Occupation Measures: how OR can help Planning under Uncertainty

Felipe Trevizan

THE AUSTRALIAN NATIONAL UNIVERSITY

<u> PlanSOpt – 25/Jun/2018</u>

Motivation

Planning under Uncertainty is **ubiquitous:**

Planning agents need to handle:

- unsafe or even hostile environments
- uncertain, costly, limited resources
- dynamic events, uncertain action outcomes
- maximizes utility with acceptable risk

OR in AI planning

Unfortunately the collaboration between OR and AI for planning under uncertainty has been very limited:

Challenges from Planning under Uncertainty

S

S₂

- Actions have stochastic outcomes:
- The solution is a **policy** not a plan:
 - Accounts for the uncertainty in the environment
 - Minimizes the expected cost to the goal
 - Maps states to actions or to prob. dist. of actions
- Chance constraints:
 - failure probability: $\Pr(failure) \le \theta$
 - expected resource constraints: $E(\sum_{t=0}^{\infty} fuel(t)) \leq \theta$
 - logic constraints: Pr(F(transmit data)) ≥ 0.5
 - » <u>Translation</u>: with probability at least 0.5, transmit the data before finishing the mission

Outline

• Background

- Stochastic Shortest Path Problems (SSPs)
- Constrained SSPs
- Heuristic Search in the Occupation Measure Space
- Heuristics based on Occupation Measures
- Beyond the Resource Constraints

Stochastic Shortest Path Problems

An **SSP** the tuple [S,s₀,s₆,A,P,C]:

- set of states S
- initial state s₀
- goal state s_G
- set of actions A
- transition probability P(s'|s,a)
- cost function C(s,a):

Action	Pr. North	Pr. Stay	C(s,a) Time Cost
move-north-slow	0.99	0.01	4
move-north-normal	0.95	0.05	2
move-north-fast	0.90	0.10	1

{North, South, East, West} x {slow, normal, fast}

Optimal Solution for SSPs

- A solution to an SSP is a policy π
 -π(s) = action to be applied at state s
- The **optimal solution** is a policy π^* that minimizes the **expected cost** of reaching s_G from s₀

Primal LP for SSPs

- Variables
 - $-v_{s}$: expected cost to reach the goal s_G from s
 - $\begin{array}{ll} \max_{v} & \sum_{s \in \mathbf{S}} v_{s} \\ \text{s.t.} & v_{s} \geq 0 \\ & v_{s_{\mathbf{G}}} = 0 \\ & v_{s_{\mathbf{G}}} = 0 \end{array} \quad \forall s \in \mathbf{S} \\ & v_{s} \leq \mathbf{C}(s, a) + \sum_{s' \in \mathbf{S}} \mathbf{P}(s'|s, a)v_{s'} \\ & \forall s \in \mathbf{S} \setminus \{s_{\mathbf{G}}\}, a \in \mathbf{A}(s) \end{array}$
- This LP is equivalent to Value Iteration (V(s) = v_s)
- An optimal policy:

$$\arg\min_{a\in A(s)} C(s,a) + \sum_{s'\in S} P(s'|s,a)v_{s'}^*$$

Dual LP for SSPs

- Defined in the space of occupation measures
 - $-x_{s,a}$: expected number of times action **a** is applied in state **s**
- Intuition: "probabilistic" flow problem $\min_{x} \sum_{s \in S} x_{s,a} C(s,a) \begin{bmatrix} \text{Expected cost} & 1 \text{ unit} \\ \text{of the solution} & \text{of flow} \end{bmatrix}$ s.t. $x_{s,a} \ge 0$ $\sum_{\substack{a \in A(s) \\ a \in A(s) \\ a \in A(s') \\ a \in A(s') \\ conservation}} \sum_{\substack{s' \in S \\ cons$ $a \in A(s')$
- Expected value of a function F: S x A $\rightarrow \mathbb{R}$ is $\sum_{a\in S} x_{s,a} F(s,a)$

Adding Cost Constraints

- A Constrained SSP (C-SSP) is a SSP with multiple cost functions:
 - $-C_0$: cost function to be **minimized**
 - $C_1 \dots C_k$: cost functions with **expectation upper bounded** by $u_1 \dots u_k$

Action	C₀(s,a) Time Cost	C₁(s,a) Fuel Cost	
move-north-slow	4	2	u.
move-north-normal	2	4	Fuel Cost
move-north-fast	1	10	9

Optimal Solution to C-SSP

- A solution to an C-SSP is a stochastic policy π - $\pi(s,a)$ = probability of applying action **a** in state **s**
- The optimal solution is a stochastic policy π^* that – minimizes the expected cost C_0 to reach s_G from s_0 – subject to the expected cost $C_i \le u_i$ for all i
- Same dual LP as before with extra constraint:

$$\sum_{\substack{s \in S \\ a \in A(s)}} x_{s,a} C_i(s,a) \le u_i$$

• Optimal policy: $\pi^*(s, a) = \frac{x_{s,a}^*}{\sum_{a \in A(s)} x_{s,a}^*}$

Outline

- Background
- Heuristic Search in the Occupation Measure Space
 - i-dual
 - i-dual and A*
 - i-dual and Column Generation
- Heuristics based on Occupation Measures
- Beyond the Resource Constraints

	Solving SSPs and C-SSPs						
	Blind Search	Heuristic Search					
	 Explore all states 	• Explore promising states					
	G C R I I I I I I I I I I I I I I I I I I	G R I I I I I I I I I I I I I I I I I I					
Standard SSPs	 Value iteration & Policy iteration Linear Programming 	 Dynamic Programming (RTDP, LRTDP, etc) LAO* and extensions 					
Constrained SSPs	• Linear Programming in the dual space ທີ່	 Heuristic search in the dual space: i-dual (2016) i²-dual (2017) 					

Challenge of the Dual Space

- C-SSPs are trivially encoded in the dual space (x_{s,a}), but:
 - No domain-independent heuristic (lower bound) is known for x_{s,a} to guide the heuristic search
 - Moreover, deriving such heuristic is a hard problem because $x_{s,a} > 0$ if and only if $\pi^*(s,a) > 0$
- i-dual addresses this challenge by using heuristics of the primal space, i.e., cost heuristics:
 - $H_i(s)$: lower bound on expected cost C_i to reach s_G from s
 - each H_i is obtained using standard AI planning techniques
- H₀ guides the search towards promising regions
- H_i (for i > 0) does early pruning of infeasible solutions

i-dual and A*

In our running example:

- Can we use A*?
 - No because of stochastic actions
- Can we use AO*?
 - No because of loopy actions
- Can we use LAO*?

Can we use i-dual? Yes!

i-dual can be seen as a **generalization of A*** where the best f(n) is computed using an LP

$$\min_{x} \sum_{\substack{s \in \hat{S} \\ a \in A(s)}} \frac{g(n)}{x_{s,a}C(s,a)} + \sum_{s \in F} \inf \log_{s} H_{0}(s)$$

f(n) = g(n) + h(n)

i-dual guarantees

Similarly to A*, we showed that i-dual is:

i-dual and Column Generation

- i-dual is an instance of column generation:
 - a column for i-dual is an occupation measure $x_{s,a}$
 - at each iteration of i-dual, a set of columns is added to the current LP.
 - the columns are chosen based on the heuristic H_0
- This expansion procedure is inherited from A*

Column Generation & Reduced Cost

• Idea: to solve an LP representing only a subset of its variables (columns)

Set of available columns

- Initially, we have one variable
- Solve the current LP
- Add a promising column $z \in Z$ to the LP and repeat
- Stop when there is no more promising columns
- A column $z \in Z$ is promising if: We are minimizing cost Reduced-Cost $(z) = w(z) - \mu^t z < 0$ Coefficient of z in the obj. func. Opt. dual solution for the current LP

I-dual with Partial Node Expansion

As in A*, i-dual expands a node by adding all its successors:

Using reduced cost, we can add only the promising nodes

 Advantage of this approach: potentially much smaller LPs on each iteration

Reduced Cost for i-dual

 A column (s,a) for i-dual represents an occupation measure x_{s,a} and its reduced cost is:

 $RC(s,a) = C_0(s,a) - \mu^t z_{s,a} + \sum_{s' \text{ is unseen}} P(s' | s,a) H_0(s') - x_{s,a} H_0(s)$

- z_{s,a} encompass
 - cost constraints: function of C_i(s,a)
 - flow preservation constraints: function of P(s'|s,a)
- States s' s.t. P(s'|s,a) > 0 might not be in the current LP!
 - Thus, there is no value of μ associated to the flow preservation constraint for s'
 - In this case, we approximate the reduced cost-

CG-dual

- At each iteration:
 - solve the current LP
 - if there is **no negative reduced** cost column available:
 - done if all the injected flow reaches the goal
 - otherwise, partially expand the fringe according to H₀
 - otherwise, add k columns with negative reduced cost
- We call this new algorithm CG-dual and it has the same guarantees as i-dual

Experiments: Search and Rescue

- Extension of the navigation problem:
 - one known survivor
 - presence of survivors at several locations is unknown
 - goal: rescue one survivor
 - main cost: time to rescue
 - cost constraint: fuel

						JECONUS			
				Admissible (h ^{lm-cuts}		Inadmissible Heuristics (h ^{add} ,h ^{add})			
		Dist to S	dual LP	i-dual	CG k=100	i-dual	CG k=100		
		1	598.4	0.05	0.05	0.04	0.04		
	4x4 grid	2	540.6	0.16	0.22	0.08	0.14		
		3	546.5	4.26	5.95	2.48	3.66		
		4	622.6	95.02	58.46	67.11	40.46		
		1	v	0.07	0.07	0.05	0.05		
	5x5	2	timed out	0.48	0.71	0.17	0.31		
	grid	3	time 28001	15.61	16.25	7.75	8.64		
		4		794.07	451.38	604.13	283.18		

CPU-time in seconds

3

Outline

- Background
- Heuristic Search in the Occupation Measure Space
- Heuristics based on Occupation Measures
 - Projection-based heuristics for SSPs
 - Operator counting for SSPs
 - Constrained SSPs heuristics
 - Combining Search and Heuristic Computation
- Beyond the Resource Constraints

Motivation

- For i-dual to perform well, we need good heuristics (lower bounds) for Constrained SSPs
- The approach so far:

Heuristics for SSPs

- Until now, all heuristics for SSPs are based on determinization:
 - 1. Relax the problem into a deterministic problem:

- 2. Use any heuristic from deterministic planning in the relaxed problem
- All-outcomes determinization:
 - preserves admissibility
 - but ignores the bad side-effects of actions

Background: Factored SSPs

A Probabilistic SAS+ problem is the tuple [V,s₀,s_{*},A,C]:

- set of variables $V = \{v_1, \dots, v_n\}$ $V = \{At-X, At-Y\}$ - domain of each variable is D_v . D_{At-X} = {1, 2, 3} $\mathsf{D}_{\mathsf{At-Y}} = \{j,k\}$ • initial state s_0 — At-X = 1, At-Y = j 2 3 goal formula s_{*} —— → At-X = 3, At-Y = j set of actions A -R k G East(2,j): Precondition: At-X = 2 and At-Y = j **Slippery Location** Effect: 0.1: At-X \leftarrow 3 **Probability distribution** 0.9: nothing of effects
- C(a) cost of action a

Projections

• A projection onto a variable:

• Formally: represent each projection as an SSP

Optimal solution:

- East(1,j), East(2,k), a_g
- Expected cost: 2

• a_g

• Expected cost: 0

Tying Projections Together

- Two ways of using projections:
 - Using cross-product: original problem
 - Using them **independently**: no improvements
- Idea: weakly tie projections together
 - The expected number of times an action is executed
 should be the same in all projections:

H-POM

The Projection Occupation Measure Heuristic:

- Variables:
 - $-x_{d,a}^{v}$: occupation measure for the projection onto variable v
- h^{pom}(s) =
- $$\begin{split} \min_{x} & \sum_{a \in A} x_{d,a}^{\nu} C(a) & \forall v \in V, d \in D_{\nu}, a \in A \\ \text{s.t.} & \begin{bmatrix} x_{d,a}^{\nu} \ge 0 \\ \sum_{a \in A(s)} x_{d,a}^{\nu} \sum_{d' \in D_{\nu}} x_{d',a}^{\nu} P(d|d', a) = \begin{cases} 1 & \text{value of } \nu \text{ in } s \text{ is } d \\ -1 & d = \text{ art. goal} \\ 0 & \text{otherwise} \end{cases} \end{split} \\ \text{Dual LP for SSPs applied to projection onto } \nu \\ \sum_{d_{i} \in D_{\nu_{i}}} x_{d,a}^{\nu_{i}} = \sum_{d' \in D_{\nu_{j}}} x_{d',a}^{\nu_{j}} & \forall \nu_{i}, \nu_{j}, a \in A \end{bmatrix} Tying \text{ constraint}$$

Determinization is not dead

• We can add similar constraints for determizations that tie together the deterministic effects:

- These constraints can be added to LP-based heuristics for deterministic planning
 - For instance, operator counting [Pommerening et al., 2014]

H-ROC

The Regrouped Operator Counting Heuristic:

- Variables:
 - $Y_{a,e}$: number of times effect *e* of action *a* is applied in the all-outcomes determinization
- h^{roc}(s) =

$$\min_{\mathbf{Y}} \quad \sum_{a \in \mathbf{A}} \mathbf{Y}_{a,e} \mathbf{C}(a)$$

s.t.
$$Y_{a,e} \ge 0 \quad \forall a \in A, e \in eff(a)$$

$$\sum_{\substack{(a,e) \text{ produces } d}} Y_{a,e} - \sum_{\substack{(a,e) \text{ consumes } d}} Y_{a,e} = \begin{cases} -1 & \text{if } d \in s, d' \in s_*, d \neq d' \\ 0 & \text{if } d \in s, d \in s_* \\ 1 & \text{if } d \neq s, d \in s_* \end{cases}$$

$$P(a, e)Y_{a,e'} = P(a, e')Y_{a,e} \qquad \forall a \in A, (e, e') \subseteq eff(a) \end{cases}$$
Regroup constraints

Experiments

<u>Coverage</u>: # of times (out of 30) the same problem is optimally solved with a different random seed. <u>Max. cputime: 30mins</u>. **Best** coverage in smallest time in **bold**

		LRTDP			iLAO						
		h^{\max}	$h^{ m lmc}$	h^{net}	$h^{ m roc}$	h^{pom}	h^{\max}	$h^{ m lmc}$	h^{net}	$h^{ m roc}$	h^{pom}
Blocks World	8	3	0	26	30	30	2	30	30	30	30
Put-on-block and Pick-	. 8	28	0	30	30	30	30	30	30	30	30
can fail. Towers can be	4 AL	2	0	12	30	29	2	30	30	30	30
moved but fails with	10	0	0	0	30	18	0	0	1	30	30
probability 0.9	10	0	0	0	30	0	0	0	0	30	30
· · ·	12	0	0	0	0	0	0	0	0	30	5
	F,4,2	30	30	30	30	30	4	30	30	30	30
Parc Printer	F,4,3	30	30	30	30	30	0	30	30	30	30
Print <i>n</i> sheets using a	F,5,2	0	30	0	30	0	2	16	0	30	0
modular printer. Some	F,5,3	0	30	0	30	0	0	0	0	30	0
modules get jammed	T,4,2	0	0	0	1	0	1	30	30	30	0
with probability 0.1	T,4,3	0	0	0	0	0	0	30	30	30	0
	T,5,1	0	0	0	0	0	0	0	0	30	0

Best performing solver for each problem uses h^{roc}

h^{roc} vs h^{pom}: performance

h^{roc} is faster than h^{pom} because:

- h^{roc} solves a smaller LP:
 - $-h^{roc}$: $Y_{a,e}$ defined for all action a and effect e of a
 - h^{pom} : $x_{d,a}^{\nu}$ defined for all values *d* of all state variables *v* and all actions *a*
 - h^{pom} also has more constraints than h^{roc}
- h^{roc} returns the same lower bound as h^{pom}

Adding Cost Constraints

- Recap of **Constrained SSPs** (C-SSPs):
 - SSP with multiple cost functions:
 - $-C_0$: cost function to be **minimized**
 - $C_1 \dots C_n$: cost functions with expectation upper bounded by $u_1 \dots u_n$
- Heuristics for C-SSPs so far:

Moving with speed control						
Action	C₁(a) Time	C₂(a) Fuel				
East-Slow	10	1				
East-Normal	3	3				
East-Fast	1	10				
	3	J.				

Constraints:

- Expected Time ≤ 4
- Expected Fuel ≤ 4

- Treat each cost independently: $\begin{cases} H_1(s) = 1 \\ H_2(s) = 1 \end{cases}$ (East-Fast) (East-Slow)

Constrained versions of h^{pom} and h^{roc}

- Since both h^{pom} and h^{roc}:
 - are defined using LPs, and
 - count the number of times actions are executed
- Then we can directly add the cost constraints: $-h^{pom}: \sum_{d \in D_v, a \in A} x_{d,a}^v C_i(a) \le u_i$

-h^{roc}:
$$\sum_{(a,e)\in\mathsf{A}} Y_{a,e}C_i(a) \leq u_i$$

- The result are the heuristics h^{c-pom} and h^{c-roc}:
 - admissible for C-SSPs
 - take probabilities in consideration
 - take cost constraints in consideration
Combining Search and Heuristic Computation

• h^{c-pom} can be **integrated** with i-dual:

- This allows to compute at the same time
 - the expected cost of a partial solution π – h^{c-pom} for all states in fringe of π
- We call this algorithm i²-dual

neither drive each

other, they work in

unison

Experiments: Constrained SSPs

<u>Coverage</u>: # of times (out of 30) the same problem is optimally solved with a different random seed. <u>Max. cputime: 30mins</u>. **Best** coverage in smallest time in **bold**

		i-dual						i ² -dual
		h^{\max}	$h^{\text{lmc-m}}$	$h^{\rm roc}$	$h^{ ext{c-roc}}$	h^{pom}	$h^{ ext{c-pom}}$	i -duai
Parc Printer Same as in SSP case. Constraint on the expected # of paper jams and expected usage of reliable module	0, 1	30	30	30	30	25	28	30
	$0,\infty$	30	30	30	30	30	30	30
	0.1, 1	0	0	0	30	0	27	30
	$0.1,\infty$	0	0	0	30	0	30	30
	0.2, 1	0	0	0	0	0	0	30
	$0.2,\infty$	0	0	0	0	0	0	30
Search and Rescue Grid navigation to rescue one survivor. There are potentially multiple survivors. Constraint on expected fuel consumption.	4, 0.50, 3	30	30	30	30	30	30	30
	4, 0.50, 4	29	30	30	30	29	30	30
	4, 0.75, 3	26	30	29	29	28	28	30
	4, 0.75, 4	0	4	1	1	1	1	7
	5, 0.50, 3	30	30	30	30	30	30	30
	5, 0.50, 4	5	9	9	9	9	9	14
	5, 0.75, 3	19	28	23	23	20	21	28
	5, 0.75, 4	0	2	2	2	1	1	6

i²-dual out performs all combos of planner and heuristic

Outline

- Background
- Heuristic Search in the Occupation Measure Space
- Heuristics based on Occupation Measures
- Beyond the Resource Constraints

Beyond Resource Constraints

- Goal: Analyse rock then go to the safe location Cost Constraints: On energy (cost constraint)
- Linear Temporal Logic (LTL) Constraints:
- $G(rock has evidence of life \rightarrow F transmit data)$
 - » <u>Translation</u>: every time a rock has evidence of *life, transmit the data before finishing the mission*
- Probabilistic LTL Constraints:
- Pr[$F(transmit data)] \ge 0.5$
 - » <u>Translation</u>: with probability at least 0.5 transmit the data before finishing the mission
- Pr[G(sand storm → $F^{\leq 3}$ (at safe location Until ¬(sand storm))] ≥ 0.9
 - » <u>Translation</u>: with probability at least 0.9, every time a sandstorm happens, in at most 3 time steps, the robot must be in the safe location and it remains there until the sand storm is over

C-SSPs with PLTL Constraints

 Solution to C-SSPs + PLTL constraints are finite-memory stochastic policies

The policy needs to be aware of the *status* of the formulas

• Example:

G(sand storm \rightarrow **F**^{≤3}(at safe location **Until** ¬(sand storm))

» <u>Translation</u>: every time a sandstorm happens, in at most 3 time steps, the robot must be in the safe location and it remains there until the sand storm is over

PLTL-dual

- Our approach:
 - Embed the formula tracking into the state space
 - Extend i²-dual with extra projections for the formulas

Experiment: Wall-e and Eve

- Goal: Wall-e at G
- Constraints:

- 1. Wall-e and Eve must eventually be together ($P \ge 0.5$)
- 2. Eve must be in a room until they are together ($P \ge 0.8$)
- 3. Once together, they eventually stay together (P = 1)
- 4. Eve must visit the rooms 1, 2, and 3 (P = 1)
- 5. Wall-e never visits a room twice ($P \ge 0.8$)

	n =	4	5	6	7
PLTL-dual	no PLTL heuristic	15.9	83.4	472.8	
	NBA proj. heur.	9.2	52.7	280.6	
	NBA proj. heur. (100)	9.1	52.8	142.1	572.7
	PRISM	8.5	68.1		

n

(1

Summary

- Occupation measure space:
 - represents problems as a probabilistic flow networks where each x_{s,a} is the expected number of times action a is executed in state s
 - is equivalent to the stochastic policy space
- Occupation measures allow us to
 - derive the first domain-independent heuristics that take probabilities into account and also constraints
 - efficiently solve problems with
 - Cost constraints
 - PLTL constraints

Some Open Questions

- Bounds for occupation measures:
 - When can we easily find a lower bound for $x_{s,a}$?
 - Can we efficiently compute an upper bound for $x_{s,a}$?
- Specialization of occupation measures for SSPs:
 - Is it possible to efficiently compute deterministic policies for SSPs in the dual space?
- How much more expressive can we make the constraints in the dual space?

Work done in collaboration with

From Australian National University (ANU) & Data61 (formerly NICTA):

Sylvie Thiébaux, Patrik Haslum, Peter Baumgartner

From MIT:

Brian Williams, Pedro Santana

Thank you!

Questions?