Occupation Measures: how OR can
help Planning under Uncertainty

Felipe Trevizan

THE AUSTRALIAN NATIONAL UNIVERSITY

PlanSOpt — 25/Jun/2018

Funded by \V/A FD S R

Motivation

Planning under Uncertainty is ubiquitous:

Planning agents need to handle:

* unsafe or even hostile environments

* uncertain, costly, limited resources

* dynamic events, uncertain action outcomes
* maximizes utility with acceptable risk

OR in Al planning

Unfortunately the collaboration between OR and Al for
planning under uncertainty has been very limited:

O»
Overview of OR in Al planning " P nem
B /
O
(\Q) * Rdger, G.; and Pommerening, F. Linear programmingfar hieuristics I
6@ <«) in optimal planning. In Proceedings AAAI Plan50pt-g015
Q’b(\ Q'\' * Pommerening, F.; Helmert, M.; Roger, G.; and Seipy, J. From non- I
\bec, Q\' negative to general operator cost partitioning. In voceedings
Q (_)Q AAAI-2015
& L
W o3
0 .\(\ o a
¢ The beginning of Partially Observable models

Fully Observable
discrete models

OR in Al,planning and continuous models

2005 2007 2009 2011 2013 2015 2017
1 ! 1 ! . - ' ! 1 I 1l l

I I I I 1 1 1 1 1 I I I I I
1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

\)\ B,
| |

10 years of Planning by 10? years of Planning by
Integer Programming Linear Programming Heuristics

Challenges from Planning under

Uncertainty
0-6 Qy
* Actions have stochastic outcomes: 2,
* The solution is a policy not a plan: @

— Accounts for the uncertainty in the environment
— Minimizes the expected cost to the goal
— Maps states to actions or to prob. dist. of actions

* Chance constraints:
— failure probability: Pr(failure) < 6
— expected resource constraints: E().;—, fuel(t)) <6

— logic constraints: Pr(F(transmit data)) 2 0.5
» Translation: with probability at least 0.5, transmit the data
before finishing the mission

Outline

* Background
— Stochastic Shortest Path Problems (SSPs)
— Constrained SSPs

* Heuristic Search in the Occupation Measure Space
* Heuristics based on Occupation Measures
* Beyond the Resource Constraints

Stochastic Shortest Path Problems

An SSP the tuple [S,s,,s¢,A,P,Cl:

* set of states S Robot's location, .
 initial state s {North, South, East, West} -
° | ° X

goal state SG / {slow, normal, fast} R
e set of actions A

* transition probability P(s’|s,a)
e cost function C(s,a):

C(s a)

move-north-slow 0.99 0.01

move-north-normal 0.95 0.05 2
move-north-fast 0.90 0.10 1

Optimal Solution for SSPs

* A solution to an SSP is a policy it
—T1t(s) = action to be applied at state s

* The optimal solution is a policy " that minimizes
the expected cost of reaching s from s,

Primal LP for SSPs

* Variables
— V. expected cost to reach the goal sg from s

max E Vg
'[v',

s.t. vy >0

Ve = 0 VsES/

Vs

<

C(s,a) + Z P(s’|s, a)vy

s'eS

Expected cost of reaching sg
after applying action ain s

Vs e S\{sghaeA(s)

* This LP is equivalent to Value Iteration (V(s) = v,)
* An optimal policy:

arg min C(s,a) + » P(s'|s,a)v,,

acA(s)

s’eS

Dual LP for SSPs

* Defined in the space of occupation measures
— X, . expected number of times action a is applied in state s

* Intuition: “probabilistic” flow problem

min Z x5.4C(s,a) | Expected cost 1 unit
) s€S of the solution of flow ~
aeA(s) ~10_ _>@
s.t. X540
§ =50 Flow
X Xs o P(s|s’,a) =
Z e Z saP(sls’, @) = {0 Vs € S\ {sq, so} }conservation
acA(s) s'€S
: Y haeA(s") f
outflow inflow
Zx_fr,aP(sGLf; ya) =1 } Sink
s’ eS
acA(s")
» Expected value of a function F: Sx A > Ris) *.aF(s.a)

SES
acA(s)

Adding Cost Constraints

* A Constrained SSP (C-SSP) is a SSP with multiple

cost functions:
— C,: cost function to be minimized

— C, ... C,: cost functions with expectation upper
bounded by u,...u,

Cols,a) C,(s,a)
Time Cost | Fuel Cost
move-north-slow 4 2 u
1
move-north-normal 2 4 Fuel Cost

move-north-fast 1 10 9

\ 4

Optimal Solution to C-SSP

* A solution to an C-SSP is a stochastic policy
— 11(s,a) = probability of applying action a in state s

* The optimal solution is a stochastic policy " that

— minimizes t
— subject to t

e Same dual L

* Optimal policy: n*(s,a) =

ne expected cost C, to reach sg from s,
ne expected cost C < u, for all |

P as before with extra constraint:
ZIS,QCE(S,H) < Uu;

seS
acA(s)

%

xs,a

£
ZaEA(S) Xs,a

10

Outline

e Background

* Heuristic Search in the Occupation Measure Space
— i-dua
— j-dual and A*
— i-dual and Column Generation

* Heuristics based on Occupation Measures

* Beyond the Resource Constraints

11

Solving SSPs and C-SSPs

Blind Search Heuristic Search
* Explore all states * Explore promising states
G G
I \ I
0Q~ R < 5
. : : G . . .
Standard Valge |.terat|.on S Dynamic Programming
SSPs * Policy iteration (RTDP, LRTDP, etc) O)Q“"
* Linear Programming * LAO* and extensions
* Heuristic search in the
Constrained | * Linear Programming in dual space:
SSPs the dual space * i-dual (2016)

'\69 * i2-dual (2017)

12

Challenge of the Dual Space

* C-SSPs are trivially encoded in the dual space (x, ,), but:

— No domain-independent heuristic (lower bound) is known for
X , to guide the heuristic search

— Moreover, deriving such heuristic is a hard problem because
X, > 0if and only if ’(s,a) > 0

e i-dual addresses this challenge by using heuristics of the
primal space, i.e., cost heuristics:

— H.(s): lower bound on expected cost C. to reach s from s
— each H. is obtained using standard Al planning techniques

* H, guides the search towards promising regions
* H, (for i > 0) does early pruning of infeasible solutions

13

i-dual: LP solved

.

e At each iteration of i-dual: Solve
— S: subset of S explored so far sub-problem
— F: fringe of the search
Expand
lower bound !
min Z X5.aC(s,a) + Z inflow Hg () c;v)\(’;;ctzzll o:tn @ Fringe
) seS SeF) ' from the fringe

acA(s)
St Xgq20

| R 1 s=459 B
o . JP(sls, a) = A
me ij «P(s]s’, a) {0 Vs € S\ (FU{sg, so})

acA(s) s’ €S\F
acA(s")

" —_—
yl Xx_fr,aP(sls a) =1 } Sink: goal U Fringes

s€FUsG ¢’ eS\F
acAl(s")

Z X5.aCi(s,a) + Z inflow H; (5) < u;
seS s€F
a€A(s) 14

i-dual and A*

In our running example: At (1,))
* Can we use A*?
. _ 0.1 Move-North-Fast
— No because of stochastic actions 0.9

* Can we use AO*?
— No because of loopy actions
e Can we use LAO*? f(n) = g(n) + h(n)
— No because of constraints and stochastic policies Elfuel |m,s,] <9
* Can we use i-dual? Yes!

At (1,K)

i-dual can be seen as a generalization of A* where

the best f(n) is computed using an LP
g(n) h(n)

| I 1
min Z X5.4C(s,a) + Z inflow H ()
) s€eS seF
acA(s) 15

i-dual guarantees

Similarly to A*, we showed that i-dual is:

. . Always returns
L bound
ower boun \ Heuristic for main cost (H,) 1 feasible solution
Admissible Non-admissible 1
o
2 Sound and complete
e 2 Optimal
Heuristics £ P but sub-optimal
for <
secondary
o)
costs (H) =@
I= Sound and incomplete
®
: }
< Might fail to find a feasible

solution even if one exists

16

i-dual and Column Generation

* i-dual is an instance of column generation:
— a column for i-dual is an occupation measure x, ,

— at each iteration of i-dual, a set of columns is added to
the current LP.

— the columns are chosen based on the heuristic H,

* This expansion procedure is inherited from A*

17

Column Generation & Reduced Cost

* Idea: to solve an LP representing only a subset of

its variables (columns)
— Initially, we have one variable
— Solve the current LP

Set of available columns

— Add a promising column z € Z to the LP and repeat

— Stop when there is no more promising columns

* Acolumnz € Zis promising

|f We are minimizing cost

|

Reduced-Cost(z) = w(z) - p'z< 0

Coefficient of z in the obj. func.

=

Opt. dual solution for the current LP

18

I-dual with Partial Node Expansion

* Asin A*, i-dual expands a node by adding all its

SUCCesSors: -

—0 @ = =
— expansion

Reachable fringe state

New
Q __fringe
‘ states
e Using reduced cost, we can add only the
promising nodes
RC<0

R :
CAO Partial Partial
expansion expansion

* Advantage of this approach: potentially much
smaller LPs on each iteration

19

Reduced Cost for i-dual

* A column (s,a) for i-dual represents an occupation
measure X, , and its reduced cost is:

s’ is unseen

RC(s,a) = Cy(s,a) - W2y, |+ 2, P(s’|s,a)Hy(s’) - X, ;Ho(s)
A

* Z,, ENCOmMpass
— cost constraints: function of C(s,a)
— flow preservation constraints: function of P(s’|s,a)
e States s’ s.t. P(s’|s,a) > 0 might not be in the
current LP!

— Thus, there is no value of u associated to the flow
preservation constraint for s’

— In this case, we approximate the reduced cost

20

CG-dual

* At each iteration:
— solve the current LP
— if there is no negative reduced cost column available:
* done if all the injected flow reaches the goal
* otherwise, partially expand the fringe according to H,
— otherwise, add k columns with negative reduced cost

* We call this new algorithm CG-dual and it has the
same guarantees as i-dual

21

=0.5

Survival density

Experiments: Search and Rescue

Extension of the navigation problem
— one known survivor
— presence of survivors at several locations is unknown
— goal: rescue one survivor
— main cost: time to rescue

— cost constraint: fuel

CPU-time in seconds

Admissible Heuristics

$s

0.2

0.2

0.1

0.2

0.1]01

Inadmissible Heuristics

(hlm-cuts’hmax) (hadd’hadd)
Distto S dual LP i-dual CG k=100 i-dual CG k=100
1 598.4 0.05 0.05 0.04 0.04
ax4 2 540.6 0.16 0.22 0.08 0.14
grid 3 546.5 4.26 5.95 2.48 3.66
4 622.6 95.02 58.46 67.11 40.46
1 0.07 0.07 0.05 0.05
5x5 2 e}o&\ 0.48 0.71 0.17 0.31
grid 3 ;&\@Q&QQ 15.61 16.25 7.75 8.64
4 794.07 451.38 604.13 283.18

22

Outline

* Background
* Heuristic Search in the Occupation Measure Space

* Heuristics based on Occupation Measures
— Projection-based heuristics for SSPs
— Operator counting for SSPs
— Constrained SSPs heuristics
— Combining Search and Heuristic Computation

* Beyond the Resource Constraints

23

Motivation

* For i-dual to perform well, we need good
heuristics (lower bounds) for Constrained SSPs
* The approach so far:

Q?,(‘ Constrained SSP

o)
e('o(\ Ignore all but one
S cost function
As expensive

‘Qﬁ(" SSP for CO cos SSP for Ck]v to solve as C-SSPs
S in the worst case
<%lgnore Probabilities l l

Deterministic Deterministic Still too
expensive
Problem for C, Problem for C;,

to solve
Relax Problem l, l,
Compute Heuristic .o Compute Heuristic

24

Heuristics for SSPs

e Until now, all heuristics for SSPs are based on

determinization:
1. Relax the problem into a deterministic problem:

East(2,j) East-Good(2,j) East-Bad(2,j)

08¢ N1 Becomes /N D)

L Y i e e g (Y
R G two actions R G and R G

2. Use any heuristic from deterministic planning in the
relaxed problem

* All-outcomes determinization:
— preserves admissibility
— but ignores the bad side-effects of actions

25

Background: Factored SSPs

A Probabilistic SAS+ problem is the tuple [V,s,,s«,A,C]:

* set of variables V ={v,,...,v,} [v = {AtX, At-v}
— domain of each variable is D, > Dpex = {1, 2, 3}
* initial state s, o At-X = 1, AtY = D’“'Yz{jik} —
e goal formula s. S| AtX =3, AtY = j
* set of actions A —— Jd R G
East(2,j): T

Precondition: At-X = 2 and At-Y =

of effects

0.9: nothing

Effect: 0.1: At-X < 3}Probability distribution

* C(a) cost of action a

Slippery Location

26

Projections

* A projection onto a variable:

Full Problem

R G

Projections

At-X
1

2 3

R

G and

* Formally: represent eac

Optimal solution:

* East(1,j), East(2,k), a,
* Expected cost: 2

N projection as an SSP

k

j

5(2,k), S(3,k)

Optimal solution:

At-Y

RG

.ag

* Expected cost: O

27

Tying Projections Together

* Two ways of using projections:
— Using cross-product: original problem
— Using them independently: no improvements

 |dea: weakly tie projections together

— The expected number of times an action is executed
‘should be the same in all projections:

&

\t 5\3\‘\
Independently Optimal Solutlon

At-X E(1,j) E(2,k) ag

ALY a M) A e R O,

E[Cost] Infeasible! (2) 4

28

H-POM

The Projection Occupation Measure Heuristic:

* Variables:
— xg’a: occupation measure for the projection onto variable v

o hpom(s) =
min Zx;,aC(a)

acA YveV,deD,,ae A
s.t. | xh >0 Dual LP for
’ I valueofvinsisd SSPs applied
Z XY - Z x%, P(d|d’,a) ={-1 d = art. goal L
a .a . to projection
acA(s) d’' €D, 0 otherwise
acA OntO D

vi Vj

Z Yda = Z Yda Mv,vj,a e A]» Tying constraint

29

Determinization is not dead

e We can add similar constraints for determizations that
tie together the deterministic effects:

East(2,j) East-Good(2,)) East-Bad(2,))
05N N
o Tob 1™ [Tod a7 oD

‘ R| G R| G

R
regroup /
constraint
East-Good(2,j) _ 0.9
East-Bad(2,j) 0.1

* These constraints can be added to LP-based heuristics

for deterministic planning
— For instance, operator counting [Pommerening et al., 2014]

30

H-ROC

The Regrouped Operator Counting Heuristic:

* Variables:
— Y, ¢: number of times effect e of action a is applied in
the all-outcomes determinization

P hrOC(S) —
m%n ZYQ,EC(a)

acA
s.t. Yge =20 Vace A e ceff(a) _
—1 ifdes,d €s.d+d
Net-change

— = < i AY S - .
Z Yae Z Yae 0 ifdesdes, constraints
(a,e) producesd (a,e) consumes d k 1 ifd+#s,d€s,

P(a,e)Y . = Pla,e’)Y,, Va € A, (e,e’) C eff(a) | Reeroup
’ i constraints
31

Experiments

Coverage: # of times (out of 30) the same problem is optimally solved with a
different random seed. Max. cputime: 30mins. Best coverage in smallest time in bold

LRTDP 1LAO

hmax hll’I‘lC hm:[hmc hpnm hmax hlmc hnc[hI‘DC hpom
8 3 0 26| 30 30 2 30 30| 30 30

Blocks World ’
) 8 28 0 30 30 30 30 30 30 30 30
Put-on-block and Pick-up 5 ol 121 30 -9 5 201 30! 30 20

can fail. Towers can be

moved but fails with 10 0 0 0] 30 I8 0 0 I 30 30
orobability 0.9 10 o 0| 0] 30| 0 o o] of 30| 30
12 0 0 0 0 0 0 0 0 30 5
F.4,2 30 30 30 30 30 4 30 30 30 30
Parc Printer F4,3 30| 30| 30| 30| 30 ol 30| 30| 30| 30
Print n sheets usinga FES5,2 0| 30, 0| 30 0 2|1 16 0| 30 0
modular printer. Some FES5,3 0 30 0| 30 0 0 0 0| 30 0
modules get jammed T 42 0 0| 0 1 0 1| 30| 30| 30 0
with probability 0.1 143 0 ol o] o 0 0| 30| 30| 30 0
T,5.1 0 0 0 0 0 0 0 0] 30 0

Best performing solver for each problem uses h™¢

32

hocvs hP°™: performance

hroc s faster than hP°™ because:

e h'oc solves a smaller LP:
—hrc:y, ¢ defined for all action a and effect e of a
— hrom : x 7 defined for all values d of all state variables
v and all actlons a
— hPo™M also has more constraints than hm¢

e h'oc returns the same lower bound as hrem

33

Adding Cost Constraints

e Recap of Constrained SSPs (C-SSPs):

— SSP with multiple cost functions:
— C,: cost function to be minimized
— C, ... C.: cost functions with expectation upper
bounded by u,...u

e Heuristics for C-SSPs so far:

Problem: Moving with speed control Constraints:
R | m * Expected Time < 4
fime G * Expected Fuel <4
East-Slow 10 1
East-Normal 3 3 Conflicting
East-Fast 1 10 recommendation

— Treat each cost independently: «[Hl(s) =1/(East-Fast)

H,(s) =1 | (East-Slow)

Constrained versions of hP°™ and hrec

e Since both hP°™ and h'e¢;

— are defined using LPs, and
— count the number of times actions are executed

* Then we can directly add the cost constraints:
—hrom: N gl Ci(a) < u

deD,,acA

—hroc: Y Y, .Ci(a) < u

(a,e)EA
* The result are the heuristics hP°™ and he¢rec:
— admissible for C-SSPs
— take probabilities in consideration
— take cost constraints in consideration

35

Combining Search and Heuristic

Computation

e h¢PoM can be integrated with i-dual:

Qg}?Q i-th iteration of i-dual
H(s)

H(s’
e

Partial problem
encoded as an LP

sink

i-th iteration of integrated i-dual

P V4 projection
S Flow see \sink
0 Router A

V| Projection

Partial problem and heuristic
encoded as a single LP

* This allows to compute at the same time
— the expected cost of a partial solution TE|' neither drive each

— hePom for all states in fringe of 1t

other, they work in
unison

* We call this algorithm i*-dual

36

Experiments: Constrained SSPs

Coverage: # of times (out of 30) the same problem is optimally solved with a

different random seed. Max. cputime: 30mins. Best coverage in smallest time in bold

1-dual 2
pmax | plmem | proc | peroc | ppom | pc-pom 1~ -dual
0, 1 30 30 30 30 25 28 30
Parc Printer 0, 0o 30 30 30| 30| 30 30 30
Same as in SSP case. 0.1, 1 0 0 0 30 0 27 30
Constraint on the expected # 0.1, 00 0 0 0 30 0 30 30
of paperjams and expected 0.2, 1 0 0 0 0 0 0 30
usage of reliable module 0.2, 00 0 0 0 0 0 0 30
4,0.50,3 30 30| 30 30 30 30 30
Search and Rescue 4,0.50, 4 29 30 30 30 29 30 30
Grid navigation to rescue one 4,0.75,3 26 30 29 29 28 28 30
survivor. There are potentially 4, 0.75,4 0 4 1 1 1 1 7
multiple survivors. 5,0.50, 3 30 30 30 30 30 30 30
Constraint on expected fuel 5,0.50, 4 5 9 9 9 9 9 14
consumption. 5,0.75, 3 19 28 | 23 23| 20 21 28
5,0.75,4 0 2 2 2 1 | 6

i>-dual out performs all combos of planner and heuristic

37

Outline

* Background

* Heuristic Search in the Occupation Measure Space
* Heuristics based on Occupation Measures

* Beyond the Resource Constraints

38

Beyond Resource Constraints

Goal: Analyse rock then go to the safe location
Cost Constraints: On energy (cost constraint)
Linear Temporal Logic (LTL) Constraints:

— G(rock has evidence of life - F transmit data)
» Translation: every time a rock has evidence of

Safe

R

Rock

life, transmit the data before finishing the mission

Probabilistic LTL Constraints:
— Pr[F(transmit data)] 2 0.5

» Translation: with probability at least 0.5 transmit the data before

finishing the mission

— Pr[G(sand storm — F=3(at safe location Until =(sand storm))] > 0.9
» Translation: with probability at least 0.9, every time a sandstorm

happens, in at most 3 time steps, the robot must be in the safe

location and it remains there until the sand storm is over

39

C-SSPs with PLTL Constraints

e Solution to C-SSPs + PLTL constraints are
finite-memory stochastic policies

L> The policy needs to be aware of the status of the formulas

* Example:

G(sand storm = F=3(at safe location Until =(sand storm))
» Translation: every time a sandstorm happens, in at most 3 time steps, the robot
must be in the safe location and it remains there until the sand storm is over

|
= Non-deterministic Buchi Automaton (NBA)

storm

storm

'storm
safe & storm

safe & storm

40

PLTL-dual

* Qur approach:
— Embed the formula tracking into the state space

— Extend i’-dual with extra projections for the formulas

/7[V4 projection]\
So > Flow see sink
Router\
\ V| Projection]/

[W, projection

W, projection

41

Experiment: WaII-e and Eve

Rooms ‘ ‘ \ ‘ ‘ \
° Goal Wa”_e at G ...

HaIIway 3 C
e Constraints: : : : =

1. Wall-e and Eve must eventually be together (P =2 0.5)
Eve must be in a room until they are together (P > 0.8)
Once together, they eventually stay together (P = 1)
Eve must visit therooms 1, 2, and 3 (P =1)

Wall-e never visits a room twice (P = 0. 8)

no PLTL heuristic 15.9 83.4 4728

NBA proj. heur. 9.2 52.7 280.6

NBA proj. heur. (100) 9.1 52.8 142.1 572.7
PRISM 8.5 68.1

s WD

PLTL-dual

42

Summary

* Occupation measure space:
— represents problems as a probabilistic flow networks
where each xg , is the expected number of times action
a is executed in state s
— is equivalent to the stochastic policy space

* Occupation measures allow us to
— derive the first domain-independent heuristics that
take probabilities into account and also constraints
— efficiently solve problems with
* Cost constraints
* PLTL constraints

43

Some Open Questions

* Bounds for occupation measures:
— When can we easily find a lower bound for x, ,?
— Can we efficiently compute an upper bound for x, ,?

* Specialization of occupation measures for SSPs:
— Is it possible to efficiently compute deterministic
policies for SSPs in the dual space?

* How much more expressive can we make the
constraints in the dual space?

44

Work done in collaboration with

From Australian National University (ANU) & Data61 (formerly NICTA):

Sylvie Thiébaux, Patrik Haslum, Peter Baumgartner

From MIT:
Brian Williams, Pedro Santana

45

Thank you!

Questions?

47

