak[Xk]) =
TradeOff (a1[X1], . . . , ak[Xk]).

• Termination condition: s = TrivialSplit(a[X]).

• Returned Value: the expanded node with the smallest
TradeOff function.

Hill-climbing thus iteratively generates all splits obtained
by merging a mergeable pair of sub-schemas, selecting one
with the best trade-off. On the other hand, we capture the
trade-off in terms of a weighted sum, normalizing each cri-
terion to the interval [0, 1] to enhance comparability, thus we
define TradeOff (a1[X1], . . . , ak[Xk]) as

γ
k

N
+ (1− γ)maxi |Xi|)

|X|
whereN = SplitSize(AtomSplit(a[X])) and the parameter
γ ∈ [0, 1] controls the trade-off.

A few words are in order regarding the extreme cases
γ = 1 (all weight on split size) and γ = 0 (all weight on
interface size). With γ = 1, the search will end up returning
TrivialSplit(a[X]) (implying that it makes no sense to run
them with γ = 1). With γ = 0, in contrast, the searches
become very conservative, exploring only nodes with opti-
mal interface size equalling that of AtomSplit(a[X]), these
searches thus attempt to find smaller splits with optimal in-
terface size.

Decorating Valid Splits
We have now clarified how to tackle issue (3), but we have
not yet done anything about issue (1), ensuring consistent
parameter instantiation across the split schema, nor about is-
sue (2), ensuring en-block execution across all split schemas
in the domain. As advertized, both issues are easy to address
by introducing artificial (new) atoms implementing a token
system between sub-actions.

Proceedings of the ICAPS 2018 DC Mentoring Program

6

Example 2 Consider the action schema Move(x, y, z)
again. Using the following valid split and
id(Move(x, y, z)) = 1 as well as id(x) = 1 and
id(y) = 2, we obtain the following decorated valid split:

Move1(x, y)
pre : {on(x, y), clear(x),none}
add : {do12, arg1(x), arg2(y)}
del : {on(x, y),none}

Move2(x, z)
pre : {clear(z), do12, arg1(x)}
add : {on(x, z), do1

3}
del : {clear(z), do12, arg1(x)}

Move3(y)
pre : {do13, arg2(y)}
add : {clear(y),none}
del : {do13, arg2(y)}

Tokens none and do together ensure that the sub-schemas
of an original schema a[X] can only be executed en block,
i. e., grouped together. Thanks to none, no other block can
be active when we start with a1[X1], and we only release the
block when we end with ak[Xk]. As the do token is ID’ed,
no sub-actions from any other action schema can be exe-
cuted in between. Token arg forces the planner to instanti-
ate the sub-schemas consistently, by fixing the instantiation
of every shared parameter x in the first sub-schema using x.
The token is ID’ed with the variable in question, as other-
wise the roles of two shared variables could be exchanged
(if x and y are instantiated to o1 respectively o2 up front,
then the roles of non-ID’ed instantiated tokens arg(o1) and
arg(o2) could be changed later on, e. g. using o2 for x and
o1 for y). Finally, all three issues are solved.

Testing Conclusions
Our technique was implemented as a stand-alone tool in
C, starting from existing PDDL parser of FF planner sys-
tem (Hoffmann and Nebel 2001). The source code is avail-
able at the GitHub repository https://github.com/
facubus/ActionSchemaSplitting.git. A major
question in the testing is which domains to run. We, of
course, did run the IPC domains. However, it is a well known
fact that these domains are engineered to challenge search,
not pre-processes. Almost all action schemas in IPC do-
mains have small interfaces, and there is not much to gain by
Action Schema Splitting. More generally, most benchmarks
were created having in mind to test search capabilities, not
to test pre-processing capabilities. Our focus domains thus
are ones whose action schemas have large interfaces rela-
tively and in which we can create tasks (through generators)
with important number of objects per task. Below, we list the
most important observations raised from our experiments:

• The technique is suitable on those domains where the pre-
processing runs out of memory capacity of the planner
system due to the number of objects scales considerably,
in contrast, the technique is not suitable for IPC domains.

• Finer splits (less sub-actions) are preferable over coarser
splits one (more sub-actions), because the distance to the

goal is preponderant at the time of the heuristic search.
Then, we recommend using γ values closer to one than
zero.

• Also, we recommend dividing as few action schemas as
possible as long as you get into planner memory. To help
to decide: which ones? we define a notion called Splitabil-
ity which tries to characterize those schemas that have the
greatest need being optimized over other ones. Thus, the
schemas with highest splitability coefficient have priority
to be splitted over the remain.
In general, we have systematized and automated prior

works on action schema splitting, as a pre-process to stan-
dard planners that ground out the actions. The method shows
promise on domains with large interfaces on tasks with pre-
processing troubles indicating that it could be a useful tool
for, especially, applications without planning expertise who
wish to apply planning technology but are not intimately fa-
miliar with it.

References
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research 24:581–621.
Haslum, P., and Jonsson, P. 2000. Planning with reduced op-
erator sets. In Chien, S.; Kambhampati, R.; and Knoblock,
C., eds., Proceedings of the 5th International Conference
on Artificial Intelligence Planning Systems (AIPS-00), 150–
158. Breckenridge, CO: AAAI Press, Menlo Park.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning macro-actions for arbitrary planners and domains.
In Boddy, M.; Fox, M.; and Thiebaux, S., eds., Proceedings
of the 17th International Conference on Automated Planning
and Scheduling (ICAPS’07), 256–263. Providence, Rhode
Island, USA: Morgan Kaufmann.

Proceedings of the ICAPS 2018 DC Mentoring Program

7

Relaxed Decision Diagrams for Discrete Optimization Problems

Margarita P. Castro
Department of Mechanical & Industrial Engineering

University of Toronto, Toronto, Ontario, Canada mpcastro@mie.utoronto.ca

1 Introduction
Discrete optimization is one of the main research fields in
Operational Research and Computer Science due to its chal-
lenging problems and many applications. Several techniques
have been used to solve these problems, such as Integer Pro-
gramming, Constraints Programming and heuristic search.
Relaxed Decision Diagrams (DDs) are one of the newest
approaches to tackle discrete optimization problems, which
use a graphical structure to represent the set of feasible so-
lutions and compute bounds.

A decision diagram is a pervasive data structure for rep-
resenting Boolean functions (Bryant, 1992). A relaxed DD,
first introduced by Andersen et al. (2007), is a diagram of
limited size that approximates the set of solutions to a dis-
crete problem. It has been largely applied to mathematical
programming and discrete optimization, in particular for ob-
taining optimization bounds (Hoda, Van Hoeve, and Hooker,
2010; Bergman et al., 2016b). A survey on the use of re-
laxed DDs for optimization is presented by Bergman et al.
(2016a).

Recent work has shown how relaxed DD can be used to
solve general discrete optimization problem (Bergman et al.,
2016b) by using the graphical encoding of the problem as
a bounding mechanism in a branch-and-bound tree search
procedure. In particular, the technique has shown promising
results in scheduling and vehicle routing problems (Cire and
van Hoeve, 2013; Kinable, Cire, and van Hoeve, 2017; Cas-
tro, Cire, and Beck, 2018).

This thesis aims to extend and explore the usage of re-
laxed DDs to solve discrete optimization problems. Specifi-
cally, we want to uncover the advantages of the approach, its
relationship to existing techniques, and its uses in conjunc-
tion with other approaches, such as Integer Programming.
To this end, the thesis is divided into two main projects that
show the power and flexibility of relaxed DDs and their re-
lationship to existing methods.

The first project (Castro, Cire, and Beck, 2018) explores
the use of relaxed DDs to solve a challenging vehicle routing
problem. We propose an exact approach that uses a discrete
relaxation based on multivalued decision diagrams (MDDs)
to better represent the combinatorial structure of the prob-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lem. We enhance our relaxation by using the MDDs as a
subproblem to a Lagrangian relaxation technique, leading to
significant improvements both in bound quality and run time
performance.

The second project focuses on solving cost-optimal clas-
sical planning via relaxed DDs. We explore the uses of a
relaxed DD as an admissible heuristic embedded on an A∗

search procedure. Moreover, we study the relationship with
other techniques in the literature, such as relaxed planning
graph heuristics (Haslum and Geffner, 2000).

2 Relaxed DDs for Vehicle Routing
This work investigates a new exact approach for the one-
to-one multi-commodity pickup and delivery traveling sales-
man problem (m-PDTSP), a variant of the classical traveling
salesman problem that incorporates the delivery of a fixed
set of commodities by a capacitated vehicle. Specifically, the
problem is defined over a directed graph G, where nodes rep-
resent locations and arcs are associated with non-negative
travel costs. We are also given a set of commodities, each
having a weight, a pickup location, and a delivery location.
A solution to the m-PDTSP is a minimum-cost Hamiltonian
tour on G where each commodity’s pickup location must be
visited prior to its corresponding delivery location, and the
total weight carried by the vehicle never exceeds its capacity.

The m-PDTSP was introduced by Hernández-Pérez and
Salazar-González (2009) and can be viewed as an impor-
tant subproblem in vehicle routing applications. The authors
propose a multi-commodity flow and a path-based formula-
tion for the m-PDTSP, both solved using a Benders decom-
position approach. The state-of-the-art solution methods for
the m-PDTSP are branch-and-cut algorithms proposed by
Gouveia and Ruthmair (2015). Despite the significant so-
lution time improvements, these branch-and-cut algorithms
report instances with 21 locations and 10 commodities left
unsolved within a reasonable amount of time.

We propose a novel exact approach for the m-PDTSP that
applies Lagrangian duality to combine a linear and a dis-
crete relaxation of the problem. In particular, the discrete re-
laxation is encoded as a relaxed MDD, a graphical structure
that compactly represents a set of solutions to a problem. In
this work, we leverage the underlying network representa-
tion of the problem to better exploit the combinatorial struc-
ture of the m-PDTSP while also incorporating dual informa-

Proceedings of the ICAPS 2018 DC Mentoring Program

8

tion from a linear programming relaxation of the problem.
This work presents structural results and strategies for

constructing relaxed MDDs that take into account both tour
constraints and vehicle capacities, extending previous work
on MDDs for sequencing problems (Cire and van Hoeve,
2013). Specifically, our capacity-based construction guaran-
tees the satisfaction of the vehicle capacity constraint for
all solutions represented in the relaxed MDD. Our second
key contribution is a Lagrangian technique that significantly
strengthens the existing bounds for the m-PDTSP based on
the concepts introduced by Bergman, Cire, and van Hoeve
(2015). Namely, we incorporate Lagrange multipliers that
penalize solutions encoded by the relaxed MDD which vio-
late constraints of the problem.

The resulting approach provides a flexible relaxation that
yields bounds on the optimal solution value of the m-PDTSP
and can be embedded, e.g., in any branching search. Compu-
tational experiments using a constraint programming solver
indicate that the resulting MDD relaxation can enhance solu-
tion time by orders of magnitude in a number of instances, in
particular when capacities are small. We also find provably
optimal solutions to 33 instances in the literature for the first
time, 27 of those with our best relaxed MDD variant.

3 Relaxed DDs for Classical Planning
problems

Cost-optimal classical planning problems are defined over a
set of propositions describing the world, an initial state, a set
of goals and a set of actions. Each action is uniquely defined
by its set of preconditions, effects, and its associated cost.
The problem asks for a minimal cost plan (i.e, a sequence
of actions) that, starting from the initial state, reaches a state
where all the goals are achieved.

This well-studied problem in the AI literature is com-
monly solved using heuristic search based planners that use
admissible heuristics in an A∗ search procedure, e.g., fast-
downward (Helmert, 2006). Notably, several of these admis-
sible heuristics rely on a graphical structure that encodes a
relaxed version of the problem, e.g., abstractions (Edelkamp,
2001; Helmert et al., 2007), red-black planning trees (Katz,
Hoffmann, and Domshlak, 2013; Katz and Hoffmann, 2013)
and the LM-cut heuristics (Helmert and Domshlak, 2009).

Our work (Castro et al., 2018) proposes a new admissi-
ble heuristic for cost-optimal classical planning based on a
relaxed representation of the state transition graph. Specifi-
cally, our approach approximates the state transition tree us-
ing relaxed DDs. States are encoded as nodes and applicable
actions as edge labels. Due to the exponential size of the
state-space, our approach merges nodes representing differ-
ent states, i.e., it over-approximates the reachable space.

We propose a top-down algorithm to construct the relaxed
DD. The resulting structure is a layered acyclic graph in
which the root node represents the initial state and the leaf
nodes correspond to goal states. Our approach uses proposi-
tional landmarks (Karpas and Domshlak, 2009) for our node
merging heuristic. In addition, we develop several filtering
rules to identify edges associated with non-optimal plans.

Once constructed, the relaxed DD is used to compute an

admissible heuristic based on the shortest path from the ini-
tial state to a node representing a goal state. We use a la-
beling algorithm in which we compute the shortest path to
reach each proposition represented in a node.

Furthermore, this work explores the relationship of our
relaxed DD heuristic with several well-known heuristics in
the literature. As a first step, we theoretically compare our
approach to the hmax heuristics (Haslum and Geffner, 2000)
and to abstractions (Helmert et al., 2007).

With regard to empirical performance, we have prelimi-
nary results over a subset of IPC domains with strictly posi-
tive action cost. The results show encouraging performance
in terms of heuristic quality and number of nodes expanded.
However, run time performance is still far from current state-
of-the-art heuristics, such as the operator counting heuristic
(Pommerening et al., 2014).

Future works include studying the relationship with
specific abstraction heuristics (e.g., pattern databases
(Edelkamp, 2001)), and heuristics based on red-black plan-
ning trees (Katz, Hoffmann, and Domshlak, 2013). More-
over, we want to improve our current heuristic implementa-
tion to reach a competitive level.

4 Conclusion
This thesis explores the use of relaxed DDs as a relaxation
mechanism to solve discrete optimization problems. We fo-
cus our attention on challenging problems from the oper-
ation research and artificial intelligence literature. Specifi-
cally, we tackle a capacitated pickup-and-delivery vehicle
routing problem and address the cost-optimal classical plan-
ning problems.

References
Andersen, H. R.; Hadzic, T.; Hooker, J. N.; and Tiedemann,

P. 2007. A constraint store based on multivalued de-
cision diagrams. In Principles and Practice of Constraint
Programming–CP 2007. Springer. 118–132.

Bergman, D.; Cire, A. A.; van Hoeve, W.-J.; and Hooker,
J. 2016a. Decision Diagrams for Optimization. Springer
International Publishing, 1 edition.

Bergman, D.; Cire, A. A.; van Hoeve, W.-J.; and Hooker,
J. N. 2016b. Discrete optimization with decision dia-
grams. INFORMS Journal on Computing 28(1):47–66.

Bergman, D.; Cire, A. A.; and van Hoeve, W.-J. 2015.
Lagrangian bounds from decision diagrams. Constraints
20(3):346–361.

Bryant, R. E. 1992. Symbolic boolean manipulation with
ordered binary-decision diagrams. ACM Computing Surveys
(CSUR) 24(3):293–318.

Castro, M. P.; Piacentini, C.; Cire, A. A.; and Beck, J. C.
2018. Relaxed decision diagrams for cost-optimal classi-
cal planning. In HSDIP, In Press.

Castro, M. P.; Cire, A. A.; and Beck, J. C. 2018. An
mdd-based lagrangian approach to the multi-commodity
pickup-and-delivery tsp. INFORMS Journal of Computing
(Under Review).

Proceedings of the ICAPS 2018 DC Mentoring Program

9

Cire, A. A., and van Hoeve, W.-J. 2013. Multivalued de-
cision diagrams for sequencing problems. Operations Re-
search 61(6):1411–1428.

Edelkamp, S. 2001. Planning with pattern databases. In
Sixth European Conference on Planning.

Gouveia, L., and Ruthmair, M. 2015. Load-dependent and
precedence-based models for pickup and delivery prob-
lems. Computers & Operations Research 63:56–71.

Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In Proceedings of the 5th Internat. Conf. of
AI Planning Systems (AIPS 2000), 140–149.

Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Nineteenth International Conference on Automated Planning
and Scheduling.

Helmert, M.; Haslum, P.; Hoffmann, J.; et al. 2007. Flexible
abstraction heuristics for optimal sequential planning. In
ICAPS, 176–183.

Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res.(JAIR) 26:191–246.

Hernández-Pérez, H., and Salazar-González, J.-J. 2009. The
multi-commodity one-to-one pickup-and-delivery travel-
ing salesman problem. European Journal of Operational Re-
search 196(3):987–995.

Hoda, S.; Van Hoeve, W.-J.; and Hooker, J. N. 2010. A
systematic approach to MDD-based constraint program-
ming. In Principles and Practice of Constraint Programming–
CP 2010. Springer. 266–280.

Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI, 1728–1733.

Katz, M., and Hoffmann, J. 2013. Red-black relaxed plan
heuristics reloaded. In Sixth Annual Symposium on Combina-
torial Search.

Katz, M.; Hoffmann, J.; and Domshlak, C. 2013. Red-black
relaxed plan heuristics. In AAAI.

Kinable, J.; Cire, A. A.; and van Hoeve, W.-J. 2017. Hy-
brid optimization methods for time-dependent sequenc-
ing problems. European Journal of Operational Research
259(3):887 – 897.

Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based heuristics for cost-optimal planning. In
ICAPS.

Proceedings of the ICAPS 2018 DC Mentoring Program

10

Robot Planning for Activity Recognition

Jean Massardi
Supervised by Éric Beaudry

Department of Computer Science
Université du Québec à Montréal

Abstract

In order to interact with humans during their Activi-
ties for Daily Living, assistant robots need to perform
activity and intent recognition. Actual sensors are lim-
ited, therefore assistant robots need to find the best ob-
servation spot possible. This dissertation presents my
thesis proposal to address the problem of ADL recog-
nition with a robot in an open space.

Introduction
In most western countries, aging of the population has
become an important healthcare concern. There is an
increasing need to develop new solutions to help elderly
people to stay at home with more autonomy to im-
prove their quality of life and reduce pressure on care-
givers (Pollack 2005). These issues have been addressed
in two domains of artificial intelligence : smart homes
environment (Pollack 2005), (Rashidi et al. 2011) and
assistant robots (Cesta and Pecora 2005), (Graf et al.
2009).

In both cases, the development of quick and reli-
able activity recognition techniques is mandatory to
understand the observed human actions. As of today,
usual activity recognition techniques based on super-
vised learning are unable to address Activities for Daily
Living (ADL) recognition as they are countless, mak-
ing it impossible to have training sets for all of them
(Pirsiavash and Ramanan 2012). Unsupervised learn-
ing techniques based on object affordance have shown
good results for ADL. These techniques aim to iden-
tify activities by looking at the interaction of a subject
and an object rather than focusing directly on observ-
ing a mouvement (Wu et al. 2007). These techniques
are now mostly used in smart homes systems because
it is possible to place sensors in strategic places to de-
tect an interaction between the subject and an object
(Pirsiavash and Ramanan 2012).

Object affordance methods are not as effective when
integrated on a robot assistant without any external
sensors, due to natural blindspots in an open space.
In order to propose this kind of method, we need to

Copyright c© 2015, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

address several issues : (1) develop an object interaction
detection method, (2) give the robot a plan to maximize
the quality of the activity recognition while assisting
the person, (3) develop an intent recognition algorithm
robust to noisy observation.

In most of the work on activity recognition, the ex-
periments are done in ideal conditions. Usually the sys-
tem is in front of the observed person, within an opti-
mal distance for the sensors. This kind of conditions
don’t naturaly occur in an open world, where a robot
perform. The question is, given a spatio-temporal con-
text and key habits of a subject, how to strategically
place the robot to increase the probability of observ-
ing a certain activity and improve the quality of intent
recognition. There is an other constraint : the robot
must still be able to assist the subject while performing
the observations.

Problem description
Each given sensor has an optimal observation spot,
which can usually be defined by the distance and the
angle of observation of a scene. If the scene is static, it
is easy to define the optimal observation spot. In most
cases that have no constraints, the optimal observation
spot is trivial to find, and if the scene has constraints,
some well-know techniques can be used, for example
spatial reasoning (Renz 2002).

If the scene is dynamic, especially if the subject is
moving, it is more complicated to find these optimal
spots. In the case of smart homes, the problem can
be addressed by placing multiple sensors at strategic
spots. If all the sensors are on the same moving plat-
form, like an assistant robot, the system will have to
move to observe the subject. Since the robot has to
move according to a specific objective, the problem can
be seen as a planning problem.

Two new constraints appear in the case of ADL
recognition :

1. There is a potential infinite number of possible activ-
ities. However, some activities have a certain proba-
bility of occurrence depending on the contexts, both
spatio-temporal and previous activities.

2. The exact duration of an activity is unknown. An ap-

Proceedings of the ICAPS 2018 DC Mentoring Program

11

proximate duration can be found using probabilistic
models, but with a high uncertainty.

This corresponds to a planning problem with temporal
uncertainty in an open world.

This first constraint corresponds to a plan recogni-
tion task. Plan recognition is the opposite task of plan-
ning. Based on observation, plan recognition aim to
recognize the goal, the intent or the next action of a
given agent. Furthermore, as there is a plan recogni-
tion part in the problem described above, the global
problem of optimal positioning in ADL recognition for
a mobile robot can be seen as a loop interaction prob-
lem between plan recognition and planning (Freedman
and Fukunaga 2015).

On a formal way the problem can be descibed as the
following :

A plan P can be described as a set of couples (S,D),
S an identified spatial location and D an uncertain
duration. There are two sets of locations, SA the
set of activity most probable locations and SR the
set of optimal observation spots. There is a function
F : SA ∗SR → [0; 1] which given two locations indicates
the observability of an activity. The objective is to find
a plan PR which maximize the observability O =

∑
f ,

given a set of probabilistic partially ordered plans PA

while minimizing card(PR), the number of robot ac-
tions. f is the result of the fonction F (SAi, SRj) when
the activity occurs at SAi and the robot is at SRj at
the same time.

Before solving this planning problem, three elements
have to be found : (1) the set SA, (2) the set SR and
(3) the set of plans PA.

Related Work
At the best of our knowledge, there is no integrated so-
lution for daily living activities recognition for assistant
robot that has no external sensors. Currently, one of
the most advanced systems is the assistant robot AC-
COMPANY (Jenkins and Draper 2015), however this
system is pretty limited as it needs external sensors
and has no intelligent placement algorithm. Another
project for robot assistant, Giraff, uses only external
sensor to perform activity recognition and activity mon-
itoring (Palumbo et al. 2014). Finding an integrated
solution would require to solve four intermediate prob-
lems, which are:

1. recognize any given activity in an unsupervised man-
ner;

2. create a behaviour model for an observed subject;

3. plan the path of the robot with uncertainty con-
straints ;

4. close the interaction loop between activity recogni-
tion, plan recognition and planning;

all of these intermediate problems have already been
addressed separately.

As previously mentioned, ADL recognition tech-
niques are based on object affordance. One efficient

way to do that is to identify the hands of the observed
subject and recognize the objects that they interact
with. Pirsiavash used this technique with a first per-
son camera and obtained interesting results (Pirsiavash
and Ramanan 2012).

In smart homes context, data mining is now widely
used to extract behaviour models. Several data min-
ing algorithms have already been tested, like Prefixspan
or BIDE. More recently, frequent episode mining tech-
niques like SPEED, obtained precise behaviour models
(Rashidi et al. 2011). Stochastical Relational Learning
(SRL) techniques are also an interesting option that
have not been tested in this particular context yet, two
recent studies realized in other contexts are especially
interesting. BLP and MLN are already used in plan
recognition (Raghavan and Mooney 2011) and problog
is already used to create behaviour models (De Raedt,
Kimmig, and Toivonen 2007).

The interaction loop between Activity recognition,
plan recognition and planning has been identified as
an important problem for the domain. There is some
interesting perspective using the work of Ramirez,as he
proposed to solve plan recognition problems by using
classical planners (Ramırez and Geffner 2009) and PO-
MDPs (Ramırez and Geffner 2011). In 2017, Freedman
proposed an algorithm using this approach in order to
close this intercation loop (Freedman and Zilberstein
2017) using only classical planners.

The general problem of planning under uncertainty
of task duration is considered by the community as a
challenging yet interesting problem. Several approaches
have been developped to deal with this uncertainty,
such as using MDP related algorithms(Weld and oth-
ers 2005). Other approaches exist for planning with
uncertainty, like using forward chaining search com-
bined with bayesian network (Beaudry, Kabanza, and
Michaud 2010). In case of partial observability, contin-
uous PO-MDP are currently the main approach, even
considering their low performance (Bai et al. 2010).

Thesis proposal

In order to address the problem of activity recognition
for ADL with a robot in an open space, and the prob-
lem of planning of activity recognition knowing some
behaviours and context, we propose the following ar-
chitecture.

Activity recognition based on object
affordance

Activity recognition is based on an object interaction
detection module, which detects the beginning and the
end of an interaction between the observed subject and
an identified object, keeping their time and space coor-
dinates in memory. The interactions are saved in mem-
ory as a transaction tri =< oi, s/e, ti, ci > with oi the
identified object, s/e if it is the interaction starting or
ending time, ti the date of the transaction and ci the
coordinates of the transaction.

Proceedings of the ICAPS 2018 DC Mentoring Program

12

would be more reliable and the robot would stop fol-
lowing the elders all the time, as most of the actual
systems do.

Acknowledgement
This work was supported by AGE-WELL NCE (Ag-
ing Gracefully across Environments using Technology
to Support Wellness, Engagement and Long Life NCE).

References
Agrawal, R., and Srikant, R. 1995. Mining sequential
patterns. In Data Engineering, 1995. Proceedings of the
Eleventh International Conference on, 3–14. IEEE.

Bai, H.; Hsu, D.; Lee, W. S.; and Ngo, V. A.
2010. Monte carlo value iteration for continuous-state
pomdps. In Algorithmic foundations of robotics IX.
Springer. 175–191.

Beaudry, E.; Kabanza, F.; and Michaud, F. 2010.
Planning for Concurrent Action Executions Under Ac-
tion Duration Uncertainty Using Dynamically Gener-
ated Bayesian Networks. In International Conference
on Automated Planning and Scheduling, 10–17.

Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan,
S.; Smith, D.; et al. 2002. Planning under continu-
ous time and resource uncertainty: A challenge for AI.
In Proceedings of the Eighteenth conference on Uncer-
tainty in artificial intelligence, 77–84. Morgan Kauf-
mann Publishers Inc.

Cesta, A., and Pecora, F. 2005. The robocare project:
Intelligent systems for elder care. In AAAI Fall Sym-
posium on Caring Machines: AI in Elder Care, USA.

De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007.
ProbLog: A Probabilistic Prolog and Its Application in
Link Discovery. In International Joint Conference on
Artificial Intelligence, volume 7, 2462–2467.

Freedman, R. G., and Fukunaga, A. 2015. Integration
of planning with plan recognition using classical plan-
ners. In 2015 AAAI Fall Symposium Series.

Freedman, R. G., and Zilberstein, S. 2017. Integration
of planning with recognition for responsive interaction
using classical planners. In AAAI, 4581–4588.

Graf, B.; Reiser, U.; Hägele, M.; Mauz, K.; and Klein,
P. 2009. Robotic home assistant Care-O-bot R© 3-
product vision and innovation platform. In Advanced
Robotics and its Social Impacts (ARSO), 2009 IEEE
Workshop on, 139–144. IEEE.

Jenkins, S., and Draper, H. 2015. Care, monitoring,
and companionship: views on care robots from older
people and their carers. International Journal of Social
Robotics 7(5):673–683.

Koppula, H. S., and Saxena, A. 2016. Anticipating
human activities using object affordances for reactive
robotic response. IEEE transactions on pattern analysis
and machine intelligence 38(1):14–29.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing
systems, 1097–1105.

Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. Sar-
sop: Efficient point-based pomdp planning by approx-
imating optimally reachable belief spaces. In Robotics:
Science and systems, volume 2008. Zurich, Switzerland.

Palumbo, F.; Ullberg, J.; Štimec, A.; Furfari, F.; Karls-
son, L.; and Coradeschi, S. 2014. Sensor network infras-
tructure for a home care monitoring system. Sensors
14(3):3833–3860.

Pirsiavash, H., and Ramanan, D. 2012. Detecting
activities of daily living in first-person camera views.
In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, 2847–2854. IEEE.

Pollack, M. E. 2005. Intelligent technology for an aging
population: The use of AI to assist elders with cognitive
impairment. AI magazine 26(2):9.

Raghavan, S., and Mooney, R. J. 2011. Abductive plan
recognition by extending Bayesian Logic Programs. In
Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 629–644. Springer.

Raıssi, C.; Poncelet, P.; and Teisseire, M. 2005. Need
for speed: Mining sequential patterns in data streams.
BDA05: Actes des 21iemes Journees Bases de Donnees
Avancees.

Ramırez, M., and Geffner, H. 2009. Plan recognition as
planning. In Proceedings of the 21st international joint
conference on Artifical intelligence. Morgan Kaufmann
Publishers Inc, 1778–1783.

Ramırez, M., and Geffner, H. 2011. Goal recognition
over POMDPs: Inferring the intention of a POMDP
agent. In International Joint Conference on Artificial
Intelligence, 2009–2014. IJCAI/AAAI.

Rashidi, P.; Cook, D. J.; Holder, L. B.; and Schmitter-
Edgecombe, M. 2011. Discovering activities to recog-
nize and track in a smart environment. IEEE transac-
tions on knowledge and data engineering 23(4):527–539.

Renz, J. 2002. Qualitative spatial reasoning with topo-
logical information. Springer-Verlag.

Sung, J.; Ponce, C.; Selman, B.; and Saxena, A. 2012.
Unstructured human activity detection from rgbd im-
ages. In Robotics and Automation (ICRA), 2012 IEEE
International Conference on, 842–849. IEEE.

Weld, D. S., et al. 2005. Concurrent probabilistic tem-
poral planning. In International Conference on Auto-
mated Planning and Scheduling, 120–129. AAAI Press.

Wu, J.; Osuntogun, A.; Choudhury, T.; Philipose, M.;
and Rehg, J. M. 2007. A scalable approach to activity
recognition based on object use. In Computer Vision,
2007. ICCV 2007. IEEE 11th International Conference
on, 1–8. IEEE.

Wu, C.-W.; Lin, Y.-F.; Yu, P. S.; and Tseng, V. S.
2013. Mining high utility episodes in complex event
sequences. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and
data mining, 536–544. ACM.

Proceedings of the ICAPS 2018 DC Mentoring Program

14

Counterplanning using Goal Recognition and Landmarks∗

Alberto Pozanco
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. 28911 Leganés (Madrid). Spain
apozanco@pa.uc3m.es

Abstract

In non-cooperative multi-agent systems, agents might
want to prevent the opponents from achieving their
goals. One alternative to solve this task would be us-
ing counterplanning to generate a plan that allows an
agent to block other’s to reach their goals. We intro-
duce a fully automated domain-independent approach
for counterplanning. It combines; goal recognition to in-
fer an opponents goal; landmarks’ computation to iden-
tify subgoals that can be used to block opponents’ goals
achievement; and classical automated planning to gen-
erate plans that prevent the opponent’s goals achieve-
ment. Experimental results in several domains show the
benefits of our novel approach.

Introduction
In non-cooperative multi-agent systems, agents might want
to prevent the opponents from achieving their goals. This
task has been named counterplanning (Carbonell 1981). Ex-
amples of non-cooperative multi-agent domains where this
approach can provide great benefits are police controls, cy-
ber security, or real-time strategy games, where this ability
has been identified as one of the major challenges for Artifi-
cial Intelligence (Ontañón et al. 2013). Most previous coun-
terplanning approaches are based on domain-dependent so-
lutions, such as rule-based systems (Carbonell 1978; Rowe
2003), or Hierarchical Task Networks (HTN) (Willmott et
al. 2001).

Recently, there has been increasing interest in the study
and generation of agents capable of reasoning about their
own and opponents’ goals as well as their environment (Cox
2007). Some works follow the Goal-Driven Autonomy
(GDA) process, which integrates a diverse set of AI com-
ponents such as HTN planning or explanation genera-
tion (Molineaux, Klenk, and Aha 2010). Other works com-
bine goal recognition and reasoning on actions, applying
those techniques in domains such as identifying terrorist ac-
tivity (Jarvis, Lunt, and Myers 2005), air combat (Borck et
al. 2015), real-time strategy games (Kabanza et al. 2010),
or cyber security (Boddy et al. 2005; Sarraute, Buffet, and
Hoffmann 2012; Hoffmann 2015). Again, these approaches

∗This is a joint work with Yolanda E-Martı́n, Susana Fernández
and Daniel Borrajo.

are domain-dependent. On the goal recognition side, they
use plan (Kabanza et al. 2010), rules (Carbonell 1978) or be-
havior (Borck et al. 2015) libraries to detect their opponent’s
goals. On the action reasoning side, they use stored poli-
cies (Carbonell 1981), ask for human guidance following a
mixed-initiative paradigm (Jarvis, Lunt, and Myers 2005),
or require heavy knowledge engineering processes such as
HTN based approaches (Willmott et al. 2001).

We present a fully automatic domain-independent ap-
proach for counterplanning. This approach is based on: goal
recognition, landmarks, and classical automated planning.
Goal recognition aims to infer an agent’s plan or goals from
a set of observations. In general, the observed agent can be
cooperative or competitive. We use this technique to infer
an opponent’s goals. Fact landmarks are propositions that
must be true in all valid solution plans (Hoffmann, Porteous,
and Sebastia 2004). We use landmarks to identify subgoals
that can be used to block the opponent’s goal achievement.
Classical automated planning aims to generate a sequence
of actions, namely a plan, which achieves some goals from
an initial state. We use it to generate plans that prevent the
opponent’s goal achievement.

The main idea of this novel approach is to: (1) quickly
identify the actual opponent’s goal g using planning-based
goal recognition techniques; (2) compute the set of land-
marks involved in the achievement of g; (3) select a coun-
terplanning landmark, which is the first landmark where
the opponent could be blocked; and (4) generate a plan
to achieve the counterplanning landmark, and therefore
to block the opponent’s goal achievement. This approach
shows how an opponent can be effectively blocked in differ-
ent non-cooperative domains (Pozanco et al. 2018b; 2018a).

Domain-Independent Counterplanning
We define the two actors involved in a counterplanning prob-
lem as planning agents:

• The seeking agent φ, with an associated planning task Πφ.
• The preventing agent α, with an associated planning task

Πα.

There can be varied relations between Πφ and Πα, and the
information that one agent has from the other. For instance,
the actions that both agents can perform could be the same
Aφ = Aα, or totally different Aφ ∩ Aα = ∅. They could

Proceedings of the ICAPS 2018 DC Mentoring Program

15

also have different or equal observations of the world. By
now, we make the following assumptions: (1) φ’s model is
known by α except for its goal Gφ; (2) α knows a set of
potential goals, Gφ ⊂ Fφ, φ could be trying to achieve; (3)
deterministic action outcomes and full observability of those
actions by α; (4) none of the agents can replan; and (5) the
temporal duration of an action ai ∈ A is determined by its
cost c(ai). By now, we assume unit action-cost.

We formally describe a counterplanning task as follows.
Definition 1 (Counterplanning task) A counterplanning
task is defined by a tuple CP = 〈Πφ,Πα,Gφ, Oφ〉 where
Πφ is the planning task of φ, Πα is the planning task
for the preventing agent, Gφ is the set of sets of goals
that φ can potentially pursue, and Oφ = (o1, . . . , om)
is a set of observations by α of the execution of a plan
πφ = (o1, . . . , om, am+1, . . . , ak) that solves Πφ.

We assume that φ generates a plan πφ to solve its planning
task Πφ prior to counterplanning, and that plan (as well as its
corresponding goals) is unknown for α. Then, at some time
step m of the execution of πφ (where m can range from 1
to k, the length of πφ), given all observed actions from the
execution of πφ, α has to infer the φ agent goals (from Gφ)
and generate a solution to a counterplanning task, namely a
counterplan.
Definition 2 (Counterplan) Given φ agent plan πφ =
(am+1, . . . , ak), a plan πα = (a1, . . . , an) is a valid coun-
terplan for πφ = (am+1, . . . , ak) if the joint execution of πα
and πφ does not allow φ to achieve the goals in Gφ.

Our approach to solve counterplanning tasks assumes that
α can delete (or add in the case of negated literals) some
proposition that φ needs in order to achieve its goals. There
could be different definitions for needed literals. We use
planning landmarks. Therefore, we impose two constraints:
the seeking agent φ and the preventing agent α share some
propositions, Fφ ∩ Fα 6= ∅; and at least one action a in α
model, a ∈ Aα, must delete (add) at least one of φ’s plan
landmarks. We refer to those types of landmarks as counter-
planning landmarks.
Definition 3 Counterplanning landmark Given the set of
fact landmarks from Πφ, LΠφ

, a landmark li ∈ LΠφ
is a

counterplanning landmark for α if ∃a ∈ Aα with li ∈ eff(a).
If li is a positive literal, li should be in del(a). If li is a
negative literal, li should be in add(a).

Algorithm 1 shows the high-level algorithm used to solve
a counterplanning task from the perspective of α. The algo-
rithm first solves a goal recognition problem using RECOG-
NIZEGOALS given a planning domain, initial conditions, a
set of candidate goals Gφ, and a set of observationsOφ. It re-
turns Tφ, a probability distribution over the set of candidate
goals set Gφ in the form of tuples 〈goal, probability〉. Then,
the initial state of φ, Iφ, is updated with the given observa-
tions by advancing the state from the initial Iφ and applying
all actions corresponding to the observations in Oφ. Next,
we select the set of most probable goals’ sets G′φ from Tφ.
For each goal g ∈ G′φ, we extract the landmarks of the new
φ planning task using EXTRACTLANDMARKS. This com-
putation will return the set of common landmarks among

all the most probable sets of goals, LΠφ
. If there are not

common landmarks, the counterplanning task cannot be per-
formed. Otherwise, the algorithm selects the set of counter-
planning landmarks LΠφ,Πα

in EXTRACTCPLANDMARKS.
This process will be explained in detail later. As before, if
there are not counterplanning landmarks, the counterplan-
ning task cannot be performed. Otherwise, one of the land-
marks in LΠφ,Πα

is negated and returned as the preventing
agent’s goal Gα in SELECTGOAL. This function returns the
first landmark of seeker’s planning task that the preventing
agent can delete, i.e., it can delete (add) it before its oppo-
nent. Finally, a plan πα is computed to achieve that goal such
that it prevents φ from achieving its goals.

Algorithm 1 DOMAIN-INDEPENDENT COUNTERPLAN-
NING
Inputs: Πφ,Πα,Gφ, Oφ
Outputs: πα

1: Tφ ← RECOGNIZEGOALS(Fφ, Aφ, Iφ,Gφ, Oφ)
2: Iφ ←UPDATE(Iφ, Aφ, Oφ)
3: LΠφ

← Fφ
4: G′φ ← goal(arg maxt∈Tφ

probability(t))
5: πα ← ∅
6: for g ∈ G′φ do
7: LΠφ

← LΠφ
∩ EXTRACTLANDMARKS(Fφ, Aφ, Iφ, g)

8: if LΠφ
6= ∅ then

9: LΠφ,Πα
←EXTRACTCPLANDMARKS(Πφ,Πα,LΠφ

)
10: if LΠφ,Πα

6= ∅ then
11: Gα ←SELECTGOAL(Πφ,Πα,LΠφ,Πα)
12: Iα =UPDATE(Iα, Aα, Oφ)
13: πα ← PLANNER(Πα = (Fα, Aα, Iα, Gα))
14: return πα

Example
To illustrate our approach, let us consider a simple domain
where a terrorist has committed an attack in the center of a
city. Figure 1 shows the road network for this problem. The
city police (α) knows that the terrorist (φ) wants to leave the
city by eitherG1 (airport),G2 (train station), orG3 (bus ter-
minal); so, Gφ = {G1, G2, G3}. The police has control over
some cameras located at key points around the city (repre-
sented as nodes in Figure 1). The police actions consist of
stopping the terrorist by setting a control at any of those
points (Aα). So, the police wants to: (1) quickly know where
the terrorist wants to go (G′φ); and (2) stop him/her as soon
as possible to avoid panic breaking out. When the cameras
observe that the terrorist is at L1 (O1 = a1 ∈ Aφ), the police
guesses that his/her goal is to reach G1 (G′φ) by doing goal
recognition. The police only has resources to set one con-
trol. It knows that the terrorist must pass through L1, L2 and
L3 to reach the airport. Although these four spots are coun-
terplanning landmarks LΠφ,Πα

, the police can only set the
control at L2, L3 and G1 before the terrorist reaches those
places. Finally, the police goal Gα will be to set the control
at L2 since it is the FCL; i.e. the first spot where the terrorist
can be effectively stopped.

Proceedings of the ICAPS 2018 DC Mentoring Program

16

Figure 1: Terrorist capture domain. The red circle represents
the initial position of the terrorist. Green circles represent
his/her possible goals. Arrow a1 indicates the terrorist first
observed action. L1, L2 and L3 refer to the landmark points
that the terrorist has to pass through in order to reach G1.

Evaluation in Planning Domains
We empirically evaluate our approach on the new previously
described TERRORIST domain and in the well known LO-
GISTICS domain. Each domain and problem conforms Πφ.
Additionally, in order to perform counterplanning, for each
domain we have generated a new counterplanning domain,
which defines the planning task Πα for α. For each classi-
cal domain, we generate 10 random problems for φ. All the
problems have the same number of objects. However, each
problem has a different actual goal for φ, which is hidden
for α. Their details are explained below.

• LOGISTICS. φ can deliver any package to any destination.
It can do it by driving either trucks or planes. α can break
a truck or a plane to interrupt the delivery.

• TERRORIST. φmay want to get to any point in the map. It
can do it by navigating through points that are connected.
α can set a control at a point so that they can arrest φ.

The set of candidate goals Gφ always consists of a 20%
of all the possible goals in each problem. Therefore, big-
ger Gφ sets for the same domain mean bigger problems.
In particular, for the TERRORIST domain with a problem
map of 20 nodes, Gφ consists of 4 random destinations.
he set of observed actions was taken to be a subset of the
plan solution πφ, ranging from 10% of the actions, up to
70% of the actions. We did not include tests where the ob-
served sequence is higher than 70% because our counter-
planning approach degrades rapidly. The reason for this is
that the number of counterplanning landmarks decreases as
the number of observed actions increases. Our fully auto-
matic domain-independent counterplanning approach works
with any combination of goal recognition and classical plan-
ning approaches. For purposes of these tests, we have se-
lected the following configuration of goal recognition tech-
niques and planners. For the goal recognition part of our
counterplanning technique, we have tested the aforemen-
tioned domains and problems using the Ramrez and Geffner
[2010] approach with different the GREDY LAMA plan-
ner (Richter, Westphal, and Helmert 2011). For optimal plan
computations of FCL, we use HSP*f (Haslum 2008).

Table 1 summarizes the experimental results. For each

planner, each row shows average performance over the 10
problems in each domain. Each column represents different
measures of quality and performance:

• |Gφ|: number of goals in the candidate goal’s set.

• |πφ|, |πα|: average plan length cost for each agent.

• |LΠφ
|: number of landmarks of the seeking agent plan-

ning task.

• %Obs: percentage of the actions of πφ in Oφ. Higher per-
centages of observations mean that more actions of φ’s
plan have already been observed by α and, thus, executed
by φ.

• Q: fraction of times that the actual goal Gφ was found
to be the most likely goal G′φ. In our experiments, if G′φ
consist of more than one goal, we select the one with more
counterplanning landmarks as the most likely goal. Ide-
ally, Q = 1.

• Qt: average time in seconds taken for solving the goal
recognition problems.

• E: fraction of times that α executing πα succeeds in stop-
ping φ in achieving its goals. Ideally, E = 1.

• Pe: penalty value computed as the number of steps in πφ
that are successfully performed divided by the length of
πφ. This penalty value represents the cost paid by πα at
each time step that has not stopped πφ. Lower values of
Pe indicate better performance, ideally Pe = 0.

Greedy LAMA
Domain |Gφ| πφ πα |LΠφ

| %Obs Q Qt E Pe

LOGISTICS 6 9.4 1 12.3

10 0.6 2.6 0.6 0.2
30 0.7 2.6 0.8 0.4
50 0.7 2.7 0.8 0.5
70 0.9 2.8 0.7 0.8

TERRORIST 4 3.8 1 3.8

10 0.6 2.6 0.6 0.5
30 0.6 2.8 0.8 0.7
50 0.6 3.0 0.8 0.8
70 0.9 3.2 0.9 1.0

Table 1: Comparison of the counterplanning approach in two
domains. Figures shown are all averages over the set of prob-
lems as explained in the text.

As we can see in both domains, the higher percentage
of observations, the higher Q values, as expected. The goal
recognition task becomes easier as more actions have been
observed (as reported in other goal recognition works). Re-
gardingE, the fraction of times that α blocks φ achieving its
goals is clearly related to Q. Guessing the opponent’s goal
right usually involves more opportunities to block it. How-
ever, there are some cases in which we can badly guess φ’s
goal and still block its goal achievement (Q value is lower
than E). This happens when our analysis of the goal recog-
nition process identifies a common landmark (to stop φ’s
plan), but selects a wrong goal as in some LOGISTICS in-
stances. The value of E is also closely related to the per-
centage of observations. Lower percentage values allows α
to find many landmarks where to effectively block φ. On the
other hand, if most of the actions in πφ have already been ob-
served, there will be just a few counterplanning landmarks

Proceedings of the ICAPS 2018 DC Mentoring Program

17

Concurrent Multi-Agent Planning
(Extended Abstract)

Shashank Shekhar
The Department of Computer Science

BGU of the Negev, Beer-Sheva, Israel - 84105
shekhar@cs.bgu.ac.il

Abstract

Multi-Agent Planning (MAP) is the problem of finding a
sequence of actions for agents acting in a world such that
the world is transformed in a desired way. Many such prob-
lems of practical importance call for the use of multiple au-
tonomous agents that work together to achieve a common
goal. For example, disaster response teams typically consist
of multiple agents that have multiple tasks to perform, some
of which require or can benefit from the cooperation of multi-
ple agents. They not only involve reasoning with incomplete
or complete information but also the ability to account for
different aspects of interactions that, more often than not, in-
clude a simultaneous collaboration of multiple agents to per-
form joint tasks under uncertainty. In such scenarios, it is in-
teresting and quite challenging to enable autonomous agents
to perform interacting actions (actions whose joint effect dif-
fers from the union of their individual effects) effectively due
to their combinatorial nature. In this abstract we present an
overarching goal of our research, the challenges already ad-
dressed, and the state of the work in progress.

Introduction
There are abundant examples of real and virtual multi-agent
systems around us, and with increasing penetration of the In-
ternet of Things (IoT) and advances in robotic technologies,
their number will greatly increase. Many of these systems
are collaborative by nature, working together to achieve
joint-goals. For example, a team of robots in an organiza-
tion is naturally collaborative, in which, the robots collab-
orate on common goals. The overall goal of this proposal
is to enhance such systems to efficiently and autonomously
exploit their combined capabilities. We strive for such en-
hancements by providing (or intend to) effective models and
algorithms for collaborative tasks and executions. We focus
on some of the interesting issues that need to be addressed
in order to see a widespread use of planning technologies in
collaborative multi-agent systems. In our present work, we
are interested in two specific modalities.

In the first, we strive to efficiently modeling and planning
with collaborative actions – actions that require concurrent
execution by multiple agents. Consider an action of push-
ing a heavy box. It requires multiple agents to push the box

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

concurrently, and if agents execute at different times then it
does not move. Perhaps we are surrounded by many such
examples like picking up a wounded person on a stretcher
and moving, needs concurrent lifting and coordinated mo-
tion. We find that succinctly specifying the effects of differ-
ent combinations of concurrent actions and efficiently plan-
ning with such a specification is challenging. Therefore, we
develop a formalism that we believe can address this chal-
lenge. Our formalism succinctly and naturally specifies the
effects of concurrent actions to extend state of the art plan-
ning algorithms to handle such specifications.

In the second, we strive to scale up MAP under uncer-
tainty and partial observability. In MAP under uncertainty,
agents have only partial information about their environ-
ment, however they may actively obtain additional informa-
tion using their sensors. Given that single-agent systems face
similar challenges in this scenario, things become worse in
the MAP framework due to the difficulty of coordinating the
actions of the agents having different states of information.

We formulate problems in MAP with partial observability
based on a qualitative version of Dec-POMDPs (Bernstein
et al. 2002; 2009) – an elegant stochastic model. This qual-
itative framework, however, is an extension of the single-
agent contingent planning framework for handling multi-
agent planning problems with collaborative actions under
uncertainty, called QDec-POMDP (Brafman, Shani, and Zil-
berstein 2013). It has the potential to provide a better trade-
off between expressive power and scalability for practical
problems, and a recent development in our group approves
that. This work addresses an offline approach called Iter-
ative Multi-Agent Planning (IMAP), which scales well to
larger QDec-POMDPs. Unlike Brafman, Shani, and Zilber-
stein (2013), the authors suggest to construct single-agent
policies iteratively, an approach that was successfully tried
in the case of deterministic actions with no concurrency in-
volved and full information (Borrajo 2013). The main chal-
lenge perhaps, the scenario we are interested in, is to coordi-
nating the actions of the agents despite their different states
of information. In the IMAP approach, each agent constructs
its own policy assuming the availability of other agent if
needed. Later, the agent extracts a set of collaboration con-
straints/commitments from her policy. The following agents
attempt to plan while satisfying these constraints, and if they
fail to satisfy, they communicate the constraints that can be

Proceedings of the ICAPS 2018 DC Mentoring Program

19

met. The first agent backtracks with this information.
Online planning approaches scale much better than of-

fline approaches such as POMDPs (Silver and Veness 2010)
and Contingent Planning (Bonet and Geffner 2011). Online
replanning is a popular method of doing this. In a MAP
framework this approach does not work when communi-
cation is constrained, even if agents initially share a plan.
When agents replan, they do not really know whether other
agents are following the same old plan or they were forced to
change it. Since this seems challenging, and also an impor-
tant aspect in our formalism, in which, agents collaborate
on certain tasks, we intend to study this thoroughly in fu-
ture. We propose an online replanning approach that seems
to work even if agents do not communicate. Following the
IMAP algorithm, in future, the major questions are: What
should be the form of the commitments? How exactly are
they generated?

What happens if we introduce actions with non-
deterministic finish times in planning problems with partial
observability which are collaborative by nature? In the above
proposed online approach, with non-stochastic action finish
times, the commitments generated by an agent will be hard
deadlines for other agents, given that there is no communi-
cation involved during execution. An agent performing her
non-collaborative (single-agent) actions must compute the
probability with which she can finish her current execution,
so that, she will be available to satisfy the future commit-
ments. If this probability is below some threshold, she would
replan. In the real world scenarios, it appears as an impor-
tant aspect to consider for this formulation, unlike IMAP in
which non-durative actions are used. For examples, when
multiple robots jointly plan to use some common resources,
e.g., passing through a corridor, while at most one agent can
pass through it at once, or multiple agents have to lift a table
together which is kept at some random location, temporal
uncertainty appears useful to consider.

This extended abstract is organized as follows. First, we
briefly describe the challenges we already address. We cover
modeling of joint-actions, planning with multi-actions, and
then explain an extended formalism to handle privacy pre-
serving planning with interacting actions. We discuss some
of the important results. This is followed by the section of
planning under uncertainty and partial observability, where
we discuss the state of our current work in progress. This
briefly covers our motivation and future endeavors.

Representing and Planning with Interacting
Actions and Privacy

This section summarizes our proposed formalism and a
compilation based approach to planning by teams of agents
with interacting actions (Shekhar and Brafman 2018).

So, what happens when multiple agents perform actions
concurrently? In principle, every combination of actions per-
formed concurrently by a group of agents, a joint-action,
may define a different state-transition function. But as the
number of joint-actions is exponential in the number of
agents, specifying an explicit model for each combination
of single-agent actions is impractical except for very simple

cases. Therefore, to be succinct, a representation for joint-
actions must be compositional. That is, there must be some
way of deducing the effect of the concurrent execution of ac-
tions 〈a1, . . . , an〉 from the effects of smaller combinations.

The primary challenge for planning for multi-agent sys-
tems with interacting actions is to find a model for joint-
actions involving a large set of agents and large sets of in-
dividual actions, that is both succinct in natural settings and
supports efficient planning. Due to the associated difficul-
ties with interacting actions, most work on MAP algorithms
ignores this issue and considers concurrent non-interacting
or non-interfering actions, or just sequential actions only.
While much can be achieved without considering interact-
ing actions, there are settings where agents must coordinate
their actions carefully to obtain desirable effects: a single-
agent may be unable to lift or push heavy items, whereas
this is possible for multiple agents acting together, e.g., if a
table is not lifted from both sides concurrently, objects on it
will fall. Therefore, our primary contributions in this work
are; an intuitive formalism for specifying joint-actions in a
compositional way and the definition and empirical evalua-
tion of a compilation-based approach to planning by teams
of agents with interacting actions, as well as privacy, for
which we introduce a number of new domains. We give an
approach for representing interacting actions succinctly and
show how such a domain model can be compiled into a stan-
dard single-agent planning problem as well as to privacy pre-
serving multi-agent planning.

To define the effect of joint-actions, we introduce collab-
orative actions. A collaborative action is a minimal combi-
nation of single-agent actions that cannot be defined as the
union of its components. A joint-action is defined as a well-
formed set of single-agent and collaborative actions. A joint-
action is well formed if its components cannot be combined
to yield more complex components.

The difficulty of planning with joint-actions depends on
what interactions are allowed, and whether a distributed and
privacy preserving algorithm is required. In the simplest
case, only non-interfering (Blum and Furst 1997) concurrent
actions are allowed in order to reduce make-span. A slightly
more interesting case is when concurrent actions can destroy
each other’s preconditions, therefore interfering. More com-
plicated is the case where the effects of actions performed
together differ from the union of their individual effects. Fi-
nally, on top of each of these cases, one can introduce the
goal of preserving privacy. Our compilation based approach
efficiently handles all these difficulties associated with plan-
ning with concurrent and interacting actions.

Modeling joint-actions
We address that what happens when multiple agents act con-
currently, i.e., when a joint-action is performed. To this end,
we define multi-actions. A multi-action is a set of single-
agent and collaborative actions with consistent precondi-
tions and consistent effects such that an agent executes at
most one element in this set. The effect of a well-formed
multi-action is the union of the effects of the actions it con-
tains. We must associate only one joint-action with every
well-formed multi-action. The elements of the joint-action

Proceedings of the ICAPS 2018 DC Mentoring Program

20

are the single-agent actions contained in this multi-action (a
few of them belong to collaborative actions), with a noop
added for each non-acting agent. The transition function in-
duced by this joint-action is that of its underlying multi-
action. We require four types of actions, and later we will
use the term action to refer to a single-agent or a collabo-
rative action. We drop the distinction between multi-action
and joint-action, simply using the former term.

Model Our formal semantic model is essentially a tran-
sition system. Transitions correspond to joint-actions, and
hence their special structure needs to be reflected. A multi-
agent planning model 〈S,A, s0, G,Φ, {Ai : 1 ≤ i ≤ n}〉
is defined as follows: S is a set of states; A is a set of joint-
actions; s0 ∈ S is the initial state, G ⊆ S is the set of goal
states, Φ is the set of agents, where |Φ| = n by conven-
tion; and Ai are the single-agent action symbols for agent
φi ∈ Φ, where Ai will always contain no-opi. Every action
a ∈ A consists of a partial functions from S to S and a vec-
tor (a1, . . . , an) of single-agent action symbols. We write
a(s) to denote the state obtained when applying a in state
s. A plan π = a1, a2, . . . , ak is a sequence of joint-actions
such that ak(· · · (a1(s0))) ∈ G.

Language A MAP domain specification consists of
〈P, I, g,Φ, {A1, . . . An}, Ac〉, where P is a set of ground
propositions, I ⊂ P is the initial state, g ⊂ P is the goal
condition, Φ is a set of agent names, Ai is a set of single-
agent actions, and Ac is a set of collaborative actions.

A single-agent action has the form a =
〈symbol , pre(a), eff (a)〉, where symbol is the action
name, and pre(a) and eff(a) are well-formed sets of
literals. pre(a)+ is the set of positive pre-conditions,
pre(a)− is the set of negative pre-conditions, eff(a)+ is
the set of add effects, and eff(a)− is the set of delete
effects. While, a collaborative action has the form
ac = 〈symbol , pre(a), eff (a), e = {a1, . . . , ak}〉, where
symbol, pre(a) and eff(a) are as above, and e is a set
of single-agent action symbols, such that no two action
symbols in e belong to the same agent in Φ.

To simplify notation, clarity and reduce clutter we use the
generic name action to refer to either a single-agent action
or a collaborative action whenever possible; we will drop
the distinction between an action and its symbol; and we
write e(a) to denote the elements of an action a. When a
is a single-agent action, e(a) = a, and in a collaborative
action e(a) is simply e, the set of single-agent actions in a’s
definition. We also write Agt(a) to denote the set of agents
acting in a: Agt(a) = {φi|∃ai ∈ e(a), ai ∈ Ai}, i.e., agents
for whom a contains an element from their action set.

Interpretation The correspondence between the model
and domain specification is defined as follows. The set of
states S corresponds to all possible truth assignments to P .
We often equate a state with the list of propositions satisfied
in it. Thus, s0 is the state associated with I . G consists of all
states containing the propositions in g.

Given a specification of actions, we formally define a
multi-action as a set of actions am ⊆ Ac ∪ (∪ni=1Ai) such
that (1) for every a, a′ ∈ am : Agt(a) ∩ Agt(a′) = ∅, and

(2) ∪a∈ampre(a) and ∪a∈ameff (a) are both well formed.
Condition (1) ensures that no agent will be an actor in more
than one action in am. Condition (2) ensures that the effects
and the preconditions of the actions in am do not conflict.

Given a multi-action a, the result of applying a in s, a(s),
is consistent when pre+(a) ⊆ s and pre−(a)∩s = ∅, results
in a(s) = (s \ eff −(a)) ∪ eff +(a). We naturally extend the
notations e and Agt to multi-actions: e(am) = ∪a∈ame(a);
Agt(am) = ∪a∈amAgt(a). We will refer to members of
e(am), which are all single-agent actions, as its elements,
and to the actions in am as its members.

To address this in our interpretation, we require multi-
actions to be well-formed.
Definition 1. A multi-action am is well-formed if no sub-
set of its elements {ai1 , ai2 , . . . , aik} ⊂ e(am) satisfies the
following two conditions: (1) {ai1 , ai2 , . . . , aik} are not el-
ements of a single collaborative action ac ∈ am. (2) there
exists a collaborative action ac ∈ Ac such that e(ac) =
{ai1 , ai2 , . . . , aik}.

If we have an action push and a collaborative action 2push
then the multi-action: am = {2push(a1, a2, b),push(a3, b)}
is not well-formed. This is because there is a subset of
its elements: {push(a2, b), push(a3, b)} that are not part of
the same collaborative action in am, yet there is a collab-
orative action 2push(a2, a3, b) whose elements are exactly
{push(a2, b), push(a3, b)}.

With Definition 1, we state the following (the proof is
excluded from the text, and the reader is referred to the
longer/journal version of the paper).
Lemma 1. Let {a1, . . . , am} be a joint-action. Then, there
exists at most one well-formed multi-action am such that
e(am) = {a1, . . . , am}.

Planning With Multi-Actions
We separate the compilation treatment into two cases: multi-
actions whose member actions do not interfere, and in a
more general case, referred to as multi-actions with precon-
dition/effect interaction.

Non-Interfering Actions If multi-actions with interfer-
ences are not allowed, all the allowed interactions are al-
ready captured in the collaborative actions. Hence, the only
benefit of performing them jointly is make-span reduction.
That is, the set of states reachable with multi-actions and
with their component (single-agent and collaborative) ac-
tions is identical. Thus, we can use any single-agent clas-
sical planning algorithm to solve the problem by combining
single-agent and collaborative actions together to obtain a
single-agent planning problem in which the agents are sim-
ply objects.

Multi-Actions with Pre/Eff Interactions The former
scheme may become both unsound and incomplete when
we allow multi-actions that contain actions that delete or
add preconditions of other actions. Such action interactions
seem natural when we consider true concurrency. For exam-
ple, there is no reason we would want to exclude two agents
from concurrently pushing a box, even though each push ac-
tion deletes the precondition of the other, as it changes the

Proceedings of the ICAPS 2018 DC Mentoring Program

21

location of the box. In this scenario we need to actively gen-
erate well-formed multi-actions. This requires a non-trivial
compilation scheme. If we allow actions that delete precon-
ditions of each other, we must also address the subtle se-
mantic issue of when do two actions conflict. If we allow a
multi-action containing sail(a1,boat,origin,destination) and
sail(a2,boat,origin,destination), why we should not allow
a multi-action containing sail(a1,boat,origin,destination1)
and sail(a2,boat,origin,destination2). Intuitively, we view
the effects: at(boat,destination1) and at(boat,destination2)
as inconsistent. While this would be clear with a multi-
valued formulation of the problem, it is not obvious in the
boolean case, as the two propositions are logically consis-
tent. Thus, in this work we assume that additional declara-
tive information about when actions conflict is provided.

The compilation scheme We give a very high level de-
tails of compiled problems with collaborative actions into
single-agent planning problems. They (1) Properly address
Pre/Eff conflicts; (2) Support collaborative actions; and (3)
Ensure that multi-actions are well-formed. Our compila-
tion alters the action description so that such serialization
can still work in the more general case. For MAP prob-
lems 〈P, I, g,Φ, {A1, . . . An}, Ac〉, classical planning prob-
lems 〈PCl, ACl, ICl, gCl〉 are generated using our compila-
tion approach. However, the compilation details are skipped
from the running text.

Adding Privacy
Privacy Preserving Planning (PPP) (Nissim and Brafman
2014) supports agents that wish to plan collaboratively with-
out revealing private information about their local state, their
private actions, and their cost. PPP algorithms are able to
compute a joint-plan in a distributed manner without reveal-
ing private information. We briefly explain how to modify
our current specification and compilation technique to sup-
port PPP with interacting actions. So, in the input language
to a PPP, each agent has a separate domain specification that
contains a description of its actions, which maintains pri-
vacy. In PPP, the domain description of each agent contains:
a complete description of all its actions and the public pro-
jection of the public actions of other agents; together with
public propositions and propositions private to the agent. We
extend this description with collaborative actions. While a
collaborative action is public by definition, some of its pre-
conditions or effects could be private to one of the agents.
Notice that while the specification is now distributed among
n agents, the semantics remain the same.

PPP with Collaborative Actions Existing PPP algo-
rithms are distributed, and this raises the question of when
to insert a collaborative action into the plan. One agent can-
not commit to a collaborative action in the name of another
agent because of being uninformed of her private precondi-
tion. We believe that splitting collaborative actions into in-
dividual action components is a simple solution which al-
lows us to use any existing PPP planner. We add this to the
compilation approach to get regular Distributed-MAP prob-
lems. For example, we split 2push(a1, a2, b) into 2push1(a1,
a2, b) and 2push2(a1, a2, b). If a2 is not mentioned in the

description of 2push1 and a1 is not mentioned in the de-
scription of 2push2, we obtain 2push1(a1, b) and 2push2(a2,
b). Accordingly we also split the propositions in the action
schema. Thus, the first pushing agent does not need to com-
mit to the identity of the second agent.

Empirical Evaluation
As there is no implemented algorithm to compare against
and no established domain with interacting actions, we de-
fine a new set of domains and instances. We used four MA-
PDDL domains in our experiments. The two new domains
are TableMover and ApartmentMover, and the other two
are modified versions of Maze and BoxPushing domain. All
these domains contain set of single-agent and collaborative
actions with the elements of privacy. For each domain the
compilation generates a centralized version and a distributed
privacy preserving planning version. We evaluate the scala-
bility of our compilation approach over these domains.

Our compilation approach scales well in each domain
with no privacy. Each translation single-agent problem is
given to Fast-Downward (FD) (Helmert 2006). The search
approach used in FD is lazy-greedy with hFF heuristic (Hoff-
mann and Nebel 2001). We also generate results for dis-
tributed PPP, for which we used the distributed PPP solver
GPPP (Maliah, Shani, and Stern 2017). This planner is less
optimized than FD (for single-agent problems it was 123
times slower, with average ratio per domain ranging from
40 to 287). Hence, we used simpler problems than the ones
used in the no privacy case. Compilation time is negligible.

Work In Progress
We focus on devising online algorithms for effective collab-
oration under partial-observability which can enable agents
to perform joint tasks effectively. Based on this approach, we
are also interested in formulating single-agent problems that
pose uncertainty about the action execution time and support
exogenous events. We relate this to our proposed formalism
for MAP with collaborative actions under partial observabil-
ity, and question that when an agent should replan if she is
committed to participate in a collaborative task at some point
in future.

Online Planning
Online replanning is a popular method for this, where an ini-
tial partial plan is generated under certain assumptions. As
long as these assumptions are not refuted by observations, it
is followed. Once an inconsistent observation is obtained, a
new plan is generated. In the multi-agent case, this approach
fails when communication is constrained, even if agents ini-
tially share a plan. A major difficulty is that agents do not
know which observations were sensed by other agents, upon
replanning. Hence, they do not know whether other agents
still follow the agreed plan or were forced to modify their
plan. This raises a serious difficulty if the plan requires col-
laboration with other agents.

One way of addressing this problem is by communicat-
ing local observations that are inconsistent (Wu, Zilberstein,
and Chen 2009). However, we suggest a different approach

Proceedings of the ICAPS 2018 DC Mentoring Program

22

that can work even when communication is not possible and
is based on the idea of conditional coordination constraints
used in the IMAP algorithm. When the partial plan is gener-
ated off-line, we extract the relevant constraints from it. The
agents will replan taking these commitments into account.
The commitments serve as anchors for the other agents, fa-
cilitating coordination. The major questions to be dealt with
in future are: Developing the right representation for such
commitments; Generating commitments off-line based on
a partial plan; Identifying conditions where the computed
commitments can be ignored. We consider this as one of the
most challenging and important directions of research.

Online Replanning Under Temporal Uncertainty
As we discussed before, in an online approach, when com-
munication is constrained, future commitments of the agents
work as hard deadlines. Meanwhile, to begin with this, we
formulate a quite similar single-agent formalism that poses
actions with stochastic finish durations and deterministic ex-
ogenous events (Garrido, Fox, and Long 2002). We propose
to handle this formalism as follows: If an action takes more
time than expected, an agent would replan so that the future
deadlines (unaltered) can be met. We motivate this formula-
tion by a suitable real world scenario. For example, suppose
an agent plans to buy at two shops A and B. A opens be-
tween 2PM and 6PM while B opens between 3PM and 4PM.
Her current plan is to start from her house, go to shop A, do
shopping at A, go to shop B, do shopping at B, and from B
go home. If reaching A takes more time than expected time,
and given that B is far from her house than A and the above
given opening timings of the shops, she would replan. The
more feasible looking plan may be: reach B first from wher-
ever she is, shop at B, come to shop A, do shopping at A,
come back home.

In future, we intend to focus on different approaches like
monitoring the likelihood of success of meeting deadlines,
and replanning based on this. One can maintain multiple
plans – they can be generated online, and tracking the like-
lihood of each and selecting actions that correspond to the
best suited plan.

References
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of markov
decision processes. Math. Oper. Res. 27(4):819–840.
Bernstein, D. S.; Amato, C.; Hansen, E. A.; and Zilberstein,
S. 2009. Policy iteration for decentralized control of markov
decision processes. J. Artif. Intell. Res. 34:89–132.
Blum, A., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90:281–300.
Bonet, B., and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia,
Spain, July 16-22, 2011, 1936–1941.
Borrajo, D. 2013. Multi-agent planning by plan reuse. In
International conference on Autonomous Agents and Multi-

Agent Systems, AAMAS ’13, Saint Paul, MN, USA, May 6-
10, 2013, 1141–1142.
Brafman, R. I.; Shani, G.; and Zilberstein, S. 2013. Qualita-
tive planning under partial observability in multi-agent do-
mains. In Proceedings of the Twenty-Seventh AAAI Confer-
ence on Artificial Intelligence, July 14-18, 2013, Bellevue,
Washington, USA.
Garrido, A.; Fox, M.; and Long, D. 2002. A temporal plan-
ning system for durative actions of PDDL2.1. In Proceed-
ings of the 15th Eureopean Conference on Artificial Intelli-
gence, ECAI’2002, Lyon, France, July 2002, 586–590.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Int. Res. 26(1):191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
fast plan generation through heuristic search. J. Artif. Int.
Res. 14(1):253–302.
Maliah, S.; Shani, G.; and Stern, R. 2017. Collabora-
tive privacy preserving multi-agent planning - planners and
heuristics. Autonomous Agents and Multi-Agent Systems
31(3):493–530.
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. J. Artif. Intell. Res.
51:293–332.
Shekhar, S., and Brafman, R. I. 2018. Representing and
planning with interacting actions and privacy. In Proceed-
ings of ICAPS, June 24 - 29, 2018.
Silver, D., and Veness, J. 2010. Monte-carlo planning in
large pomdps. In Advances in Neural Information Process-
ing Systems 23: 24th Annual Conference on Neural Infor-
mation Processing Systems 2010. Proceedings of a meet-
ing held 6-9 December 2010, Vancouver, British Columbia,
Canada., 2164–2172.
Wu, F.; Zilberstein, S.; and Chen, X. 2009. Multi-agent
online planning with communication. In Proceedings of the
19th International Conference on Automated Planning and
Scheduling, ICAPS 2009, Thessaloniki, Greece, September
19-23, 2009.

Proceedings of the ICAPS 2018 DC Mentoring Program

23

generating explicable plans and will discuss some future di-
rections.

2 Explanation as Model Reconciliation
Let us consider a a classical planning problem defined as a
tupleM = 〈D, I,G〉 with domain D = 〈F,A〉 - where F is
a set of fluents that define a state s ⊆ F , and A is a set of ac-
tions - and initial and goal states I,G ⊆ F . As mentioned ear-
lier, we will be considering multi-model planning problems
in this setting. We define a multi-model planning problem by
the tuple Ψ = 〈MR,MR

h 〉 whereMR = 〈DR, IR,GR〉 and
MR

h = 〈DR
h , IRh ,GRh 〉 are respectively the planner’s model

of a planning problem and the human’s understanding of the
same. For keeping the discussions simple, we will focus on
cases where the human is merely an observer and all actions
are taken by the robot. In this setting, human requires an ex-
planation for the robot’s optimal plan π∗R, if any of the fol-
lowing two conditions hold.

(1) π∗R(IRh) 6⊇ GRh ;

(2) There exists a set of plans F = π1, .., πm (called foils),
such that for each πi ∈ F , we have πi(IRh) ⊇ GRh and
C(πi,MR

h) < C(π∗R,MR
h)

This above conditions posit that the plan needs to be ex-
plained if the human thinks that the plan is incorrect or be-
lieves there are better plans. Now an explanation in this set-
ting can be a set of model updates E such that

(1) M̂R
h ←−MR

h + E ; and

(2) ∀πi ∈ F,C(π∗R,M̂R
h) ≤ C(π〉,M̂

R

h
).

Which means that in the model M̂R
h obtained by applying

explanation E on the human modelMR
h , the robot plan will

be correct and preferred over the foils.

3 Explaining the Optimality of a Plan
The above definition of explanation assumes that the set of
foils F is explicitly provided. In many cases, the human may
not bother with (or capable of) providing the system with a
set of explicit foils. One way to handle such situation would
be by generating explanations that can resolve all possible
foils. In other words, identify an explanation that ensures the
optimality of the given plan in the resultant model. This direc-
tion was investigated in our paper [Chakraborti et al., 2017],
where we introduced algorithms that are capable of identi-
fying minimal explanations (referred to as Minimally Com-
plete Explanations or MCE) that can ensure the optimality of
a given plan in the human model. We formulated these algo-
rithms as a heuristic search over the space of models that can
be generated from the human mental model. The paper also
performed a very detailed analysis of the various desirable
properties of such explanations. An interesting property we
identified was that such minimal explanations are not neces-
sarily monotonic. This means that it is possible for an expla-
nation (i.e model updates) to invalidate a plan that was pre-
viously explained by the robot. In the paper, we also showed

that we could generate explanations that are guaranteed to
be monotonic (called Minimally Monotonic Explanations or
MME) by a similar model space search. Figure 2 presents a
graphical representation of the model space search to identify
MCE and MME.

4 Explaining with Multi-Model and
Incomplete Models

One of the assumptions made by the earlier mentioned ap-
proaches is the availability of complete and correct repre-
sentation of the human mental model. This could be an ex-
tremely hard requirement to meet, and the task of learning
these models is further complicated by the fact that it may not
be possible to observe any traces generated from these mod-
els. One possibility would be to use incomplete models that
are easier to learn. We will consider one such model called
Annotated PDDL model ([Nguyen, Sreedharan, and Kamb-
hampati, 2017]) and see how we can use it for explanation
generation (the details of this work can be found at [Sreedha-
ran, Chakraborti, and Kambhampati, 2017b]).

An annotated model is given by the tuple aM =
〈aD,a I,a G〉 with a domain aD = 〈F, aA〉 – where F is a
finite set of fluents that define a state s ⊆ F , and aA is a finite
set of annotated actions – and annotated initial and goal states
aI = 〈I0, I+〉, aG = 〈G0,G+〉; I0,G0, I+,G+ ⊆ F . Ac-
tion a ∈a A is a tuple 〈ca, pre(a), p̃re(a), eff±(a)〉, ẽff ±(a)〉
where ca is the cost and, in addition to its preconditions and
add/delete effects pre(a), eff±(a),⊆ F each action also con-
tains possible preconditions p̃re(a) ⊆ F containing proposi-
tions that action a might need as preconditions, and possible
add (delete) effects ẽff ±(a) ⊆ F) containing propositions
that the action a might add (delete, respectively) after execu-
tion.

An instantiation of an annotated model aM is a classi-
cal planning model where a subset of the possible conditions
have been realized, and is thus given by the tuple ins(aM) =
〈D, I,G〉 with domain D = 〈F,A〉, initial and goal states
I = I0 ∪ χ; χ ⊆ I+ and G = G0 ∪ χ; χ ⊆ G+ respec-
tively, and action A 3 a = 〈ca, pre(a) ← pre(a) ∪ χ; χ ⊆
p̃re(a), eff±(a) ← eff±(a) ∪ χ; χ ⊆ ẽff ±(a)〉. Given an an-
notated model with k possible conditions, there may be 2k

such instantiations, which forms its completion set [Nguyen,
Sreedharan, and Kambhampati, 2017] given as 〈〈M̂〉〉.

If we use an incomplete model to represent the human
mental model, this, in turn, means that the actual human men-
tal model is one of the possible models within the completion
set. So a safe approach to explanation generation in this set-
ting would be to find a single explanation that is a satisfac-
tory explanation for the entire set of models (Figure 3). This
may sound quite daunting but in the following section, we
will show, how we can solve this problem quite efficiently.
We will mainly achieve this by focusing our attention on just
two of the models in the completion set. Namely, the most re-
laxed modelMmax possible and the least relaxed oneMmin.
The former is the model where all the possible add effects
(and none of the possible preconditions and deletes) hold, the
state has all the possible conditions set to true, and the goal

Proceedings of the ICAPS 2018 DC Mentoring Program

25

end up spooking the user, the robot could instead reveal only
certain parts of the new model while still using its older model
(even though suboptimal) for the rest of the interactions so as
to slowly reconcile the drifted model of the user. In such a
setting the goal would be to design an algorithm capable of
generating a plan π and an explanation E such that (i) π is
executable in the robot’s model, (ii) the explanation E is in
the form of model updates, (iii) π is optimal1 in the updated
human model and (iv) π is selected by trading explicability
cost and explanation with a hyperparameter α:
(1) δMR(IR, π) |= GR;

(2) M̂R
h ←−MR

h + E ;

(3) C(π,M̂R
h) = C∗

M̂R
h

; and

(4) π = arg minπ { |E| + α× | C(π,MR)− C∗MR | }.
Clearly, with higher values of α, the planner will produce
plans that require more explanations, while lower α values
will generate more explicable plans. We can use a modified
version of the model space search mentioned in explanation
generation section to calculate the expected plan and explana-
tions for any given α value. For each possible model we come
across during our model space search, we test if the objective
value of the new node is smaller than the current min node.
The objective value reflects the combined cost of explaining
the plan in the node and the additional cost the robot need to
bear to execute a plan optimal within that node –

V = |E| + α× | C(π∗M̂,M
R)− C∗MR |

So larger the α value, the more, the robot is concerned about
the additional cost of executing a plan that is not optimal.
We stop the search once we identify a model that is capable
of producing a plan that is also optimal in the robot’s model.
This is different from the stopping condition used by the orig-
inal MCE-search, where we were just trying to identify the
first node where the given plan is optimal. An interesting ef-
fect of this stopping condition is the fact that even when the
α value is high the search is guaranteed to compute the best
possible plan for the planner as well as the smallest explana-
tion associated with it. The details related to this work can be
found in our paper [Sreedharan, Chakraborti, and Kambham-
pati, 2017a].

6 Conclusion and Future Work
The works described in the document presents our initial ef-
forts at developing approaches to generating explanations for
human in the loop planning. One of the biggest challenges in
this direction is to create and maintain models of its human
teammates that capture their capabilities, preferences, inten-
tions, etc. – i.e. MR

h (and even MH
r). These models are in-

herently partial from the agent’s perspective, and the problem
becomes even harder in case of mental models as these can-
not be learned directly from observed plan traces but through
the interactions that the agent has with the human. An im-
portant assumption we made throughout the works described

1or ideally the most explicable, but for now we will limit our
attention to cost difference as the only measure of explicability

in this paper is that the human and robot understands the do-
main at the same level of abstraction. In most scenarios, the
model that the human has access to would be some abstrac-
tion of the actual robot model, and the robot needs to keep this
difference in mind while coming up with this explanation.
[Sreedharan, Srivastava, and Kambhampati, 2018] presents
some initial work we have done towards this direction. Ad-
ditionally, we would also like to extend our approach also to
support stochastic and decision-theoretic planning models.

References
[Bercher et al., 2014] Bercher, P.; Biundo, S.; Geier, T.; Ho-

ernle, T.; Nothdurft, F.; Richter, F.; and Schattenberg, B.
2014. Plan, repair, execute, explain-how planning helps to
assemble your home theater. In ICAPS.

[Chakraborti et al., 2017] Chakraborti, T.; Sreedharan, S.;
Zhang, Y.; and Kambhampati, S. 2017. Plan explana-
tions as model reconciliation: Moving beyond explanation
as soliloquy. In IJCAI.

[Kambhampati, 1990] Kambhampati, S. 1990. A classifica-
tion of plan modification strategies based on coverage and
information requirements. In AAAI 1990 Spring Sympo-
sium on Case Based Reasoning. Citeseer.

[Miller, 2017] Miller, T. 2017. Explanation in artificial
intelligence: Insights from the social sciences. CoRR
abs/1706.07269.

[Nguyen, Sreedharan, and Kambhampati, 2017] Nguyen, T.;
Sreedharan, S.; and Kambhampati, S. 2017. Robust plan-
ning with incomplete domain models. Artificial Intelli-
gence.

[Seegebarth et al., 2012] Seegebarth, B.; Müller, F.; Schat-
tenberg, B.; and Biundo, S. 2012. Making hybrid plans
more clear to human users-a formal approach for generat-
ing sound explanations. In Twenty-Second International
Conference on Automated Planning and Scheduling.

[Sreedharan, Chakraborti, and Kambhampati, 2017a]
Sreedharan, S.; Chakraborti, T.; and Kambhampati,
S. 2017a. Balancing explicability and explanation in
human-aware planning.

[Sreedharan, Chakraborti, and Kambhampati, 2017b]
Sreedharan, S.; Chakraborti, T.; and Kambhampati, S.
2017b. Handling model uncertainty and multiplicity in
explanations via model reconciliation.

[Sreedharan, Srivastava, and Kambhampati, 2018]
Sreedharan, S.; Srivastava, S.; and Kambhampati, S.
2018. Hierarchical expertise-level modeling for user
specific robot-behavior explanations. arXiv preprint
arXiv:1802.06895.

Proceedings of the ICAPS 2018 DC Mentoring Program

27

Stochastic Goal Recognition Design

Christabel Wayllace
Computer Science and Engineering Department

Washington University in St. Louis
St. Louis, MO 63130-4899, USA

cwayllace@wustl.edu

1 Introduction

Discovering the objective of an agent based on observations
of its behavior is a problem that has interested both AI and
psychology researchers for many years [Schmidt et al., 1978;
Kautz, 1987]. In AI, this problem is known as goal recog-
nition or, more generally, plan recognition, and it has been
used to model a number of applications ranging from soft-
ware personal assistants [Oh et al., 2010; 2011a; 2011b];
robots that interact with humans in social settings such as
homes, offices, and hospitals [Tavakkoli et al., 2007; Kel-
ley et al., 2012]; intelligent tutoring systems that recognize
sources of confusion or misunderstanding in students through
their interactions with the system [McQuiggan et al., 2008;
Johnson, 2010; Lee et al., 2012; Min et al., 2014]; and se-
curity applications that recognize the plan or goal of terror-
ists [Jarvis et al., 2005].

The traditional approach to solve goal recognition prob-
lems involves finding better and more efficient algorithms to
infer the agent’s objective from online collected observations,
however, a newly formulated problem takes another perspec-
tive. The problem, proposed by Keren et al. [2014], is called
goal recognition design (GRD) and it is intended to reduce
the complexity of the online goal recognition task by per-
forming an offline modification of the underlying environ-
ment that the agent operates in. The goal is to find the small-
est set of modifications that forces the agent to reveal its goal
as early as possible. This problem finds itself relevant in
many of the same applications of goal recognition because,
usually, the underlying environment can be easily modified.

Typically, a GRD problem has two components: (1) A
measure of the efficacy of goal recognition and (2) a model of
possible design changes one can make to the underlying en-
vironment. In the seminal work by [Keren et al., 2014], they
proposed the worst case distinctiveness (wcd) metric, which
aims at capturing the maximum number of steps an agent can
take without revealing its goal, as a measure of the goal recog-
nition efficacy. Further, they considered only the removal of
actions as possible design changes to the environment. This
definition is made for the problem under three key assump-
tions:
• Assumption 1: The agents in the system will act optimally

(i.e., agents will move along a shortest path to its goal);
• Assumption 2: The actions of the agents are deterministic;

and
• Assumption 3: The environment is fully observable (i.e.,

both the state and the action of the agent are observable).
Since then, researchers have generalized the GRD prob-

lem to relax these assumptions [Keren et al., 2015; 2016a;
2016b] and have also proposed alternative algorithms to solve
it [Son et al., 2016]. Additionally, [Keren et al., 2016b] have
proposed the refinement of sensors, which decreases the de-
gree of observation uncertainty of the state and/or action of
the agent, as a possible design change on the environment.

Our work aims to further extend the GRD problem with the
objective to take into account the stochasticity and limitations
present in the physical world, where the agents do not control
the outcomes of their actions and/or the observer is limited by
the quantity and quality of the sensors.

With this objective in mind we have proposed the Stochas-
tic GRD (S-GRD) problem, where the outcomes of the
agent’s actions are stochastic [Wayllace et al., 2016]. Aside
from this relaxation, we have also proposed a new metric
called expected case distinctiveness (ecd) [Wayllace et al.,
2017] , which weighs the possible goals based on their like-
lihood of being the true goal. Table 1 summarizes the gen-
eralizations, metrics, and possible designs of existing GRD
models.

2 Goal Recognition Design (GRD) and
Stochastic GRD (S-GRD)

A Goal Recognition Design (GRD) problem [Keren et al.,
2014] is represented as a tuple P = 〈D,G〉, where
D = 〈S, s0,A,T,C〉 captures the domain information

and G is a set of possible goal states of the agent. The el-
ements in the tuple D are as they are described in MDPs,
except that the transition function T is deterministic and the
cost function C is restricted to positive costs.1 We assume
that the cost of all actions is 1 for simplicity.

The worst case distinctiveness (wcd) of a GRD problem
is a metric representing the length of a longest sequence of
actions that an agent can execute without revealing its goal.

The objective in GRD is to find a subset of actions such
that if they are removed from the domain, the wcd of the re-

1The domain information D was originally described by Keren
et al. [2014] using a classical planning model [Geffner and Bonet,
2013].

Proceedings of the ICAPS 2018 DC Mentoring Program

28

Generalizations Metrics Possible Designs
Suboptimal Partially Stochastic wcd ecd Action Sensor

Plans Obs. Env. Actions Removal Refinement
[Keren et al., 2014] X X
Son et al. (2016) X X
Keren et al. (2015) X X X
Keren et al. (2016a) X X X X
Keren et al. (2016b) X X X X X
Wayllace et al. (2016) X X X
Wayllace et al. (2017) X X X X

Table 1: Properties of Current Goal Recognition Design Models

sulting problem is minimized. This optimization problem is
subject to the requirement that the cost of cost-minimal plans
to achieve each goal g ∈ G is the same before and after re-
moving the subset of actions.

A Stochastic Goal Recognition Design (S-GRD) problem
[Wayllace et al., 2016] is an extension of a GRD problem
that assumes the actions executed by the agent have stochas-
tic outcomes. It is represented as a tuple P = 〈D,G〉, where,
like in GRDs, D = 〈S, s0,A,T,C〉 captures the domain in-
formation and G is a set of possible goal states of the agent.
The elements in the tuple D are as they are described in
GRDs, except that the transition function T is now stochas-
tic. The worst case distinctiveness (wcd) of problem P is
the largest expected cost incurred by the agent over all non-
distinctive policy prefixes. A non-distinctive policy prefix is
an optimal policy common to a pair of goals.

Like in GRDs, the objective in S-GRD is to find a subset
of actions Â∗ ⊂ A such that if they are removed from the set
of actions A, then the wcd of the resulting problem is min-
imized. This optimization problem is subject to the require-
ment that the expected cost of the optimal policies to achieve
each goal g ∈ G is the same before and after removing the
subset of actions and that the number of reduced actions is
less than or equal to a user-defined parameter k.

The intuition behind the worst case distinctiveness (wcd) is
that it measures the longest path (i.e., a path with the largest
cost) an agent can take without revealing its goal. Therefore,
a natural extension of this definition for S-GRD problems is
that the wcd represents now the largest expected cost incurred
by the agent before its goal is revealed.

Computing the wcd for S-GRD problems however, is not
a straightforward extension of the wcd computation for de-
terministic GRD problems, as it has been shown in [Wayl-
lace et al., 2017]. While in the deterministic case the wcd is
computed by finding the longest path of actions common to
a pair of goals and then finding the maximum value among
all pairwise combinations, in the stochastic case we need to
consider all goals at the same time. Additionally, we also
made another key observation: that the set of possible goals
for a particular state can differ based on the observed path of
the agent to that state. Therefore, the set of possible goals
of the agent is not Markovian as it depends on the entire his-
tory of states visited. We have proposed a new augmented
MDP structure that carries the history information and the
wcd is found using VI-like algorithms. Additionally, we ob-

served that the augmented state space of the augmented MDP
can often be segmented into strongly connected components
(SCCs) – each SCC contains the augmented states with the
same set of possible goals, and the set of possible goals is
non-increasing. Therefore, we also propose a TVI-like algo-
rithm that uses Tarjan’s algorithm [Tarjan, 1972] to segment
the augmented state space into SCCs first before running VI
on each SCC in reverse topological order. This should signif-
icantly speed up the solving time if there are large numbers of
SCCs, but may have the opposite effect if there are few SCCs
due to the overhead incurred by Tarjan’s algorithm.

3 Expected-Case Distinctiveness (ecd)
An implicit assumption made by the worst-case distinctive-
ness (wcd) metric is that there is no prior information on
which is the true agent’s goal. While this assumption is rea-
sonable in many problems, it may be the case that some in-
formation is available. For example, in human-computer in-
teraction applications, user profiles may be used to assign dif-
ferent weights to each goal, where the weights correspond to
the prior probabilities of an agent choosing its goal.

Further, it may often be the case where the wcd cannot
be reduced (i.e., the longest non-distinctive path cannot be
shortened). However, other shorter non-distinctive paths can
be shortened. Thus, intuitively, one should prefer the solu-
tion that shortens the shorter non-distinctive paths. In such
a scenario, the wcd metric fails to distinguish between these
solutions as the wcd remains the same in both cases. This
situation is further exacerbated when the longest path are to
goals with low weights!

In response to these two observations, we proposed a new
metric, called the expected-case distinctiveness (ecd), for S-
GRDs that weighs the length of a path to a goal by the proba-
bility of an agent choosing that goal and takes the sum of all
the weighted path lengths.

To reduce the wcd or ecd of a problem, we enumerate
through all possible combinations of actions to remove, com-
pute the resulting wcd or ecd, and store the best solution.

4 Future Work
We next plan to extend the S-GRD framework by assuming
a more realistic situation for the observer, that is, to take into
account first that the actions are usually non-observable, what

Proceedings of the ICAPS 2018 DC Mentoring Program

29

we really observe is the current state of the agent after an ac-
tion is executed, specially in stochastic environments. We
also plan to take into account the sensor (e.g., GPS) resolu-
tion, which may cause that several nearby states are indis-
tinguishable. Thus, the state of the agent is only partially
observable. Additionally, we want to incorporate new sen-
sor refinement modifications in the design, to help us figure
out which sensors need to improve their resolution in order to
facilitate goal recognition.

Our plan for future work also includes the generalization
of the ecd metric to the other GRD variants as well as the
investigation of heuristic search techniques to compute the
wcd and ecd values. We suspect that such techniques may
be useful in cases one can prune significant portions of the
search space due to the differences in the weights of the goals.

References
[Bellman, 1957] Richard Bellman. Dynamic Programming.

Princeton University Press, 1957.
[Dai et al., 2011] Peng Dai, Mausam, Daniel S Weld, and

Judy Goldsmith. Topological value iteration algorithms.
Journal of Artificial Intelligence Research, 42:181–209,
2011.

[Geffner and Bonet, 2013] Hector Geffner and Blai Bonet. A
Concise Introduction to Models and Methods for Auto-
mated Planning. Morgan & Claypool Publishers, 2013.

[Geib and Goldman, 2001] Christopher W Geib and
Robert P Goldman. Plan recognition in intrusion detection
systems. In DARPA Information Survivability Conference
& Exposition II, 2001. DISCEX’01. Proceedings,
volume 1, pages 46–55. IEEE, 2001.

[Jarvis et al., 2005] Peter Jarvis, Teresa Lunt, and Karen
Myers. Identifying terrorist activity with AI plan recog-
nition technology. AI Magazine, 26(3):73–81, 2005.

[Johnson, 2010] W. Lewis Johnson. Serious use of a seri-
ous game for language learning. International Journal of
Artificial Intelligence in Education, 20(2):175–195, 2010.

[Kautz, 1987] Henry A Kautz. A Formal Theory of Plan
Recognition. PhD thesis, Bell Laboratories, 1987.

[Kelley et al., 2012] Richard Kelley, Liesl Wigand, Brian
Hamilton, Katie Browne, Monica Nicolescu, and Mircea
Nicolescu. Deep networks for predicting human intent
with respect to objects. In Proceedings of the Inter-
national Conference on Human-Robot Interaction (HRI),
pages 171–172, 2012.

[Keren et al., 2014] Sarah Keren, Avigdor Gal, and Erez
Karpas. Goal recognition design. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), pages 154–162, 2014.

[Keren et al., 2015] Sarah Keren, Avigdor Gal, and Erez
Karpas. Goal recognition design for non-optimal agents.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence (AAAI), pages 3298–3304, 2015.

[Keren et al., 2016a] Sarah Keren, Avigdor Gal, and Erez
Karpas. Goal recognition design with non-observable ac-
tions. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pages 3152–3158, 2016.

[Keren et al., 2016b] Sarah Keren, Avigdor Gal, and Erez
Karpas. Privacy preserving plans in partially observable
environments. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 3170–
3176, 2016.

[Lee et al., 2012] Seung Lee, Bradford Mott, and James
Lester. Real-time narrative-centered tutorial planning for
story-based learning. In Proceedings of the International
Conference on Intelligent Tutoring Systems (ITS), pages
476–481, 2012.

[Mausam and Kolobov, 2012] Mausam and Andrey
Kolobov. Planning with Markov Decision Processes:
An AI Perspective. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2012.

[McQuiggan et al., 2008] Scott McQuiggan, Jonathan
Rowe, Sunyoung Lee, and James Lester. Story-based
learning: The impact of narrative on learning experiences
and outcomes. In Proceedings of the International
Conference on Intelligent Tutoring Systems (ITS), pages
530–539, 2008.

[Min et al., 2014] Wookhee Min, Eunyoung Ha, Jonathan
Rowe, Bradford Mott, and James Lester. Deep learning-
based goal recognition in open-ended digital games. In
Proceedings of the AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment (AIIDE),
pages 37–43, 2014.

[Oh et al., 2010] Jean Oh, Felipe Meneguzzi, Katia Sycara,
and Timothy Norman. ANTIPA: An agent architecture for
intelligent information assistance. In Proceedings of the
European Conference on Artificial Intelligence (ECAI),
pages 1055–1056, 2010.

[Oh et al., 2011a] Jean Oh, Felipe Meneguzzi, Katia Sycara,
and Timothy Norman. An agent architecture for prognos-
tic reasoning assistance. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
pages 2513–2518, 2011.

[Oh et al., 2011b] Jean Oh, Felipe Meneguzzi, Katia Sycara,
and Timothy Norman. Probabilistic plan recognition for
intelligent information agents: Towards proactive software
assistant agents. In Proceedings of the International Con-
ference on Agents and Artificial Intelligence (ICAART),
pages 281–287, 2011.

[Schmidt et al., 1978] Charles Schmidt, N. Sridharan, and
John Goodson. The plan recognition problem: An inter-
section of psychology and artificial intelligence. Artificial
Intelligence, 11(1–2):45–83, 1978.

[Son et al., 2016] Tran Cao Son, Orkunt Sabuncu, Christian
Schulz-Hanke, Torsten Schaub, and William Yeoh. Solv-
ing goal recognition design using ASP. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI),
pages 3181–3187, 2016.

[Tarjan, 1972] Robert Tarjan. Depth-first search and linear
graph algorithms. SIAM Journal on Computing, 1(2):146–
160, 1972.

[Tavakkoli et al., 2007] Alireza Tavakkoli, Richard Kelley,
Christopher King, Mircea Nicolescu, Monica Nicolescu,
and George Bebis. A vision-based architecture for intent

Proceedings of the ICAPS 2018 DC Mentoring Program

30

recognition. In Proceedings of the International Sympo-
sium on Advances in Visual Computing, pages 173–182,
2007.

[Wayllace et al., 2016] Christabel Wayllace, Ping Hou,
William Yeoh, and Tran Cao Son. Goal recognition
design with stochastic agent action outcomes. In Proceed-
ings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 3279–3285, 2016.

[Wayllace et al., 2017] Christabel Wayllace, Ping Hou, and
William Yeoh. New metrics and algorithms for stochastic
goal recognition design problems. In Proceedings of the
International Joint Conference on Artificial Intelligence
(IJCAI), pages 4455–4462, 2017.

Proceedings of the ICAPS 2018 DC Mentoring Program

31

Extended abstract:
SMT Encoding for Planning for Hybrid Systems

Parisa Zehtabi
Kings College London, London, WC2R 2LS

parisa.zehtabi@kcl.ac.uk

1 Introduction
PDDL+, as the augmented version of PDDL2.1, was de-
signed to model real-world applications, through continuous
processes and exogenous events. As the consequence of this,
a number of approaches have been developed that can han-
dle subsets of PDDL+. In the next section, hybrid systems
and the importance of modeling this group of problems are
briefly explained. Also, a short introduction on PDDL+ is
given and later the limitations and challenges that the cur-
rent planners have to deal with, regarding all PDDL+ fea-
tures, are discussed. Finally, we present a new approach for
solving the PDDL+ models which is able to deal with all
PDDL+ characteristics respects to (Fox and Long 2003).

2 Background
2.1 Hybrid Systems
A hybrid system is one in which there are both continuous
variables and discrete logical modes of operation. It repre-
sents a powerful model to describe the dynamic behaviour of
modern engineering artefacts. Hybrid systems frequently oc-
cur in practice, e.g., in robotics or embedded systems. Some
example applications include coordination of activities of a
planetary lander, oil refinery management, autonomous ve-
hicles, chemical plant (Della Penna et al. 2010), smart grid
(Campion et al. 2013), and battery management (Fox, Long,
and Magazzeni 2011). Such scenarios motivate the need to
reason with mixed discrete-continuous domains.

2.2 PDDL+ Planning
PDDL+ uses processes and events to model mixed discrete-
continuous problems. Processes and events are triggered au-
tomatically as their preconditions have been satisfied, how-
ever it is the planner’s decision to choose whether an action
is executed or not, and as a result of applying an action, pro-
cesses or events can be triggered. If one event e1 is triggered,
and the effects of it can satisfy the preconditions of another
event e2, and all of their effects fulfilling the preconditions
of a process p1, then e1, e2, and the start of p1 happen at the
same time-point. It is due to this behaviour that PDDL+ se-
mantics place a bound on the number of cascading (parallel)
events.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A PDDL+ planning problem is a tuple Π+ :=〈
P, V,A, Ps,E, I,G

〉
where P , V and A are the sets of all

propositions, real variables and actions respectively. The set
of processes and events are shown by Ps and E. Moreover,
I(P, V) and G(P, V) represent the initial and the goal state.
Considering that the PDDL+ semantics can model the hy-
brid domains, finding an efficient planner that can handle
events and processes is the next crucial step.

2.3 Planning as SMT

Different approaches have been used to overcome the chal-
lenges that planning is facing. The method that is explained
in this report is based on the satisfiability modulo theory
(SMT). SMT is the problem of deciding the satisfiability
of a first-order formula expressed in a given theory. In this
method, the numeric values are encoded based on a propo-
sitional logic. As the consequence of this encoding, and
also the efficiency of the propositional (boolean) satisfiabil-
ity problem (SAT) solvers, SMT relates the theory specific
solver to the SAT solvers. Later we will explain in more de-
tail how we have used this method.

3 Related Work

Various techniques and tools have been proposed to deal
with hybrid domains (Penberthy and Weld 1994; McDer-
mott 2003; Li and Williams 2008; Coles et al. 2012; Shin
and Davis 2005). These methods are described in more de-
tail in (Ghallab, Nau, and Traverso 2004), so the rest of this
section focuses on the class of planning for dealing with hy-
brid systems. More recent approaches in this direction have
been proposed by (Bogomolov et al. 2014), where the close
relationship between hybrid planning domains and hybrid
automata is explored, and (Bryce et al. 2015) where hybrid
domains are handled using SMT. Nevertheless, none of these
approaches are able to handle the full set of PDDL+ fea-
tures, namely nonlinear domains with processes and events.
To date, the only viable approach in this direction is PDDL+
planning via discretisation. UPMurphi (Della Penna, Maga-
zzeni, and Mercorio 2012), which implements the discretise
and validate approach, is able to deal with the full range of
PDDL+ features. However, it only does blind search, which
limits its scalability.

Proceedings of the ICAPS 2018 DC Mentoring Program

32

3.1 PDDL+ as SMT
Planning through SMT is not new. A recent approach,
dReach, described in (Bryce et al. 2015), uses a non-linear
SMT solver for planning in hybrid systems. That approach
is promising, although it suffers some important limitations.
Firstly, it does not use PDDL+, as it relies on the language
of dReach, in which the hybrid problems have to be manu-
ally encoded. Secondly, dReach can only handle a restricted
subset of the language features contained in PDDL+, and,
in particular, it cannot handle events. Thirdly, dReach is tai-
lored to be used only with the dReal solver (Gao, Avigad,
and Clarke 2012).

In the next section the new SMT encoding for PDDL+
which overcomes these limitations is discussed. This en-
coding is able to capture all features of PDDL+ (including
events and the ε-separation of effects and action precondi-
tions (Fox and Long 2006)) and works by directly translat-
ing standard PDDL+ domain and problem files. The output
of the translation is a standard SMT encoding that can be
used with any SMT solver in the theory of quantifier-free
nonlinear arithmetic (QF NRA). Furthermore, this approach
proves to also be efficient in proving plan-non-existence,
along with dramatically improving over dReach in solvable
problems. In terms of the dynamics, this approach is com-
plete for nonlinear polynomial change.

4 Encoding of PDDL+ Domains
The encoding of a PDDL+ problem that is described in this
section is based on the current encoding of (Cashmore et
al.). The notion of happening has been introduced to cap-
ture the change in the state at a given time point due to the
effects of actions, processes, or events. Namely, each hap-
pening encodes the causal chain of events, processes and in-
stantaneous actions which might occur simultaneously at a
given time point. As has been explained earlier, a bound B
has been defined as the length of the causal cascading in-
stantaneous events.

4.1 Happening
A happening is the tuple xt := {Pt, Vt, Et, Pst, At}, where
the variables of the happening are defined as follows:

• Pt = {P0,t, . . . , PB,t} represents the causal change in
the set of propositional state variables Pi,t where i ∈
{0, ..., B} at time t;

• Vt = {V0,t, . . . , VB,t} represents the causal change in the
real state variables Vi,t where i ∈ {0, ..., B} at time t;

• Et = {E0,t, . . . , EB,t} represents the chain of set of
events, Ei,t where i ∈ {0, ..., B}, triggered at time t;

• Pst represents the set of active processes at time t;

• At is the set of actions applied at time t.

An example of happening is shown in Figure 1. The bound
for the chain of events limits the number of layers which are
represented as circles in this figure.

As has been explained earlier, a happening describes a
moment of discrete change, corresponding to the discrete
transition Trans of the hybrid systems. Between happenings,

t

P0,t ∪ V0,t ∪ E0,t ∪ At

P1,t ∪ V1,t ∪ E1,t

PB,t∪VB,t∪EB,t∪Pst

Figure 1: A single happening occurs at time t. The circles
(layers) describe a causal chain of instantaneous events.

there is only continuous numeric change (Flow). The key
difference is that: multiple actions can be performed in a
single happening in parallel, meaning that while the hybrid
systems model is exponential in the size of the PDDL+ de-
scription, our encoding will be linear. Having defined hap-
penings, a PDDL+ model can be described as a bounded set
of happenings X := {xt1 ...xtn} encoded as an SMT for-
mula, such that any proof for the SMT formula represents
the trace of a valid plan for Π+. The plan corresponding to
that trace is the set of action assignmentsAt1∪...∪Atn .1 The
following describes the encoding of a single happening, and
later the encoding of the formula for a planning problem.

4.2 Encoding of a single Happening
Following the definition of a happening, a happening xt is
encoded as:

xt :=

〈
t, P0,t, ..., PB,t, At

V0,t, ..., VB,t, f lowVt

E0,t, ..., EB,t, Pst, durPst

〉

The set flowVt
:= {flowvt

|∀vt ∈ Vt} is a numerical ex-
pression that represents the change in value of v from this
time point to the next. Finally, durPst := {durpst |∀pst ∈
Pst} represents the remaining duration of each process. The
constraints within a happening are classified as following.

Proposition and Real Variable support: The following
constraint ensures that the propositional value remains con-
sistent at the first layer of a happening.∧
pi,t∈P

p1,t → (p0,t ∨
∨

ei,t|pi,t∈eff+
ei,t

e0,t ∨
∨

at|pi,t∈eff+
at

at)

Similarly, other constraints are generated that ensure the
value of propositions and real variables remain consistent
from P0,t ∪ V0,t to PB,t ∪ VB,t.

Event Preconditions and Effects: This set of constraints
enforce that an event is triggered if and only if its precondi-
tion holds.

B∧
i=0

∧
ei,t∈E

ei,t ↔ pi,t ∈ preei,t

1As processes and events do not appear in a PDDL+ plan.

Proceedings of the ICAPS 2018 DC Mentoring Program

33

The equation below ensures that the effects of events
should be presented in the next layer of that happening.

B−1∧
i=0

∧
ei,t∈E

ei,t → pi,t+1 ∈ effei,t+1

Action Preconditions and Effects: Similar to Event Pre-
conditions and Effects constraints, these equations ensure
the same rules apply for action variables in At.

Process Triggering: Similar to the Event Preconditions,
this group of constraints enforces that a process is active if
and only if its preconditions are satisfied in set PB,t∪VB,t. It
also enforce that the real variable durpst for each process is
greater than or equal to zero, and that happens if and only if
the process is active. These constraints will be used to ensure
that a process cannot finish outside of a happening.

Action Mutexes: This constraint includes a collection of
binary constraints, enforcing that no two mutex actions can
be applied simultaneously.∧

at∈A

∧
a′t∈A|at∦a′t

(¬at ∨ ¬a′t)

4.3 Encoding of a Planning Problem
The existence of a plan for a PDDL+ planning problem
(Π+) with bound n is proved by building the SMT formula
(Π+n) in the theory of quantifier-free (nonlinear) real arith-
metic with n copies of the set of variables over the set of
happenings T = {t1, ..., tn} for n ≥ 1. The encoding is
illustrated by Figure 2.

I

G

t1 t2 t3 tn

Figure 2: A plan is found by building a formula with n
copies of the set of variables over the happenings tj : t1...tn.
The initial state is modeled in t1, and the goal constraints are
added to tn.

The constraints for a happening are copied for each hap-
pening t1, ..., tn. Additional constraints in the SMT formula
Π+n are shown in the following.

Instance description: These constraints enforce the ini-
tial state to hold in the first happening, and that the goal is
achieved in the final happening.

I(P0,t1 ∪ V0,t1), G(PB,tn ∪ VB,tn)

Also we need to constrain the timing of happenings to
respect the epsilon separation.

n∧
i=2

ti ≥ ti−1 + ε

Proposition support: These constraints ensure that the
discrete state variables pi,tj do not change between happen-
ings.

n∧
j=2

∧
pi,tj

∈Pi,tj

p0,tj → pB,tj−1

Invariant: These constraints ensure that the continuous
numeric change between happenings is valid. The follow-
ing equation ensures that if a process is active in the pre-
vious happening, its duration is decreased by the time be-
tween happenings. This constraint, in combination with the
Progress Triggering constraints in the previous section en-
sures that a process cannot end between happenings.

n∧
j=2

∧
pstj∈Pstj

pstj−1
→ durpstj = durpstj−1

+ tj − tj+1

Furthermore, the following constraint enforces the invari-
ant of the process.

n−1∧
j=1

∧
pstj∈Pstj

psti ↔ pre↔pstj

If a process is active, the preconditions of the process are
active over the whole interval between the happenings. Vio-
lating these preconditions during the execution of a process
is known as zero cross problem. Hence, it is crucial to check
this during the execution of a process. For constraints over
real valued variables, this is done by checking the value ei-
ther side of the interval. However for the nonlinear changes
it is possible that the preconditions are satisfied at the sides
of the interval, but they are violated between the happenings.
As is shown in Figure 3, the red section highlights the situa-
tion where the preconditions are violated within the interval.
Therefore, the following constraint should be added to make
sure that a process won’t violate its preconditions.

pstj →
Atj∧

atj
=1

(
(
daf

dta
)j(

daf

dta
)j+1 >= 0

)
where f is the numeric, non-constant part of the invariant,
and where the (A + 1)th derivative of f is identically zero.
This constraint ensures that the derivatives of the function
do not cross zero over the interval, thus a fluctuating value
of f cannot violate the invariant condition between tj and
tj+1. Therefore, any solution must include a happening at
each point a derivative crosses zero.

Similarly an additional constraint ensures that an event is
not triggered during an interval.

Continuous Change on Real Variables: The model is
enforced to calculate the change over the interval and apply
it to each real variable. In order to calculate the change, the
indefinite integral of the process’ effects upon the variable
must be computed.

n−1∧
j=1

∧
vtj
∈Vtj

flowvtj
=

∫ tj+1

tj

∑
pstj∈Pstj

eff num
↔pstj

[vi,tj]dt

Note that in this approach, the integration and differentiation
are performed by SymPy (SymPy 2013) outside the solver,

Proceedings of the ICAPS 2018 DC Mentoring Program

34

−4 −2 0 2 4
−4

−2

0

2

4

Precondition

tj+1tj

Figure 3: Zero crossing problem for nonlinear changes; en-
sures the preconditions of a process will hold over the exe-
cution of that process

during the encoding. Hence the integration is done only once
for each domain.

5 PhD Road Map
SMTPlan encodings for planning in hybrid systems is quite
new. Thus there are many opportunities for improvement.
We envisage two main streams of future plans, as described
in the following.

5.1 Scalability of SMT-based Planning
• Heuristics: Considering the fact that SMTPlan does not

use any heuristic searches, we are exploring new heuris-
tics to improve the efficiency and scalability of the plan-
ner.

• Improving the Discrete Scalability: Based on the exper-
iments, SMTPlan is able to deal with complex continuous
numerical dynamics. However this encoding is not effec-
tive on the discrete state explosion. Improving the discrete
scalability of the encoding is the main focus in our next
steps.

5.2 Improving the Encoding and Robustness
• Changing to the Change-based Encoding: Currently,

this encoding models all the boolean and numerical vari-
ables and check the satisfiability of the encoded con-
straints at each happening. The value of these variables
won’t change unless they become manipulated by the af-
fects of the actions, processes or events. Considering this,
we are aiming to only use the set of variables who’s val-
ues are manipulated at each step in our modeling. This
will dramatically reduce the number of variables in our
model.

• Robust Envelops: For this step we are planning to define
how much the suggested plan by our encoding, is flexible.
The model used for planning is normally not completely
adherent to the ground reality in which the plan is sup-
posed to operate. Considering this fact, we are planning
to find a new flexible plan that is more robust in differ-
ent planning conditions. Furthermore, we are interested
in defining a range for the propositions of the world in
which the suggested plan remains valid.

References
Bogomolov, S.; Magazzeni, D.; Podelski, A.; and Wehrle,
M. 2014. Planning as model checking in hybrid domains.
In Proceedings of AAAI.
Bryce, D.; Gao, S.; Musliner, D. J.; and Goldman, R. P.
2015. SMT-based nonlinear PDDL+ planning. In Proceed-
ings of AAAI.
Campion, J.; Dent, C.; Fox, M.; Long, D.; and Magazzeni,
D. 2013. Challenge: Modelling unit commitment as a plan-
ning problem. In Proceedings of ICAPS.
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. A
compilation of the full PDDL+ language into SMT. In Pro-
ceedings of ICAPS.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012. COLIN:
Planning with continuous linear numeric change. Journal of
Artificial Intelligence Research (JAIR) 44:1–96.
Della Penna, G.; Intrigila, B.; Magazzeni, D.; and Mercorio,
F. 2010. A PDDL+ benchmark problem: The batch chemical
plant. In Proceedings of ICAPS.
Della Penna, G.; Magazzeni, D.; and Mercorio, F. 2012.
A universal planning system for hybrid domains. Applied
Intelligence 36(4):932–959.
Fox, M., and Long, D. 2003. Pddl2. 1: An extension to
pddl for expressing temporal planning domains. Journal of
artificial intelligence research.
Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. Jorunal of Artificial Intel-
ligence Research (JAIR) 27:235–297.
Fox, M.; Long, D.; and Magazzeni, D. 2011. Automatic
construction of efficient multiple battery usage policies. In
Proceedings of IJCAI.
Gao, S.; Avigad, J.; and Clarke, E. M. 2012. Delta-complete
decision procedures for satisfiability over the reals. In Pro-
ceedings of IJCAR.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: theory and practice. Elsevier.
Li, H. X., and Williams, B. C. 2008. Generative planning
for hybrid systems based on flow tubes. In Proceedings of
ICAPS.
McDermott, D. V. 2003. Reasoning about autonomous pro-
cesses in an estimated-regression planner. In Proceedings of
ICAPS.
Penberthy, J. S., and Weld, D. S. 1994. Temporal planning
with continuous change. In Proceedings of AAAI.
Shin, J.-A., and Davis, E. 2005. Processes and continuous
change in a sat-based planner. Artificial Intelligence 166(1).
SymPy. 2013. Website. http://www.sympy.org/.

Proceedings of the ICAPS 2018 DC Mentoring Program

35

	Blank Page

