
Assumption-based Decentralized HTN Planning

Ugur Kuter and Robert P. Goldman and Josh Hamell
SIFT, LLC

319 1st Ave N., Suite 400,
Minneapolis, MN 55401, USA

{ukuter, rpgoldman, jhamell}@sift.net

Abstract

This paper describes our approach to decentralized planning
via Hierarchical Task Networks (HTNs), which we call Auton-
omy and Rationale Coordination Architecture for Decentral-
ized Environments (Arcade). Arcade is a decentralized AI
planning framework that can incorporate a number of Shop2

HTN planner instances. Each Shop2 instance may have a dif-
ferent HTN planning domain definition than the others in the
framework. Arcade does not assume full communications
among the planners. For this reason, Arcade planners must
make and manage assumptions about parts of the world state
that are not visible to them, including the tasks and plans
of other planners. The individual planners also must oper-
ate asynchronously, and may receive new tasks, either from
outside, or from other planners in Arcade.

In this paper, we describe our assumption-based planning
approach and how Arcade coordinates multiple, asyn-
chronously interacting HTN planners, using assumptions
and task queues. We first present a formal framework,
Assumption-based, Decentralized Total-order Simple Task
Network (DTSTN) planning, based on Total-order Simple
Task Network planning. This is necessary because of our use
of Shop2-style task semantics, instead of goal semantics. Then
we describe the Arcade framework, and how it implements
the framework. Finally, we present preliminary experimental
results in a simplified air operations planning domain, which
shows that Arcade realizes the expected speed-up when ap-
plied to weakly coupled planning problems. We conclude with
directions for future work.

Introduction

Existing distributed and multi-agent planning systems (Tor-
reño et al. 2017) typically focus on deterministic planning
problems, with relatively simple models. They also typi-
cally assume a single overall planning task that must be dis-
tributed among multiple agents. Most practical applications
for decentralized planning (e.g., military operations, UAV
planning, and others) involve independent planners and rea-
soners that are responsible for accomplishing different tasks
under large-scale uncertainty, while communicating their in-
tentions and coordinating their actions. These planners often
are not handed a single, large problem to be decomposed
and then solved. Instead, these planners often receive their
own planning problems to solve based on the organizational
structures in which they are embedded (e.g., logistics and

manufacturing systems separately plan to secure inputs and
to make products). They may also receive additional tasks at
runtime.

The problems we are interested in also involve limited
and unreliable communications. Thus, our planners must
operate under assumptions about peer decisions and states,
where knowledge is not fully shared. Finally, in these ap-
plications the classical assumption of complete information
and predictability is typically difficult or impossible to ap-
ply. For example, Seuken and Zilberstein (2008) address
partial-observability and uncertainty during planning; how-
ever, these approaches cannot scale up to the large-scale
planning problems and use closed-world formalisms.

Autonomy and Rationale Coordination Architecture for
Decentralized Environments (Arcade) is a decentralized
planning architecture that allows multiple Shop2 (Goldman
and Kuter 2018a; Nau et al. 2003) HTN planner instances
to generate plans for planning tasks concurrently and asyn-
chronously. Each planner may generate plans for tasks issued
by other planners or received as input from outside. Our con-
tributions in this paper are as follows:

• We present a formalism for assumption-based HTN plan-
ning, which allows Shop2 to generate plans for execution
in the presence of other (cooperative) agents, when agent-
to-agent communications are unreliable and the environ-
ment is not fully observable.

• We describe Arcade, our decentralized planning frame-
work based on the above formalism. Arcade takes as input
a number of HTN planning problem specifications for all
or a subset of the planners. Arcade then coordinates the
asynchronous operations of multiple Shop2 instances.

• We describe how Arcade communicates tasks to the plan-
ners by generating new HTN planning problem specifica-
tions, and by publishing those specifications. The planners
can sign up to meet those requests if the tasks involved be-
long to the domain descriptions of those planners, and in-
volve domain entities which those planners control. During
the decentralized planning process, Arcade ensures the
plans generated in this way are sound and consistent, bro-
kering solutions to conflicts between the decisions made
by different planners.

• We are currently using Arcade in various Air Operations
planning scenarios. We present our preliminary experi-

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

9



ments and results in a high-level version of this domain,
developed for publication purposes. Our preliminary re-
sults are promising: decentralized planning shows substan-
tial scalability improvements over centralized planning via
Shop2, as one would expect. We also provide a represen-
tative result on the experiments we are conducting on the
various individual components of Arcade.

In the immediately following section we start by reviewing
totally ordered simple task network (TSTN) planning. We
then build our framework, Assumption-based, Decentralized
TSTN planning, on the basic TSTN definitions. Critically,
these definitions allow us to characterize what it means for
Decentralized TSTN (DTSTN) plans to be consistent with
each other. We then explain the Arcade approach, which
builds consistent sets of DTSTN plans, using assumptions to
lazily bind resources to tasks, and to enable agents to reason
in the context of beliefs about each others’ likely actions and
state. We present preliminary experimental results that show
the efficiency of our approach. Finally, we conclude with
a review of related work and conclusions (including future
directions).

Preliminaries: TSTN planning

We use the same definitions for logical substitutions, atoms,
constant and variable symbols, positive and negative literals
in a finite function-free first-order language, as in (Ghallab,
Nau, and Traverso 2004). A state is a collection, s, of ground
atoms. In our work, we adopt a restricted case of HTN plan-
ning called Total-order Simple Task Network (TSTN) plan-
ning (Ghallab, Nau, and Traverso 2004):1

(:action start-order

:parameters

(?o - order ?n ?n1 - count)

:precondition (and

(waiting ?o)

(stacks-avail ?n)

(next-count ?n1 ?n))

:effect (and (not (waiting ?o))

(started ?o)

(not (stacks-avail ?n))

(stacks-avail ?n1)))

Figure 1: An example operator schema from the openstacks do-
main (Helmert, Do, and Refanidis 2010). Shop2 can use PDDL
action definitions.

• A TSTN domain is a quadruple:

D = 〈ops(D), tasks(D),meths(D), ω(D)〉

• Each operator o ∈ ops(D) is a triple

o = 〈name(o), precond(o), effects(o)〉

where name(o) is a task (see below), and precond(o) and
effects(o) are sets of literals called o’s preconditions and

1In future work, we plan to generalize this – see discussion in
the Conclusions.

(:action (start-order o1 s2 s1)

:precondition (and

(waiting o1)

(stacks-avail s2)

(next-count s2 s1))

:effect (and (not (waiting o1))

(started o1)

(not (stacks-avail s2))

(stacks-avail s1)))

Figure 2: Operator from the openstacks schema in Figure 1. In this
case o1, s1, and s2 ∈ ω(D), and the task is (start-order o1
s2 s1).

effects. See Figure 1 for an example operator schema, and
Figure 2 for an operator. If a state s satisfies precond(o),
then o is executable in s, producing the state γ(s, o) =
(s−{all negated atoms in effects(o)})∪{all non-negated
atoms in effects(o)}.

• tasks(D) is the finite set of ground tasks, such that
tasks(D) = prims(D) ∪ comps(D), where prims(D) is
the set of primitive tasks and comps(D) is the (disjoint)
set of nonprimitive (or complex) tasks in the planning
domain.
A task, t, is a symbolic representation of an activity. Syn-
tactically, a task looks like a term (functor and arguments
from the universe of the domain). If t is also the name of
an operator, then τ is primitive; otherwise τ is nonprim-
itive. Primitive tasks can be instantiated into actions, and
nonprimitive tasks need to be decomposed into subtasks.

• ω(D) is the universe of entities in the planning domain.
We have seen in Figures 1 and 2, that ω(D) is used to form
tasks (and hence operator and method names).

• A method, m, is a prescription for how to decompose a
task into subtasks. m is a tuple:

m = 〈task(m), precond(m), subtasks(m)〉,

where task(m) ∈ tasks(D) is the task m can decompose,
precond(m) is a set of preconditions, and subtasks(m) =
(t1, . . . , tj) , ti ∈ tasks(D) is a sequence of subtasks, the
expansion of task(m). See Figure 3 for an example.

(:pddl-method (open-all-stacks)

open-a-stack-and-recurse

(exists (?n ?n1 - count)

(and (stacks-avail ?n)

(next-count ?n ?n1)))

(:ordered (open-new-stack ?n ?n1)

(open-all-stacks)))

Figure 3: Example method from the openstacks domain for the task
(open-all-stacks). The precondition is that there be a stack
available (an ?n1 that is not yet open). The subtasks are to open a
new stack, and then open any remaining stacks, recursively. This is
a lifted method schema, corresponding to multiple ground methods.

A TSTN planning problem is a tuple: P = 〈D, s0, T0〉,
where D is a TSTN planning domain, s0 is the initial state,

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

10



and T0 is an initial sequence of tasks. (1) If T0 is the empty
sequence, ǫ then the only solution is the empty plan π =
〈〉, and π’s derivation (the sequence of actions and method
instances used to produce π) is δ = 〈〉. If the current set of
tasks is t1 . . . tn and (2) t1 is a primitive task, there is an
operator α with name(α) = t1, and α is executable in si
producing a state s1, then if P ′ = 〈D, s1, T

′〉 has a solution
π with derivation δ, then the plan α • π is a solution to
wi (where • is concatenation) whose derivation is α • δ.
(3) If t1 is nonprimitive and there is a method m such that
task(m) = t1, and if s0 satisfies precond(m), and if P ′ =
(s0, subtasks(m)•T ′, O,M) has a solutionπ with derivation
δ such that δ only uses objects from the agent i’s tasks T ,
then α • π is a solution to P and its derivation is m • δ.

Assumption-based Decentralized TSTN

Planning

In Arcade, an assumption is an ordered pair e =
〈cond, cost〉, where cond is a literal and cost is a non-
negative real number that denotes the cost of validating
the cond. More precisely, the cost is a heuristic estimate
of the cost of checking to see whether the assumption is
guaranteed to hold at run time or not. Two assumptions,
e1 = 〈cond1, cost1〉 and e2 = 〈cond2, cost2〉 are inconsis-
tent, if either (1) cond1 = not(cond2), or vice versa; or (2)
cond1 = cond2 and cost1 6= cost2. Assumptions that are not
inconsistent are consistent.

A decentralized TSTN planning agent is a tuple of the form
A = 〈D, ω(A), ops(A),meths(A)〉, where D is a TSTN
planning domain as defined above, Q(A) is a task agenda,
ω(A) ⊆ ω(D) is the subset of entities that the agent can
manipulate, ops(A) ⊆ ops(D) and meths(A) ⊆ meths(D)
are the sets of tasks, operators, and methods for this agent.
The task agenda of a planning agent is a basic queue data
structure, which only allows tasks to be accomplished in
chronological order.

Note that the tasks of an agent A, tasks(A) ⊆ tasks(D)
is defined as

⋃
o∈ops(A) name(o) ∪

⋃
m∈meths(A) task(m).

In other words, A can decompose a task t ∈ tasks(A) as
long as it has either an operator or a method definition for
t. Otherwise, A pauses its planning process, and requests
Arcade to find another agent that can perform t for it. When
Arcade receives such a request, Arcade sends t to the other
planning agents in the framework. If there exist one or more
agents that can achieve t, these agents can start planning for
t via their own methods and operators. For example, in the
openstacks shipping domain, we could imagine an agent that
is responsible for shipping the orders, and an agent that is
responsible for adding the products to stacks.

We define an assumption-based planning state, s, as
a collection of ground literals, facts(s), and assumptions
assumps(s). The collection of literals in an assumption-
based state describes the facts that a planning agent knows
to be either true or false. The assumptions model the beliefs
(as opposed to the knowledge) of the agent. That is, if an
assumption of the form 〈cond, cost〉 is in the agent’s state,
where cond may be a positive or negative ground literal,
this means that the agent makes a belief assertion, however,

the agent does not know whether that assertion is correct
or not. Validating that assertion is costly during planning; if
the agent’s assertion is proved to be wrong, any assumption-
based plan that is conditional on assertion must be repaired.
The cost value in the assumption estimates this cost.

An assumption-based planning state is consistent if:
(1) the known facts, facts(s) are consistent, (2) there
does not exist an assumption a⊥ ∈ assumps(s) such that
a⊥ = 〈cond, cost〉 and the negation of cond is in facts(s)
(3) the set of assumptions is consistent.

An assumption-based plan, κ, is a sequence of pairs of
the form 〈b, α〉 where b is an assumption-based state and
α is an action. Two assumption-based plans, κ1 and κ2,
are consistent if (1) κ1 and κ2 are individually consistent,
(2) κ1 and κ2 are well-formed TSTN plans, and (3) for all
(b1, α1) ∈ π1 and (b2, α2) ∈ π2, b1 and b2 are consistent. We
trivially generalize the definition of pairwise consistency to
group consistency being the case of all pairs being consistent.

A decentralized TSTN planning problem is a tuple of the
form P = (A, B0, T0) where A is the finite set of planning
agents for the decentralized planning problem. B0 is a col-
lection of initial assumption-based states such that for each
A ∈ A, there exists an assumption-based state b0(A) ∈ B0.
Similarly, T0 is a collection of TSTNs such that there is a
TSTN T0(A) ∈ T0 for each agent A ∈ A. A solution to a
decentralized TSTN planning problem P is a collection of
assumption-based plans that are consistent.

Decentralized Planning Framework

We designed our decentralized planning framework with the
following objectives in mind:

1. Asynchronous decentralization and planning: Different
Shop2 instances must be able to receive their TSTN plan-
ning problems at different points in time during decen-
tralized planning and they must be able to work on those
problems concurrently, and each at its own pace.

2. Task-centric assumption-based coordination: Shop2 in-
stances must be able to exchange subtasks during plan-
ning, based on the assumptions each makes and whether
or not a planner is capable of generating plans for specific
tasks.

3. Hierarchical localized plan adaptation and repair: Each
Shop2 instance in the decentralized planning frame-
work must use localized replanning and plan repair algo-
rithms (Goldman and Kuter 2018b) to provide consistency
and correctness over its assumptions, which might be in-
validated by the decisions and plans made by other Shop2

instances.

We will focus on objectives (1) and (2) in the rest of this
paper. We discuss objective (3) in a forthcoming, related
paper (Goldman and Kuter 2018b). Given a decentralized
TSTN planning problem P = (A, B0, T0) as defined above,
a Shop2 planning agent. Ai, starts to generate solution plans
to the tasks in its agendaQ(Ai). Initially, this agenda contains
only the initial task sequenceT0 that is specified for this agent
in the input planning problem description. Given its initial
state b0, Ai extracts a task t0 from its agenda, creates a local

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

11



TSTN planning problemPi = (D, b0, {t0}), and calls Shop2

on this local TSTN planning problem to generate a solution
plan.

During local TSTN planning, if Ai generates a task t such
that t 6∈ tasks(Ai),2 then Ai escalates this task to Arcade,
which in turn publishes t for all of the other agents in A.
If there exists at least one other agent, say Aj , in Arcade

such that t ∈ tasks(Aj), Aj will insert t into its own task
agenda, Q(Aj). If no agent is able to generate a plan for t,
then Arcade notifies Ai and Ai backtracks to consider other
alternative task decompositions. This is done by imposing a
timeout, a settable parameter, on agent-to-agent requests.

In our current system, if Ai escalates a task t to Arcade

for other agents to plan for t, Ai pauses its planning until a
response comes back. This is done to maintain a consistent
planning state throughout all the tasks in Ai’s agenda while
different planners work on different tasks at different times.
Ai incorporates the supplying agent (agentj)’s plan into its
own plans. This involves progressing the current planning
state of the Ai by applying the actions in the plan being
incorporated.

If multiple agents generate plans for t, Ai selects one of
them, and drops the others. Ai (through Arcade), informs
any un-selected agents that they can drop their plans for
t. In our current implementation, the choice over the plans
generated by the other agents is greedy: Ai selects the first
plan it receives from the other agents and rejects any other
responses. We are developing a theory for how to use the
assumption costs to make such selections. Arcade already
uses the cost of validating an assumption as a way to de-
clobber plans of different agents, if necessary (see below),
and a similar mechanism can be used as a heuristic to choose
between the plans of different agents.

In Arcade, a planning agent generates assumptions in
two cases: (1) while it is accomplishing a task and (2) the
agent generates assumptions while incorporating another
agent’s plans into its solution. We discuss these two cases
below.

Generating assumptions during planning Although our
formal discussion describes TSTNs and DTSTSs in a propo-
sitional context, Shop2 is, in fact, a lifted (first order) planner,
and performs many of its tasks using unification.

During TSTN planning for a task twith precondition p(x),
for example, if Shop2 cannot find a substitution for x satis-
fying p(x), it normally backtracks. In Arcade, we modified
this behavior so that Shop2 can generate an assumption, in-
stead of backtracking, and continuing the search with that
assumption asserted into its state representation.

For example, suppose t is a task for taking an image,
for which it must assign a UAV with appropriate instruments
(e.g., cameras). In the current state it fails to do so, because its
planning state is incomplete, and it cannot determine whether
the suitable UAV will be available. Standard Shop2 would
backtrack at this point. In Arcade, Shop2 has the alternative

2This will happen when Ai expands a task t
′ using a method

with t as a subtask.

of generating an assumption, here for example assuming that
uav1 will be available: 〈available(uav1, 1600), 1〉.

One of the key challenges for a planner is to deter-
mine whether an assumption is too specific or too general.
Most modern planning systems eagerly ground variables in
their action schemas. IPC planners typically preprocess and
ground problem specifications and domain models a priori.
Lifted planners such as Shop2 ground variables on the fly but
they do so at the first point where a ground value is matched
during search. If those variable-binding choices do not lead
to solution plans later on in search, the planner backtracks
and tries other possible groundings (Nau et al. 2003). This is
a major scalability issue, even for Shop2; as has been shown
in experiments over a decade now, Shop2’s performance can
degrade exponentially (Nau et al. 2003).

In decentralized planning, this performance degradation
is more dire because of uncertainty and incomplete infor-
mation induced due to the operations of multiple planners.
In addition, backtracking over decisions that involve other
agents is even more time-consuming than it is in centralized
planning.

In particular, an agentAi knows the set of constant symbols
inω(Ai), but it does not know aboutω(Aj) for j 6= i. Thus, it
cannot generate an assumption that involves grounded condi-
tions about other agent’s planning states. To address this chal-
lenge, we have developed a late-binding approach for Shop2

to use logical skolemization as in automated reasoning works
(Genesereth and Nilsson 1987). In particular, Shop2 delays
binding a variable symbol that appears in an assumption con-
dition; instead, Shop2 replaces it with a skolem function that
specifies the properties, as constraints, of the constant that
should be bound to that variable for a sound plan. After Ai’s
Shop2 generates a plan with skolem functions in it as a solu-
tion, Arcade post-processes the plan and generates variable
bindings according to the generated constraints during plan-
ning. Our preliminary experiments in the subsequent section
show the potential benefits of this approach. In principle,
however, post-processing may still fail to generate bindings
successfully for some of the skolem functions. In that case,
Arcade treats the binding failure as a plan-failure discrep-
ancy and triggers its plan adaptation and repair process.

Coordinating over other agents’ assumptions When a
planning agent Ai receives an assumption-based plan κj

from another agent Aj and attempts to incorporate κj into its
plans, it may find that κj is inconsistent with its own plan, κi.
When merging, each agent will verify the consistency of the
plans, using the definitions given above. If an inconsistency
is found between two assumptions, Arcade compares the
cost of validating the inconsistent assumptions. If Ai’s own
cost of adapting to assumption violation is greater than those
of Aj , then Arcade notifies Aj about the contradictions
and the cost models over them, requiring Aj to adapt to its
assumptions. Otherwise, Ai casts the contradiction as a plan
discrepancy (using our plan repair framework (Goldman and
Kuter 2018b)) and adapts its own plans. In Arcade, currently
all ties are broken randomly.

If agentj cannot adapt its plans to alleviate the contrac-

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

12







Unlike other existing work that only focuses on planning
in decentralized systems, our decentralized planning archi-
tecture Arcade incorporates plan generation via HTNs with
plan adaptation and critiquing. Closest to our approach is
probably the Continuous Planning and Execution Framework
(CPEF) (Myers 1999), which responds robustly to arbitrary
changes in the world, by combining plan generation, execu-
tion monitoring, and repair capabilities. CPEF executes and
monitors its plans using PRS (Georgeff and Ingrand 1989),
and uses HTN planning from SIPE-2 (Wilkins 1988).

There are conceptual similarities between Arcade and
previous work on planning in partially-observable do-
mains (Kaelbling, Littman, and Cassandra 1998; Bertoli et
al. 2001; 2006; Kuter et al. 2007; Bonet and Geffner 2011).
Both approaches deal with high volume of uncertainty in
the planning state during planing time. The latter models
the uncertainty explicitly, by leaving it in the solution poli-
cies when it is more expensive to resolve it. Our approach
takes a chance on possibly unexpected outcomes and state
conditions by making assumptions during planning time and
appreciating the fact that those assumptions that the plans are
conditioned upon can be violated during execution. To reduce
uncertainty, Arcade then uses both (1) planning-time plan
critiquing capabilities (Goldman, Kuter, and Schneider 2012;
Mueller et al. 2017) to foresee and avoid such failures and
(2) rapid HTN plan repair algorithms (Goldman and Kuter
2018b).

Conclusions
We have described our ongoing work on decentralized plan-
ning and coordination. The basis of our approach is HTN
planning domain definitions employed by multiple HTN
planners, i.e., in this case Shop2, that may be assigned to
different tasks or may work on the same tasks in parallel. We
are currently finalizing our formalism and conducting more
experiments. We plan to investigate the performance and
stability of Arcade under varying conditions of decentral-
ization and disturbance. We will include sensitivity analyses,
varying the degree of decentralization of our problems, and
assessing the capability (problems successfully solved) and
the stability of our assumption-based planning approach. We
will also vary the rate of perturbations (external changes to
the world state, addition and deletion of new tasks) to assess
the stability/volatility of our assumption-based planning ap-
proach. We will explore ways to conduct comparisons with
existing multi-agent planning systems, MA-STRIPS in par-
ticular.

We would like to extend Arcade to cover task networks
that are not totally-ordered. Although planning algorithms
and formalisms that can model partially-ordered HTNs exist
(e.g., UMCP (Erol, Hendler, and Nau 1994), Shop2 (Nau et
al. 2003), PANDA (Bercher et al. 2017), and FAPE (Dvorak
et al. 2014)), we have limited ourselves to TSTN planning
as the basis of our formalism to simplify the criteria for
correctness for the assumption-based plans.

Another future research direction is to incorporate tempo-
ral reasoning in assumption management and coordination.
There are two aspects we plan to study: (1) the lifetime of
the assumptions themselves: e.g., “if an agent does not hear

back about an assumed condition in t time units since the as-
sumption was made, it will cease to accept the assumed truth
value”; and (2) temporal bounds on the period over which
the assumptions are supposed to hold: e.g., Ai assumes that
Aj is going to perform a particular action sometime between
the time points t1 and t2 (t2 > t1); Ai must regard this
assumption as violated if it is not confirmed by t2.”

We will investigate both directions by borrowing the con-
cept of information volatility from our previous work on
Semantic Web Service Composition planning (Au, Kuter,
and Nau 2005; Kuter et al. 2005). In this approach, tempo-
ral assumptions will model temporal uncertainty on a Shop2

instance’s assumptions made over the tasks and plans over
other planner instances in the framework. Another possible
approach, perhaps complementing the first one, is to proba-
bilistically assess the belief that a Shop2 instance has in the
assumptions regarding another planner will fulfill its com-
mitments to its tasks and plans.

Acknowledgments. The work reported in this paper
project is sponsored by the Air Force Research Labora-
tory (AFRL) under contract FA8750-16-C-0182 for the Dis-
tributed Operations program. Any opinions, findings and
conclusions, or recommendations expressed in this material
are those of the authors and do not reflect the views of the
AFRL. Cleared for public release, no restrictions.

Thanks to the anonymous referees for many helpful
suggestions that has substantially improved our original
manuscript.

References

Au, T.-C.; Kuter, U.; and Nau, D. S. 2005. Web service
composition with volatile information. In ISWC.

Bercher, P.; Biundo, S.; Geier, T.; Hoernle, T.; Nothdurft, F.;
Richter, F.; and Schattenberg, B. 2014. Plan, repair, execute,
explain-how planning helps to assemble your home theater.
In ICAPS.

Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017.
An admissible HTN planning heuristic. In Sierra, C., ed.,
IJCAI.

Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid planning
heuristics based on task decomposition graphs. In Seventh
Annual Symposium on Combinatorial Search.

Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001.
Planning in nondeterministic domains under partial observ-
ability via symbolic model checking. In IJCAI.

Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2006.
Strong Planning under Partial Observability. Artificial Intel-
ligence 170:337–384.

Bonet, B., and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In IJCAI.

Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In ICAPS.

Clement, B. J., and Barrett, A. C. 2003. Continual coordi-
nation through shared activities. In AAMAS. ACM Press.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

15



Dix, J.; Muñoz-Avila, H.; Nau, D. S.; and Zhang, L. 2003.
IMPACTing SHOP: Putting an AI planner into a multi-agent
environment. Annals of Mathematics and Artificial Intelli-
gence 37(4):381–407.

Dvorak, F.; Bit-Monnot, A.; Ingrand, F.; and Ghallab, M.
2014. Plan-Space Hierarchical Planning with the Action
Notation Modeling Language. In IEEE ICTAI.

Elkawkagy, M., and Biundo, S. 2011. Hybrid multi-agent
planning. In German Conference on Multiagent System Tech-
nologies, 16–28. Springer.

Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2010. Exploiting landmarks for hybrid planning. In
25th PuK Workshop Planen, Scheduling und Konfigurieren,
Entwerfen.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In AAAI.

Fdez-Olivares, J.; Castillo, L.; Garcia-Perez, O.; and Palao,
F. 2006. Bringing users and planning technology together,
experiences in SIADEX. In ICAPS.

Gancet, J.; Hattenberger, G.; Alami, R.; and Lacroix, S. 2005.
Task planning and control for a multi-uav system: architec-
ture and algorithms. In IEEE IROS.

Genesereth, M. R., and Nilsson, N. J. 1987. Logical foun-
dations of Artificial Intelligence. Springer.

Georgeff, M., and Ingrand, F. 1989. Decision-making in an
embedded reasoning system. In IJCAI.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.

Goldman, R. P., and Kuter, U. 2018a. Explicit stack search in
SHOP2. Technical Report 2018-1, SIFT, LLC, Minneapolis,
MN, USA.

Goldman, R. P., and Kuter, U. 2018b. Minimal perturbation
plan repair for state-space HTN planning. Technical Report
2018-2, SIFT, LLC, Minneapolis, MN, USA.

Goldman, R. P.; Kuter, U.; and Schneider, A. 2012. Using
classical planners for plan verification and counterexample
generation. In AAAI Workshop on Problem Solving Using
Classical Planning.

Goldman, R. P. 2006. Durative planning in HTNs. In ICAPS.

Grosz, B. J., and Kraus, S. 1996. Collaborative plans for
complex group action. Artificial Intelligence 86(2):269–357.

Helmert, M.; Do, M.; and Refanidis, I. 2010. Webpage for
IPC-08. Retrieved most recently May 2018.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1-2):99–134.

Kuter, U.; Sirin, E.; Parsia, B.; Nau, D.; and Hendler, J.
2005. Information gathering during planning for web service
composition. Journal of Web Semantics.

Kuter, U.; Nau, D. S.; Reisner, E.; and Goldman, R. 2007.
Conditionalization: Adapting forward-chaining planners to
partially observable environments. In ICAPS 07 Workshop
on Planning and Execution for Real-World Systems.

Kuter, U.; Nau, D.; Pistore, M.; and Traverso, P. 2009. Task
Decomposition on Abstract States for Planning under Non-
determinism. Artificial Intelligence 173:669–675.

Mueller, J. B.; Miller, C. A.; Kuter, U.; Rye, J.; and Hamell, J.
2017. A human-system interface with contingency planning
for collaborative operations of unmanned aerial vehicles.
In AIAA Information Systems-AIAA Infotech@ Aerospace
(2017-1296). AIAA Press.

Musliner, D.; Goldman, R. P.; Hamell, J.; and Miller, C.
2011. Priority-based playbook tasking for unmanned system
teams. In AIAA. American Institute of Aeronautics and
Astronautics.

Myers, K. L. 1999. A continuous planning and execution
framework. AI Magazine 63–69.

Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, W.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN planning system.
JAIR 20:379–404.

Nissim, R., and Brafman, R. I. 2013. Cost-optimal planning
by self-interested agents. In AAAI.

Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A
general, fully distributed multi-agent planning algorithm. In
AAMAS.

Schattenberg, B. 2009. Hybrid Planning And Scheduling.
Ph.D. Dissertation, Ulm University, Institute of Artificial
Intelligence. URN: urn:nbn:de:bsz:289-vts-68953.

Seuken, S., and Zilberstein, S. 2008. Formal models and
algorithms for decentralized decision making under uncer-
tainty. In AAMAS.

Tate, A.; Drabble, B.; and Kirby, R. 1994. O-Plan2: An
Architecture for Command, Planning and Control. Morgan-
Kaufmann.

Torreño, A.; Onaindia, E.; Komenda, A.; and Štolba, M.
2017. Cooperative multi-agent planning: A survey. ACM
Computing Surveys (CSUR) 50(6):84.

Wilkins, D. E. 1988. Practical Planning: Extending the
Classical AI Planning Paradigm. San Mateo, CA: Morgan
Kaufmann.

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

16


