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Motivation 

Planning under Uncertainty is ubiquitous: 
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Planning agents need to handle: 
• unsafe or even hostile environments 
• uncertain, costly, limited resources 
• dynamic events, uncertain action outcomes 
• maximizes utility with acceptable risk 



OR in AI planning 
Unfortunately the collaboration between OR and AI for 
planning under uncertainty has been very limited: 
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Fully Observable 
discrete models 

Partially Observable models 
and continuous models 



Challenges from Planning under 
Uncertainty 

• Actions have stochastic outcomes: 
   

• The solution is a policy not a plan: 
– Accounts for the uncertainty in the environment 
– Minimizes the expected cost to the goal 
– Maps states to actions or to prob. dist. of actions 

• Chance constraints: 
– failure probability: Pr(failure) ≤ 𝜽  
– expected resource constraints: E( 𝒇𝒖𝒆𝒍(𝒕))  ≤ 𝜽∞

𝒕=𝟎  
– logic constraints: Pr( F(transmit data) ) ≥ 0.5 

» Translation: with probability at least 0.5, transmit the data 
before finishing the mission 
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Outline 

• Background 
– Stochastic Shortest Path Problems (SSPs) 
– Constrained SSPs 

• Heuristic Search in the Occupation Measure Space 
• Heuristics based on Occupation Measures 
• Beyond the Resource Constraints 
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Stochastic Shortest Path Problems 
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An SSP the tuple [S,s0,sG,A,P,C]: 
• set of states S 
• initial state s0 
• goal state sG 

• set of actions A 
• transition probability P(s’|s,a) 
• cost function C(s,a): 

G 

R 

Action Pr. North Pr. Stay 

move-north-slow 0.99 0.01 

move-north-normal 0.95 0.05 

move-north-fast 0.90 0.10 

Robot’s location 

C(s,a) 
Time Cost 
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1 

{North, South, East, West} 
X 

{slow, normal, fast} 



Optimal Solution for SSPs 

• A solution to an SSP is a policy π 
–π(s) = action to be applied at state s 

  
• The optimal solution is a policy π* that minimizes 

the expected cost of reaching sG from s0 
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Primal LP for SSPs 
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• Variables 
– vs: expected cost to reach the goal sG from s 

 
 
 
 
 

  

 

• This LP is equivalent to Value Iteration (V(s) = vs) 
• An optimal policy:  

Expected cost of reaching sG 
after applying action a in s 



• Defined in the space of  occupation measures 
– xs,a : expected number of times action a is applied in state s 
  

• Intuition: “probabilistic” flow problem  
 
 
 
 
 
 
 

  
• Expected value of a function F: S x A → ℝ is  

Dual LP for SSPs 
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Adding Cost Constraints 
 
 

• A Constrained SSP (C-SSP) is a SSP with multiple 
cost functions: 
– C0: cost function to be minimized 
– C1 … Ck: cost functions with expectation upper 

               bounded by u1…uk 
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Action 

move-north-slow 

move-north-normal 

move-north-fast 

C0(s,a) 
Time Cost 
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1 

u1 
Fuel Cost 
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C1(s,a) 
Fuel Cost 

2 

4 
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Optimal Solution to C-SSP 

• A solution to an C-SSP is a stochastic policy π 
– π(s,a) = probability of applying action a in state s 

 

• The optimal solution is a stochastic policy π* that 
– minimizes the expected cost C0 to reach sG from s0 

– subject to the expected cost Ci ≤ ui for all i 
  

• Same dual LP as before with extra constraint: 
 

  
• Optimal policy:  
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Outline 

 
• Background 
• Heuristic Search in the Occupation Measure Space 
– i-dual 
– i-dual and A* 
– i-dual and Column Generation 

• Heuristics based on Occupation Measures 
• Beyond the Resource Constraints 
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Solving SSPs and C-SSPs 
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Constrained 
SSPs 

Standard 
SSPs 

Blind Search 
  

• Explore all states 

Heuristic Search 
  

• Explore promising states 

G 

R 

G 

R 

• Value iteration 
• Policy iteration 
• Linear Programming 

• Dynamic Programming 
(RTDP, LRTDP, etc) 

• LAO* and extensions 

• Linear Programming in 
the dual space 

• Heuristic search in the 
dual space: 
• i-dual (2016) 
• i2-dual (2017) 



Challenge of the Dual Space 

• C-SSPs are trivially encoded in the dual space (xs,a), but: 
– No domain-independent heuristic (lower bound) is known for 

xs,a to guide the heuristic search 
– Moreover, deriving such heuristic is a hard problem because 

xs,a > 0 if and only if π*(s,a) > 0 
  

• i-dual addresses this challenge by using heuristics of the 
primal space, i.e., cost heuristics: 
– Hi(s): lower bound on expected cost Ci to reach sG from s 
– each Hi is obtained using standard AI planning techniques 

• H0 guides the search towards promising regions 
• Hi (for i > 0) does early pruning of infeasible solutions 
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i-dual: LP solved 
• At each iteration of i-dual: 
– Ŝ: subset of S explored so far 
– F: fringe of the search 
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lower bound on 
expected cost 

from the fringe 

Sink: goal U Fringes 

Solve 
sub-problem 

Expand 
Fringe 



i-dual and A* 
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i-dual can be seen as a generalization of A* where 
the best f(n) is computed using an LP 

At (1,J) 

At (1,K) 

Move-North-Fast 

In our running example: 
• Can we use A*? 
– No because of stochastic actions 

• Can we use AO*? 
– No because of loopy actions 

• Can we use LAO*? 
– No because of constraints and stochastic policies 

• Can we use i-dual? Yes! 

0.9 

0.1 

f(n) = g(n) + h(n) 

E[fuel|π,s0] ≤ 9 

g(n) h(n) 



Sound and complete 
but sub-optimal 

i-dual guarantees 

Heuristic for main cost (H0) 

Heuristics 
for 

secondary 
costs (Hi) 

Admissible Non-admissible 
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Optimal 

Sound and incomplete 

Always returns 
a feasible solution 

Might fail to find a feasible 
solution even if one exists 

Lower bound 
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Similarly to A*, we showed that i-dual is: 



i-dual and Column Generation 

• i-dual is an instance of column generation: 

– a column for i-dual is an occupation measure xs,a  

– at each iteration of i-dual, a set of columns is added to 
the current LP. 

– the columns are chosen based on the heuristic H0 

• This expansion procedure is inherited from A* 
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Column Generation & Reduced Cost 

• Idea: to solve an LP representing only a subset of 
its variables (columns) 

– Initially, we have one variable 

– Solve the current LP  

– Add a promising column z ∈ Z to the LP and repeat 

– Stop when there is no more promising columns 

• A column z ∈ Z is promising if: 

Reduced-Cost(z) = w(z) - µtz < 0 
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Coefficient of z in the obj. func. Opt. dual solution for the current LP 

Set of available columns 

We are minimizing cost 



I-dual with Partial Node Expansion 
• As in A*, i-dual expands a node by adding all its 

successors: 

 

  
• Using reduced cost, we can add only the 

promising nodes 
 
 

 

• Advantage of this approach: potentially much 
smaller LPs on each iteration  
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Reduced Cost for i-dual 
• A column (s,a) for i-dual represents an occupation 

measure xs,a and its reduced cost is: 

   RC(s,a) = C0(s,a) - µtzs,a 

• zs,a encompass 

– cost constraints: function of Ci(s,a) 

– flow preservation constraints: function of P(s’|s,a) 

• States s’ s.t. P(s’|s,a) > 0 might not be in the 
current LP! 

– Thus, there is no value of µ associated to the flow 
preservation constraint for s’  

– In this case, we approximate the reduced cost 
20 

+ Σs’ is unseen P(s’|s,a)H0(s’) - xs,aH0(s) 



CG-dual 

• At each iteration: 

– solve the current LP  

– if there is no negative reduced cost column available: 

• done if all the injected flow reaches the goal 

• otherwise, partially expand the fringe according to H0 

– otherwise, add k columns with negative reduced cost 

• We call this new algorithm CG-dual and it has the 
same guarantees as i-dual 
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5x5  
grid 

1 0.07 0.07 0.05 0.05 

2 0.48 0.71 0.17 0.31 

3 15.61 16.25 7.75 8.64 

4 794.07 451.38 604.13 283.18 

Experiments: Search and Rescue 
• Extension of the navigation problem: 
– one known survivor 
– presence of survivors at several locations is unknown 
– goal: rescue one survivor 
– main cost: time to rescue 
– cost constraint: fuel  

S 0.2 

0.2 

0.1 R 0.2 

0.2 0.1 0.1 

Admissible Heuristics  
(hlm-cuts,hmax) 

Inadmissible Heuristics 
(hadd,hadd) 

Dist to S dual LP i-dual CG k=100 i-dual CG k=100 

4x4 
grid 

1 598.4     0.05     0.05     0.04 0.04 

2 540.6     0.16     0.22     0.08 0.14 

3 546.5     4.26     5.95     2.48 3.66 

4 622.6   95.02   58.46 67.11 40.46 

CPU-time in seconds 
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Outline 

• Background 
• Heuristic Search in the Occupation Measure Space 
• Heuristics based on Occupation Measures 
– Projection-based heuristics for SSPs 
– Operator counting for SSPs 
– Constrained SSPs heuristics 
– Combining Search and Heuristic Computation 

• Beyond the Resource Constraints 
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Motivation 
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• For i-dual to perform well, we need good 
heuristics (lower bounds) for Constrained SSPs 

• The approach so far: 
 Constrained SSP 

SSP for C0 SSP for Ck 

Deterministic 
Problem for C0 

Deterministic 
Problem for Ck 

… 

… 

Ignore all but one 
cost function 

Ignore Probabilities 

Compute Heuristic Compute Heuristic … 
Relax Problem 

As expensive 
to solve as C-SSPs 
in the worst case 

Still too 
expensive 
to solve 



Heuristics for SSPs 
• Until now, all heuristics for SSPs are based on 

determinization: 
1. Relax the problem into a deterministic problem: 

 
 
  

  

2. Use any heuristic from deterministic planning in the 
relaxed problem 

• All-outcomes determinization: 
– preserves admissibility 
– but ignores the bad side-effects of actions 

25 

Becomes 
  

two actions 

East(2,j) East-Bad(2,j) East-Good(2,j) 

0.1 0.9 

and R G R G R G 



A Probabilistic SAS+ problem is the tuple [V,s0,s*,A,C]: 
• set of variables V = {v1,…,vn} 
– domain of each variable is Dv 

• initial state s0 
• goal formula s* 

• set of actions A 
 
 

  
• C(a) cost of action a 

East(2,j): 
Precondition: At-X = 2 and At-Y = j 

Effect: 0.1: At-X ← 3 
             0.9: nothing 

Background: Factored SSPs 
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R G 

Slippery Location 

V = {At-X, At-Y} 

DAt-X = {1, 2, 3} 
DAt-Y = {j,k} 

Probability distribution 
of effects 

At-X = 1, At-Y = j 

At-X = 3, At-Y = j 

  1        2         3 

j 
  

k 



• A projection onto a variable: 
 
 
 

• Formally: represent each projection as an SSP 
   
 
  

R G 

Projections 
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R G R  G 

Projections 
 
 

Full Problem At-X At-Y 

and 

3 G 1 
2 

E(1,j) 

E(1,k) 

E(2,j) 

E(2,k) 

ag G k j 
S(1,k),  

S(2,k), S(3,k) 

N(2,j) 

N(1,j) ag 

  1        2         3 
k 
  

j 

Optimal solution: 
• East(1,j), East(2,k), ag 

• Expected cost: 2 

Optimal solution: 
• ag 

• Expected cost: 0 



Optimal Solution 

N(1,j) E(1,k) E(2,k) S(3,k) ag 
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Tying Projections Together 
• Two ways of using projections: 
– Using cross-product: original problem 
– Using them independently: no improvements 

• Idea: weakly tie projections together 
– The expected number of times an action is executed   

 should be the same in all projections: 
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3 G 1 
2 

E(1,j) 

E(1,k) 

E(2,j) 

E(2,k) 
G k j 

S(3,k) 

N(2,j) 
N(1,j) 

Independently 

At-X E(1,j) E(2,k) ag 

At-Y ag 

E[Cost] Infeasible! (2) 

N(1,j) 
ag 

ag 



The Projection Occupation Measure Heuristic: 
 

• Variables: 
– 𝑥𝑑,𝑎

𝑣 : occupation measure for the projection onto variable 𝑣 
  

• hpom(s) = 

H-POM 
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Dual LP for 
SSPs applied 
to projection 

onto 𝑣 

Tying constraint 



Determinization is not dead 

• We can add similar constraints for determizations that 
tie together the deterministic effects: 
 
 
 
 
 
 

• These constraints can be added to LP-based heuristics 
for deterministic planning 
– For instance, operator counting [Pommerening et al., 2014] 
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East(2,j) East-Bad(2,j) East-Good(2,j) 

0.1 0.9 

# East-Good(2,j)       0.9 
 # East-Bad(2,j)         0.1 = 

regroup 
constraint 

R G R G R G 



H-ROC 
The Regrouped Operator Counting Heuristic: 
  

• Variables: 
– 𝑌𝑎,𝑒: number of times effect e of action a is applied in 

       the all-outcomes determinization 

• hroc(s) = 
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Net-change 
constraints 

Regroup 
constraints 



Experiments 
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Coverage: # of times (out of 30) the same problem is optimally solved with a 
different random seed. Max. cputime: 30mins. Best coverage in smallest time in bold 

Blocks World 
Put-on-block and Pick-up 
can fail. Towers can be 
moved but fails with 
probability  0.9 
 

Parc Printer 
Print n sheets using a 
modular printer. Some 
modules get jammed 
with probability  0.1 

Best performing solver for each problem uses hroc 



hroc vs hpom: performance 

hroc is faster than hpom because: 
• hroc  solves a smaller LP: 
– hroc : 𝑌𝑎,𝑒  defined for all action a and effect e of a 

– hpom : 𝑥𝑑,𝑎
𝑣  defined for all values d of all state variables 

v and all actions a 
– hpom also has more constraints than hroc  

• hroc returns the same lower bound as hpom 
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Adding Cost Constraints 
• Recap of  Constrained SSPs (C-SSPs): 
– SSP with multiple cost functions: 
– C0: cost function to be minimized 
– C1 … Cn: cost functions with expectation upper 

               bounded by u1…un 

     

• Heuristics for C-SSPs so far: 
 

  
 
 

  

– Treat each cost independently: 
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Action 
C1(a) 
Time 

C2(a) 
Fuel 

East-Slow 10 1 

East-Normal 3 3 

East-Fast 1 10 

Moving with speed control Constraints: 

• Expected Time ≤ 4  
• Expected Fuel  ≤ 4 

R G 

Problem: 

H1(s) = 1 
H2(s) = 1 

Conflicting 
 recommendation 

(East-Fast) 
(East-Slow) 



Constrained versions of hpom and hroc 

• Since both hpom and hroc: 
– are defined using LPs, and 
– count the number of times actions are executed  

• Then we can directly add the cost constraints: 
– hpom : 
  

– hroc : 
  

• The result are the heuristics hc-pom and hc-roc: 
– admissible for C-SSPs 
– take probabilities in consideration 
– take cost constraints in consideration 
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Combining Search and Heuristic 
Computation 

• hc-pom can be integrated with i-dual: 
 
 
 
 
 

  
• This allows to compute at the same time 
– the expected cost of a partial solution π 
– hc-pom for all states in fringe of π 
  

• We call this algorithm i2-dual 
36 

neither drive each 
other, they work in 
unison 

s0 

Partial problem  
encoded as an LP 

sink 

H(s) 

H(s’) s0 

Partial problem and heuristic 
 encoded as a single LP 

Flow  
Router 

sink 

v1 projection 

vk projection 

i-th iteration of integrated i-dual i-th iteration of i-dual 

… 



Experiments: Constrained SSPs 
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Parc Printer 
Same as in SSP case. 
Constraint on the expected # 
of paper jams and expected 
usage of reliable module 

i2-dual out performs all combos of planner and heuristic 

Search and Rescue 
Grid navigation to rescue one 
survivor. There are potentially 
multiple survivors. 
Constraint on expected fuel 
consumption. 
 

Coverage: # of times (out of 30) the same problem is optimally solved with a 
different random seed. Max. cputime: 30mins. Best coverage in smallest time in bold 



Outline 

• Background 
• Heuristic Search in the Occupation Measure Space 
• Heuristics based on Occupation Measures 
• Beyond the Resource Constraints 
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Beyond Resource Constraints 

Goal: Analyse rock then go to the safe location 

Cost Constraints: On energy (cost constraint) 

Linear Temporal Logic (LTL) Constraints: 
– G(rock has evidence of life → F transmit data) 

» Translation: every time a rock has evidence of 
life, transmit the data before finishing the mission 

Probabilistic LTL Constraints: 
– Pr[ F(transmit data) ] ≥ 0.5 

» Translation: with probability at least 0.5 transmit the data before 
finishing the mission 

– Pr[ G(sand storm → F≤3(at safe location Until ¬(sand storm)) ] ≥ 0.9 
» Translation: with probability at least 0.9, every time a sandstorm 

happens, in at most 3 time steps, the robot must be in the safe 
location and it remains there until the sand storm is over 
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Safe 
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C-SSPs with PLTL Constraints 

• Solution to C-SSPs + PLTL constraints are 
finite-memory stochastic policies 

  

• Example: 
  G(sand storm → F≤3(at safe location Until ¬(sand storm)) 

» Translation: every time a sandstorm happens, in at most 3 time steps, the robot 
must be in the safe location and it remains there until the sand storm is over 
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The policy needs to be aware of the status of the formulas 

Non-deterministic Buchi Automaton (NBA) 



PLTL-dual 
• Our approach: 

– Embed the formula tracking into the state space 

– Extend i2-dual with extra projections for the formulas 
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s0 
Flow  

Router 
sink 

v1 projection 

vk projection 

… 

Ψ1 projection 

… 

Ψn projection 



Experiment: Wall-e and Eve 

• Goal: Wall-e at G 
• Constraints: 

1. Wall-e and Eve must eventually be together (P ≥ 0.5) 
2. Eve must be in a room until they are together (P ≥ 0.8) 
3. Once together, they eventually stay together (P = 1) 
4. Eve must visit the rooms 1, 2, and 3 (P = 1) 
5. Wall-e never visits a room twice (P ≥ 0.8) 
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Rooms 

Hallway 

1 2 n 

n = 4 5 6 7 

no PLTL heuristic 15.9 83.4 472.8 --- 

NBA proj. heur. 9.2 52.7 280.6 --- 

NBA proj. heur. (100) 9.1 52.8 142.1 572.7 

PRISM 8.5 68.1 --- --- 

P
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3 4 … 



Summary 

• Occupation measure space: 
– represents problems as a probabilistic flow networks 

where each xs,a is the expected number of times action 
a is executed in state s 

– is equivalent to the stochastic policy space 
  

• Occupation measures allow us to 
– derive the first domain-independent heuristics that 

take probabilities into account and also constraints 
– efficiently solve problems with 
•Cost constraints 
•PLTL constraints  
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Some Open Questions 

• Bounds for occupation measures: 
– When can we easily find a lower bound for xs,a? 
– Can we efficiently compute an upper bound for xs,a? 
  

• Specialization of occupation measures for SSPs: 
– Is it possible to efficiently compute deterministic 

policies for SSPs in the dual space? 
  

• How much more expressive can we make the 
constraints in the dual space? 
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Thank you! 

46 



Questions? 
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