
Felipe Trevizan

Occupation Measures: how OR can
help Planning under Uncertainty

PlanSOpt – 25/Jun/2018

Funded by

Motivation

Planning under Uncertainty is ubiquitous:

1

Planning agents need to handle:
• unsafe or even hostile environments
• uncertain, costly, limited resources
• dynamic events, uncertain action outcomes
• maximizes utility with acceptable risk

OR in AI planning
Unfortunately the collaboration between OR and AI for
planning under uncertainty has been very limited:

2

Fully Observable
discrete models

Partially Observable models
and continuous models

Challenges from Planning under
Uncertainty

• Actions have stochastic outcomes:

• The solution is a policy not a plan:
– Accounts for the uncertainty in the environment
– Minimizes the expected cost to the goal
– Maps states to actions or to prob. dist. of actions

• Chance constraints:
– failure probability: Pr(failure) ≤ 𝜽
– expected resource constraints: E(𝒇𝒖𝒆𝒍(𝒕)) ≤ 𝜽∞

𝒕=𝟎
– logic constraints: Pr(F(transmit data)) ≥ 0.5

» Translation: with probability at least 0.5, transmit the data
before finishing the mission

3

s1

s2

s

Outline

• Background
– Stochastic Shortest Path Problems (SSPs)
– Constrained SSPs

• Heuristic Search in the Occupation Measure Space
• Heuristics based on Occupation Measures
• Beyond the Resource Constraints

4

Stochastic Shortest Path Problems

5

An SSP the tuple [S,s0,sG,A,P,C]:
• set of states S
• initial state s0
• goal state sG

• set of actions A
• transition probability P(s’|s,a)
• cost function C(s,a):

G

R

Action Pr. North Pr. Stay

move-north-slow 0.99 0.01

move-north-normal 0.95 0.05

move-north-fast 0.90 0.10

Robot’s location

C(s,a)
Time Cost

4

2

1

{North, South, East, West}
X

{slow, normal, fast}

Optimal Solution for SSPs

• A solution to an SSP is a policy π
–π(s) = action to be applied at state s

• The optimal solution is a policy π* that minimizes

the expected cost of reaching sG from s0

6

Primal LP for SSPs

7

• Variables
– vs: expected cost to reach the goal sG from s

• This LP is equivalent to Value Iteration (V(s) = vs)
• An optimal policy:

Expected cost of reaching sG
after applying action a in s

• Defined in the space of occupation measures
– xs,a : expected number of times action a is applied in state s

• Intuition: “probabilistic” flow problem

• Expected value of a function F: S x A → ℝ is

Dual LP for SSPs

8

Sink

Flow
conservation

Expected cost
of the solution

outflow

s1

s2

s0
1 unit

of flow

inflow

Adding Cost Constraints

• A Constrained SSP (C-SSP) is a SSP with multiple
cost functions:
– C0: cost function to be minimized
– C1 … Ck: cost functions with expectation upper

 bounded by u1…uk

9

Action

move-north-slow

move-north-normal

move-north-fast

C0(s,a)
Time Cost

4

2

1

u1
Fuel Cost

9

C1(s,a)
Fuel Cost

2

4

10

Optimal Solution to C-SSP

• A solution to an C-SSP is a stochastic policy π
– π(s,a) = probability of applying action a in state s

• The optimal solution is a stochastic policy π* that
– minimizes the expected cost C0 to reach sG from s0

– subject to the expected cost Ci ≤ ui for all i

• Same dual LP as before with extra constraint:

• Optimal policy:

10

Outline

• Background
• Heuristic Search in the Occupation Measure Space
– i-dual
– i-dual and A*
– i-dual and Column Generation

• Heuristics based on Occupation Measures
• Beyond the Resource Constraints

11

Solving SSPs and C-SSPs

12

Constrained
SSPs

Standard
SSPs

Blind Search

• Explore all states

Heuristic Search

• Explore promising states

G

R

G

R

• Value iteration
• Policy iteration
• Linear Programming

• Dynamic Programming
(RTDP, LRTDP, etc)

• LAO* and extensions

• Linear Programming in
the dual space

• Heuristic search in the
dual space:
• i-dual (2016)
• i2-dual (2017)

Challenge of the Dual Space

• C-SSPs are trivially encoded in the dual space (xs,a), but:
– No domain-independent heuristic (lower bound) is known for

xs,a to guide the heuristic search
– Moreover, deriving such heuristic is a hard problem because

xs,a > 0 if and only if π*(s,a) > 0

• i-dual addresses this challenge by using heuristics of the
primal space, i.e., cost heuristics:
– Hi(s): lower bound on expected cost Ci to reach sG from s
– each Hi is obtained using standard AI planning techniques

• H0 guides the search towards promising regions
• Hi (for i > 0) does early pruning of infeasible solutions

13

i-dual: LP solved
• At each iteration of i-dual:
– Ŝ: subset of S explored so far
– F: fringe of the search

14

lower bound on
expected cost

from the fringe

Sink: goal U Fringes

Solve
sub-problem

Expand
Fringe

i-dual and A*

15

i-dual can be seen as a generalization of A* where
the best f(n) is computed using an LP

At (1,J)

At (1,K)

Move-North-Fast

In our running example:
• Can we use A*?
– No because of stochastic actions

• Can we use AO*?
– No because of loopy actions

• Can we use LAO*?
– No because of constraints and stochastic policies

• Can we use i-dual? Yes!

0.9

0.1

f(n) = g(n) + h(n)

E[fuel|π,s0] ≤ 9

g(n) h(n)

Sound and complete
but sub-optimal

i-dual guarantees

Heuristic for main cost (H0)

Heuristics
for

secondary
costs (Hi)

Admissible Non-admissible

A
d

m
is

si
b

le

N
o

n
-a

d
m

is
si

b
le

Optimal

Sound and incomplete

Always returns
a feasible solution

Might fail to find a feasible
solution even if one exists

Lower bound

16

Similarly to A*, we showed that i-dual is:

i-dual and Column Generation

• i-dual is an instance of column generation:

– a column for i-dual is an occupation measure xs,a

– at each iteration of i-dual, a set of columns is added to
the current LP.

– the columns are chosen based on the heuristic H0

• This expansion procedure is inherited from A*

17

Column Generation & Reduced Cost

• Idea: to solve an LP representing only a subset of
its variables (columns)

– Initially, we have one variable

– Solve the current LP

– Add a promising column z ∈ Z to the LP and repeat

– Stop when there is no more promising columns

• A column z ∈ Z is promising if:

Reduced-Cost(z) = w(z) - µtz < 0

18

Coefficient of z in the obj. func. Opt. dual solution for the current LP

Set of available columns

We are minimizing cost

I-dual with Partial Node Expansion
• As in A*, i-dual expands a node by adding all its

successors:

• Using reduced cost, we can add only the

promising nodes

• Advantage of this approach: potentially much
smaller LPs on each iteration

19

s

s1

s

Partial
expansion

s1

s

s1

Partial
expansion s3

Reachable fringe state

s

New
fringe
states

s1

s2

s3

s

expansion

Reduced Cost for i-dual
• A column (s,a) for i-dual represents an occupation

measure xs,a and its reduced cost is:

 RC(s,a) = C0(s,a) - µtzs,a

• zs,a encompass

– cost constraints: function of Ci(s,a)

– flow preservation constraints: function of P(s’|s,a)

• States s’ s.t. P(s’|s,a) > 0 might not be in the
current LP!

– Thus, there is no value of µ associated to the flow
preservation constraint for s’

– In this case, we approximate the reduced cost
20

+ Σs’ is unseen P(s’|s,a)H0(s’) - xs,aH0(s)

CG-dual

• At each iteration:

– solve the current LP

– if there is no negative reduced cost column available:

• done if all the injected flow reaches the goal

• otherwise, partially expand the fringe according to H0

– otherwise, add k columns with negative reduced cost

• We call this new algorithm CG-dual and it has the
same guarantees as i-dual

21

5x5
grid

1 0.07 0.07 0.05 0.05

2 0.48 0.71 0.17 0.31

3 15.61 16.25 7.75 8.64

4 794.07 451.38 604.13 283.18

Experiments: Search and Rescue
• Extension of the navigation problem:
– one known survivor
– presence of survivors at several locations is unknown
– goal: rescue one survivor
– main cost: time to rescue
– cost constraint: fuel

S 0.2

0.2

0.1 R 0.2

0.2 0.1 0.1

Admissible Heuristics
(hlm-cuts,hmax)

Inadmissible Heuristics
(hadd,hadd)

Dist to S dual LP i-dual CG k=100 i-dual CG k=100

4x4
grid

1 598.4 0.05 0.05 0.04 0.04

2 540.6 0.16 0.22 0.08 0.14

3 546.5 4.26 5.95 2.48 3.66

4 622.6 95.02 58.46 67.11 40.46

CPU-time in seconds

22

Su
rv

iv
al

 d
en

si
ty

 =
 0

.5

Outline

• Background
• Heuristic Search in the Occupation Measure Space
• Heuristics based on Occupation Measures
– Projection-based heuristics for SSPs
– Operator counting for SSPs
– Constrained SSPs heuristics
– Combining Search and Heuristic Computation

• Beyond the Resource Constraints

23

Motivation

24

• For i-dual to perform well, we need good
heuristics (lower bounds) for Constrained SSPs

• The approach so far:
 Constrained SSP

SSP for C0 SSP for Ck

Deterministic
Problem for C0

Deterministic
Problem for Ck

…

…

Ignore all but one
cost function

Ignore Probabilities

Compute Heuristic Compute Heuristic …
Relax Problem

As expensive
to solve as C-SSPs
in the worst case

Still too
expensive
to solve

Heuristics for SSPs
• Until now, all heuristics for SSPs are based on

determinization:
1. Relax the problem into a deterministic problem:

2. Use any heuristic from deterministic planning in the
relaxed problem

• All-outcomes determinization:
– preserves admissibility
– but ignores the bad side-effects of actions

25

Becomes

two actions

East(2,j) East-Bad(2,j) East-Good(2,j)

0.1 0.9

and R G R G R G

A Probabilistic SAS+ problem is the tuple [V,s0,s*,A,C]:
• set of variables V = {v1,…,vn}
– domain of each variable is Dv

• initial state s0
• goal formula s*

• set of actions A

• C(a) cost of action a

East(2,j):
Precondition: At-X = 2 and At-Y = j

Effect: 0.1: At-X ← 3
 0.9: nothing

Background: Factored SSPs

26

R G

Slippery Location

V = {At-X, At-Y}

DAt-X = {1, 2, 3}
DAt-Y = {j,k}

Probability distribution
of effects

At-X = 1, At-Y = j

At-X = 3, At-Y = j

 1 2 3

j

k

• A projection onto a variable:

• Formally: represent each projection as an SSP

R G

Projections

27

R G R G

Projections

Full Problem At-X At-Y

and

3 G 1
2

E(1,j)

E(1,k)

E(2,j)

E(2,k)

ag G k j
S(1,k),

S(2,k), S(3,k)

N(2,j)

N(1,j) ag

 1 2 3
k

j

Optimal solution:
• East(1,j), East(2,k), ag

• Expected cost: 2

Optimal solution:
• ag

• Expected cost: 0

Optimal Solution

N(1,j) E(1,k) E(2,k) S(3,k) ag

4

Tying Projections Together
• Two ways of using projections:
– Using cross-product: original problem
– Using them independently: no improvements

• Idea: weakly tie projections together
– The expected number of times an action is executed

 should be the same in all projections:

28

3 G 1
2

E(1,j)

E(1,k)

E(2,j)

E(2,k)
G k j

S(3,k)

N(2,j)
N(1,j)

Independently

At-X E(1,j) E(2,k) ag

At-Y ag

E[Cost] Infeasible! (2)

N(1,j)
ag

ag

The Projection Occupation Measure Heuristic:

• Variables:
– 𝑥𝑑,𝑎

𝑣 : occupation measure for the projection onto variable 𝑣

• hpom(s) =

H-POM

29

Dual LP for
SSPs applied
to projection

onto 𝑣

Tying constraint

Determinization is not dead

• We can add similar constraints for determizations that
tie together the deterministic effects:

• These constraints can be added to LP-based heuristics
for deterministic planning
– For instance, operator counting [Pommerening et al., 2014]

30

East(2,j) East-Bad(2,j) East-Good(2,j)

0.1 0.9

East-Good(2,j) 0.9
 # East-Bad(2,j) 0.1 =

regroup
constraint

R G R G R G

H-ROC
The Regrouped Operator Counting Heuristic:

• Variables:
– 𝑌𝑎,𝑒: number of times effect e of action a is applied in

 the all-outcomes determinization

• hroc(s) =

31

Net-change
constraints

Regroup
constraints

Experiments

32

Coverage: # of times (out of 30) the same problem is optimally solved with a
different random seed. Max. cputime: 30mins. Best coverage in smallest time in bold

Blocks World
Put-on-block and Pick-up
can fail. Towers can be
moved but fails with
probability 0.9

Parc Printer
Print n sheets using a
modular printer. Some
modules get jammed
with probability 0.1

Best performing solver for each problem uses hroc

hroc vs hpom: performance

hroc is faster than hpom because:
• hroc solves a smaller LP:
– hroc : 𝑌𝑎,𝑒 defined for all action a and effect e of a

– hpom : 𝑥𝑑,𝑎
𝑣 defined for all values d of all state variables

v and all actions a
– hpom also has more constraints than hroc

• hroc returns the same lower bound as hpom

33

Adding Cost Constraints
• Recap of Constrained SSPs (C-SSPs):
– SSP with multiple cost functions:
– C0: cost function to be minimized
– C1 … Cn: cost functions with expectation upper

 bounded by u1…un

• Heuristics for C-SSPs so far:

– Treat each cost independently:

34

Action
C1(a)
Time

C2(a)
Fuel

East-Slow 10 1

East-Normal 3 3

East-Fast 1 10

Moving with speed control Constraints:

• Expected Time ≤ 4
• Expected Fuel ≤ 4

R G

Problem:

H1(s) = 1
H2(s) = 1

Conflicting
 recommendation

(East-Fast)
(East-Slow)

Constrained versions of hpom and hroc

• Since both hpom and hroc:
– are defined using LPs, and
– count the number of times actions are executed

• Then we can directly add the cost constraints:
– hpom :

– hroc :

• The result are the heuristics hc-pom and hc-roc:
– admissible for C-SSPs
– take probabilities in consideration
– take cost constraints in consideration

35

Combining Search and Heuristic
Computation

• hc-pom can be integrated with i-dual:

• This allows to compute at the same time
– the expected cost of a partial solution π
– hc-pom for all states in fringe of π

• We call this algorithm i2-dual
36

neither drive each
other, they work in
unison

s0

Partial problem
encoded as an LP

sink

H(s)

H(s’) s0

Partial problem and heuristic
 encoded as a single LP

Flow
Router

sink

v1 projection

vk projection

i-th iteration of integrated i-dual i-th iteration of i-dual

…

Experiments: Constrained SSPs

37

Parc Printer
Same as in SSP case.
Constraint on the expected #
of paper jams and expected
usage of reliable module

i2-dual out performs all combos of planner and heuristic

Search and Rescue
Grid navigation to rescue one
survivor. There are potentially
multiple survivors.
Constraint on expected fuel
consumption.

Coverage: # of times (out of 30) the same problem is optimally solved with a
different random seed. Max. cputime: 30mins. Best coverage in smallest time in bold

Outline

• Background
• Heuristic Search in the Occupation Measure Space
• Heuristics based on Occupation Measures
• Beyond the Resource Constraints

38

Beyond Resource Constraints

Goal: Analyse rock then go to the safe location

Cost Constraints: On energy (cost constraint)

Linear Temporal Logic (LTL) Constraints:
– G(rock has evidence of life → F transmit data)

» Translation: every time a rock has evidence of
life, transmit the data before finishing the mission

Probabilistic LTL Constraints:
– Pr[F(transmit data)] ≥ 0.5

» Translation: with probability at least 0.5 transmit the data before
finishing the mission

– Pr[G(sand storm → F≤3(at safe location Until ¬(sand storm))] ≥ 0.9
» Translation: with probability at least 0.9, every time a sandstorm

happens, in at most 3 time steps, the robot must be in the safe
location and it remains there until the sand storm is over

39

Safe

R Rock

C-SSPs with PLTL Constraints

• Solution to C-SSPs + PLTL constraints are
finite-memory stochastic policies

• Example:
 G(sand storm → F≤3(at safe location Until ¬(sand storm))

» Translation: every time a sandstorm happens, in at most 3 time steps, the robot
must be in the safe location and it remains there until the sand storm is over

40

The policy needs to be aware of the status of the formulas

Non-deterministic Buchi Automaton (NBA)

PLTL-dual
• Our approach:

– Embed the formula tracking into the state space

– Extend i2-dual with extra projections for the formulas

41

s0
Flow

Router
sink

v1 projection

vk projection

…

Ψ1 projection

…

Ψn projection

Experiment: Wall-e and Eve

• Goal: Wall-e at G
• Constraints:

1. Wall-e and Eve must eventually be together (P ≥ 0.5)
2. Eve must be in a room until they are together (P ≥ 0.8)
3. Once together, they eventually stay together (P = 1)
4. Eve must visit the rooms 1, 2, and 3 (P = 1)
5. Wall-e never visits a room twice (P ≥ 0.8)

42

Rooms

Hallway

1 2 n

n = 4 5 6 7

no PLTL heuristic 15.9 83.4 472.8 ---

NBA proj. heur. 9.2 52.7 280.6 ---

NBA proj. heur. (100) 9.1 52.8 142.1 572.7

PRISM 8.5 68.1 --- ---

P
LT

L-
d

u
al

G

3 4 …

Summary

• Occupation measure space:
– represents problems as a probabilistic flow networks

where each xs,a is the expected number of times action
a is executed in state s

– is equivalent to the stochastic policy space

• Occupation measures allow us to
– derive the first domain-independent heuristics that

take probabilities into account and also constraints
– efficiently solve problems with
•Cost constraints
•PLTL constraints

43

Some Open Questions

• Bounds for occupation measures:
– When can we easily find a lower bound for xs,a?
– Can we efficiently compute an upper bound for xs,a?

• Specialization of occupation measures for SSPs:
– Is it possible to efficiently compute deterministic

policies for SSPs in the dual space?

• How much more expressive can we make the
constraints in the dual space?

44

Work done in collaboration with

45

Sylvie Thiébaux, Patrik Haslum, Peter Baumgartner

Brian Williams, Pedro Santana

From Australian National University (ANU) & Data61 (formerly NICTA):

From MIT:

Thank you!

46

Questions?

47

