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Foreword

The areas of AI planning and scheduling have seen important advances thanks to the application of constraint
satisfaction models and techniques. Especially solutions to many real-world problems need to integrate plan synthesis
capabilities with resource allocation, which can be efficiently managed by using constraint satisfaction techniques.

The workshop aims at providing a forum for researchers in the field of Artificial Intelligence to discuss novel issues
on planning, scheduling, constraint programming/constraint satisfaction problems (CSPs) and many other common
areas that exist among them. On the whole, the workshop mainly focuses on managing complex problems where
planning, scheduling and constraint satisfaction must be combined and/or interrelated, which entails an enormous
potential for practical applications and future research. Formulations of P&S problems as CSPs, resource and
temporal global constraints, and inference techniques are of particular interest of COPLAS.

This workshop has been hold from 2006 in the context of ICAPS and CP conferences, which provided a broader
audience and gave the participants of both events the opportunity to exchange ideas and approaches that lead to
a valuable and fruitful discussion, and inspired forthcoming research. COPLAS is ranked as CORE B in ERA
Conference Ranking and it is covered in selected Elsevier database products.

In this edition, nine papers were accepted. They represent an advance in the integration of constraint satisfaction
techniques in planning and scheduling frameworks and their application to real life problems. These papers are
distributed between theoretical papers and application papers.

Miguel A. Salido and Roman Barták
June 2018
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X and more Parallelism
Integrating LTL-Next into SAT-based Planning with Trajectory Constraints while

Allowing for even more Parallelism

Gregor Behnke and Susanne Biundo
Institute of Artificial Intelligence, Ulm University, D-89069 Ulm, Germany

{gregor.behnke, susanne.biundo}@uni-ulm.de

Abstract
Linear temporal logic (LTL) provides expressive means to
specify temporally extended goals as well as preferences. Re-
cent research has focussed on compilation techniques, i.e.,
methods to alter the domain ensuring that every solution ad-
heres to the temporally extended goals. This requires either
new actions or an construction that is exponential in the size
of the formula. A translation into boolean satisfiability (SAT)
on the other hand requires neither. So far only one such en-
coding exists, which is based on the parallel ∃-step encoding
for classical planning. We show a connection between it and
recently developed compilation techniques for LTL, which
may be exploited in the future. The major drawback of the
encoding is that it is limited to LTL without the X operator.
We show how to integrate X and describe two new encodings,
which allow for more parallelism than the original encoding.
An empirical evaluation shows that the new encodings out-
perform the current state-of-the-art encoding.

1 Introduction
Linear temporal logic (LTL (Pnueli 1977)) is a generic and
expressive way to describe (state-)trajectory constraints. It
is often used to specify temporal constraints and preferences
in planning, e.g., to describe safety constraints, to state nec-
essary intermediate goals, or to specify the ways in which a
goal might be achieved. Most notably, the semantics of such
constraints in PDDL 3.0 (Gerevini and Long 2005) is given
in terms of LTL formulae, which is the de-facto standard for
specifying planning problems.

Traditionally, LTL constraints are handled by first com-
piling them into an equivalent Büchi Automaton, and then
translating the automaton into additional preconditions and
effects for actions (see e.g. Edelkamp (2003)). This compi-
lation might be too expensive as the Büchi Automaton for
a formula φ can have up to 2|φ| states. Recent work pro-
posed another compilation using Alternating Automata (Tor-
res and Baier 2015). These automata have onlyO(|φ|) states
allowing for a guaranteed linear compilation. There are also
planners that do not compile the model, but evaluate the for-
mula during forward search, e.g., TALplanner (Doherty and
Kvarnström 2001), TLplan (Bacchus and Kabanza 2000), or
the work by Hsu et al. (2007). However, heuristics have to
be specifically tailored to incorporate the formula, or else the
search becomes blind. TALplanner and TLplan even use the
temporally extended goals for additional search guidance.

Another option is to integrate LTL into planning via
propositional logic. Planning problems can be translated into
(a sequence of) boolean formulae. A temporally extended
goal can then be enforced by adding additional clauses to
this formula. So far only one such encoding has been devel-
oped by Mattmüller and Rintanen (2007). It uses an LTL to
SAT translation from the model checking community, which
assumes that only a single state transition is executed at a
time. The main focus of their work lies on integrating the ef-
ficient ∃-step encoding with this representation of LTL for-
mulae. In the ∃-step encoding operators can be executed si-
multaneously, as long as they are all applicable in the cur-
rent state, the resulting state is uniquely determined, and
there is an ordering in which they are actually executable.
Mattmüller and Rintanen presented alterations to the ∃-step
formula restricting the parallelism such that LTL formulas
without the next-operator are handled correctly.

We point out an interesting relationship between the LTL
encoding of Mattmüller and Rintanen and the Alternating
Automaton encoding by Torres and Baier, showing that both
use the same encoding technique, although derived by dif-
ferent means. This insight might prove useful in the future,
e.g., to allow for optimisation of the propositional encod-
ing using automata concepts. Next, we show how the propo-
sitional encoding by Mattmüller and Rintanen can be ex-
tended to also be able to handle the next-operator X . We
introduce a new concept – partial evaluation traces – to cap-
ture the semantics of the encoding with respect to an LTL
formula and show that our extension is correct. Based on
partial evaluation traces, we show that the restrictions posed
by Mattmüller and Rintanen (2007) on allowed parallelism
can be relaxed while preserving correctness. We provide an
alteration of their encoding allowing for more parallelism.
We present an alternative encoding, also based on partial
evaluation traces, which allows for even more parallelism by
introducing intermediate timepoints at which the formula is
evaluated. Our empirical evaluation of all encodings shows
that our new encodings outperform the original one.

2 Preliminaries
Planning
We consider propositional planning without negative pre-
conditions. This is known to be equivalent to STRIPS (al-

1



lowing for negative preconditions) via compilation. Also
note that all our techniques are also applicable in the pres-
ence of conditional effects. We do not consider them in
this paper to keep the explanation of the techniques as sim-
ple as possible. For the extension to conditional effects, see
Mattmüller and Rintanen (2007).

Let A be a set of proposition symbols and Lit(A) =
{a,¬a | a ∈ A} be the set of all literals over A. An ac-
tion a is a tuple a = 〈p, e〉, where p – the preconditions –
is a subset of A and e – the effects – is a subset of Lit(A).
We further assume that the effects are not self-contradictory,
i.e., that for no a ∈ A both a and ¬a are in e. A state s
is any subset of A. An action a = 〈p, e〉 is executable in
s, iff p ⊆ s. The state resulting form executing a in s is
(s \ {a | ¬a ∈ e}) ∪ {a | a ∈ e}. A planning problem
P = 〈A,O, sI , g〉 consists of a set of proposition symbols
A, a set of operators O, the initial state sI , and the goal
g ⊆ A. A sequence of actions o1, . . . , on is a plan for P
iff there exists a sequence of states s0, . . . , sn+1 such that
for every i ∈ {1, . . . , n+ 1}, oi is applicable in si, its appli-
cation results in si+1, s0 = sI , and g ⊆ sn+1. This sequence
of states is called an execution trace.

Linear Temporal Logic
Formulae in Linear Temporal Logic (LTL) are constructed
over a set of primitive propositions. In the case of planning
these are the proposition symbols A. LTL formulae are re-
cursively defined as any of the following constructs, where
p is a proposition symbol and f and g are LTL formulae.

⊥ | > | p | ¬f | f ∧ g | f ∨ g | Xf | X̊f | Ef | Gf | fUg

X , X̊ , E, G, and U are called temporal operators. There
are several further LTL-operators (like Ů , R, or S and T ,
see e.g. (Biere et al. 2006)). Each of them can be trans-
lated into a formula containing only the temporal opera-
tors X , X̊ , and U . The semantics of an LTL formula φ
is given with respect to an execution trace. In general this
trace can be infinitely long, as LTL can describe repeated
behaviour. We consider only LTL over finite traces, which is
commonly called LTLf (De Giacomo and Vardi 2013). The
encodings we present can easily be extended to the infinite
case (see Mattmüller and Rintanen 2007). The truth value
of an LTLf formula φ is defined over an execution trace
σ = (s0, s1, . . . , sn) as [[φ]](σ) where

[[p]](s0, σ) = p ∈ s0 if p ∈ A
[[¬f ]](σ) = ¬[[f ]](σ)

[[f ∧ g]](σ) = [[f ]](σ) ∧ [[g]](σ)

[[f ∨ g]](σ) = [[f ]](σ) ∨ [[g]](σ)

[[Xf ]](s0, σ) = [[X̊f ]](s0, σ) = [[f ]](σ)

[[Xf ]](s0) = ⊥
[[X̊f ]](s0) = >

[[Ef ]](s0, σ) = [[f ]](s0, σ) ∨ [[Ef ]](σ)

[[Gf ]](s0, σ) = [[f ]](s0, σ) ∧ [[Gf ]](σ)

[[Ef ]](s0) = [[Gf ]](s0) = [[f ]](s0)

[[fUg]](s0, σ) = [[g]](s0, σ)∨
([[f ]](s0, σ) ∧ [[fUG]](σ))

[[fUg]](s0) = [[g]](s0)

The intuitive of the semantics of temporal operators are: Ef
– eventually f , i.e., f will hold at some time, now or in the
future, Gf – globally f , i.e., f will hold from now on for
ever, fUg – f until g, i.e., g will eventually hold and until
that time f will always hold, and Xf – next f , i.e., f holds
in the next state of the trace. Since we consider the case of
finite LTL, we have – in addition to standard LTL – a new
operator: weak next X̊ . The formula Xf requires that there
is a next state and that f holds in that state. In contrast, X̊f
asserts that f holds if a next state exists; if there is none, X̊f
is always true, taking care of the possible end of the state
sequence.

As a preprocessing step, we always transform an LTL
formula φ into negation normal form without increasing its
size, i.e., into a formula where all negations only occur di-
rectly before atomic propositions. This can be done using
equivalences like ¬Gf = E¬f . Next, we add for each
proposition symbol a ∈ A a new proposition symbol a. Its
truth value will be maintained such that it is always the in-
verse of a. I.e. whenever an action has ¬a as its effect, we
add the effect a and when it has the effect a we add ¬a.
Lastly, we replace ¬a in φ with a, resulting in a formula not
containing negation.

Given a planning problem P and a LTL formula φ, LTL
planning is the task of finding a plan π whose execution trace
σ will satisfy φ, i.e., for which [[φ]](σ). For a given LTL
formula φ we define A(φ) as the set of predicates contained
in φ and S(φ) to be the set of all its subformulae. We write
[o]φe for the intersections of the effects of o and A(φ), i.e. all
those effects that occur in φ.

3 State-of-the-art LTL→SAT encoding
As far as we are aware, there is only a single encoding
of LTL planning problems into boolean satisfiability, de-
veloped by Mattmüller and Rintanen (2007). They adapted
a propositional encoding for LTL developed by Latvala et
al. 2004 for bounded model checking. The main focus of
Mattmüller and Rintanen’s work lies on integrating modern,
non-sequential encodings of planning problems into the for-
mula. The encoding models evaluating the LTL formula in
timesteps, which correspond to the states in a trace. In Lat-
vala et al.’s encoding (which was not developed for plan-
ning, but for a more general automata setting) only a single
action may be executed at each timestep in order to evalu-
ate the formula correctly. Research in translating planning
problems into propositional formulae has however shown
that such sequential encodings perform significantly worse
than those that allow for a controlled amount of parallel
action execution (Rintanen, Heljanko, and Niemelä 2006).
Mattmüller and Rintanen addressed the question of how to
use the LTL encoding by Latvala et al. in a situation where
multiple state transitions take care in parallel – as is the
case in these planning encodings. They used the property of
stutter-equivalence which holds for LTL−X (i.e. LTL with-
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out the X and X̊ operators) to integrate Latvala et al.’s en-
coding. To exploit stutter-equivalence, they had to restrict
the allowed amount of parallelism to ensure correctness.

Their encoding, which we will denote with M&R’07, is
based on the ∃-step encoding of propositional planning by
Rintanen, Heljanko, and Niemelä (2006). As such, we start
by reviewing the ∃-step encoding in detail. In this encod-
ing the plan is divided into a sequence of timesteps 0, . . . , n.
Each timestep t is assigned a resulting state using decision
variables at for all a ∈ A and t ∈ {1, . . . , n + 1}, each in-
dicating that the proposition symbol a holds at timestep t,
i.e. after executing the actions at timestep t − 1. The initial
state is represented by the variables a0. Actions can be exe-
cuted between two neighbouring timesteps t and t+1, which
is represented by decision variables ot for all o ∈ O and
t ∈ {0, . . . , n}. If ot is true the action o is executed at time
t. The encoding by Kautz and Selman (1996) is then used
to determine which actions are executable in at and how the
state at+1 resulting from their application looks like. In a
sequential encoding, one asserts for each timestep t that at
most one ot atom is true. Intuitively, this is necessary to en-
sure that the state at+1 resulting from executing the actions
ot is uniquely determined. Consider, e.g., a situation where
two actions move-a-to-b and move-a-to-c are simul-
taneously applicable, but result in conflicting effects. Exe-
cuting these two actions in parallel has no well-defined re-
sult. Interestingly, the mentioned constraint is not necessary
in this case, as the encoding by Kautz and Selman already
leads to an unsatisfiable formula. There are however situa-
tions, where the resulting state is well-defined, but it is not
possible to execute the actions in any order. Consider two
actions buy-a and buy-b, both requiring money, spending
it, and achieving possession of a and b, respectively. Both
actions are applicable in the same state and their parallel ef-
fects are well-defined, as they don’t conflict. It is not pos-
sible to find a sequential ordering of these two actions that
is executable, as both need money, which won’t be present
before executing the second action. This situation must be
prohibited, which can easily be achieved by forbidding par-
allel action execution at all, as in the sequential encoding.

In the ∃-step encoding, executing actions in parallel is al-
lowed. Ideally, we would like to allow any subset S of ot
to be executable in parallel, as long as there exists a lineari-
sation of S that is executable in the state st represented by
at and all executable linearisations lead to the same state
st+1. This property is however practically too difficult to en-
code (Rintanen, Heljanko, and Niemelä 2006). Instead, the
∃-step encoding uses a relaxed requirement. Namely, (1) all
actions in S must be executable in st, then it chooses a to-
tal order of all actions O, (2) asserts that if a set of actions
S is executable, it must be executable in that order, and (3)
that the state reached after executing them is this order is
st+1. The encoding by Kautz and Selman ensures the first
and last property. The ∃-step encoding has to ensure the sec-
ond property. It however does not permit all subsets S ⊆ O
to be executable in parallel, but only those for which this
property can be guaranteed.

As a first step, we have to find an appropriate order of ac-
tions in which as many subsets S ⊆ O as possible can be

executed. For this, the Disabling Graph (DG) is used. It de-
termines which actions can be safely executed in which or-
der without checking the truth of propositions inside the for-
mula. In practice, one uses a relaxed version of the DG (i.e.
one containing more edges), as it is easier to compute (Rin-
tanen, Heljanko, and Niemelä 2006).
Definition 1. Let P = 〈A,O, sI , g〉 be a planning problem.
An action o1 = 〈p1, e1〉 affects an other action o2 = 〈p2, e2〉
iff ∃l ∈ A s.t. ¬l ∈ e1 and l ∈ p2.

A Disabling Graph DG(P) is a directed graph 〈O,E〉
with E ⊆ O × O that contains all edges (o1, o2) where o1

affects o2 and a state s exists that is reachable from sI in
which both o1 and o2 are applicable.

The DG is a domain property and is not tied to any spe-
cific timestep, as such the restrictions it poses apply to every
timestep equally. The DG encodes which actions disable the
execution of other actions after them in the same timestep,
i.e., we ideally want the actions to be ordered in the opposite
way in the total ordering chosen by the ∃-step encoding. If
the DG is acyclic, we can execute all actions in the inverted
order of the disabling graph, as none will disable an action
occurring later in that order. If so, the propositional encoding
does not need any further clauses, as any subset S of actions
can be executed at a timestep – provided that their effects do
not interfere.

The DG is in practice almost never acyclic. Problematic
are only strongly connected components (SCCs) of the
DG, were we cannot find an ordering s.t. we can guarantee
executability for all subsets of actions. Instead we fix some
order ≺ for each SCC, asserting that the actions in it will
always be executed in that order, and ensure in the SAT
formula that if two actions o1 and o2 with o1 ≺ o2 are
executed, o1 does not affect o2. This way, we can safely
ignore some of the edges of the DG – as their induced
constraints are satisfied by the fixed ordered ≺ – while
others have to be ensured in the formula. I.e. if we ensure
for every edge (o1, o2) with o1 ≺ o2 that if o1 is part of the
executed subset o2 is not, we know that there is a lineari-
sation in which the chosen subset S is actually executable.
To ensure this property, Rintanen, Heljanko, and Niemelä
introduced chains. A chain chain(≺;E;R; l) enforces
that whenever an action o in E is executed, all actions in
R that occur after a in ≺ cannot be executed. Intuitively,
E are those actions that produce some effect a, while the
actions in R rely on ¬a to be true. The last argument l
is a label that prohibits interference between multiple chains.

chain(o1, . . . , on;E;R; l) =
∧
{oi → dj,l | i < j, oi ∈ E, oj ∈ R, {oi+1, .., oj−1} ∩R = ∅}

∪ {li → aj,l | i < j, {oi, oj} ⊆ R, {oi+1, .., oj−1} ∩R = ∅}
∪ {li → ¬oi | oi ∈ R}

To ensure that for any SCC S of DG(P) the mentioned
condition holds for the chosen ordering ≺ of S, we generate
for every proposition symbol a ∈ A a chain with

Ea = {o ∈ S | o = 〈p, e〉 and ¬a ∈ e}
Ra = {o ∈ S | o = 〈p, e〉 and a ∈ p}
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Based on the ∃-step encoding, Mattmüller and Rinta-
nen (2007) added support for LTL formulae φ by exploiting
the stutter-equivalence of LTL−X . This stutter-equivalence
ensures that if multiple actions are executed in a row but
don’t change the truth any of the predicates inA(φ), the truth
of the formula is not affected, i.e., the truth of the formula
does not depend on how many of these actions are executed
in a row. Consequently the formula only needs to be checked
whenever the truth of propositions in A(φ) changes. Their
construction consists of two parts. First, they add clauses to
the formula expressing that the LTL formula φ is actually
satisfied by the trace restricted to the states where proposi-
tions in A(φ) change. These states are the ones represented
in the ∃-step encoding by at atoms. Second, they add con-
straints to the ∃-step parallelism s.t. in every timestep the
first action executed according to ≺ that changes proposi-
tion symbols in A(φ) is the only one to do so. Other actions
in that timestep may not alter the state w.r.t toA(φ) achieved
by that first action, but can assert the same effect.

In their paper, they provide a direct translation of φ into a
proposition formula. In practice however, this formula can-
not be given to a SAT solver, as it requires a formula in con-
junctive normal form (CNF). The formula given in the pa-
per is not in CNF and translating it into CNF can lead to a
CNF of exponential size. They instead introduce additional
variables (Mattmüller 2006), allowing them to generate (al-
most) a CNF1. For every sub-formula ψ ∈ S(φ) and every
timestep t they introduce the variable ψtLTL, stating that ψ
holds for the trace starting at timestep t. They then assert:
(1) that φ0

LTL holds and (2) that for every ψtLTL the conse-
quences must hold that make ψ true for the trace starting at
time t. The latter is expressed by clauses ψtLTL → [[ψ]]t,
where [[ψ]]t is given in Tab. 1. Note that the M&R’07 en-
coding cannot handle the next operators X and X̊ , as they
are sensitive to stuttering, i.e., stutter-equivalence does not
hold for formulae that contain X or X̊ . We have added
the encoding for X (Latvala et al. 2004). In addition, we
have restricted the original encoding from infinite to finite
LTL-traces and added a new encoding for X̊ . Note that the
M&R’07 encoding will lead to wrong results if used with
the presented encoding of the X and X̊ operators. It is how-
ever correct, if used in conjunction with a sequential en-
coding (Latvala et al. 2004). We show in Sec. 5 how the
M&R’07 encoding can be changed to handle X and X̊ cor-
rectly. Lastly, clauses need to be added in order to ensure
that actions executed in parallel do not alter the truth of
propositions inA(φ) – except for the first action that actually
changes them. The extension of ∃-step encoding achieving
this is conceptually simple, as it consists of only two changes
to the original encoding:
1. add for every two actions o1, o2 which are simultaneously

applicable the edge (o1, o2) to the DG iff [o2]φe \[o1]φe 6= ∅,
i.e., o2 would change more than o1 with respect to A(φ).

2. add for every literal l ∈ Lit(A(φ)) and SCC of DG(P)

with its total order ≺ the chain chain(≺;Eφl ;Rφl ;φl)

1The translations of f∧g, Gf and fUg contain one conjunction
each, which can be multiplied out easily.

φ t < n t = n
[[p]]t p ∈ A pt pt

[[f ∧ g]]t f tLTL ∧ gtLTL f tLTL ∧ gtLTL
[[f ∨ g]]t f tLTL ∨ gtLTL f tLTL ∨ gtLTL
[[Xf ]]t f t+1

LTL ⊥
[[X̊f ]]t f t+1

LTL >
[[Ef ]]t f tLTL ∨ (Ef)t+1

LTL f tLTL
[[Gf ]]t f tLTL ∧ (Gf)t+1

LTL f tLTL
[[fUg]]t gtLTL ∨ ((fUg)t+1

LTL ∧ f tLTL) f tLTL

Table 1: Transition rules for LTL formulae

with

(a) Eφl = {o ∈ O | o = 〈p, e〉 and l 6∈ e}
(b) Rφl = {o ∈ O | o = 〈p, e〉 and l ∈ e};

Mattmüller and Rintanen (2007) have proven that these
clauses suffice to ensure a correct and complete encoding.

4 Alternating Automata and M&R’07
In recent years, research on LTL planning focussed on trans-
lation based approaches. There, the original planning prob-
lem is altered in such a way that all solutions for the new
problem adhere to the formula (e.g. (Baier and McIlraith
2006; Torres and Baier 2015), see (Camacho et al. 2017)
for an overview). Traditionally, these approaches translate
the LTL formula into a Büchi automaton (essentially a finite
state machine, with a specific accepting criterion for infinite
traces) and then integrate the automaton into the model. The
major drawback of these translations is that the Büchi au-
tomaton for an LTL formula can have up to 2|φ| many states.

Torres and Baier (2015) proposed a translation diverging
from the classical LTL to Büchi translation. They instead
based it on Alternating Automata, which are commonly used
as an intermediate step when constructing the Büchi automa-
ton for an LTL φ formula (see e.g. (Gastin and Oddoux
2001)). Alternating Automata have a guaranteed linear size
in |φ|, but have a more complex transition function.

Definition 2. Given a set of primitive propositions A, an
alternating automaton is a 4-tuple A = (Q, δ, I, F ) where

• Q is a finite set of states
• δ : Q × 2A → B+(Q) is a transition function, where
B+(Q) is the set of positive propositional formulas over
the set of states Q, i.e., those formulae containing only ∨
and ∧.

• I ⊆ Q is the initial state
• F ⊆ Q is set of final states.

A run of an alternating automaton over a sequence of sets
of propositions (execution trace) (s1, . . . , sn) is a sequence
of sets of states (Q0, . . . , Qn) such that

• Q0 = I

• ∀i ∈ {1, . . . , n} : Qi |=
∧
q∈Qi−1

δ(q, si)

The alternating automaton accepts the trace iff Qn ⊆ F
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Torres and Baier (2015) generate an alternating automa-
ton for an LTL formula φ as follows. They choose Q as the
set of sub-expression of φ starting with a temporal opera-
tor plus a state qF representing that the end of the execu-
tion trace has been reached. Being in a state q means, that
from the current time on, we have to fulfill the formula q.
The automaton is given as Aφ = (Q, δ, {qφ}, {qF }) where
Q = {qα | α ∈ S(φ)} ∪ {qF } and the transition function δ
is defined as follows:

δ(ql, s) =

{> , if l ∈ s
⊥ , if l 6∈ s

δ(qF , s) = ⊥
δ(qf∨g, s) = δ(qf , s) ∨ δ(qg, s)
δ(qf∧g, s) = δ(qf , s) ∧ δ(qg, s)
δ(qXf , s) = qf
δ(qX̊f , s) = qF ∨ qf
δ(qEf , s) = δ(f, s) ∨ qEf
δ(qGf , s) = δ(f, s) ∧ (qGf ∨ qF )

δ(qfUg, s) = δ(qg, s) ∨ (δ(qf , s) ∧ qfUg)

Note that we have to enumerate all states that are relevant
to the formula, i.e., all states s ⊆ 2A(φ), to construct the
formula. Using the Alternating Automaton as the basis for a
translation leads to a guaranteed linear increase in size when
constructing the translated planning problem. This is due to
the fact that the encoding does not actually has to construct
the automaton, but only has to simulate its states. We will
elaborate on this later. Also, it was demonstrated that the
new encoding is more efficient that other current translation
techniques (Torres and Baier 2015).

A drawback of their translation was the need for intro-
ducing additional actions, performing bookkeeping on the
current state of the alternating automaton. A translation into
SAT, on the other hand, will not have this drawback, as we
will show. We will again extend the ∃-step encoding and
call the encoding AA (Alternating Automaton). The restric-
tion posed on parallelism by M&R’07 does not depend on
the encoding of the formula itself, as long as it does not
contain the X or X̊ operators2. We introduce new decision
variables qt for each state q ∈ Q and timestep t, signify-
ing that the automaton Aφ is in state q after executing the
actions of timestep t. To express the transition function of
the Alternating Automaton, we use formulae of the form(
qt ∧∧a∈s a

)
→ δ(q, s) for each state q of the automaton

and set of propositions s. We also replace each occurrence of
a state qf in δ(q, s) with the decision variable qt+1

f and intro-
duce intermediate decision variables to break down complex
formulae as in the M&R’07 encoding. The following theo-
rem holds by construction.

Theorem 1. AA in conjunction with M&R’07’s ∃-step en-
coding is correct for LTL−X .

2The actual encoding of the formula can be exchanged in the
proof of their main theorem as long as a similar version of their
Theorem 2 can be proven, which is obvious in our case.

We here want to point out that the AA encoding is not (as
the one by Torres and Baier (2015)) polynomial in the size
of the formula. The reason lies in the explicit construction
of the alternating automaton, which requires a single transi-
tion for every possible state that might be relevant to the for-
mula, i.e., for every subset ofA(φ). The translation encoding
by Torres and Baier circumvents this construction by adding
new operators, which can evaluate the necessary expression
during planning. I.e. they have actions for each transition
rule δ(·, ·), which produce as their effects the right-hand
sides of these above equations. Lastly, they introduce syn-
chronisation actions to ensure that δ(·, ·) is fully computed
before another “real” actions is executed.

If we apply this idea to the AA encoding, we would end
up with the M&R’07 encoding. Since the states of the au-
tomaton are the sub-formulae of φ starting with a temporal
operator, these decision variables are identical to the ψtLTL
variables of the M&R’07 encoding, where ψ starts with a
temporal operator. The encoding by Torres and Baier also
needs to introduce state variables for every sub formulae not
starting with a temporal operator to represent the step-wise
computation of δ(·, ·) correctly. If translated into proposi-
tional variables, these correspond to the ψtLTL variables of
M&R’07, where ψ does not start with a temporal operator.
Lastly, the transition rules for both encodings are identical.

As such, the M&R’07 encoding can also be interpreted as
a direct translation of an Alternating Automaton into propo-
sitional logic using the compression technique of Torres and
Baier (2015). Interestingly, the original proof showing cor-
rectness of the LTL-part of the M&R’07 encoding by Lat-
vala et al. (2004) does not rely on this relationship to Alter-
nating Automata, neither do they mention this connection.
We think it is an interesting theoretical insight, as it might
enable to further improve LTL encoding, e.g., based on op-
timisations of the Alternating Automaton.

5 X, Parallelism, and Partial Evaluation
We have noted that both M&R’07 and AA cannot handle
LTL formulae containing the X or X̊ operators in conjunc-
tion with the ∃-step encoding. They are however correct if
used together with the sequential encoding, where only a
single action to be executed at each timestep. In order to de-
rive extensions that can handle X and X̊ , we first present
a new theoretical foundation for both encodings. We will
use that fact that in M&R’07, we know which parts of the
formula are made true at which time and by which propo-
sitions. To formalise this, we introduce evaluation traces,
which specify how an LTL formula is fulfilled over a trace.
Definition 3. Let φ be an LTL formula. We call a sequence
ψ = (f0, . . . , fn) with fi ⊆ S(φ) an evaluation trace for φ
iff φ ∈ f0 and for all i ∈ {0, . . . , n}
1. if f ∨ g ∈ fi then f ∈ fi or g ∈ fi
2. if f ∧ g ∈ fi then f ∈ fi and g ∈ fi
3. if Xf ∈ fi then i < n and f ∈ fi+1

4. if X̊f ∈ fi then i = n or f ∈ fi+1

5. if Ef ∈ fi then f ∈ fi or i < n and Ef ∈ fi+1

6. if Gf ∈ fi then f ∈ fi and if i < n then Gf ∈ fi+1
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7. if fUg ∈ fi then g ∈ fi or i < n and f ∈ fi and
fUg ∈ fi+1

A trace π = (s0, . . . , sn) satisfies an evaluation trace ψ =
(f0, . . . , fn) iff for all a ∈ fi ∩A also a ∈ si.

The following theorem follows directly, as the definition
just emulates checking an LTL formula.
Theorem 2. An execution trace π satisfies an LTL formula
φ iff an evaluation trace ψ for φ exists that satisfies π.

In M&R’07, the LTL formula is only evaluated after a set
of parallel actions have been executed. To capture this, we
define partial evaluation traces.
Definition 4. Let π = (s0, . . . , sn) be an execution trace
and φ and LTL formula. We call an evaluation trace θ =
(f0, . . . , fl) with l ≤ n a partial evaluation trace (PET) for
π if a sequence of indices 0 = i0 < i1 < ... < il = n + 1
exists such that for each k ∈ {0, . . . , l − 1} holds

sik ∩ (fk ∩A) = · · · = sik+1−1 ∩ (fk ∩A)

and if Xf ∈ fk or X̊f ∈ fk and k > 0 then ik−1 + 1 =
ik. The PET θ is satisfied by the execution trace π, iff the
execution trace (si1−1∩f0∩A, . . . , sil−1∩fl∩A) satisfies
θ in the sense of Def. 3.

A satisfying valuation of the M&R’07 encoding corre-
sponds to a partial evaluation trace that satisfies the formula
φ. M&R’07 also asserts that PET is satisfied by the execu-
tion trace corresponding to the sequential plan generated by
the ∃-step formula. The main property of Def. 4, which is
necessary for showing that we actually generate a PET, is
ensured by the chains added to the original ∃-step encoding
and the additional edges in the Disabling Graph. The follow-
ing theorem states that every partial evaluation trace that is
satisfied by an executed trace can be extended to a full eval-
uation trace and thus forms a witness that the execution trace
satisfies the LTL formula. This gives us a second, indepen-
dent proof of correctness for the M&R’07 encoding.
Theorem 3. Let π be a trace and θ be an PET for the for-
mula φ on π. If π satisfies θ, then π satisfies φ.

Proof. We need to show that the PET ψ = (f0, . . . , fl) can
be extended to a full evaluation trace on π = (s0, . . . , sn),
s.t. π satisfies that evaluation trace. If so, we can apply
Thm. 2 and conclude that π also satisfies φ. Let i0, . . . , il
be the indices of Def. 4 for which θ is a PET. We claim that

θ∗ = (

i1−i0 times︷ ︸︸ ︷
f0, . . . f0,

i2−i1 times︷ ︸︸ ︷
f1, . . . , f1, . . . ,

il−il−1 times︷ ︸︸ ︷
fl, . . . , fl )

is an evaluation trace that satisfies π, and that π satisfies φ.
First we show that θ∗ is an evaluation trace. We start by
proving the enumerated properties of Def. 3. Consider the
ith element f∗ of θ∗ and let f∗∗ be the i + 1th element (if
such exists).

1. trivially satisfied
2. trivially satisfied
3. Xf ∈ f∗. We know that f∗ is the only repetition some fj

in the trace, as θ is a PET. Also f∗∗ = fj+1. Consequently
f ∈ f∗∗. In case f∗∗ does not exist, θ cannot be an PET.

4. X̊f ∈ f∗. We know that f∗ is the only repetition of some
fj in the trace, as θ is a PET. In case f∗∗ does not exist,
we have nothing to show. Else, f∗∗ = fj+1 and f ∈ f∗∗.

For the last three requirements relating to the temporal oper-
atorsE,G, and U , we can distinguish three cases depending
on where f∗ is situated in the sequence θ∗

• f∗ is the last element of θ∗

5. if Ef ∈ f∗ then f ∈ f∗, as θ is a PET.
6. if Gf ∈ f∗ then f ∈ f∗, as θ is a PET.
7. if fUg ∈ f∗ then g ∈ f∗, as θ is a PET.

• f∗ 6= f∗∗, i.e., the last repetition of f∗. We know that
f∗ = fj and f∗∗ = fj+1 for some j ∈ {0, . . . , l − 1}.
5. if Ef ∈ f∗ then either f ∈ fj = f∗ or Ef ∈ fj+1 =
f∗∗

6. if Gf ∈ f∗ then f ∈ fj = f∗ and Gf ∈ fj+1 = f∗∗

7. if fUG ∈ f∗ then either g ∈ fj+1 = f∗∗ or f ∈ fj =
f∗ and fUg ∈ fj+1 = f∗∗

• if f∗ = f∗∗

5. if Ef ∈ f∗ then Ef ∈ f∗∗
6. if Gf ∈ f∗ then Gf ∈ f∗∗ and f ∈ f∗
7. if fUg ∈ f∗ then either g ∈ f∗, or f ∈ f∗, but then

also fUG ∈ f∗∗, since f∗ = f∗∗

φ ∈ f0 holds as θ is a PET, which concludes conclude the
proof that θ∗ is an evaluation trace.

Lastly, we have to show that θ∗ satisfies π, i.e., we have
to show for each timestep j ∈ {0, . . . n} and every a ∈
A with is true in the ith element of θ∗ that a ∈ sj holds.
Consider first the indices of the last repetitions of each fk,
i.e., the states sik−1. Since θ is a PET, it satisfies (si1−1∩f0∩
A, . . . , sil−1∩fl∩A), so it satisfies the required property for
all time-steps ik − 1. Consider any other timestep t and its
next timestep in the PET ik − 1 (which always exists, since
the last index is equal to n). Since θ is a PET, we know that
st∩ (fk−1∩A) = sik−1∩ (fk ∩A). We have chosen to set
the tth element of θ∗ to fk. Since sik−1 ∩ (fk ∩A) satisfies
the required property for fk, so must st ∩ (fk ∩A) and thus
st itself (it can have only more true predicates).

We can now use this result to integrate support for X and
X̊ into the M&R’07 encoding. For that, we have to assert
that the second last condition of Def. 4 holds, as all other
requirements are already checked by the M&R’07 encoding.
We first add four new variables per time step t.
• exactOnet – exactly one action is executed at time t
• atLeastOnet – at least one action is executed at time t
• atMostOnet – at most one action is executed at time t
• nonet – no action is executed at any time ≥ t
To enforce the semantics of these variables, we add the fol-
lowing clauses per timestep:

∀o ∈ O : nonet → ¬ot

nonet → nonet+1

atLeastOnet →
∨

o∈O
ot

exactOnet → atLeastOnet ∧ atMostOnet
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Encoding the atMostOnet atom is a bit more complicated.
A native encoding requiresO(|O|2) clauses. There are how-
ever better encodings for the at most one constraint in SAT.
We have chosen the log-counter encoding, which introduces
log(|S|) new variables while only requiring |S| log(|S|)
clauses (Frisch et al. 2005). To ensure the semantics of the
atom atMostOnet, we add it as a guard to the log-counter
encoding, i.e., we add ¬atMostOnet to every clause. If
atMostOnet is required to be true, the log-counter clauses
have to satisfies, i.e., at most one action atom can be true. If
atMostOnet can be false, we can simply set it to⊥ thereby
satisfying all log-counter clauses. We lastly set exactOnet
for t = −1 to > and atLeastOnen+1 to false. Based on
these new variables, we can add the constraints necessary
for evaluating X and X̊ correctly under the ∃-step encod-
ing. For each timestep t, we add

(Xf)tLTL → exactOnet−1 ∧ f t+1 ∧ atLeastOnet

(X̊f)tLTL → exactOnet−1

(X̊f)tLTL → (f t+1 ∧ atLeastOnet) ∨ nonet
A valuation of this encoding represents a partial evaluation
trace satisfied by the execution trace of its actions. By ap-
plying Thm. 3, we know that a satisfying evaluation trace
for the plan exists. Showing completeness for the encod-
ing is trivial, since a sequential assignment satisfies the for-
mula for every plan. We will also call this extended encoding
M&R’07 in our evaluation, as it is exactly identical to this
one, provided no X or X̊ operator is present.

So far, we have not used the – in our view – most signif-
icant improvement: Relaxing the restrictions on parallelism
to only those actually needed by the current formula. Do-
ing so based on our theorem is surprisingly easy. Consider
a timestep of the M&R’07 encoding, in which actions can
be executed in parallel, which are given an implicit order
≺ by the ∃-step encoding. For each literal l ∈ Lit(A(φ))
a chain ensures that the action changing it is applied first,
i.e., that the “first” action of a timestep performs all changes
relevant to the whole formula and can thus check the for-
mula only in the resulting state. By applying Def. 4 and
Thm. 3, we have to ensure this property only for those
proposition symbols that need to be evaluated after the ac-
tions have been executed, i.e., for all at+1

LTL that are true.
We can do this simply by adding the literal ¬atLTL as a
guard (simiar to atMostOnet) to every clause in the chains
chain(≺;Eφl ;Rφl ;φa) and chain(≺;Eφl ;Rφl ;φ¬a). If we
have to make the literal atLTL true, the chains become ac-
tive, if not they are inactive (as they are trivially satisfied
by ¬atLTL). We will denote this improved encoding with
Improved-M&R’07.

To illustrate the effects of the improved M&R’07 encod-
ing, consider the following planning problem. There are six
proposition symbols a, b, c, d, e and f , of which a and b are
true in the initial state and e has to hold in the goal state.
There are five actions described in Tab. 2. We consider this
domain in conjunction with the formula φ = G((a ∧ d) →
Ef) = G(¬a ∨ ¬d ∨ Ef). The disabling graph, extended
by the edges needed for the M&R’07 encoding, is depicted
in Fig. 1. This planning problem has only a single solu-

X Y Z V W
pre a,b a,b c,d c,d g
add c d e g f
del a c

Table 2: Actions in the example domain

X

Y

Z

V

W

Figure 1: Extended disabling graph for the example domain.

tion, namely: Y, X, V, W, Z. Under the M&R’07 encod-
ing, we need four timesteps to find a plan, i.e., {Y}, {X},
{V}, {W,Z}. This is due to the fact that most action’s ef-
fects contain one of the three predicates contained in φ, but
not the others. Using the improved M&R’07 encoding, we
only need three timesteps, as now Y and X can be executed
together in the first timestep. The reason for this beeing pos-
sible is quite unintuitive, but it shows the strength of our
approach. In the M&R’07 encoding, the encoding correctly
detects that there is a state in which a and d are true simulta-
neously3 after the action Y has been executed and that thus
Ef has to hold after executing Y. In the plan for the im-
proved encoding, the solver can simply choose to achieve
Ef after {Y,X} has been executed. This way the solver is
never forced to achieve ¬a or ¬d and can thus completely
ignore the associated constraints, i.e., chains.

6 Parallelism with Tracking
There is however still room for more parallelism even com-
pared to the improved M&R’07 encoding. The key obser-
vation is that in many domains only a few actions actually
influence the truth of variables in an LTL formula, and that
those that do are usually close to each other in a topological
ordering of the inverse disabling graph. The ∃-step semantic
guarantees that if actions are executed in parallel, they can
be sequentially executed in this order. Let this ordering be
(o1, . . . , on). We can divide it into blocks, such that for each
block (oi, . . . , oj) it holds that

[oi]
φ
e ⊇ [oi+1]φe ⊇ · · · ⊇ [oj ]

φ
e

Along the actions in a block the effects that contain pred-
icates in A(φ) can only “decrease”. A block forms a set
of actions that can always – without further checking at
runtime – be executed in parallel in the M&R’07 en-
coding. The number of such blocks is surprisingly small
for most domains (see Tab. 3). We denote with B =
((o1, . . . , oi), . . . , (oj , . . . , on)) the sequence of blocks for
a given ordering of actions.

If an action from a blocks has been executed, at least (usu-
ally more) the first action of the next block cannot be exe-
cuted any more in the same timestep, as it would change
the truth of some a ∈ A(φ), even it would be possible

3Technically both a and d are not true.
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in the pure ∃-step encoding. We present a method to cir-
cumvent this restriction on parallelism. Instead of restricting
the amount of parallel actions executing inside a timestep,
we (partially) trace the truth of an LTL formula within that
timestep to allow maximal parallelism. This is based on the
insight that all proofs by Mattmüller and Rintanen (2007) do
not actually require an action to be present at any timestep,
i.e., the set of actions executed in parallel can also be empty.
So, conceptually, we split each timestep into |B| many
timesteps and restrict the actions in the ith splitted step to be
those of the ith block. Then we use the M&R’07 encoding,
without the need to add chain-clauses apart from those of
the ∃-step encoding, as they are automatically fulfilled. The
resulting encoding would be sound and complete for LTL
formulae without X and X̊ by virtue of the results proven
by Mattmüller and Rintanen (2007).

We can however improve the formula even further. In the
proposed encoding, we would compute the state after each
block using the Kautz&Selman encoding. This is unneces-
sary, as know from the ∃-step encoding that we only need to
compute it after all blocks of one original timestep have been
executed. We only need to trace the truth of propositions in
A(φ) between blocks. For that we don’t need to check pre-
conditions – they are already ensured by the ∃-step encod-
ing. We end up with the ∃-step encoding, where we add at
every timestep a set of intermediate timepoints at which the
truth of propositions in A(φ) and the truth of the LTL for-
mula φ is checked. Thus we call this encoding OnParallel.

As we have noted above, this construction works only for
the original M&R’07 encoding, as supporting the X and X̊
requires to be able to specify that in the next timestep some
action must be executed. This might not be possible with
splitted timesteps, as the next action to be executed may only
be contained in a timestep |B| steps away. Luckily, we can
fix this problem by slightly altering the encoding we used to
track the truth of X and X̊ operators.

(Xf)t → atMostOnet−1 ∧ ((atLeastOneit ∧ f t+1
LTL)∨

(nextNonet+1 ∧ (Xf)t+1
LTL))

(X̊f)t → atMostOnet−1 ∧ ((f t+1
LTL ∧ atLeastOnet)∨

(nextNonet+1 ∧ (X̊f)t+1
LTL) ∨ nonet))

The semantics of noneAtt is ensured by clauses
nextNonet → ¬ot for all i ∈ O. Lastly, we add
¬Xfn++11

LTL for any Xf ∈ S stating that a next-formula
cannot be made true at the last timestep. This would else be
possible, since atMostOnen could simply be made true.
The OnParallel encoding is correct by applying Thm. 3.

7 Evaluation
We have conducted an evaluation in order to asses the perfor-
mance of our proposed encodings. We used the same exper-
imental setting as Mattmüller and Rintanen (2007) in their
original paper. We used the domains trucks and rover
from the preference track of IPC5 (the original paper con-
sidered only rover), which contain temporally extended
goals to specify preference. In these domains, temporally-
extended goals are formulated using the syntax of PDDL

3.0 (Gerevini and Long 2005). We parse the preferences and
transform them into LTL formulae using the patterns defined
by Gerevini and Long (Gerevini and Long 2005). As did
Mattmüller and Rintanen, we interpret these preferences as
hard constraints and randomly choose a subset of three con-
straints per instance4. To examine the performance of our
encoding for X and X̊ , we have also tested the instances
of the trucks domain with a formula that contains these
operators. We have used the following formula5:

φ = ∀?l−Location?t− Truck :

G(at(?l, ?t)→ X̊(¬at(?l, ?t) ∨ X̊¬at(?l, ?t)))
It forces each truck to stay at a location for at most one
timestep – either it leaves the location right after entering
it, or in the next timestep. The domain contains an explicit
symbolic representation of time, which is used in tempo-
ral goals. When planning with φ, the number of timesteps
is never sufficed to find a plan satisfying φ. We have there-
fore removed all preconditions, effects, and action param-
eters pertaining to the explicit representation of time. As a
result, the domain itself is easier than the original one. We
denote these instances in the evaluation with trucks-XY-φ.

Each planner was given 10 minutes of runtime and 4GB of
RAM per instance on an Intel Xeon E5-2660 v3. We’ve used
the SAT solver Riss6 (Manthey, Stephan, and Werner 2016),
one of the best-performing solvers in the SAT Competition
2016. We have omitted results for all the trucks instances
11− 20, as no planner was able to solve them.

Table 3 shows the results of our evaluation. We show per
instance the number of ground actions and blocks. The num-
ber of blocks is almost always significantly smaller than the
number of ground operators. In the largest rover instance,
only≈ 1.4% of operators start a new block. For the trucks
domain this is ≈ 1.7% for the largest instance.

For every encoding, we show both the number of paral-
lel steps (i.e. timesteps) necessary to find a solution, as well
as the time needed to solve the respective formula and the
number of sequential plan steps found by the planner. In al-
most all instances the OnParallel encoding performs best,
while there are some where the improved M&R’07 encod-
ing is faster. Our improvement to the M&R’07 encoding al-
most always leads to a faster runtime. Also, the improved
parallelism actually leads to shorter parallel plans. In ap-
proximately half of the instances we can find plans with a
fewer parallel steps. In the experiments with the formula φ
containing the X̊ operator, this is most pronounced. The On-
Parallel encoding cuts the number of timesteps by half and
is hence significantly faster, e.g., on trucks-03-φ where the
runtime is reduced from 165s to 6s. On the other hand, the
sequential plans found are usually a few actions longer, al-
though the same short plan could be found – this result is
due to the non-determinism of the SAT solver.

4Mattmüller and Rintanen (2007) noted that it is impossible to
satisfy all constraints at the same time and that a random sample of
more than three often leads to unsolvable problems. If a sample of
3 proved unsolvable we have drawn a new one.

5We handlethese lifted LTL constraints by grounding them us-
ing the set of delete-relaxed reachable ground predicates.
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8 Conclusion
In this paper, we have improved the state-of-the-art in trans-
lating LTL planning problems into propositional formulae
in several ways. We have first pointed out an interesting the-
oretical connection between the propositional encoding by
Mattmüller and Rintanen (2007) and the compilation tech-
nique by Torres and Baier (2015). Next, we have presented
a new theoretical foundation for the M&R’07 encoding –
partial evaluation traces. Using them, we presented (1) a
method to allow the X and X̊ operators in the M&R’07
encoding, (2) a method to further improve the parallelism
in the M&R’07 encoding, and (3) a new encoding for LTL
planning. In an evaluation, we have shown that both our
improved M&R’07 encoding and the OnParallel encoding
perform empirically better than the original encoding by
Mattmüller and Rintanen. We plan to use the developed en-
coding in a planning-based assistant (Behnke et al. 2018) for
enabling the user to influence the instructions he is presented
by the assistant, which is turn are based on the solution gen-
erated by a planner. Instructions given by the user can be
interpreted as LTL goal and integrated into the plan using
the presented techniques.
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Abstract
In this paper we describe STP, a novel algorithm for temporal
planning. Similar to several existing temporal planners, STP
relies on a transformation from temporal planning to classi-
cal planning, and constructs a temporal plan by finding a se-
quence of classical actions that solve the problem while satis-
fying a given set of temporal constraints. Our main contribu-
tion is that STP can solve temporal planning problems that
require simultaneous events, i.e. the temporal actions have
to be scheduled in such a way that two or more of their ef-
fects take place concurrently. To do so, STP separates each
event into three phases: one phase in which temporal actions
are scheduled to end, one phase in which simultaneous ef-
fects take place, and one phase in which temporal actions are
scheduled to start. Experimental results show that STP sig-
nificantly outperforms state-of-the-art temporal planners in a
domain requiring simultaneous events.

Introduction
How expressive can a forward-search temporal planner be?
The third International Planning Competition (IPC) intro-
duced the most common language for modeling tempo-
ral planning problems, PDDL 2.1 (Fox and Long 2003).
PDDL 2.1 is compatible with classical planning problems,
and its semantics are defined in terms of the semantics
of classical actions. This connection was studied further
by Rintanen (2007), who proved that plan existence for
temporal planning with succinct models is EXPSPACE-
complete. As a motivation, Rintanen mentioned a basic re-
duction from temporal planning to classical planning called
TEMPO (Cushing et al. 2007), and proposed a restriction to
PDDL 2.1 that is reducible to classical planning, implying a
decrease in complexity from EXPSPACE to PSPACE.

Later, Jiménez, Jonsson, and Palacios (2015) built on this
idea and provided an effective implementation of TEMPO re-
lying on a simple modification of a classical planner. In con-
trast to Cushing et al. (2007) and later work, Jiménez, Jon-
sson, and Palacios dealt with more expressive forms of con-
currency, i.e. concurrency does not only occur in the form of
single hard envelopes.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Rintanen (2007) argued that the complexity of temporal
planning remains in PSPACE if we avoid an unbounded de-
pendency on past and present information for determining
the next temporal state. His restrictions prohibit a temporal
action from executing in parallel with itself, and assumes
that time is discrete.

In this work we explore further the expressivity of classi-
cal planning for solving complex temporal problems, focus-
ing on the case of simultaneous events in which the effects
of temporal actions take place concurrently. Many situations
in the real-world involve simultaneous events. A clear ex-
ample are relay races where a runner gives the relay at the
same time that another runner receives it. This scenario, for
instance, could be translated into an assembly line where
robotic arms give and receive mechanical pieces.

Given the importance of classical planning as a basic
model for multi-agent planning (Brafman and Domshlak
2008), we foresee the importance of truly concurrent tem-
poral planning for enabling interesting forms of multi-agent
temporal planning. Furthermore, Rintanen (2015b) showed
that PDDL 2.1 induces temporal gaps between consecutive
independent actions; thus, no current approach taking PDDL
problems as input are capable of producing plans with simul-
taneous events.

Our approach builds on previous work by Jiménez, Jons-
son, and Palacios (2015), but we stress the differences with
respect to the initial ideas of Rintanen (2007), such that our
translation is not necessarily affected by the time scale or the
durations of the actions.

The rest of the paper is organized as follows. First we in-
troduce classical and temporal planning models. Next we
present STP, motivating the compilation and proving its
soundness. Then we present experimental results, showing
that STP is particularly strong in the case of simultaneous
events. Finally, we comment on related work and conclude.

Background
In this section we introduce the formalisms of classical plan-
ning and temporal planning. Since we are interested in tem-
poral planning with simultaneous events, we focus specifi-
cally on the semantics of concurrent action execution. Fur-

11



thermore, we introduce the mechanism for preserving the
temporal constraints between actions.

Classical Planning
Let F be a set of propositional variables or fluents. A state
s ⊆ F is a subset of fluents that are true, while all fluents in
F \ s are implicitly assumed to be false. A subset of fluents
F ′ ⊆ F holds in a state s if and only if F ′ ⊆ s.

A classical planning instance is a tuple P = 〈F,A, I,G〉,
where F is a set of fluents, A is a set of actions, I ⊆ F
is an initial state, and G ⊆ F is a goal condition (usually
satisfied by multiple states). Each action a ∈ A has precon-
dition pre(a) ⊆ F , add effect add(a) ⊆ F , and delete effect
del(a) ⊆ F , each a subset of fluents. Action a is applicable
in state s ⊆ F if and only if pre(a) holds in s, and applying
a in s results in a new state sn a = (s \ del(a)) ∪ add(a).

A plan for P is an action sequence π = 〈a1, . . . , an〉 that
induces a state sequence 〈s0, s1, . . . , sn〉 such that s0 = I
and, for each i such that 1 ≤ i ≤ n, ai is applicable in si−1
and results in the next state si = si−1nai. The plan π solves
P if and only if G holds in the last state, i.e. if G ⊆ sn.

Actions may have conditional effects, a common exten-
sion to classical actions. Each conditional effect has a con-
dition and effects 〈condi(a), caddi(a), cdeli(a)〉. When an
action a with conditional effects is applicable in an state s,
the effects of a include effects whose conditions hold in s,
assuming the usual consistency requirements. Let’s say

tadd = add(a) ∪⋃s�condi(a) caddi(a),
tdel = del(a) ∪⋃s�condi(a) cdeli(a).

Then, sn a = (s \ tdel(a)) ∪ tadd(a).
A concurrent actionA = {a1, . . . , ak} is a set of multiple

actions from A. We adopt the definition of valid concurrent
actions from PDDL 2.1 (Fox and Long 2003):
Definition 1. A concurrent action A = {a1, . . . , ak} is
valid if an only if does not exist a fluent f ∈ F and an ac-
tion pair (ai, aj) ⊆ A such that f ∈ add(ai) ∪ del(ai) and
f ∈ pre(aj) ∪ add(aj) ∪ del(aj).

Intuitively, if f is an effect of an action ai ∈ A, f cannot
appear as a precondition or effect of another action aj ∈ A.
Though this definition imposes a strong restriction on con-
current actions, it is commonly used in temporal planning,
and implemented as part of VAL (Howey, Long, and Fox
2004), a tool used to validate temporal plans.

We can view a valid concurrent action A = {a1, . . . , ak}
as a classical action by defining its precondition and effects
as the union of the individual preconditions and effects:

pre(A) =
k⋃

i=1

pre(ai), add(A) =
k⋃

i=1

add(ai),

with del(A) defined analogously. Due to Definition 1, A is
a well-defined classical action without conflicting effects.

A concurrent plan for P is a sequence of concurrent ac-
tions π = 〈A1, . . . ,An〉. The concurrent plan π solves P
if and only if each concurrent action Ai, 1 ≤ i ≤ n, is
valid and the resulting sequence of equivalent classical ac-
tions solves P according to the semantics of classical plans.

Temporal Planning
A temporal planning problem1 is a tuple P = 〈F,A, I,G〉,
where the fluent set F , initial state I and goal condition G
are defined as for classical planning. The action set A con-
sists of temporal or durative actions a ∈ A composed of:

• d(a): duration.

• pres(a), preo(a), pree(a): preconditions of a at start, over
all, and at end, respectively.

• adds(a), adde(a): add effects of a at start and at end.

• dels(a), dele(a): delete effects of a at start and at end.

Although a has a duration, its effects apply instanta-
neously at the start and end of a, respectively. The precondi-
tions pres(a) and pree(a) are also checked instantaneously,
but preo(a) has to hold for the entire duration of a.

The semantics of temporal actions can be defined in terms
of two discrete events starta and enda, each of which is nat-
urally expressed as a classical action (Fox and Long 2003):

pre(starta) = pres(a), pre(enda) = pree(a),
add(starta) = adds(a), add(enda) = adde(a),
del(starta) = dels(a), del(enda) = dele(a).

Starting temporal action a in state s is equivalent to ap-
plying the classical action starta in s, first verifying that
pre(starta) holds in s. Ending a in state s′ is equivalent to
applying enda in s′, first verifying that pre(enda) holds in s′.
The duration d(a) and precondition over all preo(a) impose
restrictions on this process: enda has to occur exactly d(a)
time units after starta and preo(a) has to hold in all states
between starta and enda. For brevity, we use the term con-
text to refer to a precondition over all preo(a), and we use
Fo ⊆ F to denote the set of fluents that appear in contexts.

A temporal plan for P is a set of action-time pairs π =
{(a1, t1), . . . , (ak, tk)}. Each action-time pair (a, t) ∈ π
is composed of a temporal action a ∈ A and a scheduled
start time t of a, and induces two events starta and enda
with associated timestamps t and t + d(a), respectively. If
we order events by their timestamp and merge events with
the same timestamp, the result is a concurrent plan π′ =
〈A1, . . . ,Am〉 for the associated classical planning problem
P ′ = 〈F,A′, I, G〉, where A′ = {starta, enda : a ∈ A}.

A temporal plan π = {(a1, t1), . . . , (ak, tk)} solves P if
and only if the induced concurrent plan π′ = 〈A1, . . . ,Am〉
solves the associated classical planning problem P ′ and, for
each (a, t) ∈ π with starta ∈ Ai and enda ∈ Aj , the context
preo(a) holds in the states si, . . . , sj−1 of the state sequence
induced by π′, i.e. in all states between actions Ai and Aj .

For π to solve P , the concurrent actions of the induced
concurrent plan π′ = 〈A1, . . . ,Am〉 have to be valid ac-
cording to Definition 1. The plan π contains simultaneous
events if and only if m < 2k, i.e. if at least two induced
events share time stamps. The context preo(a) of a tempo-
ral action a is not affected by simultaneous events: if starta
is part of a concurrent action A, it is safe for another event
in A to add a fluent f ∈ preo(a), and if enda is part of a
concurrent actionA′, it is safe for an event inA′ to delete f .

1We use the definition of PDDL 2.1 (Fox and Long 2003).
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1) τa − τb ≤ −u
2) τb − τc ≤ −u
3) τc − τc ≤ 1− u
4) τc − τa ≤ 4− u
5) τa − τb ≤ −1− u

(a) Temporal constraints.

τa

τb τc

−1 − u

−u

4 − u

(b) STN.

a[5]

b[4]

c[1]

Time

(c) Resulting temporal plan.

Figure 1: Example temporal constraints, associated STN and resulting temporal plan.

The quality of a temporal plan is given by its makespan,
i.e. the temporal duration from the the start of the first tem-
poral action to the end of the last temporal action. Without
loss of generality, we assume that the first temporal action
is scheduled to start at time 0, i.e. min(a,t)∈π t = 0. In this
case, the makespan of a temporal plan π is formally defined
as max(a,t)∈π(t+ d(a)).

Simple Temporal Networks (STNs)
Temporal constraints on time variables can be represented
using simple temporal networks, or STNs (Dechter, Meiri,
and Pearl 1991). An STN is a directed graph with time vari-
ables τi as nodes, and an edge (τi, τj) with label c represents
a constraint τj − τi ≤ c. Dechter, Meiri, and Pearl (1991)
showed that scheduling fails if and only if an STN contains
negative cycles. Else, the range of feasible assignments to
a time variable τi is given by [−di0, d0i], where dij is the
shortest distance in the graph from τi to τj and τ0 is a ref-
erence time variable whose value is assumed to be 0. Floyd-
Warshall’s shortest path algorithm can be used to compute
shortest paths and test for negative cycles (i.e. whether the
cost of a shortest path from a node to itself is negative).

We illustrate the application of STNs to temporal plan-
ning using an example from (Cushing et al. 2007). Let a, b
and c be temporal actions with durations d(a) = 5, d(b) = 4
and d(c) = 1, respectively. Assume that we are given
an event sequence 〈starta, startb, startc, endc, enda, endb〉.
Then there are three associated time variables τa, τb and τc;
we designate τa as the reference time variable whose value
is 0 since a is the temporal action that starts first. Given the
above event sequence, the temporal constraints induced by
consecutive events in the sequence are:

1. τa < τb,

2. τb < τc,

3. τc < τc + d(c),

4. τc + d(c) < τa + d(a),

5. τa + d(a) < τb + d(b).

Since the temporal constraints of TEMPO are strict, we in-
troduce a slack unit of time u and rewrite each constraint
τj +x < τi+y on the form τj− τi ≤ y−x−u (this is pos-
sible since τi and x are non-negative). Figure 1a shows the
temporal constraints rewritten this way. Note that constraint
5) subsumes constraint 1), and that constraint 3) is trivially
satisfied whenever u < 1.

Figure 1b shows the associated STN after removing con-
straints 1) and 3). This STN has no negative cycles, and the
range of feasible assignments to τb is given by [−dba, dab] =
[1 + u, 4− 2u]. Likewise, the range of feasible assignments
to τc is given by [−dca, dac] = [1 + 2u, 4 − u]. This makes
sense: a starts at time 0, so for b to end after a ends, b has
to start after time 1. For c to end before a ends, c has to
start before time 4. The remaining bounds are implied by
the fact that c starts after b starts. Since one of the goals
of temporal planning is to minimize makespan, i.e. the time
until the last action of the temporal plan ends, we always se-
lect the smallest possible assignment to each time variable
τi, i.e. −di0. In the example, this results in a temporal plan
{(a, 0), (b, 1 + u), (c, 1 + 2u)}, illustrated in Figure 1c.

Theoretically, STNs can be modeled in PDDL, using flu-
ents to represent the entries of a matrix and actions to sim-
ulate updates of Floyd-Warshall. However, each entry of the
matrix can take on a range of values, and the size of the
matrix is not bounded by the number of active actions, but
rather the total number of temporal actions in the plan. In
practice, the enormous number of necessary fluents and ac-
tions makes this approach unfeasible.

Jiménez, Jonsson, and Palacios (2015) proposed an al-
ternative approach for incorporating STNs into temporal
planning. They represent lifted temporal states as part of
the search nodes of the Fast Downward planning sys-
tem (Helmert 2006), which is where auxiliary information
about a state is stored (e.g. the predecessor state). Specifi-
cally, to each search node they add an STN, a list of active
actions and the latest event.

Each time a compiled action is applied (either starta or
enda for some a), Fast Downward generates a successor
state. To the search node associated with this state they add
an STN which is a copy of the STN of its predecessor, but
with a single new edge corresponding to the temporal con-
straint generated by the successor rule of TEMPO. They then
recompute the shortest paths of the STN.

Given an STN (V,E) with accompanying shortest paths,
Cesta and Oddi (1996) described an O(|V ||E|) algorithm
for adding a single edge to the STN and recomputing the
shortest paths. However, Jiménez, Jonsson, and Palacios
take a different approach to updating the STN. Instead of
explicitly representing the STN, they represent the STN im-
plicitly using the matrix of shortest distances (as in Floyd
Warshall’s algorithm). When a new edge (τi, τj) is added
to the STN, for each pair of nodes there is a single new
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candidate shortest path, namely that via (τi, τj). Since the
shortest distances to τi and from τj are already represented,
the update can be performed in time O(|V |2), which is typi-
cally much smaller than O(|V ||E|). In the modified version
of Fast Downward, they prune a search node whenever the
corresponding STN contains negative cycles, i.e. when the
temporal actions cannot be scheduled in a way that coin-
cides with the current event sequence. The temporal con-
straints can thus be viewed as an implicit precondition of
actions which is invisible to the planner (e.g. when comput-
ing heuristics).

POPF (Coles et al. 2010) and OPTIC (Benton, Coles, and
Coles 2012) also use STNs for solving temporal planning
problems. POPF encodes the STN using linear program-
ming, which allows it to compute plans with actions that
cause continuous linear numeric changes. On the other hand,
OPTIC encodes the STN as a mixed integer problem which
additionally allows handling temporally dependent costs.

The STP Planner
In this section we describe STP (Simultaneous Temporal
Planner). STP is built on top of the same framework as
TP (Jiménez, Jonsson, and Palacios 2015), but incorporates
additional machinery in order to handle simultaneous events.
STP shares several characteristics with TP:

1. Both TP and STP apply a modified version of the Fast
Downward (FD) planning system to generate temporal
plans. The modified version of FD incorporates simple
temporal networks or STNs to represent temporal con-
straints.
There is a time variable τi for each temporal action ai
of a temporal plan, and a feasible assignment to τi corre-
sponds to the time ti when ai should be scheduled to form
an action-time pair (ai, ti). During the search process, a
branch is pruned if the temporal constraints are violated.
At the end of the section we describe the temporal con-
straints imposed by STP.

2. Both TP and STP impose a bound K on the number of
active temporal actions, that started but did not end yet.
Hence no more than K temporal actions can execute con-
currently.

3. Both compilations are described for problems with fixed
durations and no duration dependent effects.

Unlike TP, STP also defines a constant C that represents
the maximum value of a cyclic counter that starts at 0, and
resets to 0 after reaching C (more details later).

STP works by protecting the contexts of temporal actions
in case a naı̈ve execution of events using classical planning
would produce inconsistent results. Our compilation divides
each concurrent event into three phases:

1. End phase (immediately before the event). This is where
active actions are scheduled to end, and in doing so, the
corresponding counters of fluents in context are decre-
mented.

2. Event phase (concurrent event itself). This is where si-
multaneous events take place, both ending and starting

endphase finisha

eventphase
dostartca
doendca

startphase
launcha
resetf

setevent

setstart

setendi

Figure 2: Interaction between the different actions intro-
duced by the STP planner in the different phases.

freea startinga

activeaendinga

dostartca

launcha

finisha

doendca

Figure 3: Fluents that are enabled each time an action in the
compilation is executed.

actions. Here we check preconditions and apply effects,
and verify that the concurrent event is valid.

3. Start phase (immediately after the event). Here we check
that the contexts of active actions that just started are satis-
fied (possibly as a result of being added during the concur-
rent event itself), and increment the corresponding coun-
ters of fluents in context.

Figure 2 shows the interconnection between the phases
and actions introduced in the compilation. Actions setevent,
setstart and setendi change the current phase, whereas the
other actions can only be applied (if their preconditions
hold) in the corresponding phase. Actions dostart and doend
correspond to the semantic events. Execution begins in the
endphase, and ends in the startphase.

Figure 3 shows the cycle each action a ∈ A passes
through in the compilation. Between dostarta and doenda,
actions launcha and finisha execute the start phase and end
phase, respectively. Each time we transition from one state
to another, we delete the auxiliary fluent of the state, and
add the next, thus obtaining a mutex invariant. We also use
additional fluents nstartinga and nendinga, that have the op-
posite values of startinga and endinga, respectively.

Now, we are ready to present the compilation itself. Let
P = 〈F,A, I,G〉 be a temporal planning problem. Given
constants K and C, STP compiles P into a classical plan-
ning problem ΠK,C = 〈FK,C , AK,C , IK,C , GK,C〉.

Fluents
To ensure that the contexts of temporal actions are not vio-
lated, STP follows the same scheme as TP: for each fluent
f ∈ Fo that appears in contexts, we introduce fluents countcf
that model the number c of active temporal actions that have
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X equals Y

Figure 4: The seven relations on interval pairs (X,Y ) in
Allen’s interval algebra.

f as context. For an event to delete a fluent f ∈ Fo, its count
has to equal 0 (no active actions can have f as context).

STP also has to ensure that joint events are valid, and en-
sure that contexts are properly handled at the start and end
of a temporal action. Recall that a fluent f ∈ preo(a) in the
context of a temporal action amay be added by an event that
is simultaneous with the start of a, and that f may be deleted
by an event that is simultaneous with the end of a.

The set FK,C ⊇ F contains the following new fluents:
• For each a ∈ A, fluents freea and activea indicating that
a is free (i.e. did not start) or active.

• For each f ∈ Fo and each c, 0 ≤ c ≤ K, a fluent countcf
indicating that c active actions have f as context.

• For each c, 0 ≤ c ≤ K, a fluent concurc indicating that
there are c concurrent active actions.

• Fluents endphase, eventphase and startphase corre-
sponding to the three phases described above.

• For each a ∈ A, fluents startinga, endinga, nstartinga
and nendinga indicating that a is starting, ending, not
starting and not ending, respectively.

• For each f ∈ F , fluents canpref and canefff indicating
that we can use f as a precondition or effect.

• Fluents endcounti, 0 ≤ i < C, that model the number of
times the end phase has occurred. This counter is cyclic,
i.e. if i = C − 1, then i+ 1 = 0.
To motivate the role of the end count, we consider an ex-

ample instance of the Allen’s Interval Algebra (AIA) do-
main (Jiménez, Jonsson, and Palacios 2015), where a set of
time intervals must be scheduled such that they comply with
a set of relations between them (see Figure 4). The example
is the following: the start of i1 and i2 should be simultane-
ous, as should the end of i2 and i3. The durations of the in-

tervals are 5 for i1 and i3, and 11 for i2. Figure 5a shows the
only possible solution for this problem, whereas Figure 5b
shows two different intermediate solutions A and B that the
planner might explore. The black dotted lines indicate end
phases. In solution A, the start of i3 is concurrent with the
end of i1, which is not the case in solution B. The solid red
line indicates the time at which solutionsA andB assign the
same values to the fluents in FK,C .

If no end counts are maintained and a planner first ex-
plores A, it will not find a solution since ending i2 and i3
simultaneously violates the temporal constraints. When the
planner later exploresB, it will find the state on fluents iden-
tical to A and prune this branch of search. As a result, the
planner will report that no solution exists, even though the
instance does have a valid solution, namely B. The end count
allows the planner to distinguish between A and B.

Note that the end count is not infallible: since it is cyclic,
state repetitions can still happen. The higher the end count
is, the less likely it is that states are repeated. However, in-
creasing the end count increases the complexity of the prob-
lem (higher number of fluents and actions), so it can be more
difficult to obtain a solution.
Lemma 1. The number of fluents of ΠK,C is given by
|FK,C | = 3 |F |+ 6 |A|+ (K + 1) (|Fo|+ 1) + C + 3.

Proof. By inspection of the fluents in FK,C . For each f ∈
F , FK,C contains three fluents f , canpref and canefff .
For each a ∈ A, FK,C contains six fluents freea, activea,
startinga, endinga, nstartinga and nendinga. For each f ∈
Fo, FK,C contains K + 1 fluents of type countcf , and there
areK+1 fluents of type concurc. Finally, there areC fluents
of type endcounti, and three fluents endphase, eventphase
and startphase.

The initial state IK,C is defined as

IK,C = I ∪ {freea, nstartinga, nendinga : a ∈ A}
∪ {concur0, endphase, endcount0} ∪ {count0f : f ∈ Fo}
∪ {canpref , canefff : f ∈ F},

and the goal is GK,C = G ∪ {concur0} ∪ {startphase}.

Actions
The action set AK,C contains several actions corresponding
to each temporal action a ∈ A: dostartca and launcha for
starting a, and doendca and finisha for ending a. For each c,
0 ≤ c < K, action dostartca is defined as

pre = pres(a) ∪ {eventphase, concurc, freea}
∪ {count0f : f ∈ Fo ∩ dels(a)} ∪ {canpref : f ∈ pres(a)}
∪ {canefff : f ∈ adds(a) ∪ dels(a)},

add = adds(a) ∪ {concurc+1, startinga},
del = dels(a) ∪ {concurc, freea, nstartinga}
∪ {canefff : f ∈ pres(a)}
∪ {canpref , canefff : f ∈ adds(a) ∪ dels(a)}.

For a given c < K, we can only start a in the event phase
if there are c active actions and a is free. All contexts deleted
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Solution A
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Time
Solution B

(b) Two possible intermediate solutions. With no end counter, B is not explored (see text).

Figure 5: Example instance of the AIA domain: i1 and i2 start at the same time, while i2 and i3 end at the same time.

at start of a need a count of 0, and all preconditions and
effects at start of a have to be available. Starting a adds fluent
startinga, deletes freea and nstartinga, and increments the
number of active actions. Moreover, deleting fluents of type
canpref and canefff prevents invalid joint events: if f is a
precondition at start of a, f can no longer be used as an
effect in this event phase, and if f is an effect at start of a, f
can no longer be used as a precondition or effect.

For each c, 0 ≤ c < K, action doendca is defined as

pre = pree(a) ∪ {eventphase, concurc+1, endinga}
∪ {count0f : f ∈ Fo ∩ dele(a)} ∪ {canpref : f ∈ pree(a)}
∪ {canefff : f ∈ adde(a) ∪ dele(a)},

add = adde(a) ∪ {concurc, freea, nendinga},
del = dele(a) ∪ {concurc+1, endinga}
∪ {canefff : f ∈ pree(a)}
∪ {canpref , canefff : f ∈ adde(a) ∪ dele(a)}}.

For a given value of c, we can only end a in the event
phase if there are c+1 active actions and a is already sched-
uled to end, represented by fluent endinga. Ending a adds
fluents freea and nendinga and decrements the number of
active actions. The remaining action definition is analogous
to dostartca and controls the validity of the joint event.

Action launcha is responsible for completing the start of
a during the start phase:

pre = preo(a) ∪ {startphase, startinga},
add = {activea, nstartinga},
del = {startinga}.

This is where we check that the contexts of a hold, and due
to the precondition startinga we can only launch a if a was
started during the event phase. The result is adding activea
and nstartinga and deleting startinga. In addition to the de-
scribed effects, the action launcha includes conditional ef-
fects 〈{countlf}, {countl+1

f }, {countlf}〉, f ∈ preo(a) and
0 ≤ l < K, incrementing the count of each f ∈ preo(a).

Finally, action finisha is needed to schedule a for ending:

pre = {endphase, activea},
add = {endinga},
del = {activea, nendinga}.

The result is adding endinga and deleting activea and
nendinga. In addition, finisha includes conditional effects
for decrementing the context counts of fluents in preo(a).

The action set AK,C also needs actions setevent, setstart

and setendi, 0 ≤ i < C, whose purpose is to switch between
phases. Action setevent is defined as

pre = {endphase},
add = {eventphase},
del = {endphase}.

Action setstart is defined as

pre = {eventphase} ∪ {nendinga : a ∈ A},
add = {startphase},
del = {eventphase}.

Note that we cannot leave the event phase unless all actions
in the joint event have ended.

Action setendi is defined as

pre = {startphase, endcounti} ∪ {nstartinga : a ∈ A}
∪ {canpref , canefff : f ∈ F},

add = {endphase} ∪ {endcountj : j = (i+ 1) mod C},
del = {startphase, endcounti}.

Note that we cannot leave the start phase unless all actions
in the joint event have started and all fluents are available as
preconditions or effects. In addition, setendi increments the
end count.

The resulting action set,AK,C , also contains a reset action
resetf for each f ∈ F :

pre = {startphase},
add = {canpref , canefff},
del = ∅.

These actions can only be applied in the start phase.

Lemma 2. The number of actions of the classical planning
problem ΠK,C is |AK,C | = (2K + 2) |A|+ C + |F |+ 2.

Proof. For each a ∈ A, AK,C contains 2K + 2 actions
dostartca, doendca, launcha and finisha, 0 ≤ c < K. AK,C
also contains C + 2 actions setevent, setstart and setendi,
0 ≤ i < C, and |F | actions of type resetf .
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In the modification of FD, we introduce temporal con-
straints every time we generate events. For a given event
e, let τe = τa if e = starta for some temporal action a,
and let τe = τa + d(a) if e = enda. Let {e1, . . . , ek} be
a concurrent event generated during the event phase of our
compilation. To ensure that the events are scheduled at the
same time, we introduce the temporal constraint τej ≤ τej+1

for each j, 1 ≤ j < k, as well as the temporal constraint
τek ≤ τe1 . In addition, for each active action a′ that started
before the concurrent event, we introduce the temporal con-
straint τej + u ≤ τa′ + d(a′) for each j, 1 ≤ j < k, where
u is a slack unit of time which ensures that the end of a′
takes place strictly after ej . This last constraint is redundant
since the end of a′ will eventually be scheduled after the
given concurrent event, but in practice it helps ensure that
unsound temporal plans are pruned as soon as possible.

For two consecutive concurrent events {e1, . . . , ek} and
{e′1, . . . , e′m}, we introduce the constraint τek+u ≤ τe′1 . Our
modification of FD maintains an STN that is updated each
time a new temporal constraint is added, and prunes a search
node as soon as the temporal constraints are impossible to
satisfy, i.e. when the STN contains negative cycles.

Theorem 3 (Soundness). Let π′ be a plan that solves the
classical planning instance ΠK,C by our modified version
of FD. Given π′, we can always construct a temporal plan π
that solves the temporal planning instance Π.

Proof. The system can only be in one phase at a time, and
we can only cycle through phases in the order endphase →
eventphase → startphase → endphase using actions
setevent, setstart and setendi. The system is initially in the
end phase, and the goal state requires us to be in the start
phase with no actions active (due to goal condition concur0).

A temporal action a can start in the event phase and
launch in the start phase. Specifically, the fluent nstartinga
is deleted by dostartca and added by launcha. After starting
a in the event phase, we cannot end a until another subse-
quent event phase since the precondition endinga of action
doendca is only added by finisha, which is only applicable
in the end phase. Together with the fact that no action is ac-
tive in the goal, starting a implies that we have to fully cycle
through all the phases at least one more time. In turn, this
requires us to apply action setendi. Due to the precondition
nstartinga of setendi, we cannot start a in the event phase
without launching a in the very next start phase.

Likewise, a temporal action a can finish (i.e. be scheduled
for ending) in the end phase, and end in the event phase.
Specifically, the fluent nendinga is deleted by finisha and
added by doendca. After ending a in the event phase, we have
to apply action setstart at least one more time since the goal
state requires us to be in the start phase. Due to the precon-
dition nendinga of setstart, we cannot finish a in the end
phase without ending a in the very next event phase.

For each f ∈ F , fluents canpref and canefff are true each
time we apply action setevent, i.e. when entering the event
phase. These fluents are true in the initial state, i.e. in the end
phase, and are only deleted by actions of type dostartca and
doendca, which are only applicable in the event phase. The

precondition {canpref , canefff} of action setendi requires
us to reset f in the start phase using action resetf , and there
are no actions that delete these fluents in the end phase.

A solution plan π′ for ΠK,C thus has the following form:

〈setevent, dostarta, setstart, launcha, resetf , setend, . . . ,

. . . , setend, finisha, setevent, doenda, setstart〉

For clarity, actions that alter the phases are underlined. We
may, of course, start and launch multiple actions at once, as
well as finish and end multiple actions at once. We may also
start and end actions during the same event phase.

We show that each joint event induced by π′ is valid.
Each time a fluent f appears as an effect of an event, delet-
ing fluents canpref and canefff prohibits f from appear-
ing as a precondition or effect of another event in the same
event phase (resetf is not applicable until the following start
phase). Likewise, each time f appears as a precondition,
deleting canefff prohibits f from appearing as an effect of
another event. Because of the mechanism for finishing and
launching temporal actions, the context of a temporal action
amay be added by an event simultaneous with starting a and
deleted by an event simultaneous with ending a.

Since π′ is reported as a solution plan for ΠK,C by our
modified version of FD, the resulting STN does not contain
negative cycles, making it possible to satisfy all temporal
constraints. Since the temporal constraints require all con-
current events to take place simultaneously and all subse-
quent events to take place after a given concurrent event, we
can convert π′ into a temporal plan π by assigning a start-
ing time t = −di0 to each action ai of π′, where di0 is the
shortest distance in the graph from τi to τ0, the temporal
action that starts at time 0. This ensures that event sequence
induced by π is identical to π′. Since π′ solves ΠK,C and en-
sures that no contexts of temporal actions are violated, this
ensures that the goal condition G is satisfied after the execu-
tion of the temporal plan π, implying that π solves P .

Although STP can deal with many kinds of temporal
problems (sequential, with single hard envelopes, simulta-
neous events, . . . ), it is not complete. The reason precisely
depends on the parameters K and C. First, there can be
problems for which a given K is not enough to solve the
problem; for instance, STP will not solve a problem requir-
ing 5 concurrent actions if K < 5. Second, the end count C
is cyclic: it reduces the risk of ignoring propositionally equal
but temporally different states, but it does not remove it.

Given the dependency on K and C, an appropriate strat-
egy for trying to solve a temporal problem using STP could
consist on starting from low values of K and C and increas-
ing them while the solution is not found.

Results
We performed an evaluation in all 10 domains of the tem-
poral track of IPC-2014. Moreover, we added the DRIVER-
LOGSHIFT (DLS) domain (Coles et al. 2009), the AIA do-
main (Jiménez, Jonsson, and Palacios 2015), and a domain
based on an STN example by Cushing et al. (2007) (from
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now on, we refer to this domain as CUSHING)2.
STP was executed for values of K in the range 1, . . . , 4

and with a fixed end count C = 10, which proved to
work fine in AIA instances. We compared STP to several
other planners that compile problems into classical plan-
ning: the TP planner using the same values of K, and the
TPSHE planner using the LAMA-2011 setting of FD to
solve the compiled instance. We also ran experiments for
POPF2 (Coles et al. 2010) (the runner-up at IPC-2011),
YAHSP3-MT (Vidal 2014) (the winner at IPC-2014), and
ITSAT (Rankooh and Ghassem-Sani 2015).

Table 1 shows, for each planner, the IPC quality score and
the coverage, i.e. the number of instances solved per domain.
Experiments were executed on a Linux computer with In-
tel Core 2 Duo 2.66GHz processors. Each experiment had a
cutoff of 10 minutes or 4GB of RAM memory.

The benchmark domains can be classified into four cat-
egories. Seven domains (DRIVERLOG, FLOORTILE, MAP-
ANALYSER, PARKING, RTAM, SATELLITE and STORAGE)
can be solved using sequences of temporal actions, i.e. there
is no need for actions to execute concurrently. In these do-
mains, TPSHE comes out on top, solving 98 instances with
an IPC score of 76.44, followed by TP(1) and YAHSP3-MT.
The latter can in fact only solve domains of this type. We re-
mark that at IPC-2014, YAHSP3-MT solved 103 instances;
one reason for this discrepancy is that we used a shorter cut-
off, and YAHSP3-MT is also sensitive to input parameters.

All variants of STP performed particularly poorly in these
seven domains, with the top performer being STP(1) with
34 instances solved. Compared to TP(1), which solved more
than twice that number, STP(1) incorporates additional flu-
ents and actions associated with the three phases used to
simulate events. Since events are not concurrent, these ad-
ditional fluents and action only hurt performance, resulting
in a larger state space and an increased branching factor.

A further four domains (DLS, MATCHCELLAR, TMS
and TURN&OPEN) can be solved using temporal plans that
only incorporate concurrency in the form of single hard en-
velopes (Coles et al. 2009). ITSAT is the top performer in
these domains, solving 60 instances with an IPC score of
56.97, followed by TPSHE with 59 instances solved. TP(1)
and STP(1) cannot solve any instance since they do not al-
low for concurrency. TP(2) solves 40 instances, compared
to 24 instances of STP(2), STP(3) and STP(4). Again, since
simultaneous events are not needed, the increased size of the
compilation in STP makes instances harder to solve.

The third category is represented by the CUSHING do-
main, which requires concurrency not in the form of sin-
gle hard envelopes, but does not require events to take place
simultaneously. In this domain, ITSAT and TPSHE cannot
solve any instances, and the top performer is instead POPF2,
which solves all instances. TP(3) and TP(4) also solve all in-
stances but produce plans with longer makespan, and STP(3)
and STP(4) solve 14 and 5 instances, respectively. Yet again
the additional machinery of STP does not pay off. The fact
that STP(4) performs much worse than STP(3) highlights

2The code of the compilation and the domains are available at
https://github.com/aig-upf/temporal-planning.

Domain Compression Domain Compression
AIA 0.94 MATCHCELLAR 0.83
CUSHING 0.85 PARKING 0.66
DLS 0.66 SATELLITE 0.72
MAPANALYSER 0.72

Table 2: Average level of compression of plans returned by
STP(K) in relation to the best results of the other planners.

the fact that the increased number of fluents and actions
makes instances more difficult to solve.

The only domain in which STP excels is AIA, in which
many instances do require concurrency in the form of simul-
taneous events, representing the fourth and final category.
STP(4) is the only planner that can solve all 25 instances.
POPF2 and TP(4) solve all 10 instances that do not require
simultaneous events, and all planners solve the 3 instances
that can be solved using sequential temporal plans.

Although STP performs poorly in most domains, we still
argue that the ability to deal with simultaneous events in a
forward-search temporal planner is a contribution to the field
of temporal planning, for two reasons. The benchmark do-
mains commonly used in temporal planning present a clear
bias towards domains that are challenging from a combina-
torial perspective, but the temporal aspect is almost trivial,
which is the reason that few temporal planners are able to
handle concurrent temporal actions in a robust manner. The
reason STP performs poorly is mostly because of the com-
binatorial aspect, since the ability to deal with simultaneous
events comes with a price: an increased number of fluents
and actions, resulting in a larger search space.

The second reason that STP may have an impact is if re-
searchers develop a way to analyze temporal planning do-
mains prior to solving them. If the analysis shows that a do-
main is temporally simple, then there is no need to run STP,
since it will always perform worse than several other alterna-
tives. Only when the analysis determines that more intricate
forms of concurrency are required , STP will be executed.

Since STP can output plans with simultaneous events, we
compare the number of events in its plans with the number of
events in other planners. Table 2 shows how much STP(K)
planners compress (on average) plans in comparison to the
other planners (TPSHE, TP(K), POPF2, YAHSP3-MT and
ITSAT). Given a problem, we compare the number of events
in plans output by STP(K) against the number of events out-
put by a planner from the other group. The comparison is
done just if the problem is solved by both groups.

From the table, we observe that solutions returned by STP
always contain less events than the other planners. In do-
mains like DLS and PARKING, the solutions contain around
30% less events compared to the other planners.

Related Work
Several authors have provided theoretical justification for
splitting durative actions into classical actions (Cooper,
Maris, and Régnier 2013) and proposed a compilation for
doing so. An early approach, LPGP (Long and Fox 2003),
turned out to be unsound and incomplete since it failed to (1)
ensure that temporal actions end before reaching the goal,

18



TPSHE TP(1) TP(2) TP(3) TP(4) STP(1) STP(2) STP(3) STP(4) POPF2 YAHSP3-MT ITSAT
AIA[25] 3/3 3/3 6.5/8 7.5/9 8.5/10 3/3 17.17/22 19.51/24 23.5/25 10/10 3/3 3/3
CUSHING[20] 0/0 0/0 0/0 4.07/20 4.93/20 0/0 0/0 3.31/14 2.28/5 20/20 0/0 0/0
DRIVERLOG[20] 14.78/15 1.42/5 0.93/3 1.08/4 0.91/3 0/0 0/0 0/0 0/0 0/0 2.31/4 1/1
DLS[20] 9.37/11 0/0 10/10 7.7/9 8.06/9 0/0 3.78/4 3.9/4 3.49/4 7/7 0/0 16.18/19
FLOORTILE[20] 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 4.93/5 19.7/20
MAPANALYSER[20] 17.38/20 10.16/19 13.08/20 12.34/20 12.02/19 9.18/19 9.81/17 10.09/16 7.69/12 0/0 1/1 0/0
MATCHCELLAR[20] 15.72/20 0/0 15.71/20 15.71/20 15.71/20 0/0 15.71/20 15.71/20 15.71/20 20/20 0/0 18.91/19
PARKING[20] 6.73/20 5.59/19 5.79/17 5.67/17 5.33/16 1.67/6 1.79/6 1.93/6 1.93/6 12/13 16.84/20 0.96/6
RTAM[20] 16/16 4.91/11 2.45/6 2.73/6 2.79/6 0/0 0/0 0/0 0/0 0/0 0/0 0/0
SATELLITE[20] 16.63/18 7.99/19 4.97/13 5.04/13 4.67/12 2.31/6 0/0 0/0 0/0 2.92/3 13.82/20 1.68/7
STORAGE[20] 4.92/9 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 3.91/9 9/9
TMS[20] 0.06/9 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 16/16
TURN&OPEN[20] 15.53/19 0/0 5.05/10 5.03/10 5.19/10 0/0 0/0 0/0 0/0 7.31/8 0/0 5.88/6
Total 120.12/160 33.07/76 64.49/107 66.87/128 68.11/125 16.16/34 48.26/69 54.45/84 54.61/72 79.22/81 45.8/62 92.3/106

Table 1: IPC quality score / coverage per domain for each planner. Total number of instances of each domain between brackets.

(2) ensure that the contexts of temporal actions are not vio-
lated, and (3) ensure that temporal constraints are preserved.

Rintanen (2007) proposed a compilation from temporal
to classical planning that explicitly represents time units as
objects. The compilation includes classical actions that start
temporal actions, and keeps track of time elapsed in order
to determine when temporal actions should end. The compi-
lation only handles integer duration, potentially making the
planner incomplete when events have to be scheduled frac-
tions of time units apart and, as far as we know, this compila-
tion has never been implemented as part of an actual planner.

The planners most similar to ours are TPSHE and TP
(Jiménez, Jonsson, and Palacios 2015). Both planners are
based on compiling temporal planning problems to clas-
sical planning problems. TPSHE only handles instances
where required concurrency is in the form of single hard en-
velopes. In contrast, TP partially compiles temporal actions
into classical planning and introduces an STN into the Fast
Downward classical planner to enforce temporal constraints.
POPF (Coles et al. 2010) and OPTIC (Benton, Coles, and
Coles 2012) also use STNs. POPF encodes the STN using
linear programming which allows it to compute plans with
actions that cause continuous linear numeric changes. OP-
TIC encodes the STN as a mixed integer problem which ad-
ditionally allows handling temporally dependent costs.

With respect to planners that perform explicit state-
space search, an interesting direction is the exploitation
of landmarks. This group includes the TEMPLM plan-
ner (Marzal, Sebastia, and Onaindia 2014) that discovers
classical landmarks from a temporal instance, and builds
a landmark graph that expresses the temporal relations be-
tween these landmarks. This approach has proven useful
to detect unsolvable instances under deadline constraints.
However, in the absence of tightly-constrained dead-ends
it does not yield significant benefits over classical causal
landmarks. Karpas et al. (2015) do not rely on the pres-
ence of deadlines to discover landmarks that are not causal
landmarks and define notions of temporal fact landmarks,
which state that some fact must hold between two given time
points, and temporal action landmarks, which state that the
start or end of an action must occur at a given time point.

Satisfiability checking is also an important trend in tem-
poral planning. Similarly to the SAT-based approaches for
classical planning, temporal planning instances can be en-

coded as SAT problems. The SAT encoding for tempo-
ral planning instances is more elaborated since it involves
choosing the start times of actions and verifying the tem-
poral constraints between them. Moreover, PDDL induces
temporal gaps between consecutive interdependent actions
that effectively doubles the number of joint events required
to solve a given temporal planning instance and hence affect-
ing the performance of SAT-based search approaches. The
ITSAT planner (Rankooh and Ghassem-Sani 2015) deals
with this issue by abstracting out the duration of actions
and separating action sequencing from scheduling. ITSAT
assumes that actions can have arbitrary duration and en-
codes the abstract problem into a SAT formula to gener-
ate a causally valid plan without checking the existence of
a valid schedule. To find a temporally valid plan, ITSAT
then tries to schedule the causally valid plan solving the
STN defined by the duration of the actions in the plan. If
the STN can be solved, ITSAT returns a valid plan, but if
not, ITSAT adds the sequence of events that led to the un-
solvable STN as new blocking clauses in the SAT encod-
ing. The process is repeated until a valid temporal plan is
achieved. A different approach is producing a SAT encod-
ing that integrates action sequencing and scheduling. Re-
cently the modeling language NDL has been proposed as
an alternative to PDDL with the aim of producing a SAT
Modulo Theories encoding where action sequencing and
scheduling are tightly integrated (Rintanen 2015a). Rinta-
nen (2015b) showed that while PDDL forces temporal gaps
in action scheduling (which have a performance penalty),
NDL avoids such gaps using the notion of resources.

Conclusions
We introduced a compilation from temporal planing with
simultaneous events to classical planning, and proved it
returns sound plans if used in a forward-search planner
that maintains STNs for checking temporal consistency. We
showed that our approach performs well in domains requir-
ing simultaneous events, although it is not competitive in do-
mains requiring simpler forms of concurrency. We only use
the actual durations of actions in the STN to verify consis-
tency, making our compilation closer to the state-based def-
inition of temporal planning (Rintanen 2007), where dura-
tions did not appear. Moreover, we avoid the proposed coun-
ters on the remaining duration of actions, instead relying on
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temporal constraints to enforce soundness.
Solving rich planning problems using classical planning

usually involves modeling trajectories that can be translated
to rich plans, and additional constraints to enforce the clas-
sical planning trajectories correspond to sound rich plans
(Baier, Bacchus, and McIlraith 2009; Palacios and Geffner
2009). These mechanisms could be challenging for state-of-
the-art planners, developed around handmade benchmarks.

Regarding the cost of compilation, the increase in the
number of fluents and actions is polynomial, ensuring that
the existence of a classical plan remains in PSPACE. The
STN, used by STP to verify the consistency of temporal con-
straints, grows linearly with the length of the plan, as grows
the plan representation built by state-of-the-art planners.
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Abstract
Considerable improvements in the technology and per-
formance of SAT solvers has made their use possible
for the resolution of various problems in artificial intel-
ligence, and among them that of generating plans. Re-
cently, promising Quantified Boolean Formula (QBF)
solvers have been developed and we may expect that in
a near future they become as efficient as SAT solvers.
So, it is interesting to use QBF language that allows us
to produce more compact encodings. We present in this
article a translation from STRIPS planning problems
into quantified propositional formulas. We introduce
two new Compact Tree Encodings: CTE-EFA based on
Explanatory frame axioms, and CTE-OPEN based on
causal links. Then we compare both of them to CTE-
NOOP based on No-op Actions proposed in (Cashmore,
Fox, and Giunchiglia 2012). In terms of execution time
over benchmark problems, CTE-EFA and CTE-OPEN
always performed better than CTE-NOOP.

Introduction
An algorithmic approach for plans synthesis is automated
compilation (i.e., transformation) of planning problems. In
the SATPLAN planner (Kautz and Selman 1992), a planning
problem is transformed into a propositional formula whose
models, corresponding to solution plans, can be found using
a SAT solver. The SAT approach searches for a solution-
plan of fixed length k. In case of failure to find such a
plan, this length is increased before restarting the search
for a solution. In the classical framework, the complexity
of finding a solution to any problem is PSPACE-hard, but
the search for a fixed-size solution becomes NP-hard (By-
lander 1994). This compilation approach directly benefits
from improvements in SAT solvers1. The most obvious ex-
ample is the planner BLACKBOX (Kautz and Selman 1998;
1999) (and its successors SATPLAN’04 (Kautz 2004) and
SATPLAN’06 (Kautz, Selman, and Hoffmann 2006)). These
planners won the optimal (in the number of plan steps) plan-
ning track of the International Planning Competitions2 IPC-
2004 and IPC-2006. This was unexpected because these

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.satcompetition.org/
2http://www.icaps-conference.org/index.

php/Main/Competitions

planners were essentially updates of BLACKBOX and did not
include any real novelty: improved performance was mainly
due to progresses in the underlying SAT solver.

Numerous improvements of this original approach have
been proposed since then, in particular via the develop-
ment of more compact and efficient encodings (Kautz and
Selman 1996; Ernst, Millstein, and Weld 1997; Mali and
Kambhampati 1998; 1999; Rintanen 2003; Rintanen, Hel-
janko, and Niemelä 2004; 2006; Rintanen et al. 2008).
Following these works, numerous other similar techniques
for encoding planning problems have been developed: Lin-
ear Programming (LP) (Wolfman and Weld 1999), Con-
straint Satisfaction Problems (CSP) (Do and Kambhampati
2001), SAT Modulo Theories (SMT) (Shin and Davis 2005;
Maris and Régnier 2008; Rintanen 2015). More recently, a
Quantified Boolean Formulas (QBF) approach had been pro-
posed by (Rintanen 2007; Cashmore, Fox, and Giunchiglia
2012).

Currently SAT solvers outperform QBF solvers and the
SAT approach is the most effective because SAT solvers and
encodings have been greatly improved since 1992. How-
ever, over the past decade, there has been a growing interest
in the QBF approach. The competitive evaluation of QBF
solvers QBFEVAL3 is now a joint event with the interna-
tional SAT conference and QBF solvers improve regularly.
QBFEVAL’16 had more participants than ever and QBF-
related papers represented 27% of all papers published at
SAT’16. Some promising techniques have been adapted to
QBF solving such as counterexample guided abstraction re-
finement (CEGAR) (Clarke et al. 2003; Janota and Marques-
Silva 2015; Janota et al. 2016; Rabe and Tentrup 2015).
For comparable SAT / QBF encodings, the QBF approach
also have the advantage to generate more compact formulas
(Cashmore, Fox, and Giunchiglia 2012). Even if the QBF
approach is not as efficient as the SAT approach, it deserves
the interest of the community.

Our paper shows that beyond the implementation of
solvers, further work must be done to improve the encod-
ings. In particular, we introduce two new QBF Compact
Tree Encodings of STRIPS planning problems: CTE-EFA
based on Explanatory frame axioms, and CTE-OPEN based
on causal links. Then we compare both of them to CTE-

3http://www.qbflib.org/index_eval.php
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Figure 1: Both possible transitions in a CTE following the
branching structure of a QBF: X0 → Xi (from leaf to node
on the left) and Xi → X0 (from node to leaf on the right).
Note that i refers to any level (except for the leaf layer), not
only the root.

NOOP based on No-op Actions proposed in (Cashmore,
Fox, and Giunchiglia 2012). In terms of execution time
over benchmark problems, CTE-EFA and CTE-OPEN al-
ways performed better than CTE-NOOP.

Planning as QBF
Two different approaches of planning as QBF have been
proposed by (Cashmore, Fox, and Giunchiglia 2012): Flat
Encoding, that was first introduced by (Rintanen 2001) as
an approach to general reachability, and Compact Tree En-
coding (CTE). Cashmore, Fox, and Giunchiglia showed in
(2012) that Compact Tree Encodings outperform Flat En-
codings. Both these planning encodings make use of the
branching structure of the QBF to reuse a single set of
clauses that describes a single step in the plan. The two as-
signments inside each universal variable represent the first
and second half of the plan split around that branch. The
assignments to each existential set represent action choices
within a single step.

Preliminary Definitions
Let F be a finite set of fluents (atomic propositions). A
STRIPS planning problem is a tuple 〈I,A, G〉 where I ⊆ F
is the set of initial fluents, G ⊆ F is the set of goal flu-
ents and A is the set of actions. An action a ∈ A is a tuple
〈Pre(a),Add(a),Del(a)〉 where

• Pre(a) ⊆ F is the set of fluents required to be true in
order to execute a,

• Add(a) ⊆ F and Del(a) ⊆ F are the sets of fluents re-
spectively added and removed by the action a.

All QBF encodings studied in this paper use propositional
variables for actions. The Compact Tree Encoding proposed
in (Cashmore, Fox, and Giunchiglia 2012) is based on the
planning graph introduced in (Blum and Furst 1997) and
uses additional no-op actions as frame axioms. We denote it
by CTE-NOOP. Considering every action as a propositional

variable, we define a set of propositional variables X , given
by X = A ∪ {noopf | f ∈ F}.

In a CTE formula, we want to select two consecutive steps
in order to define transitions (Figure 1). For each depth i of
the tree, Xi denotes a copy of the set of variables X .

For CTE-NOOP, there exists a single variable ai ∈ Xi

for each action and a single variable noopf,i ∈ Xi (no-
op action) for each fluent used to determine a transition in
the plan. At a same depth i, the value of these variables de-
pends on the node (corresponding to a step in the plan) se-
lected by the values of upper universal branching variables
bi+1 . . . bdepth. More details can be find in the slides4.

An upper bound on the plan length is 2k+1 − 1, where
k is the number of alternations of quantifiers in the quanti-
fied boolean formula associated with the planning problem.
In the case of CTE, k is also the compact tree depth. The
number of possible states for a given planning problem is
bounded by 2|F|. Then, the existence of a plan can be deter-
mined using a linear QBF encoding with at most k =| F |.

In the sequel, we propose two new encodings of plan-
ning problems into QBF. The first, denoted by CTE-OPEN,
is based on causal links (plan-space). It has been first in-
troduced by (Mali and Kambhampati 1999) but needs to
be adapted using additional variables for open conditions.
The second, denoted by CTE-EFA, is based on explanatory
frame axioms (state-space) first introduced by (Kautz and
Selman 1992) and uses variables for fluents as well as for
actions.

Causal Link Encoding: CTE-OPEN
The plan-space encodings of (Mali and Kambhampati 1999)
cannot be directly adapted to the CTE. All these encodings
refer to three indexed (not necessarily consecutive) steps of
the plan. This is not possible in a CTE because each rule can
refer to only one branch of the tree. To overcome this prob-
lem, it would be possible to duplicate the tree by adding, for
each branching variable bi, two more branching variables
b′i and b′′i , and for each node Xi, two node copies X ′i and
X ′′i , and equivalence rules

∧
xi∈Xi

(
(xi ↔ x′i) ∧ (xi ↔

x′′i )
)
. Unfortunately, this would increase the branching fac-

tor unnecessarily. So, we propose a new plan-space encod-
ing which allows us to only refer to consecutive steps in the
plan.

For every fluent f ∈ F , we create a propositional variable
openf to express that f holds in some previous step and must
be protected at least until the current step. In Figure 2, the
fluent f is an open condition in step Si, entailing that either
f ∈ I or an action a′ which adds f is executed in a previous
step Si−k. Open conditions are propagated backwards until
the initial state or some step in which they are added by an
action.

We define the set of “open” variables, denoted as ∆, as
∆ = {openf | f ∈ F}. Considering every action as a propo-
sitional variable, we define a set of propositional variables
X , given by X = A ∪∆.

4https://www.irit.fr/˜Frederic.Maris/
documents/coplas2018/slides.pdf
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Quantifiers For each depth i of the tree,Xi denotes a copy
of the set of variables X . It exists a single variable ai ∈ Xi

for each action used to determine last transition in the plan
and a single variable openf,i ∈ Xi for each fluent used to
determine if f is an open condition. At a same depth i, the
value of these variables depends on the node (corresponding
to a step in the plan) selected by the values of upper universal
branching variables bi+1 . . . bdepth.

∃
a∈A

adepth. ∃
f∈F

openf,depth.∀ bdepth.

∃
a∈A

adepth−1. ∃
f∈F

openf,depth−1.∀ bdepth−1.

. . .

∃
a∈A

a1. ∃
f∈F

openf,1.∀ b1. ∃
a∈A

a0. ∃
f∈F

openf,0.

In the following, a node now refers to a non-leaf node
(i.e., an inner node) and depth is the depth of the tree. The
predecessor of a node at level i is the rightmost leaf of the
left subtree. The successor of a node at level i is the leftmost
leaf of the right subtree. In order to select these transitions,
we introduce the leaf-to-node operator left(i) defined as:

left(i) ≡ ¬bi ∧
i−1∧

j=1

bj .

Symmetrically, we introduce the node-to-leaf operator
right(i) defined as:

right(i) ≡ bi ∧
i−1∧

j=1

¬bj .

Open conditions If an action a is executed in a step of the
plan, then each precondition of a must be an open condition
at this step (i.e., a causal link is required for this precondi-
tion).

depth∧

i=0

∧

a∈A


ai ⇒

∧

f∈Pre(a)

openf,i




In the last plan step leading to the goal (i.e. the rightmost
leaf of the tree), all the goal fluents must be either open con-
ditions or added by actions executed in this step.

depth∧

i=1

bi ⇒
∧

f∈G


openf,0 ∨

∨

a∈A
f∈Add(a)

a0




a

f ∈ Pre(a)

openf

Si−1 Si

propagate
openf

Si−k

openf

a′

f ∈ Add(a′)

Figure 2: Causal link: a′produces f for a.

Propagate and close No conditions should remain open
in the first plan step (i.e. the leftmost leaf of the tree) if it is
not provided in the initial state.

depth∧

i=1

¬bi ⇒
∧

f∈F\I
¬openf,0

Any open condition in a step must either remain open or
be added (closed) by an action in the previous step.

depth∧

i=1

∧

f∈F



(
openf,i ∧ left(i)

)
⇒


openf,0 ∨

∨

a∈A
f∈Add(a)

a0







depth∧

i=1

∧

f∈F



(
openf,0 ∧ right(i)

)
⇒


openf,i ∨

∨

a∈A
f∈Add(a)

ai







Protect open conditions An open condition in a given
step cannot be removed in the previous step. This guaran-
tees not to break any causal link in the plan.

depth∧

i=1

∧

f∈F



(
openf,i ∧ left(i)

)
⇒

∧

a∈A
f∈Del(a)

¬a0




depth∧

i=1

∧

f∈F



(
openf,0 ∧ right(i)

)
⇒

∧

a∈A
f∈Del(a)

¬ai




Prevent negative interactions In a given step, if an action
removes a fluent which is needed or added by another action,
then these two actions cannot be both executed in this step.

depth∧

i=0

∧

a∈A

∧

f∈(Add(a)∪Pre(a))

∧

a′∈A
a 6=a′

f∈Del(a′)

(¬ai ∨ ¬a′i)

State-Space Encoding: CTE-EFA
In this encoding, we define the set of propositional variables
as X = A ∪ F . Each step is now defined by a transition (as
in CTE-OPEN) as well as the resulting state (valuation of
the fluents in F). The formula is an adaptation to the CTE
of the well known state-space SAT encoding rules based on
explanatory frame axioms of (Kautz and Selman 1992).

Quantifiers At each depth i of the tree, it exists a single
variable ai for each action used to determine last transition
in the plan and a single variable fi for each fluent used to
determine the state. At a same depth i, the values of these
variables depend on the node (corresponding to a transition
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in the plan and the resulting state) selected by the values of
upper universal branching variables bi+1 . . . bdepth.

∃
a∈A

adepth. ∃
f∈F

fdepth.∀ bdepth.

∃
a∈A

adepth−1. ∃
f∈F

fdepth−1.∀ bdepth−1.

. . .

∃
a∈A

a1. ∃
f∈F

f1.∀ b1. ∃
a∈A

a0. ∃
f∈F

f0.

Goal In the state after the last plan transition (i.e. the right-
most leaf of the tree), all goal fluents must be achieved.

depth∧

i=1

bi ⇒
∧

f∈G
f0

Conditions and effects of actions If an action a is exe-
cuted in a transition of the plan, then each effect of a occurs
in the resulting state and each condition of a is required in
the previous state.

depth∧

i=0

∧

a∈A


ai ⇒


 ∧

f∈Add(a)

fi


 ∧


 ∧

f∈Del(a)

¬fi






depth∧

i=1

∧

a∈A


ai ∧ left(i)⇒

∧

f∈Pre(A)

f0




depth∧

i=1

∧

a∈A


a0 ∧ right(i)⇒

∧

f∈Pre(A)

fi




Moreover, an action which do not have all conditions in
initial state cannot be executed in the first plan transition (i.e.
the leftmost leaf of the tree):

depth∧

i=1

¬bi ⇒
∧

a∈A
Pre(a)6⊂I

¬a0

Explanatory frame axioms If the value of a fluent
changes between two consecutive states, then an action
which produces this change is executed in the plan transi-
tion between these states.

depth∧

i=1

∧

f∈F


(¬f0 ∧ fi ∧ left(i))⇒




∨

a∈A
f∈Add(a)

ai







depth∧

i=1

∧

f∈F


(¬fi ∧ f0 ∧ right(i))⇒




∨

a∈A
f∈Add(a)

a0







depth∧

i=1

∧

f∈F


(f0 ∧ ¬fi ∧ left(i))⇒




∨

a∈A
f∈Del(a)

ai







depth∧

i=1

∧

f∈F


(fi ∧ ¬f0 ∧ right(i))⇒




∨

a∈A
f∈Del(a)

a0







An extra rule is also required to describe explanatory
frame axioms for the first plan transition from initial state
(i.e. the leftmost leaf of the tree):

∧

f∈F\I




(
f0 ∧

depth∧

i=1

¬bi
)
⇒

∨

a∈A
f∈Add(a)
Pre(a)⊂I

a0




∧

f∈I




(
¬f0 ∧

depth∧

i=1

¬bi
)
⇒

∨

a∈A
f∈Del(a)
Pre(a)⊂I

a0




Prevent negative interactions Unlike in CTE-NOOP and
CTE-OPEN, contradictory effects are already disallowed by
previous rules (effects of actions). Then, this rule only need
to prevent interactions between conditions and deletes of ac-
tions. If an action removes a fluent which is needed by an-
other action, then these two actions cannot be both executed
in a same plan transition.

depth∧

i=0

∧

a∈A

∧

f∈Pre(a)

∧

a′∈A
a6=a′

f∈Del(a′)

(¬ai ∨ ¬a′i)

Experimental Trials
To compare these three encodings on a same basis we
used our translator TouIST5 (Comte et al. 2015) that can
use several QBF solvers. We ran all available STRIPS IPC
benchmarks (1 through 8, except for the 7th which was
not available and authors did not answer) on an Intel Xeon
CPU E7-8890 v4 @ 2.20GHz, 512 GB of RAM. The do-
mains tested include Gripper, Logistics, Mystery, Blocks,
Elevator, Depots, DriverLog, ZenoTravel, FreeCell, Airport,
Pipesworld-NoTankage, Pipesworld-Tankage, PSR, Satel-
lite, OpenStacks, Pathways, Rovers, Storage, TPP, Trucks,
ChildSnack, Hiking, VisitAll and the non-IPC Ferry.

We tried to consider as many QBF solvers as possible
using the QBFEval 2017 as a reference. Qute (version of
2017-07-09, based on dependency learning QCDCL) and
CaQE (version of 2017-07-08, based on CEGAR clausal

5https://www.irit.fr/touist
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abstraction) were not able to give a valuation for the outer
existential quantifier. AIGSolve and Qell weren’t available
for download. GhostQ was skipped (but we should have in-
cluded it). DepQBF (version 6.03 of 2017-08-02, based on
generalized Q-resolution, described in (Lonsing and Egly
2017)) and RAReQS (version 1.1 of 2013-05-07, based on
a CEGAR approach, detailed in (Janota et al. 2012)) were
the only solvers left. RAReQS was consistently twice as fast
as DepQBF, we thus dismissed DepQBF and only shown re-
sults for RAReQS. Finally, we did not apply any QBF pre-
processor (e.g., Bloqqer).
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Figure 3: Plan decision time (EFA/OPEN vs NOOP).

We ran these benchmarks using our new encodings CTE-
EFA and CTE-OPEN as well as the state-of-the-art compact
tree encoding (CTE-NOOP). We compared them two-by-
two by considering the time needed to prove the existence of
a plan (decision time, Figure 3) and the overall time required
to obtain a plan (extraction time, Figure 5). The “decision”
step consists of launching incrementally the QBF solver on
a CTE of increasing depth until the solver returns true or
reaches the upper bound (total number of fluents). The “ex-
traction” step consists of one solver launch per node of the
tree in order to retrieve the plan. Each experiment had a 60
minutes6 timeout for searching the plan and 60 minutes for
extracting it. The benchmark results are available as an Ex-
cel file7.

The results show that our encodings CTE-EFA and CTE-
OPEN are more efficient than CTE-NOOP both in plan ex-
istence as well as in plan extraction. CTE-EFA by a factor of
2.1 (1/0.4843) and CTE-OPEN by a factor of 1.7 (1/0.5953).
Also, the comparison between CTE-EFA and CTE-OPEN
(Figure 4, Figure 6) consistently shows that CTE-EFA out-
performs CTE-OPEN by a factor of 1.4 (1/0.7266). Table 1
gives a summary of the benchmark results.

Contrary to what happens with flat encodings, the gain
over CTE-NOOP cannot be explained by the difference in
quantifier alternations as the depth is the same in the three
encodings. However, the way actions are represented in
these encodings may explain this difference.
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Figure 4: Plan decision time (EFA vs OPEN).

6The grounding step (i.e., action instantiation) is not included
in the elapsed time.

7https://www.irit.fr/˜Frederic.Maris/
documents/coplas2018/results.xls
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Encoding Solved problems Decision Time Literals Clauses Transitions-over-nodes ratio

CTE-NOOP 412 over 2112 (20%) 0% 0% 0% 30%
CTE-EFA 463 over 2112 (22%) -55% -26% +15% 47%
CTE-OPEN 445 over 2112 (21%) -41% -2% -28% 17%

Table 1: Comparison of the presented encodings across 65 STRIPS domains from IPC 1 through 8 (IPC 7 excepted) with
a total of 2112 problems. Decision time, literals count, clauses count and the transitions-over-nodes ratio are averages. The
transitions-over-nodes ratio measures the quantity (in average) of transition-based constraints over node-based constraints.
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Figure 5: Plan extraction time (EFA/OPEN vs NOOP).
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Figure 6: Plan extraction time (EFA vs OPEN).

Discussion
In order to identify the source of these improvements, we
propose two hypothesis:

Hypothesis 1 “The performance gain is correlated to a de-
crease in the number of clauses and/or literals across en-
codings”. Although the size of the problem is known to
be noticeably non-correlated with its hardness in SAT,
we wondered if we could see the same non-correlation.
As shown in Table 1, we do not observe any clear ten-
dency: CTE-EFA tends to have a slightly higher number
of clauses (+15%) than CTE-NOOP although having less
variables (-26%). CTE-OPEN has the same number of lit-
erals and much less clauses than CTE-NOOP, but result-
ing in a lower performance gain (-41%) than CTE-EFA
(-55%). This non-correlation leads us to reject this hy-
pothesis.

Hypothesis 2 “The performance gain is due to a difference
in the number of transition-based constraints compared
to the number of node-based constraints”. Intuitively, one
can think that a lower ratio of transition-based constraints
over node-based constraints would ease the solving pro-

26



cess: in node-based constraints, a clause has the same con-
text8 across the whole QBF expansion. In branch con-
straints, the corresponding clause has different contexts
depending on the selected branch. The idea is that clauses
based on different contexts slow the solver down. As dis-
played in Table 1, this hypothesis does not appear to
be correct experimentally: although CTE-OPEN shows a
lower transitions-to-nodes ration, it does not lead to the
best performance gain. On the contrary, CTE-EFA has a
poorer ratio, although being the most efficient compared
to CTE-NOOP. We thus refute this hypothesis as we did
not see any noticeable correlation supporting it, although
we noticed a slight tendency where the decrease of time
and of number of clauses were correlated.

Through these hypotheses, we tried to understand the
causes of these enhancements. None of these hypothesis
proved to be useful.

Conclusion
We have proposed two new QBF Compact Tree Encodings:
CTE-OPEN based on causal links (plan-space) and CTE-
EFA based on explanatory frame axioms (state-space). We
compared these encodings with the state-of-the-art QBF en-
coding CTE-NOOP. In average over all available STRIPS
IPC benchmarks, CTE-EFA performed twice as fast as CTE-
NOOP (respectively 1.7 times faster for CTE-OPEN).

Through experiments, we refuted the two hypotheses we
had formulated in order to explain the causes of this en-
hancement: neither the difference in the number of literals
and clauses nor the transitions-to-nodes ratio between the
three encodings allow us to draw conclusions.

Although it is fair to say that the work we are present-
ing lacks explanations on the reasons for the gain in perfor-
mance, we think that this paper aims at showing the inter-
est of systematically studying the statistical properties of the
various action representations in encodings in order to un-
derstand the ontological choices related to these action rep-
resentations.

Furthermore, it is noticeable that the performance rank-
ing of the various action representations of SAT encodings
(e.g., No-op performs better than EFA) is different in QBF
(as we showed, EFA performs better than No-op in the CTE
encoding). It would be interesting to study more broadly the
methods used in SAT for encoding actions and see how their
QBF counterpart behave.

8Context and expansion are defined in (Cashmore, Fox, and
Giunchiglia 2012). Intuitively, the expansion is a tree representing
the QBF and a context is a leaf in that tree.
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Abstract

Dead-end detection is a key challenge in automated planning,
and it is rapidly growing in popularity. Effective dead-end
detection techniques can have a large impact on the strength
of a planner, and so the effective computation of dead-ends is
central to many planning approaches. One of the better un-
derstood techniques for detecting dead-ends is to focus on the
delete relaxation of a planning problem, where dead-end de-
tection is a polynomial-time operation. In this work, we pro-
vide a logical characterization for not just a single dead-end,
but for every delete-relaxed dead-end in a planning problem.
With a logical representation in hand, one could compile the
representation into a form amenable to effective reasoning.
We lay the ground-work for this larger vision and provide a
preliminary evaluation to this end.

1 Introduction
Learning conflicts and reasoning about them has long been
recognized as an important component in many fields of ar-
tificial intelligence and optimization. Recently, a type of
conflict found in planning that represents a state where the
goal cannot be achieved, referred to as a dead-end, has re-
ceived increased attention in the field. This interest cul-
minated in the first ever International Planning Contest on
Unsolvability in 2016 (Muise and Lipovetzky 2016), which
required the planners to detect whether or not the initial
state of a planning problem was a dead-end. Effective tech-
niques for dead-end detection are useful for determining
problem unsolvability, as evidenced by the winning planners
in the contest, as well as solving classical planning prob-
lems (Hoffmann, Kissmann, and Torralba 2014; Lipovetzky,
Muise, and Geffner 2016), non-deterministic planning prob-
lems (Muise, McIlraith, and Beck 2012), and probabilis-
tic planning problems (Kolobov, Mausam, and Weld 2012;
Camacho, Muise, and McIlraith 2016).

Perhaps one of the most well understood dead-end detec-
tion techniques is to search for a solution in the delete relax-
ation of a problem (i.e., assuming that actions in our model
never delete what is true). Because solvability of the delete
relaxation is a polynomial time operation, we can determine
if a state is a dead-end in the delete relaxation in polynomial
time as well. If this is the case, we can further conclude that
the original state is a dead-end; if no plan exists in the delete
relaxation, then no plan exists in the original problem.

In this work, we focus on characterizing what it means
for a state to be a delete-relaxed dead-end, and we do so by
introducing a novel logical encoding of the problem. From

the encoding we can compile the theory into an equivalent
representation that compactly represents all delete-relaxed
dead-ends of a particular minimal form, while at the same
time allowing efficient queries or modifications over the the-
ory. For example, one could quantify the likelihood that
a partially observable state is in a dead-end, or manipulate
the representation to compute all states that could lead to a
delete-relaxed dead-end through the application of a partic-
ular action by using standard logical operations. The logical
representation provides interesting insights into the structure
of the delete-relaxed dead-end detection problem in relation
to other planning encodings, and we elaborate on these con-
nections throughout the paper.

Our contributions are 3-fold: (1) we provide a simple log-
ical encoding to represent the set of delete-relaxed dead-end
states in a STRIPS planning problem; (2) we present an ex-
tension that compiles away some of the naı̈ve encoding to
give us an equivalent encoding that is easier to reason with;
and (3) we present a preliminary evaluation on a range of
domains and knowledge compilers.

2 Preliminaries
Delete-Relaxed STRIPS Planning In this work, we as-
sume a STRIPS model of planning (Ghallab, Nau, and
Traverso 2004). A problem is defined as a tuple,
〈F , I,A,G〉, where F is the set of fluents in the problem,
I ⊆ F is the initial state (we assume all fluents not in I
are false initially), A is the set of actions in the problem and
G ⊆ F is the goal that the planner must achieve. Every ac-
tion a ∈ A is described by its precondition PRE(a) ⊆ F
and add effects ADD(a) ⊆ F . Traditionally, there is also
a set of delete effects, DEL(a) ⊆ F , but for this work
we are only concerned with delete-relaxed planning: i.e.,
∀a ∈ A,DEL(a) = ∅. A complete state s ⊆ F describes
what is true in the world, while every fluent in F \ s is pre-
sumed to be false. An action a is applicable in state s if and
only if PRE(a) ⊆ s, and the result of applying a in s is
defined to be s ∪ ADD(a). Note that because there are no
delete effects, applying an action in a state can only add flu-
ents to the state: i.e., make more of the fluents true. Further,
because all of the preconditions are fluents as well, when an
action is applicable it will remain applicable. We will use the
following to refer to the actions that add a particular fluent:

adders(f) = {a | a ∈ A and f ∈ ADD(a)}
A planning problem, 〈F , I,A,G〉, is solvable if a sequence
of action applications transforms the state I into one where
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all of the fluents in G are true, and it is unsolvable other-
wise. The state s is a delete-relaxed dead-end for problem
〈F , I,A,G〉 if and only if 〈F , s,A,G〉 is unsolvable.

Satisfiability We use the standard notion of Boolean logic
to characterize the delete-relaxed dead-ends in a planning
problem. Here we describe the basic concepts and notation,
but the reader is referred to (Biere et al. 2009) for further
details. The task of Satisfiability (or simply SAT) is to find
a satisfying assignment to a set of Boolean variables given
a logical formula. The standard representation for a logical
formula, and the one we adopt, is Conjunctive Normal Form
(CNF). A CNF formula is a conjunction of clauses, and each
clause is a disjunction of literals; either a Boolean variable
or its negation. For example, the following CNF formula,

(x ∨ ¬y) ∧ (¬x ∨ y)

has two satisfying assignments: (x = >, y = >) and
(x = ⊥, y = ⊥). While CNF is a natural form to ex-
press many problems, reasoning with it is a difficult task.
Many other forms have been proposed in the literature that
are more amenable to reasoning, and knowledge compila-
tion is the task of converting from one form (typically CNF)
to another in order to make reasoning easier (Darwiche and
Marquis 2002). We forgo describing the alternative forms
here, but provide some empirical results in Section 4 on the
difficulty of knowledge compilation from our proposed CNF
encoding to a variety of target forms.

The final notion we will use is projection. The projection
of a satisfying assignment onto a subset of the variables is
simply the portion of the assignment that involves variables
in the subset. We use the notion of projection to focus on
only one aspect of the model, and it may be the case that
many full assignments will map to the same projected as-
signment.

3 Encoding All Delete-Relaxed Dead-ends
To reason about all of the delete-relaxed dead-ends for a
planning problem, we must construct a CNF where satis-
fying assignments correspond to delete-relaxed dead-ends.
However, we do not want just any representation of delete-
relaxed dead-ends, but instead one that captures the core rea-
son that a state cannot achieve the goal. This can be useful
for interpretability of deadends, but additionally (as we see
later) allows for a far more compact encoding than the stan-
dard Planning-as-SAT encodings. To that end, we will only
model delete-relaxed dead-ends that are in a particular fixed-
point of delete-relaxed reachability.

Definition 1 (Fixed-Point State) We say that a state s in
a delete-relaxed planning problem 〈F , I,A,G〉 is a fixed-
point state iff ∀a ∈ A,PRE(a) 6⊆ s or s ∪ADD(a) = s.

Intuitively, a state is a fixed-point state whenever apply-
ing additional actions will have no effect on the state (ei-
ther an action is not applicable, or adds no new fluents to
the state). Every delete-relaxed dead-end will have a corre-
sponding fixed-point state s where G 6⊆ s, and it is the set
of delete-relaxed dead-end fixed-point states that we model
with our SAT encoding.

Not only are fixed-point delete-relaxed dead-end states
more easy to work with when modeling, but they also repre-
sent the relevant core of what is causing a state to be a dead-
end. For any state s, its corresponding fixed-point state s′
will include everything achievable from s (and thus s ⊆ s′).
With our encoding, we capture what does not hold in the
fixed-point state (i.e., F \ s′), and this will always be more
general (i.e., fewer fluents) than what does not hold in s.

First, we present a simple but naı̈ve encoding that
achieves our objective of modeling the fluents not achiev-
able in a fixed-point delete-relaxed dead-end. Then we prove
the correctness of the encoding, and show an alternative en-
coding that captures the same set of solutions using fewer
variables. The alternative encoding provides a better repre-
sentation for knowledge compilers to work with due to the
reduction in variables. We conclude with a discussion of
some of the interesting properties that our encodings have,
and their relation to existing notions in the literature.

3.1 Naive Encoding
The key insight that we use for our encoding is to focus on
what cannot be achieved, rather than what can be achieved.
This is in stark contrast with the vast majority of existing
SAT encodings for planning-related problems. We should
note that our aim is to model the space of all states that are
a delete-relaxed dead-end for a particular problem, and not
just identify if the initial state is a delete-relaxed dead-end.

Because we are interested in the states from which the
goal cannot be achieved, our encoding focuses on those
aspects of the problem that are unachievable. A flu-
ent f is unachievable from state s whenever the prob-
lem 〈F , s,A, {f}〉 is unsolvable. Similarly, an action
a is unachievable from state s whenever the problem
〈F , s,A,PRE(a)〉 is unsolvable.

Viewing the task of representing all delete-relaxed dead-
ends in terms of what cannot be achieved leads us to a simple
CNF encoding where the variables are defined as:

• xf̄ : For every fluent f ∈ F , xf̄ represents the fact that f
is unachievable.

• xā: For every action a ∈ A, xā represents the fact that a
is unachievable.

The clauses that we use to characterize all fixed-point
delete-relaxed dead-ends are as follows:

∨

f∈G
xf̄ (1)

xā →
∨

f∈PRE(a)

xf̄ ∀a ∈ A (2)

xf̄ → xā ∀f ∈ F , (3)

∀a ∈ adders(f)

The intuition behind each of the clause types is as follows:
(1) some aspect of the goal must be unachievable; (2) if an
action is unachievable, then some aspect of its precondition
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must be unachievable; and (3) if a fluent is unachievable,
then every action that could add it must be unachievable.

The encoding is relatively small, and dominated by
clauses of type 2 and 3. For type 2, each clause is only as
large as the precondition of the action in question, and there
are only |A| clauses of this type. For type 3, each clause
is binary, and there will be

∑
f∈F |adders(f)| such clauses

(a small number in typical planning problems). We will use
CNF (P ) to refer to the encoding of planning problem P .

There are two special cases worth noting. First, if a fluent
f has no action that can add it (i.e., adders(f) = ∅), then
there will be no clauses of type 3: if f is false in the state of
the world, it will remain unachievable. Second, if an action
has no precondition then it is trivially not unachievable (i.e.,
it can always be executed, and its effects achieved).

A satisfying assignment will stipulate which actions and
fluents are deemed unachievable. The corresponding state
of a satisfying assignment is the state s defined from the
fluent variable as {f | xf̄ = ⊥}. We can now establish the
theoretical connection between the set of fixed-point delete-
relaxed dead-ends for a problem P and CNF (P ):
Theorem 2 The set of satisfying assignments forCNF (P ),
projected to the fluent variables, corresponds one-to-one
with the set of fixed-point delete-relaxed dead-ends of P .
Proof Sketch. We first establish that the projection of any
satisfying assignment onto the fluent variables corresponds
to a fixed-point delete-relaxed dead-end. Formulae 2 and 3
together ensure that the assignment is a fixed-point state: if
it was not, then some action a must be applicable in the cor-
responding state with f ∈ ADD(a) and f marked as being
unachievable: i.e., xā and xf̄ hold in the assignment while a
is applicable in the corresponding state. Note, however, that
this leads to a contradiction: the contrapositive of formula
2 stipulates that if every precondition fluent of a is not un-
achievable, then a is not unachievable as well. Finally, the
assignment must correspond to a delete-relaxed dead-end,
as it is a fixed-point state and some aspect of the goal is un-
achievable (following formula 1).

For the other direction, consider a candidate delete-
relaxed dead-end fixed-point state s. We construct a cor-
responding satisfying assignment by setting the following
variables to true and all others false:

{xf̄ | f 6∈ s} ∪ {xā | PRE(a) 6⊆ s}
Formulae 2 and 3 naturally follow from the properties of s
being a fixed-point state, and 1 holds from the fact that s
cannot contain the complete goal (as it is a dead-end). �

3.2 Fluent-based Encoding
While the above encoding is simple and intuitive, it unnec-
essarily contains information in the form of variables for ac-
tion unachievement. Here, we derive an alternative encoding
that removes the variables corresponding to the actions. We
do so by using the transitive property of the implications in
formulae 3 and 2 above; by combining them into a single
formula, we obtain the following:

xf̄ →
∨

f ′∈PRE(a)

xf̄ ′ ∀f ∈ F , (4)

∀a ∈ adders(f)

Formulae 1 and 4 combined capture the precise set of delete-
relaxed dead-ends for a problem. The number of variables
is reduced to just the number of fluents in the problem, but
the number of clauses is increased as a result: one clause of
size |G| for the goal, and another

∑
f∈F |adders(f)| clauses

of size |PRE(a)|. Just as adders(f) is typically small, so
is the size of PRE(a). We found this increase to be negli-
gible. Because the correctness of the fluent-based encoding
follows directly from the logical combination of formulae 2
and 3 to produce formula 4, we forgo a formal proof here.

3.3 Discussion
A number of SAT encodings have been proposed for mod-
eling planning problems, but to the best of our knowledge
they all focus on modeling the existence of plans in some
form. The idea of planning-as-SAT was pioneered in the
early 1990’s as a method for solving planning problems
(Kautz and Selman 1992). Recent advances have drasti-
cally improved the performance of planning-as-SAT (Rin-
tanen 2012), focused on optimal planning (Robinson et al.
2010), computation of heuristics (Bonet and Geffner 2006),
planning with multi-valued variable representations (Huang,
Chen, and Zhang 2012), and computing maximally flexible
plans (Muise, Beck, and McIlraith 2016). All of these ap-
proaches, however, share a common thread: a satisfying as-
signment corresponds to a plan.

In contrast, our encodings capture (fixed-point) states of
the delete-relaxed problem where no plan exists. Many
planning-as-SAT encodings use a layered approach and
must fix the number of actions in a plan without know-
ing in advance what depth would suffice. For those that
do not use a layered approach (e.g., (Robinson et al. 2010;
Muise, Beck, and McIlraith 2016)), a common bottleneck
is the number of clauses required for preventing causal self
support: e.g., action a1 adds f1, which enables a2, which
adds f2, which enables a1, etc. To rule out any such causal
loops in a plan, a cubic number of clauses are required to
model the transitive closure of “support”. Our encodings do
not need to pay this high cost in encoding complexity. Intu-
itively, this is because the fundamental property we are mod-
eling (i.e., if a fluent is unachievable) is universally quanti-
fied: a fluent is unachievable if and only if every action that
adds it is unachievable. This is in contrast with the fun-
damental existential property that non-layered planning-as-
SAT encodings aim to capture: a fluent is achievable when
at least one action (or the initial state) is able to achieve it. 1

The final connection of interest is prime implicants and
minimal delete-relaxed dead-ends. Prime implicants de-
scribe only those variable settings required for a Boolean as-
signment to be satisfying, and minimal dead-ends describe
only those unachievable fluents required to be a dead-end,
so there is reason to believe they would coincide. However,
note that relaxing one Boolean variable in the encodings
above amounts to saying that we have a fixed-point delete-
relaxed dead-end regardless of whether or not a selected flu-
ent or action is unachievable. Changing the setting to just

1The ability for the initial state to support a fluent is typically
captured through an introduced “initial state action”.
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Domain
bddmin c2d cnf2bdd DSHARP minic2d sharpSAT

act flu act flu act flu act flu act flu act flu

airport (50) 0 2 7 12 2 6 3 4 7 10 4 5

floortile (20) 0 0 10 10 0 7 2 2 4 14 5 6

mystery (30) 0 4 7 8 2 6 6 6 6 6 7 9

parcprinter (20) 0 0 14 16 0 0 0 0 7 8 0 0

pegsol (20) 0 0 20 20 0 17 0 20 0 14 20 20

sokoban (20) 0 0 9 10 0 0 0 0 2 5 3 3

trucks (30) 0 1 10 11 0 6 1 3 5 5 2 4

woodworking (20) 0 1 1 1 1 1 1 1 1 1 1 1

ALL (210) 0 8 78 88 5 43 13 36 32 63 42 48

Table 1: # of Problems Compiled. (Brackets): all encoded problems. Bold: greatest number of problems compiled.

one Boolean variable can easily cause the assignment to no
longer be satisfying, and as a result the prime implicants do
not correspond directly to the minimal delete-relaxed dead-
ends. The final note of interest is with respect to minimal
delete-relaxed dead-ends: i.e., a delete-relaxed dead-end
with the fewest number of unachievable fluents specified.
Every minimal delete-relaxed dead-end will correspond di-
rectly to some satisfying assignment of the proposed encod-
ing. This follows from the fact that the set of satisfying
assignments correspond to every fixed-point delete-relaxed
dead-end, which necessarily includes the minimal delete-
relaxed dead-ends, and it also underscores the subtle nature
of the xf̄ variables: when set to false, many of the con-
straints become satisfied due to the structure of (3) or (4).

4 Evaluation

Figure 1: Size of the d-DNNF generated by c2d compared
with the size of the BDD generated with cnf2bdd.

There are many possibilities for using the logical charac-
terization of delete-relaxed dead-ends that we presented in
Section 3. For our preliminary investigation, we evaluate

the potential of compiling the theory into many of the pop-
ular target languages for knowledge compilation: (1) Deter-
ministic Decomposable Negation Normal Form or d-DNNF
(Darwiche and Marquis 2002); (2) Sentential Decision Dia-
grams or SDD (Oztok and Darwiche 2015); and (3) Binary
Decision Diagrams or BDD (Biere et al. 2009). We eval-
uate both encodings using the range of compilers that are
available. For d-DNNF this includes DSHARP (Muise et al.
2012), c2d (Darwiche 2004), and sharpSAT (Thurley 2006).
While sharpSAT is not a compiler, the DSHARP compiler is
built on top of the sharpSAT code-base and so it provides a
natural bound on performance for DSHARP. For SDD, we
use the canonical compiler miniC2D (Oztok and Darwiche
2015). Finally, for BDD, we use both BDD-MiniSAT (Toda
and Soh 2015) and the CUDD software package (Somenzi
2015); referred to here as cnf2bdd.

We implemented software to convert STRIPS planning
problems (specified in PDDL) into CNF corresponding to
the two encodings (the converter, benchmarks, and data will
be released along with publication). All experiments were
conducted on a 3.4Ghz Linux Desktop, and every trial was
limited to 30min and 4Gb of time and memory. We used a
selection of common benchmarks known to have dead-ends.
In Table 1 we show the coverage for each of the tested com-
pilers (in their best configuration) on each of the encodings.
While the comparison across compilers is not direct, as they
compile the encoding into different target languages, we can
make some general observations.

The first aspect to note is that the fluent-based encoding
strictly dominates the action-based one. Despite the increase
in number of clauses, the search space becomes much more
manageable. Investigating the data further, we found that
roughly two thirds of all failures were due to memory viola-
tions, which indicates that storing the compiled form is the
bottleneck in the action-based encoding.

The next key insight is that d-DNNF (via c2d) is the tar-
get language most easily compiled. This is a direct result
of the more compact form the target language yields: Fig-
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ure 1 shows the size comparison for the fluent-based prob-
lems both c2d and cnf2bdd could compile. Generally, the
d-DNNF is far more compact with the notable exception of
the floortile domain. While efficient reasoning can be done
using d-DNNF, common symbolic planning operations such
as progression or regression remain difficult. BDD’s, on the
other hand, are the target language of choice for many sym-
bolic planning approaches, and so it is of particular inter-
est to focus on cnf2bdd. We observed the biggest jump in
coverage between encodings for a compiler occurred with
cnf2bdd, indicating that there is far more structure in the
fluent-based encoding that the BDD can capture succinctly.

While only preliminary, the results paint a broad picture
of the capabilities existing compilers have for dealing with
the characterization of all delete-relaxed dead-ends in a do-
main. There remains plenty of room for improvement for
the key compilers such as cnf2bdd in the form of planning-
specific variable ordering (Kissmann and Hoffmann 2014)
and approximate compilation (Soeken et al. 2016).

5 Summary
Dead-end detection for classical planning is central to many
state-of-the-art planners, and also a key component for ap-
proaches that solve more expressive planning formalisms. In
this work, we take the first steps towards characterizing the
space of all delete-relaxed dead-ends. We achieve this using
a pair of Boolean logic encodings that are elegant in their
simplicity, and remarkably, are not susceptible to the same
level of complexity that similar related planning encodings
face. We also performed a preliminary evaluation to test the
range of knowledge compilation techniques that can process
the Boolean encodings, and demonstrated the strengths and
weaknesses that they have on a suite of benchmarks known
to have dead-ends. Our work lays the foundation for incor-
porating a compact representation of delete-relaxed dead-
ends in a larger system, and moving forward we hope to
(1) leverage our encodings to improve planner performance;
and (2) incorporate notions such as the Π-compilation for
stronger dead-end detection by combining fluents (Keyder,
Hoffmann, and Haslum 2012).
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Abstract

Automated meeting scheduling is the task of reaching an agree-
ment on a time slot to schedule a new meeting, taking into
account the participants’ preferences over various aspects of
the problem. Such a negotiation is commonly performed in a
non-automated manner, that is, the users decide whether they
can reschedule existing individual activities and, in some cases,
already scheduled meetings in order to accommodate the new
meeting request in a particular time slot, by inspecting their
schedules. In this work, we take advantage of SELFPLANNER,
an automated system that employs greedy stochastic optimiza-
tion algorithms to schedule individual activities under a rich
model of preferences and constraints, and we extend that work
to accommodate meetings. For each new meeting request, par-
ticipants decide whether they can accommodate the meeting in
a particular time slot by employing SELFPLANNER’s underly-
ing algorithms to automatically reschedule existing individual
activities. Time slots are prioritized in terms of the number of
users that need to reschedule existing activities. An agreement
is reached as soon as all agents can schedule the meeting at
a particular time slot, without anyone of them experiencing
an overall utility loss, that is, taking into account also the
utility gain from the meeting. This dynamic multi-agent meet-
ing scheduling approach has been tested on a variety of test
problems with very promising results.

Introduction
Three friends, Alice, Bob and Charlie, want to meet for a
coffee. Alice sends a request and proposes three alternative
coffee shops, in different areas of the city, as well as a time
frame. The duration of the coffee meeting is estimated to one
hour.

Each friend has personal preferences for a variety of as-
pects of the proposed coffee meeting, such as the particular
coffee shop, traveling arrangements needed to go there, as
well as the alternative time slots. Their agendas are very tight,
so rescheduling might be necessary in order to accommodate
the new meeting. While rescheduling, they might consider
travel time and expenses, as well as overall utility of the
alternative schedules.

Meeting scheduling is a multiobjective optimization pro-
cess, where multiple agents negotiate on a common time slot

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to hold the meeting, taking also into account their commit-
ments and preferences. An agent may have already scheduled
individual activities, such as tasks with deadlines undertaken,
family duties, etc., as well as other meetings. Some of these
activities may be flexible and can be rescheduled, while oth-
ers may be not. Furthermore, some activities might be of
lesser importance and the user may decide to abandon them,
in order to be able to participate in the meeting. The agent
may also have preferences concerning the location and time
of the meeting, as well preferences towards scheduling its in-
dividual activities. It might also have hard or soft constraints,
e.g., ordering constraints, between his individual activities.

In this work we assume that the agents do not have prefer-
ences over how the meeting will be scheduled; they only care
to schedule the meeting. Under this assumption, the simplest
case is when the participating agents can find a common free
time slot to schedule the meeting, without the need to resort
to rescheduling. This time slot is considered optimal for the
meeting. Unfortunately, this situations is rather rare. It is quite
common that such a time slot does not exist. However, this
does not mean that the meeting cannot be scheduled, since
participating agents may negotiate to reach an agreement on
a time slot that is not initially available to all agents. During
the negotiation, time slots not available for all agents are
considered, under the condition that they can become “free”
if some agents manage to reschedule or even drop already
scheduled activities.

The negotiation process can terminate without reaching an
agreement, i.e. the agents may conclude that the meeting can-
not be scheduled, since rescheduling or dropping out other
activities reduces the overall utility received by at least one of
the agents (we assume that all the agents are veto participants
of the meeting, that is, without anyone of them the meeting
cannot hold). As a last resort, the agents might try to resched-
ule other meetings, either with agents not participating in
the current negotiation, or among themselves. In that case, a
recursive process may commence, where in order to schedule
one meeting, other meetings need to be rescheduled, that may
initiate rescheduling of other meetings with a different group
of agents and so on.

In this work, we consider the problem of multi-agent meet-
ing scheduling, where each agent has a set of already sched-
uled individual activities, that can be rescheduled in order
to accommodate the new meeting. We adopt a rich model
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of individual activities, with a variety of unary and binary
constraints and preferences, that has been proposed in (Re-
fanidis and Yorke-Smith 2010). Meetings are described in a
simpler way, that is, duration, temporal domain and utility
per agent. We consider the problem of meeting scheduling
as a multi-agent constraint satisfaction problem, based on
solving many single-agent constraint optimization problems,
with each agent attempting to maximize his utility, with the
latter being a function of all scheduled activities (individual
activities and the meeting), as well as the way they have
been scheduled (unary and binary preferences). We do not
consider recursive meeting rescheduling, i.e. only individual
agent activities can be rescheduled during the process.

The novelty lies in meeting scheduling empowered by
rescheduling of individual tasks supporting such a rich model.
To the best of our knowledge, there is no other work that
combines these two aspects of personal time management.

A powerful scheduler based on greedy construction and
stochastic optimization (Alexiadis and Refanidis 2016b) is
employed by each agent for constructing a schedule for his
individual activities. To schedule a meeting among a set of
agents, we have designed and implemented a meta-scheduler,
that negotiates with each agent a time slot and a location
that can be agreed upon. Each such proposal is evaluated by
agents using the scheduler mentioned above. For each pro-
posal, the agent employs distributively the individual activi-
ties scheduler to decide whether it can accept each proposed
time slot or not. To accept a time slot, the overall utility for
the agent when scheduling the new meeting in this time slot
should be higher than keeping his original schedule and not
scheduling the meeting at all.

In this work, we do not consider strategic behaviour on
behalf of the agents. We have tested our approach on a variety
of problem instances, with very promising results in terms of
performance and scalability.

The rest of the paper is structured as follows: Section 2
presents related work. Section 3 presents background infor-
mation concerning scheduling individual activities. Section 4
defines the integrated scheduling problem and presents the
proposed approach. Section 5 presents experimental results
and, finally, Section 6 concludes the paper and poses future
directions.

Related Work
Not surprisingly, there exist numerous approaches to agent
based meeting scheduling, since it has attracted research
interest rather early. In fact, it was considered to be one of the
main applications of intelligent personal assistants, a class
of agent systems aiming to support the user in performing
tedious everyday tasks. As expected, all approaches follow a
similar pattern of interaction: there is a group of agents, each
one representing a participant, and possibly a host/meeting
agent which coordinates a negotiation process with proposals
and counter-proposals on meeting parameters. The agreement
is, in most cases, a time slot that maximizes a collective
preference value, computed by individual preference values
of participating agents. There are quite a few issues in the
above setting, such as the number of proposals in each round,
the modelling of constraints and preferences, privacy issues,

interoperability issues (semantic web), user modelling via
learning, “bumping” strategies, etc. In this section we will
present in more detail some of the approaches.

One of the earliest agent-based meeting scheduling appli-
cations is reported in (Jennings and Jackson 1995), accord-
ing to which each participant is “represented” by a meeting
scheduling agent (MSA), managing its users calendar. The
procedure followed, presents quite a few similarities with the
well known Contract Net protocol: An MSA acting on be-
half of its meeting host, announces its intention to arrange a
meeting, along with respective time constraints and duration.
Participants (their MSAs) respond with bids, that are possible
time slots annotated with a preference value, which are used
by the meeting host to discover the best common time slot
with respect to its global preference value. This announce-
bid cycle continues until either a suitable slot is found, or
scheduling the meeting is determined to be non-possible, in
which case, the initial announcement (meeting duration / time
constraints) are changed and the process starts over again.

Sen and Durfee (Sen and Durfee 1996) address the problem
in a similar setting, however agents report their availability
(true/false) on a meeting announcement over n possible slots,
along with m alternative slots. In the same work, authors
report on rescheduling meeting strategy (bumping) when
conflict occurs, maximizing a utility function.

The RETSINA (Reusable Environment for Task-
Structured Intelligent Networked Agents) Calendar Agent
(RCAL) (Payne, Singh, and Sycara 2002), was aiming to
bridge information available on the Semantic Web with the
users personal information managers, e.g., Outlook 2000.
RCAL uses Contract Net to negotiate a meeting between
participants, a process that involves receiving bids from in-
volved parties to determine an appropriate meeting slot. The
advantage of RCAL is that information regarding the users
schedule is obtained automatically through semantically an-
notated descriptions, and thus allows for a more “accurate”
scheduling of meetings.

(Chun, Wai, and Wong 2003) treats the problem of meet-
ing scheduling from the perspective of user privacy, that is,
managing to optimally schedule a meeting without complete
knowledge of individual participant preferences. The negoti-
ation takes place between user Secretary Agents (SA), and
a Meeting Agent (MA), that coordinates process. Proposals
and counter proposals are annotated with a participants pref-
erence value w.r.t. the meeting parameters. In each step the
MA collects the set of proposals and generates a new set,
sorted on global preference estimation values, that is, values
computed from the annotated replies of the SA agents.

In DAS (Wang 2003) lightweight agents called coordi-
nation agents (CA), are created by the participants for each
proposed time slot of the meeting. Agents managing the same
slot are combined to a single agent. The approach aims at
reducing communication costs, by decoupling user agents
from CA, and allowing interactions between the latter on the
same computational host. (Franzin et al. 2002) [Franzin et al
2002, 2004] provide a more rigorous constraint modelling of
the problem considering hard and soft constraints, with the
latter representing user preferences with respect to meeting
parameters. The term “common assignment problem with
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preferences” is introduced to describe the collaboratively
scheduling of a meeting, with agents having common vari-
ables to set, but possibly different “internal” constraints on
these variables. Meeting scheduling proceeds with rounds of
proposal-counter proposal, guided by the preference value, in
order to reach optimal solutions. In a similar vein, MSRAC
(meeting scheduling with reinforcement of arc consistency)
(BenHassine and Ho 2007), handles incremental scheduling,
user preferences in the form of soft constraints, user availabil-
ity by a set of hard constraints and common meeting times
with other agents by equality constraints of the meeting time
slot, but consider more than one meeting to be scheduled at
each time point, i.e. a dynamic iterative value CSP problem.
The solving process includes time slot proposals broadcasted
by the host to participants, who return their available slots
ranked by their preference. Bumping also considered, based
on three different heuristic strategies.

CMRadar (Modi et al. 2005) offers a complete approach
to calendar management, including multi-agent meeting
scheduling capabilities. If a request for a meeting cannot
be accommodated within the current calendar of the agent,
then complex strategies involving altering other meetings of
lower priority value are employed, thus engaging the agent
in a multi-negotiation process, referred to as the “bumping”
problem in (Modi and Veloso 2005). In that work, multi-
agent meeting scheduling is modelled as a partial incremental
Multi-agent Agreement problem (piMAP), where an itera-
tive agreement protocol is employed. The main difference
between earlier approaches is the use of bumping heuristic
strategies, i.e. strategies to decide whether to modify an exist-
ing agent schedule to accommodate the meeting, that allow
incremental scheduling. groupTime (Brzozowski et al. 2006)
is a Web based application that bases meeting scheduling
on user preferences, in a semi-automatic fashion, i.e. users
have the chance to object to an initial meeting time, set by
the system. For each possible time slot the user can set its
preference explicitly, or the system assigns a value based on
the current users schedule (events). Preference assigned by
the system involves extracting schedule-agnostic features for
each participants schedule, based on a group-specific ontol-
ogy and a set of weights that are defined by machine learning
techniques using as training data the users events and prefer-
ences. The set of preferences is then used to determine the
meeting time.

The PTIME system (Berry et al. 2007; 2009) is a calendar-
ing assistant that offers meeting scheduling among a variety
of time management functionalities. The aim in PTIME was
the system to learn user preferences, using machine learn-
ing techniques, providing an adaptive personal assistant. The
learner module interacts both with the user and the constraint
reasoner in order for the system to provide meeting options
on a constantly evolving user preferences model.

Chronos (Zunino and Campo 2009), is a multi-agent meet-
ing scheduler, in which each user is represented by an Or-
ganiser Agent (OA), that learns users preferences. Each OA
represents its beliefs about both its users preferences and
other users he interacts with (acquaintances) using Bayesian
Networks (BN). BN express the causal relationships between
scheduling parameters, such as time and duration of a meet-

ing and are used to reason about meetings, by computing the
probability of an agent to accept a specific proposal. Proba-
bilities are computed for both participants in a meeting and
guide a negotiation process, involving proposals and counter
proposals in a multi-agent negotiation setting.

Although many approaches consider bumping, i.e. rear-
ranging another meeting in order to accommodate a new re-
quest, the issue of rearranging the participants private sched-
ule according to his original constraints with a rich scheduling
model, has not been investigated in depth until now.

Background: Individual activity scheduling
This section presents the model and the assumptions for
scheduling individual activities, as it has been proposed in
(Refanidis and Yorke-Smith 2010) and has been implemented
in the SELFPLANNER system. This model has been adopted
entirely in the present work and has been extended to support
also meetings. So, for the completeness of the paper, it is
purposeful to give a quick overview of it.

A person (equivalently an agent) may have a set T of N
individual activities to accomplish. Each activity Ti (1 ≤ i ≤
N ) can be accomplished only during certain time periods,
which constitute its temporal domain. This domain is defined
as a set of temporal intervals Di = [ai1, bi1)∪[ai2, bi2)∪
. . .∪[ai,Fi

, bi,Fi
). The duration of an activity may be not

fixed (e.g., visiting a museum), so for each activity Ti he
can specify its minimum duration dmin

i and its maximum
duration dmax

i , with more scheduled duration resulting in
more utility for the person. Activities can be interruptible, that
is, they can be scheduled into parts (e.g., reading a book or
writing a paper). For each interruptible activity the person can
specify its minimum part duration smini and its maximum
part duration smaxi (e.g., the person wants to devote in book
reading time periods not less that 1 hour and no more than 3
hours). The sum of the durations of an activity’s parts (non-
interruptible activities are considered to have one part) have
to be at least dmin

i in order for the activity to be considered
scheduled.

The set of locations associated with any of the person’s
activities is Loc, and let M being their number. A matrix
Dist, not necessarily symmetric, defines the temporal dis-
tance between any pair of locations (in the simple model we
assume a single means of transportation). We assume that
time, temporal intervals and distances are discrete, partic-
ularly integers (as the unit of time it is used the minimum
temporal interval of interest, e.g., 10, 15 or 30 minutes).

A set of locationsLoci ∈ Loc is associated with each activ-
ity Ti. A special location calledANYWHERE denotes that
the activity can be executed at any location (ANYWHERE
is considered to have a temporal distance of 0 from and to any
other location). Traveling times between locations have to
be taken into account when scheduling activities in time and
space; that is, any two temporally adjacent activities sched-
uled at different locations (notANYWHERE) should have
a large enough temporal gap between them, so as the person
can travel between the two locations.

Activities with compatible locations may overlap in time,
e.g., watching a lecture while reading emails. Each activity
has a utilization value between 0% and 100%, denoting the

37



percentage of the user’s attention that the activity requires.
The sum of the utilization values of activities scheduled at
the same time cannot exceed 1.

The model supports three types of binary constraints be-
tween pairs of activities:

• Proximity constraints define a minimum or/and a maxi-
mum temporal distance between two activities. For exam-
ple, the minimum temporal distance between two heavy
load activities should be at least 8 hours. Or, the maximum
temporal distance between reading a book and writing its
synopsis should be at most two days.

• Ordering constraints define an order in time. For example,
preparing the slides for the lecture should precede the
lecture itself.

• Implication constraints define prerequisite activities. For
example, in order to go to the theater, one should first buy
tickets.

Note that, especially for the proximity constraints, they can
be defined also over the different parts of an interruptible
activity.

The overall single-agent problem of scheduling a set of
individual activities is formulated as a constraint optimiza-
tion problem, with the empty plan being the least preferred
solution. The objective function is additive over the various
sources of utility. These include:

• Each scheduled activity – they can have different utility
values.

• Any scheduled duration above the minimum duration of
the activity.

• The person’s preference over the temporal intervals when
the activity has been scheduled (e.g., morning vs evening).

• Proximity, ordering and implication preferences, that is,
soft versions of the aforementioned constraints.

The constraint optimization problem is solved by finding
values for the decision variables pi, denoting the number of
parts of activity Ti (1 ≤ i ≤ N ), tij (start times), dij (dura-
tions), lij (locations), for each Activity part Tij (1 ≤ j ≤ pi),
while trying to maximize the sum of the utility sources. The
model, with a first solver based on the Squeaky Wheel Op-
timization framework has been initially presented in (Re-
fanidis and Yorke-Smith 2010). A more powerful solver, en-
compassing post-processing local search techniques (mainly
simulated annealing) has been presented in (Alexiadis and
Refanidis 2016b).

A technique that allows to produce significantly different
alternative plans has been presented in (Alexiadis and Refani-
dis 2016a). Producing such alternative plans and retaining
them in some form of cache memory may be very useful in
meeting scheduling, since they can be used to immediately
check whether a meeting can be accommodated in a partic-
ular time slot and what is the cost for this accommodation.
Particularly, if the time slot is free at any alternative plan kept
in cache memory, then the meeting can be scheduled there
and the cost is equal to the utility of the current plan minus
the utility of the particular alternative one.

Collaborative Meeting Scheduling

Informal Problem Specification

Building on top of the individual activities problem specifi-
cation, we assume a set of K agents, each agent i of them
having its own set of individual activities, according to the
model described in the previous section, as well as an already
accepted schedule for them Si, with instantiated decision
variables. Furthermore, each agent may already have agreed
to participate in meetings with other agents (not necessarily
among the K agents of interest for the new meeting), with
decided time and location.

One of the K agents invites the rest of them to participate
in a new meeting. This agent will act as the coordinator for the
particular meeting. The coordinating agent specifies a fixed
duration for the meeting, alternative locations for the meeting
(or ANYWHERE, if no physical presence is required, e.g.,
teleconferences), as well as a set of temporal intervals when
the meeting could be scheduled. Participating in this meeting
results in some utility gain for each invited agent (including
the coordinator), which may be different for each agent. The
meeting will be considered successful and all participants
will get the corresponding utility, only in case all of them
will be able to participate in it.

Agents may reschedule already scheduled individual activ-
ities (in this work we assume that they will not reschedule
already scheduled meetings, in order to accommodate the
new one). Rescheduling already scheduled activities may re-
sult in a utility loss wrt their current schedule Si. An agent
will accept to participate to the meeting at a particular time
and location, only in case the utility loss from reschedul-
ing already scheduled individual activities is no more than
the utility gain by participating in the meeting. In this work
we do not assume extra constraints and preferences, either
unary (that is, concerning the meeting by its own) or binary
(that is, concerning the new meeting and already scheduled
activities).

The meeting scheduling problem may have one or more
solutions or even none at all. In the case multiple solutions ex-
ist, various criteria could be adopted to select the best among
them, thus treating the problem as an optimization problem.
One criterion, in that case, is the sum, that is, maximizing the
total utility over all agents. Another criterion is the maxmin,
that is, maximizing the minimum utility gain, where the gain
for each agent i is computed as ui minus the utility loss due
to rescheduling existing activities.

However, in this work we treat the problem as a constraint
satisfaction problem, that is, we try to schedule the meeting
with the extra constraint that no agent receives less utility
from its new schedule (with the meeting), compared to its
old schedule (without the meeting). However, from the point
of view of each agent individually, it is a constraint opti-
mization problem, that is, it tries to maximize its total utility
received from scheduling its individual activities, plus the
utility received from the meeting.

Meetings in this work are limited in comparison to activi-
ties, that is they are specified with a temporal domain and a
fixed duration only. No preferences can be defined over them.
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Figure 1: AUML Diagram of the agent interaction during the
first phase of the Joint Activity Scheduling.

Algorithm
The Joint Activity Scheduler (JAS) presented in this Section
works in two phases, that implement a message exchange
mechanism between the coordinator and the invited agents.
The first phase (Algorithm 1) attempts to trivially solve the
problem without rescheduling already scheduled activities, by
looking for a common empty interval in the current schedules
of the agents (also shown in Figure 1). The second phase
attempts to schedule the meeting by rescheduling already
scheduled individual activities.

In the first phase, the coordinator iterates over all possi-
ble meeting time intervals, sending for each interval Ii a
query-if message to ask participants if they are available
at that time. If all agents reply affirmatively (inform-t
message), the meeting is scheduled at Ii. If even a single
agent replies negatively (inform-f message), then the pro-
cess is repeated for the next interval in the meeting’s temporal
domain.

The meeting intervals Ii returned by ja.all intervals()
are subintervals of the meeting’s temporal domain that have
a duration equal to the meeting’s length. Note that Algorithm
1 does not try to optimize any measure of utility. Since, in
case of a successful result, the meeting will be scheduled
without rescheduling any existing individual activity, there is
no utility loss for any agent due to rescheduling. Furthermore,
since the utility gain for any agent by scheduling the meeting
is fixed and does not depend on when the meeting has been
scheduled, the utility gain for each agent from successfully
scheduling the meeting is fixed. So, from the point of view of

Algorithm 1 JAS-Phase-1
1: procedure JAS-PHASE-1-COORD(ja,users)
2: for i←1 to ja.all intervals().length() do
3: interval← ja.all intervals()[i]
4: if ¬available(interval, current plan) then
5: continue
6: available← 0
7: for k ← 1 to users.length() do
8: send(agentk, query-if(interval))
9: for k ← 1 to users.length() do

10: if users[k].msg = inform-t then
11: available← available+ 1
12: else
13: break
14: if available = users.length() then
15: return interval
16: return failure
17:
18: procedure JAS-PHASE-1-AGENT
19: while true do
20: interval← get msg(coordinator)
21: if available(interval, current plan) then
22: send(coordinator, inform-t)
23: else
24: send(coordinator, inform-f)

Algorithm 1, scheduling the meeting is a constraint satisfac-
tion problem (and not a constraint optimization one), so all
solutions are equally desirable and the meeting is scheduled
at the first commonly free temporal interval found.

On the other hand, if no common free interval is found,
Algorithm 2 is employed, in a last attempt to find a common
free interval between the agents, using rescheduling of exist-
ing individual activities. In that case it is desirable to reduce
the overall need for rescheduling, since each call to the in-
dividual activity scheduler is a computationally expensive
process.

In Algorithm 2 the agents receive four different types of
requests from the coordinator. Specifically:
• l4–l5:1 Request to return to the coordinator their current

busy schedule, without providing information about their
scheduled activities.

• l6–l12: Request to attempt to render free a specific tem-
poral interval, by rescheduling their activities; the reply
is success of failure, accompanied with the utility gain
in the first case. The utility gain is the improvement of
the utility of the rescheduled plan (minus the utility of the
meeting) to the utility of the old plan. Note that a failure
response occurs not only in cases where it was impossi-
ble to schedule the meeting in the particular time slot, but
also in cases where scheduling the meeting is possible,
however it results in overall utility loss (taking into ac-
count the meeting’s utility). In case of a success reply, the
agent must retain in its local memory the corresponding
schedule, till the end of the meeting scheduling procedure.
1Procedure JAS-PHASE-2-AGENT.
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Algorithm 2 JAS-Phase-2
1: procedure JAS-PHASE-2-COORD(ja, users)
2: timeline← coord.timeline
3: min ints← {−1 . . .}
4: min mins← {∞ . . .}
5: for k ← 1 to users.length() do
6: users[k].timeline← request plan(k)
7: timeline← timeline+ users[k].timeline

8: for i← 1 to ja.all intervals().length() do
9: int← ja.all intervals()[i].start

10: temp← timeline[int]
11: for k ← int+ 1 until int+ ja.dur do
12: temp← temp+ timeline[k]

13: for k ← 1 to NUM OF TRIES do
14: if min mins[k] > temp then
15: min mins.insert(k, temp)
16: min ints.insert(k, int)
17: break
18: for i← 1 to NUM OF TRIES do
19: available← 0
20: for k ← 1 to users.length() do
21: if users[k].timeline[min ints[i]] then
22: reschedule(k,min ints[i], ja.dur)
23: for k ← 1 to users.length() do
24: if users[k].timeline[min ints[i]] then
25: if users[k].wait for repl() is yes then
26: available← available+ 1
27: else
28: send cancel to all()
29: break
30: else
31: available← available+ 1
32: if available = users.length() then
33: if coord.timeline[min ints[i]] then
34: plan ← schedule(problem +

[min ints[i], ja.dur, uc])
35: if [min ints[i], ja.dur] ∈ plan then
36: current plan← plan
37: send replace to all(min ints[i])
38: return [min ints[i], ja.dur]

39: else
40: send replace to all(min ints[i])
41: return [min ints[i], ja.dur]

42: return −1

1: procedure JAS-PHASE-2-AGENT
2: while true do
3: msg ← get msg(coordinator)
4: if msg requests plan then
5: send agent(coordinator, current plan)
6: else if msg requests reschedule then
7: plan[msg.start] ← schedule(problem +

[msg.start,msg.dur, uk])
8: if [msg.start,msg.dur] ∈ plan then
9: ugain = (u(plan[msg.start] − uk) −
u(plan))/u(plan)

10: send agent(coordinator, yes, ugain)
11: else
12: send agent(coordinator, no, 0)

13: else if msg requests replacing then
14: if plan[msg.start] then
15: current plan← plan[msg.start]

16: else if msg requests cancel then
17: cancel scheduling()

• l13–l15: Request to schedule the meeting at a particular
time interval, following a previously success reply for
that interval. The agent adopts the corresponding schedule
from its local memory and the meeting scheduling process
terminates.

• l16–l17: Request to cancel the rescheduling process (if it
is running); this request arises in case another agent has
already replied a failure for the time slot under consider-
ation.
In order to minimize the average workload (by reducing the

number of messages exchanged), the coordinator asks for the
busy hours of all agents for the meeting’s temporal interval
and computes the overall workload for each possible time slot
when the meeting could be scheduled (l5–l7).2 The overall
workload is stored in the timeline array (the length is the
maximum number of time slots of the users’ plans, whereas
each i-th value is the number of events scheduled in the i-th
time slot). Time slots with lower overall workload (i.e., the
least busy) are given priority to try to schedule the meeting.
Furthermore, if a more aggressive approach is adopted, not
all possible time slots need to be checked, thus sacrificing
completeness in favour of reducing computational costs.

Algorithm 2 sorts the potential time slots to schedule the
meeting in ascending order in terms of workload (that is, from
the least busy to the busiest) (l8–l17). NUM OF TRIES
denotes the number of temporal windows that Algorithm
2 will attempt to schedule there the meeting. Setting this
constant to a very large number allows for attempting all
possible time slots.

Then, for every attempted time slot the coordinator checks
the busy schedule of every agent (as it was sent by the respec-
tive agent), and asks the agents that are busy to check whether
rescheduling of existing activities is possible (l18–l22), thus
being able to schedule the meeting at the time slot under
consideration. If any of the agent replies that rescheduling

2Procedure JAS-PHASE-2-COORD.
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failed (l23–l31), the coordinator sends a cancel message to
the rest of the agents so as they terminate their rescheduling
process, and proceeds to the next time slot in the list.

If all the agents reply positively to the time slot under
consideration then the coordinator will check its own as well
(l32–l34). If the time slot is either available or the coordinator
can reschedule it without a great loss to its current plan utility
then the procedure succeeds and the coordinator informs
the other agents that the meeting has been scheduled at the
interval under consideration (l35–l38). Otherwise the next
interval in line is examined until either NUM OF TRIES
intervals have been evaluated or there are no more time slots
to examine (l39–l42).

Experimental Evaluation
We implemented a non-distributed version of the above al-
gorithms, i.e. the code is executed as a single process, in
C++.3

In the current experimental evaluation we are more con-
cerned with qualitative aspects of the algorithm, and not
performance issues, like execution time and number of mes-
sages exchanged, thus we do not expect the results presented
to change under a distributed, multi-agent version.

In order to evaluate JAS, we created 30 participant activ-
ity schedules using the SWO+SA scheduler (Alexiadis and
Refanidis 2016b). These are the predefined fully specified
activity plans of the agents participating in the process. The
number of activities involved in each schedule, ranges from
5 to 31, in increments of 5. For each schedule size, we se-
lected 5 instances, taken from the literature (Alexiadis and
Refanidis 2016a).

We considered four different meetings, all with a duration
of four time units, but with a varying temporal domain, as
shown in Table 1.

Table 1: Meeting Definitions
Meeting id Duration Interval 1 Interval 2

1 4 [1..20] -
2 4 [144..151] -
3 4 [1..15] [16..20]
4 4 [143..147] [148..152]

For each meeting, we created 20 random teams of the
above agents (a total of 80 experiments), and attempt to
schedule the meeting using our JAS implementation. For each
meeting, we considered participant populations of different
size, from two agents to a max of five.

We set the meeting utility uk for all users to 4, which is a
value lower than the lowest activity utility in these problem
instances. It should be noted that in the scheduling problem
instances activity utilities were ranging from 5−−12. This
choice was selected so as the scheduler tries to accommodate

3The full source code and the experiments’ results are
available online at: https://drive.google.com/file/d/
1vf_c728GK22hsz_tybo--uREZN_RN9-g/view

the meeting without “dropping” an activity previously sched-
uled, as explained later in the section. For all experiments we
have set NUM OF TRIES = 5.

Table 2 presents an overview of the results of the experi-
ments. The table depicts for all teams of agents, the scheduled
interval found for each meeting, the final JAS phase com-
pleted (column Ph) and the number of user schedules that
required changed to accommodate the meeting (column Rs).
In the Rs column we do not count every call to the scheduler
but only the number of users whose plans were rescheduled
at the end of the negotiation process. For the schedule()
function of the second phase of JAS we called the SWO+SA
scheduler4 as an external process. The scheduler was called
on a modified version of the problem instance, of the user
being rescheduled, that included the meeting at the interval
being tested.5 As the SWO+SA scheduler is an optimizer,
that is it tries to find the plan with the maximum utility, it
would not omit an activity that gives a greater utility to in-
clude an activity that gives a lower one. By providing a low
uk value to JAS, this ensures that the SWO+SA scheduler
would not remove one of the already scheduled activities to
include the meeting. However, the SWO+SA scheduler could
decrease the duration of a scheduled activity Ti though, if the
condition dmin

i < dmax
i was consistent and thus decrease the

utility of the agent.
JAS managed to find a common interval in 73 out of the

80 runs of the algorithm. Since a small value was set to the
NUM OF TRIES parameter, it is possible that a common
interval could be found in the remaining 7 unsuccessful cases
with more rescheduling tries. Although setting this parameter
to higher values would increase the number of scheduler calls
significantly, it allows testing every possible meeting interval.
It should be noted that out of the 73 scheduled instances only
6 were scheduled in the first phase of JAS, i.e. solved trivially.
In the rest, the meeting was successfully scheduled in the
second phase, which attempted to reschedule the minimum
number of users by using the min ints list.

The utility change for the rescheduled users was minor
in most of the cases. Table 3, shows the maximum, mini-
mum and average percentage of utility change in the agent’s
plans without taking into account the added utility of the
introduced meeting, in order to evaluate how rescheduling
affected the previous activity plan of the agent. The worst
drop was −15.62%. As the SWO+SA scheduler is stochastic
there were many cases were there were even minor utility
improvements in the rescheduled plans of the users. The best
improvement was 2.46%. Obviously, for the cases that the
meeting was not successfully scheduled, the agent utilities
did not change and these cases are marked with a dash (-).
From the total 175 rescheduled users, there were 95 utility
drops in the rescheduled plans and 74 minor improvements.
The rest had plans with the same utility.

Conclusions
The work described in this paper addresses the problem of
automated meeting scheduling between a number of self-

4The SWO-SA scheduler is not an exact optimization algorithm.
5With a utilization value of 100%.
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Table 2: Results of applying JAS to Meeting Scheduling Problems.
Size of Team 2 Participants 3 Participants 4 Participants 5 Participants
Meeting ID Interval Ph Rs Interval Ph Rs Interval Ph Rs Interval Ph Rs

1

[7..11] 1 0 [16..20] 2 2 [1..5] 2 1 [9..13] 2 2
[9..13] 1 0 [9..13] 1 0 [1..5] 2 3 [1..5] 2 4
[10..14] 2 1 [16..20] 2 2 [16..20] 2 1 [1..5] 2 3
[6..10] 1 0 [7..11] 2 2 [1..5] 2 3 [16..20] 2 1
[10..14] 1 0 [1..5] 2 3 [16..20] 2 3 [8..12] 2 2

2

[147..151] 2 2 [145..149] 2 3 [146..150] 2 4 [147..151] 2 4
[147..151] 2 1 [147..151] 2 2 [146..150] 2 4 [144..148] 2 4
[144..148] 2 2 [144..148] 2 3 [146..150] 2 3 [144..148] 2 5
[144..148] 2 1 [147..151] 2 2 [144..148] 2 3 [144..148] 2 5
[144..148] 2 2 [144..148] 2 2 [144..148] 2 4 [147..151] 2 3

3

[16..20] 2 1 [8..12] 2 1 [16..20] 2 2 [1..5] 2 3
[16..20] 2 1 [11..15] 2 2 [16..20] 2 2 [11..15] 2 5
[16..20] 2 2 [16..20] 2 1 [16..20] 2 2 [16..20] 2 2
[16..20] 2 2 [8..12] 2 2 [16..20] 2 1 [16..20] 2 4
[7..11] 1 0 [16..20] 2 3 [10..14] 2 1 [16..20] 2 2

4

[143..147] 2 2 no schedule 2 0 [143..147] 2 4 no schedule 2 0
no schedule 2 0 no schedule 2 0 no schedule 2 0 [143..147] 2 5
[143..147] 2 2 [143..147] 2 3 [143..147] 2 4 [143..147] 2 5
[143..147] 2 2 [143..147] 2 3 no schedule 2 0 [143..147] 2 5
[143..147] 2 2 [143..147] 2 3 [143..147] 2 4 no schedule 2 0

Table 3: Utility Gains Change (%) when Scheduling a Meeting
Size of Team 2 Participants 3 Participants 4 Participants 5 Participants
Meeting ID max min avg max min avg max min avg max min avg

1

0 0 0 0 -2.26 -0.92 0 -0.87 -0.22 0.35 -2.46 -0.42
0 0 0 0 0 0 0.08 -2.69 -0.78 0.29 -2.63 -0.41
0 0 0 0.02 -1.85 -0.61 0.05 0 0.01 2.46 -6.61 -0.85
0 0 0 0.31 0 0.1 0.2 -2.35 -0.73 0 -0.02 0
0 0 0 0 -7.28 -3.25 0 -15.62 -3.91 0.11 -1.67 -0.31

2

0.48 -0.41 0.04 0.43 -3.14 -0.82 0.05 -1.44 -0.73 0.53 -1.07 -0.23
0 -0.04 -0.02 0.45 -0.1 0.12 0.37 -0.14 0.12 0.97 -3.94 -0.52

-0.17 -6.05 -3.11 0.32 -5.15 -1.71 1.19 -3.43 -0.3 0.68 -15.08 -3.39
0.09 0 0.05 0 -1.09 -0.54 0.36 -15.14 -3.7 0.07 -5.75 -1.7
0.26 -0.36 -0.05 0.97 -0.61 0.12 0.06 -0.81 -0.23 0.09 -0.3 -0.05

3

0.03 0 0.02 0 -0.32 -0.11 0 -0.52 -0.26 0.19 -0.47 -0.09
2.13 0 1.07 0.41 -0.21 0.07 1.19 0 0.31 -0.12 -0.93 -0.43
1.17 -0.19 0.49 0.08 0 0.03 0.85 -0.9 -0.01 0.16 0 0.06
1.15 -0.99 0.08 0 -0.59 -0.25 0 -0.26 -0.07 0.15 -0.15 -0.03

0 0 0 1.74 -0.98 0.35 0 -0.03 -0.01 0.2 -1.47 -0.25

4

0.06 0.03 0.05 - - - 0.28 -0.59 0.02 - - -
- - - - - - - - - -0.07 -1.23 -0.6

0.16 0.02 0.09 1.87 0.07 0.76 0.78 -0.88 -0.06 0.2 -1.18 -0.3
0.98 -0.43 0.28 0.27 -0.95 -0.21 - - - 0.14 -1.29 -0.38
-0.04 -0.26 -0.15 1.23 -0.17 0.37 0.1 -1.45 -0.35 - - -
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interested agents, under a rich model of individual activities
and a typical model for the meeting. As commonly used in
other work, the multi-agent negotiation process that takes
place is driven by a coordinator agent responsible for gener-
ating proposals, to which agents reply based on utility values
derived from employing a greedy construction and stochas-
tic optimization scheduler to the new scheduling problem
that includes the proposal. Initial experimental evaluation,
demonstrates that the approach performs well, reaching an
agreement on the meeting time slot in the majority of experi-
ments.

There are several directions that the present work can be
extended. Currently, we do not consider alternative meeting
locations in proposals, a feature that would certainly increase
the number of necessary negotiation rounds, and although
such an option in most business cases might not be of great
interest, it might be interesting in other cases. JAS can also
be extended so that meetings could be converted to full joint-
activities, that is both temporal preferences (i.e., schedule the
meeting at morning/noon/evening) and binary preferences
could be defined over them by each agent, as in individual
activities.

More experiments should also be conducted to evaluate
the proposed approach. JAS is deterministic and should al-
ways arrive to the same common scheduled interval (given a
deterministic rescheduler), but SWO+SA is stochastic. When
the interval being tested by SWO+SA is given a high enough
utility, JAS should always arrive to the same common sched-
uled interval, while the rest of the users rescheduled plans
may be different though with different utilities between runs.
By giving the interval being tested a low enough utility, it is
possible that JAS could output different common scheduled
intervals between runs. This needs to be tested. Moreover,
different parameters for the algorithm, as well as different
heuristics for the ordering of the intervals to be evaluated
could also be tested. Future experiments should also measure
the number of tested intervals and provide a metric for the
computational efficiency of the proposed algorithms.

Rearranging agent meetings to accommodate the one under
negotiation, i.e. ”bumping”, presents also a very interesting
research direction that we aim to investigate, since there is
a number of interesting questions that arise, as for example
when should this ”recursive” process terminate.

Finally, an experimental evaluation of the proposed algo-
rithms in a real distributed environment would allow to mea-
sure the algorithms performance in terms of execution time
and number of messages exchanged in order to fully evaluate
its potential in a real-life setting. Obviously, integrating the
proposed algorithms with modern calendar applications is
the ultimate goal.
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Abstract

Recent advances in additive manufacturing (AM) and 3D
printing technologies have led to significant growth in the use
of additive manufacturing in industry, which allows for the
physical realization of previously difficult to manufacture de-
signs. However, in certain cases AM can also involve higher
production costs and unique in-process physical complica-
tions, motivating the need to solve new optimization chal-
lenges. Optimization for additive manufacturing is relevant
for and involves multiple fields including mechanical engi-
neering, materials science, operations research, and produc-
tion engineering, and interdisciplinary interactions must be
accounted for in the optimization framework.
In this paper we investigate problem where a set of parts with
unique configurations and deadlines must be printed by a set
of machines while minimizing time and satisfying deadlines,
bringing together bin packing, nesting (two-dimensional bin
packing), job shop scheduling, and constraints satisfaction.
We first describe the real-world industrial motivation for solv-
ing the problem. Subsequently, we encapsulate the problem
within constraints and graph theory, create a formal model of
the problem, discuss nesting as a subproblem, and describe
the search algorithm. Finally, we present the datasets, the ex-
perimental approach, and the preliminary results.

Introduction
As engineered components and aesthetic creations become
more advanced and intricate, they push the boundaries of
what is manufacturable via traditional manufacturing pro-
cesses. These boundaries may be of a technical nature, in
which certain geometries or certain materials simply cannot
be produced with traditional equipment; or they may be eco-
nomic in nature, such that the high mix and low volume of
production orders cannot be manufactured in a cost-efficient
manner due to high tooling and labor costs incurred with
each associated setup. The onset of additive manufacturing
(AM) technologies has presented new capabilities to engi-
neers and designers, greatly expanding the domain of the
manufacturable design space along several dimensions, al-
lowing for design behaviors and concepts which previously
may have only been conceivable and not producible: mass
customization of components; intricate geometries with no
restrictions on visibility, draft angles, or other design re-
quirements; and exotic material behaviors such as negative
stiffness and negative thermal expansion (Duoss et al. 2014).

For the manufacturing and production engineers, AM
technologies allow components to be printed “on demand”,
and for the supply chain to consist of digital files rather than
physical components. Figure 1 shows an example of a com-
plex geometry which can only be produced by additive man-
ufacturing. While the unit production cost for a single addi-
tive component may be higher when compared to full-scale
traditional production, additive manufacturing is drastically
less expensive at low and medium volume production. The
industry is beginning to embrace these new manufacturing
methods in order to streamline aspects of production, such
as the well-known example of GE printing fuel injector noz-
zles for jet engines in a single print (Coykendall et al. 2015).
The nozzle previously required producing of 20 complicated
components, as well as the additional labor to weld and
braze them into an assembly afterward. In addition to be-
ing more streamlined to produce, the additive version of the
nozzle was also 25% lighter, which directly translates to ad-
ditional fuel savings for the aircraft (Conner et al. 2014).

Figure 1: Example of a component which is impossible to
manufacture by traditional manufacturing techniques, yet
is able to be printed despite the intricate lattice structures.
(Kalpakjian and Schmid 2013).

Additive manufacturing can result in drastic reductions in
the overall production time of a component. This efficiency
stems from reducing the number of procedures involved in
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the production process, even if a typical print takes longer
than a typical process step in a traditional manufacturing
flow. Whereas a single machining operation may take on the
order of minutes or hours to execute, a single print is on
the order of hours or days. However, traditional production
of a part may require dozens of piecewise machining op-
erations for completion, while a print is a single-operation
process. Both additive and traditional manufacturing may
require some standard finishing operations to accomplish
things such as achieving the desired surface finish or remov-
ing structures used to fix the component to the machine dur-
ing production, and these times are process-independent.

Given that additive manufacturing consists of a single,
time-consuming, step and that there is an opportunity to fit
multiple components onto the same build plate so they can
be produced in parallel while incurring only marginal addi-
tional time costs, planning and scheduling for additive man-
ufacturing at a factory scale brings a unique set of emerging
opportunities and challenges while attempting to optimize
the process.

In the rest of this section we describe some existing chal-
lenges in additive manufacturing and establish the problem
of optimizing scheduling and planning for AM.

Additive Manufacturing

Figure 2: Schematic of selective laser melting (SLM), which
is classified as a powder bed fusion process (Wikimedia
Commons 2018).

Additive manufacturing, also known as 3D printing and
other names, has existed as a commercial technology since
1984 with the invention of stereolithography, although the
overall vision of precisely replicating physical objects pre-
ceded the invention of stereolithography by a century (We-
ber et al. 2013). The roots of AM technology date back to
the 1800s with developments in the fields of photo sculp-
ture and topography, but the overall vision of printing three-
dimensional objects was not possible until advancements in
materials science, computer-aided design (CAD), computer
numerical control (CNC), and laser technology were made,
triggering the rapid development of a variety of AM tech-
niques which can be grouped into seven major technology
categories (ASTM 2018):
• Binder jetting—an additive manufacturing process in

which a liquid bonding agent is selectively deposited to
join powder materials.

• Directed energy deposition—an additive manufacturing
process in which focused thermal energy is used to fuse
materials by melting as they are being deposited.

• Material extrusion—an additive manufacturing process in
which material is selectively dispensed through a nozzle
or orifice.

• Material jetting—an additive manufacturing process in
which droplets of build material are selectively deposited.

• Powder bed fusion—an additive manufacturing process in
which thermal energy selectively fuses regions of a pow-
der bed.

• Sheet lamination—an additive manufacturing process in
which sheets of material are bonded to form an object.

• Vat photopolymerization—an additive manufacturing pro-
cess in which liquid photopolymer in a vat is selectively
cured by light-activated polymerization.

Figure 2 shows a schematic of the selective laser melting
(SLM) process, which is a type of powder bed fusion pro-
cess. SLM is typically used for producing metallic parts, and
due to its industrial value in many manufacturing verticals,
SLM is the AM process focused on in this paper.

Many technological advancements have enabled the exis-
tence of AM processes, yet many challenges still remain as
the field matures. One such challenge is how to incorporate
additive manufacturing into a traditional manufacturing pro-
cess flow, since AM has different planning and scheduling
requirements and considerations. Other challenges involve
understanding, modeling, and controlling complex physical
behaviors and phenomena involved in the process, which are
ultimately influenced by the planning and scheduling deci-
sions made upstream of the process. Some examples of these
decisions are how to optimally orient the geometries in space
for printing, and how to optimally nest multiple parts within
a single print without inducing any build failures. “Optimal”
may be defined in terms of overall print cost, overall print
quality, or some other metric of optimality. It is important to
note that some process decisions may induce physical con-
ditions within the print which yield total process failures,
with the onset of cracking, layer delamination, or unaccept-
able degrees of component warping. For this paper, we will
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assume that planning and scheduling decisions are made in
fully observable and deterministic world where all possibil-
ities succeed.

Related Work
Additive manufacturing has been an emerging technology
for several decades, and each advancement has provided new
alternatives to traditional manufacturing methods for candi-
date geometries and applications. Mass production via ad-
ditive manufacturing is now viable, yet the operations re-
search techniques designed for traditional manufacturing are
not directly transferable to AM. A number of cost models
for AM have been recently developed in (Fera et al. 2017)
and (Lutter-Günther et al. 2015), a survey of cost models
was performed in (Costabile et al. 2017), and various AM
products have been mapped in (Conner et al. 2014). How-
ever, only a few models for production planning of AM
have been proposed. Notably, (Li, Kucukkoc, and Zhang
2017) has proposed a constraint optimization model on top
of CPLEX, which does not take into account deadlines and
approximates nesting by the total surface area. In (Chung,
Chan, and Chan 2009), the authors implemented a model in
MATLAB which takes into account nesting and scheduling
metrics of earliness and tardiness, however they only con-
sider a single machine.

Challenge Statement
Production planning in AM starts when a customer sends
design specifications (CAD file) of a part that needs to be
manufactured, along with a production deadline and delivery
location. The design specifications of the part include geo-
metric dimensioning and tolerancing (GD&T) information,
which restricts the decision space in the production planning
process. For example, the GD&T information may specify
tolerances in regions of the design which are not achievable
by some types of printing processes. Since machines are ca-
pable of printing multiple parts simultaneously in a single
print operation, it is important to consider optimizing the
constitutive members of such sets and how they fit together.
Each part has its printing orientation, and they must collec-
tively fit into the build volume of the machine – typically a
regular hexahedron defined by height, width, and length. A
single print operation is called a build, and we assume that
the downward projections of different parts within a build
cannot overlap. The duration of each build is functionally
dependent on the speed that the laser beam in the machine
is programmed to travel, the maximum height of the set of
parts in the build, and the total path traveled by the laser
beam during the build. Each machine behaves as a unary re-
source, and thus can execute only a single build at any mo-
ment in time.

The problem consists of a set of parts, N , including their
possible orientations, configurations, and deadlines, as well
as a set of machines, M . The solution to the problem is the
set of builds, B, scheduled to machines, M , which maxi-
mizes the number of parts printed prior to their deadlines,
while also minimizing the overall printing cost.

In this paper we are relaxing several requirements which
are considered during production planning. In particular,

the shipping deadlines to given delivery locations are re-
laxed by projecting the upper bound of shipping time into
the scheduling deadline. In reality, the location of manufac-
turing assets around the globe would influence scheduling
deadlines, but upper bounding of resource requirements for
logistics allows for treating all machines as though they are
in a single location. We consider 2D bin-packing (nesting)
when combining different parts into a single build. While
3D bin-packing is conceptually possible, i.e. by using hor-
izontal bridges, we do not consider it in this paper. Fi-
nally, builds may require additional preparation and post-
processing steps when the machine is cleaned, the material
is recycled, the machine configuration is adjusted, and small
finishing operations are required on the parts before ship-
ment. Those steps are performed by human operators that
have their own shifts and schedules that vary across different
time-zones (i.e. a high priority order may start to be printed
in Hungary, because the operators are already up and can
configure the machines, while a factory in Nevada is print-
ing their night jobs). We are relaxing the human operators
and upper bounding their work into the duration of printing
a build, which also allows for relaxing the temporal reason-
ing to the sequence of builds on each machine.

The problem we are solving consists of multiple nested
NP-hard problems (bin-packing, set cover, job-shop), and to
describe the structure of our model we first encapsulate the
configuration of parts. In the next section we formulate the
assignment of parts into builds as a graph decomposition.
Next we describe the challenges of nesting parts together,
and finally we describe the complete model with experimen-
tal evaluation.

Configuration
A manufacturing configuration for a part P is a collection of
rules that need to be followed to maximize the expectation
of achieving the desired quality of part P . We model a man-
ufacturing configurationO of part P as a constraint satisfac-
tion problem O = (V p ∪ V m, C), where V p are persistent
variables that relate only to the part P , V m are variables re-
lated to the manufacturing process of P that merge through
composition, and constraints C then propagate across V p

variables through V m variables. We say that the configura-
tion O is valid iff there exists an assignment α of values to
the variables V p ∪ V m such that all constraints in C are sat-
isfied.

Having a set of all possible configurations Ω we define
composition

⊙
: Ω × Ω → Ω as a function that composes

two configurations into another configuration. Having two
configurations O1 = (V p

1 ∪ V m, C1) and O2 = (V p
2 ∪

V m, C2) we construct a composition O1

⊙
O2 = (V p

1 ∪
V p
2 ∪V m, C1 ∪C2). As a practical example we can imagine

having a part P , its configurationO = (V p∪V m, C), persis-
tent variable orientation ∈ <×<×<, variable height ∈ <,
and constraint height >= h(O) (for simplicity we assume
that function h computes the height of the part P given its
configuration O that contains the orientation variable and
volumetric data). We can note that for a composition of two
parts, we will determine that the printing height has to be
larger than the maximum height of either part. In similar
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Figure 3: Example of a compatibility graph for a problem
with 20 machines and 50 parts. Nodes of the same color be-
long to the same clique. The clusters correspond to different
materials.

fashion we can compose deadlines for different parts and all
the configuration variables.

Compatibility Graph
Having a set of parts Π and their configurations Ω, we as-
sume that all configurations are valid (invalid configurations
trivially reflect a failure in the part preparation process),
then we say that two configurations O1 and O2 are com-
patible iff O1

⊙
O2 is valid. We can see that compatibility

is a symmetrical, reflexive and non-transitive relation. Hav-
ing a set of nodes N = Ω and a set of edges E = {(x, y)|x
is compatible with y} we define the compatibility graph as
G = (V,E). We can observe that a build which combines
together multiple parts has to be a complete subgraph (a
clique) within the compatibility graph.

A compatibility graph allows us to represent relationships
between individual parts, to provide a structure that can be
quickly searched for build candidates, and to record struc-
tural information from previous searches, i.e. no-goods such
as two parts that should not be in the same build because one
of their deadlines will be violated.

Graph Decomposition
Choosing a single clique in the compatibility graph repre-
sents creating a job and scheduling it on a printer. Conse-
quently, choosing a set of cliques that cover the whole graph
without intersections on nodes represents a decomposition
of the graph into complete subgraphs, and it is also equiva-
lent to the exact set cover problem (Cover and Thomas 1991)
with an additional restriction that each subset of the cover-
ing is a clique in the compatibility graph. Figure 3 illustrates
a graph decomposition into cliques. Having an initial state I
of the search space in which all cliques contain only a sin-
gle node, we can look at the search space of the problem
as a tree that merges two cliques at each branch if the parts
within the two cliques can be nested together, until no two

cliques can be merged. However, the size of the combina-
torial space of choosing the cliques to merge one by one is
O(nn), impractical for any exhaustive search algorithm.

While pairwise compatibility is a necessary condition for
having a valid build, it is not a satisfactory condition, which
is provided by running the nesting algorithm described in
the next section.

Nesting

The nesting algorithm aims to efficiently arrange a given
set of parts on a given build plate size by maximizing the
total area covered with parts. Each part has an associated
economic value and several possible orientations, which are
considered under several (< 10) different rotations around
the z-axis. The nesting algorithm maximizes the value of
the build plate.

Nesting operates at three levels of fidelity with varying
degrees of computational complexity - the highest fidelity
nesting takes the longest to compute, while the lowest fi-
delity nesting is computed the fastest. Low-fidelity nesting
uses 2D bounding boxes, medium-fidelity nesting uses sil-
houettes while packing the parts greedily, and high-fidelity
nesting explores the search space using several search algo-
rithms.

Low Fidelity At the lowest fidelity of nesting we use the
2D bounding boxes of the given parts. First these rectan-
gles are sorted in a descending sequence by the value of the
part, then by their shortest side, and finally by their longest
side. We place these rectangles using the Maximal Rectan-
gles Best Short Side Fit algorithm (Jylänki 2010). This tech-
nique keeps track of the maximal free rectangles in the bin,
these are the rectangles remaining after placing the bound-
ing boxes. It then places each rectangle in one of these free
rectangles, minimizing the shortest leftover side.

Medium Fidelity This level of nesting uses a greedy algo-
rithm to place the parts. First the silhouettes of the parts are
constructed. The resulting polygons are sorted in descending
sequence by the value of the object, and then by area. Then
the polygons are placed one by one on the build plate. For
each polygon we compare all possible rotations and posi-
tions, and choose the combination that results in the smallest
bounding box. For this level of nesting only a single orienta-
tion per object is considered. Figure 4 shows an example of
medium fidelity nesting.

High Fidelity The highest fidelity nesting procedure ex-
plores the solution space using several search strategies -
Genetic Algorithm, Simulated Annealing and Tabu Search.
A solution to the problem consists of the order in which we
place the parts, and the orientation and rotation of each part.
The placement of parts is done with the Bottom-Left strat-
egy (Dowsland, Vaid, and Dowsland 2002), where we place
each parts as close to the bottom-left of the build plate as
possible. The nesting algorithm either maximizes the total
area used area or the total value of the parts in the build.
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Figure 4: Example result from medium fidelity nesting.

Mathematical Model
We build up a representation of the problem as a meta
constraint optimization problem (Dechter 2003) as a pair
(V,C), where V is a set of variables and C is a set of con-
straints on top of V , where some constraints are hard and
always need to be satisfied (a single machine cannot per-
form two activities at once), while others are soft (not every
part can always be finished on time). Then the solution of the
problem (V,C) is an assignment α that assigns exactly one
value to each variable while all the hard constraints are satis-
fied. The quality of the solution is further evaluated based on
the number of unsatisfied constraints, which is represented
in the objective function.

We define the problem variables as follows:

• P = {p1, .., pn} is a set of parts.

• B = {b1, .., bn} is a set of builds to be printed.

• M = {m1, ..,mm} is a set of machines.

• dpi
denotes the deadline for part pi.

• dbi denotes the deadline for build bi.

• durmj

bi
denotes the duration for the build bi on machine

mj .

• cmi
denotes the configuration of the machine mi.

The decision variables of the problem are the following:

• cpi denotes the configuration assigned to the part pi.

• api
= bj denotes the build bj is assigned to part pi, we

can also write pi ∈ bj .

• abj = mk denotes the machine mk assigned to build bj ,
we can also write bj ∈ mk.

On top of the variables we are going to use multiple con-
straints and a strategy for ordering builds at the individual
machines, described in the following sections.

Constraints
We use the following constraints to maintain the consistency
of the solution and cut symmetrical parts from the search
space. Note that some of the hard constraints are implicitly
encoded in the representation, i.e. the constraint that a build
can only be assigned to a single machine, and that a part
can only be assigned to a single build. These constraints are
written below for completeness:

⋃
b∈B b = P

∀bi, bj ∈ B : bi ∩ bj = ∅
⋃

m∈M m = B

∀mi,mj ∈M : mi ∩mj = ∅
Compatibility Constraints enforce that parts within a
single build are compatible with themselves, as well as the
machine which is processing the build. We define the con-
straint as follows:

∀bi ∈ B, abi = mj : cmj

⊙∏
x∈{y|ay=bi} x is valid.

The compatibility constraint is evaluated by solving (find-
ing a witness solution) of the inner CSP problem, where
the compatibility graph provides fast evaluation and filter-
ing of impossible candidates. Preprocessing of the compat-
ibility graph consists of computing the compatibility rela-
tion between every pair of possible configurations coming
from two different parts, likewise every possible part con-
figuration with every machine. The cost of preprocessing of
the compatibility graph is negligible, O(n2), where n is the
number of parts.

Nesting Constraints are global constraints whose evalu-
ation runs asynchronously in parallel with the main search
algorithm. The main search algorithm uses the total surface
area as an upper bound on how densely nested the parts can
be in a build. Then those builds are sent to the nesting al-
gorithm which provides a list of the parts that do fit into the
build and the parts which are leftover from the build. We
denote the set of all builds that were returned by the nester
as Φ and also have ∅ ∈ Φ, representing that an empty build
is trivially satisfied. We define the nesting constraint as fol-
lows:

∀bi ∈ B : {pj |apj
= bj} ∈ Φ.

In other words, all builds need to be empty or confirmed by
nester through the set Φ. We treat the nesting constraint as
a soft constraint, where each build not contained in Φ rep-
resents a violated constraint. For the purpose of this paper,
nesting within the nesting constraint is done at the medium
fidelity level.

Deadline Constraints guarantee that the parts are fin-
ished on time. We define the deadline for a build as dbi =
minpj∈bidpj

, in other words, a build’s deadline is the earli-
est deadline among its parts. Then, assuming time at the be-
ginning of the world is 0, we define the deadline constraints
as follows:

∀mj ∈M,∀bi ∈ mj :
∑

b∈mj |db<=dbi
dur

mj

b <= dbi

48



In other words, on a single machine the deadlines of all the
builds must occur after the sum of durations of the builds
whose deadlines are earlier. It may not be always possible to
fulfill all the deadline constraints, and we may instead treat
them as soft constraints which need to be minimized.

The computational problem of evaluating the deadline
constraints is a standard scheduling problem that we focus
on in the next section.

Tardy Builds
Once a build is assigned to a machine we can consider it to
be independent of the builds assigned to the other machines.
Such independence would disappear if we also considered
that operators can service only a single machine at a single
moment and whose availability is restricted. The advantage
of the independence between machines is that instead of ex-
tending the state space with precedence constraints between
builds on each machine we can choose a strategy that orders
the builds. This approach follows the scheme of machine-
based problem decomposition (Pinedo 2008).

Having multiple builds assigned to a single machine, we
are mostly interested in whether a build is either on time, or
if it is late and by how much it has missed its deadline. There
are several approaches to model tardiness. We are going to
use the α|β|γ notation (Graham et al. 1979) for categorizing
them as scheduling problems.

• Minimizing Total Tardiness of Builds. We minimize the
sum of tardiness of all builds that missed the deadline.
Categorized as 1||∑Tj , the problem is known to be NP-
hard (Pinedo 2008).

• Minimizing the number of Tardy Builds. The number of
tardy builds represents the number of builds that have at
least one late part. We can solve the problem 1||∑Uj

with an optimal algorithm in O(nlog(n)).

• Minimizing the number of weighted Tardy Builds. We can
further extend the representation of tardy parts by adding
a weight to each of them – 1||∑wjUj , which also makes
the problem NP-hard – we can imagine to have all dead-
lines failing and we get the knapsack problem.

For the purpose of this paper we are going to minimize the
number of tardy builds 1||∑Uj , which is efficiently com-
puted using an adaptation of a standard scheduling algorithm
(Pinedo 2008). The algorithm has two steps:

• Order the builds into an ascending sequence L based on
the earliest deadline among the parts each build contains.

• Keep adding builds into a sequence S for as long as all
builds in S are on time. If S has a build that misses the
deadline, remove from S the build with the longest dura-
tion.

The algorithm is optimal in minimizing the number of
builds that have at least one order miss its deadline (Pinedo
2008), however it does not guarantee optimality in minimiz-
ing the total number of orders that are late. In the trivial case,
when each build consists of a single order, the algorithm
is optimal for minimizing the number of late parts as well.
However, minimizing the number of late parts is NP-hard in

general. We can show that when the deadlines for all parts
are the same then the number of items in a build corresponds
to a cost of an item in the knapsack problem. Consequently,
we can translate a knapsack problem into minimizing the
cost of parts that miss deadline.

Objective Function
The primary optimization criterion is to minimize the num-
ber of unsatisfied soft (deadline and nesting) constraints, and
then minimize the makespan (maximum execution time) of
the schedule. Given that the nester is run asynchronously, its
output becomes integrated into the main search algorithm
via the lazy evaluation of the Nesting Constraints.

Search Algorithm
The average problem size prevents the use of exhaustive
search techniques such as branch and bound. Where we can-
not expect solutions in reasonable time, we instead adopt
local search methods aided by (meta)heuristics. We use a
portfolio of local-search algorithms on top of the CSP rep-
resentation of the problem combined with a range of steps
that define the neighborhood for the local search. We use the
following local search algorithms:

• Hill Climbing makes the move to the lowest cost state in
the neighborhood.

• Tabu Search prevents Hill Climbing from being stuck in a
cycle by remembering a list of recently visited states that
should not be visited again.

• Simulated Annealing begins at one state, and at each step
it can choose a state with the same minimal cost as HC, or
it can choose a state that, with some probability, does not
have the minimal cost. The probability of choosing sub-
optimal states reduces in time as the algorithm progresses,
hence Simulate Annealing is more likely to escape from
local optima early, while behaving like HC after certain
amount of time.

• Step Counting uses the cost of the current state as a bound
for several future states.

• Late Acceptance makes moves to states that are at least as
good as the state several steps ago.

The neighborhood in the search space is defined through
four atomic steps that generate successor states:

• emptyMove chooses builds bi, bj , part p and machine mk,
where |bi| > 1, p ∈ bi, and bj = ∅. Then it removes p
from bi, adds it to bj , and assigns bj to mk. This move
represents a situation, where we remove a part from an
existing build to start a new build, and then move that new
build to a new machine. The main advantage of this step is
symmetry breaking – it does not matter which empty build
has been chosen, since we assign it to a new machine right
away and we only assign it to a compatible machine.

• moveBuild chooses a build bi, bi and machine mj and as-
signs bi to mj .

• moveOrder chooses a build bi, |bi| > 0 and part pj and
assigns pj to bi.
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• changeConfiguration chooses a part p and a possible con-
figuration c ∈ Ω and performs assignment cpi = c.

These four steps together give access to the whole search
space of the problem, and the goal of the search algorithm is
to efficiently explore it using heuristics.

Heuristics
We use several problem-specific heuristics that encapsu-
late some knowledge about the problem and a number of
problem-independent heuristics. The first heuristic run is
the construction heuristic that creates the initial state from
which the search algorithm starts to explore the search space.
The construction heuristic solely assigns each order into a
build and then moves it to one of the compatible machines.

We use tie-breaking heuristics for variable and value se-
lection. In particular, we choose configurations of parts
whose height is the largest among the heights that still fit
into the machine. When an order is moved between builds,
the builds with close mean deadlines are tried first.

Solving Approach
Combining the previously defined structure and given a set
of parts P and a set of machines M , we find the solution
using following steps.

1. Pre-compute the compatibility graph for all configura-
tions of all parts and all the machines. Then filter domains
of the variables.

2. Create an initial state where each part is assigned to a dif-
ferent build and all the builds are assigned to some ma-
chines.

3. Perform a local search over the decision variables of the
problem using the moves to change their values until the
given time is spent.

4. Run nesting in parallel with the previous step, such that
the builds confirmed by the nester are available in the
nesting constraint and the nester is invoked whenever a
new undiscovered and non-dominated build is considered
by the nesting constraint.

5. Collect the assignments of parts to builds and schedule the
builds to machines in time.

The simultaneous execution of steps 3 and 4 follows a best
effort approach that allows two solvers for hard problems to
exchange the information and reach higher quality solutions
than if run in a sequence.

Experimental Evaluation
To gain insight into the difficulty of finding good solutions
for the stated problem in additive manufacturing, we have
created two problem generators, produced a dataset, and
evaluated an implementation of our proposed model.

Note that at the time when we have run the experiments
we have not yet integrated the nester implementing the nest-
ing constraint, hence all the nesting constraints are consid-
ered violated across the search space and the nesting is only
approximated as the total available surface.

Problem Generators
We use two types of problem generators. One generates ran-
dom problems, and the other generates problem instances
with known optimal values. The random problem genera-
tor RG for a given seed of randomness D produces a ran-
dom problem using a uniform random generator integrated
in Java with values in the following ranges:

• Machine is generated to support

– Material ∈M, |M | = 5.
– Height ∈ {20, .., 70} cm.
– Width ∈ {50, .., 100} cm.
– Length ∈ {50, .., 100} cm.

• Part is generated with the following features:

– Material ∈Materials, |Materials| = 5.
– Configuration ∈ C, |C| = 5 and each configuration de-

fines the following:
∗ Volume ∈ {1, .., 100} liters.
∗ Height ∈ {10, .., 40} cm.
∗ Width ∈ {10, .., 50} cm.
∗ Length ∈ {10, .., 50} cm, where V olume =
Length ∗Height ∗Width.

In other words, we generate a selection of machines with
various sizes and materials, then we generate parts which re-
quire certain material but can be oriented through the change
of their configuration, which maintains the volume but mod-
ifies dimensions. Consequently, we create a new optimal
problem generator ROG using the random generator RG
as follows:

• Given seed D, use the Random Generator RG to produce
a random problem.

• Run 20 seconds of hill-climbing to find a sub-optimal
low-makespan schedule for the problem.

• Stretch all orders such that they perfectly occupy the
space of the machines and that the builds perfectly occupy
the time of the machines.

• Propagate the stretching of orders into its configurations
such that the volumetric constraints are satisfied.

• Record the solution cost and randomize the perfect sched-
ule.

Both RG and ROG generate a problem for each given
seed and the numbers of machines and orders. RG gener-
ates problems that are normally distributed, and the perfor-
mance of the planner upon those problems gives a realis-
tic measure on how quickly the search algorithm can con-
verge to some local optima, depending on the size of the
problem, and where it is not helpful to invest more compu-
tational time. While the problems generated by ROG are
not normally distributed, they give some estimation about
the worst-case distance from the optimality when the plan-
ner converges to a local optima.
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Figure 5: Shows the actual makespan in hours for how long it
takes to execute the whole schedule. The graph includes the
value for the precomputed optimal schedule and best sched-
ule makespans found for other search algorithms run for 60
seconds.

Implementation and Environment
We have implemented the model using the OptaPlanner
(Smet 2018) constraint solver on top of a Java represen-
tation. To run the experiments we have used a set of ho-
mogeneous AWS EC2 instances, each with Intel CPU E5-
2676@2.40GHz and 1GB of RAM, running on Ubuntu
16.04 and OpenJDK 1.8.

Preliminary Results
Using ROG we have generated a dataset of 10 problem in-
stances ranging from 150 to 1788 parts. We have run each
search algorithm for 60 seconds and took out the best so-
lution found. All of the algorithms found solutions which
satisfy all of the deadline constraints, at which moment the
optimization turns into makespan minimization. Figure 5
shows the makespan values in hours that were required to
execute all the schedules, while Figure 6 shows the relative
distance from the optimal solution for each of the solvers.

The results indicate that even with an enormous search
space it is possible to find reasonable solutions in a matter of
minutes using simple local search algorithms and underlying
constraint representations. Hill Climbing in particular seems
to provide consistent performance, although it is sometimes
surpassed by its variants that provide better makespans. Hill
Climbing tends to get stuck in local optima traps and the
other algorithms try to escape such traps through different
relaxations of greediness of neighborhood exploration, lead-
ing to occasional successes such as Late Acceptance finding
optimal solutions for 336 and 672 orders. The results are
not conclusive with regard to which local search algorithm

Figure 6: Shows the relative distance from the optimal
makespan, computed as optimal/actual, found by different
search algorithms running for 60 seconds on each problem
instance. The optimum is a known value captured during the
problem instance generation.

to choose, since the behavior can quickly change based on
heuristics and neighborhood definitions, but it shows that lo-
cal search is able to quickly provide reasonable solutions.

Conclusions
The focus of this paper has been to capture the fundamental
difficulty involved in the newly emerging intersection be-
tween additive manufacturing, operations research, and arti-
ficial intelligence. We have introduced the field of additive
manufacturing with its challenges; described and modeled
the key optimization problem of nesting parts into builds
and scheduling builds to machines while achieving dead-
lines and minimizing production time; and presented pre-
liminary experimental results using an implementation on
top of a constraint solver.

The main contribution of the paper is the new model
which we hope to eventually extend into an end-to-end opti-
mization model that captures all the discrete decision mak-
ing challenges in additive manufacturing.

Future Development
This paper is one of the first attempts to describe the compu-
tational complexities faced in optimization for additive man-
ufacturing. Multiple sub-problems have been relaxed and
deserve further investigation. In particular, explicit temporal
reasoning needs to be added to take into consideration oper-
ators that work with multiple machines and are required at
different phases of the printing process. Then once the parts
are printed, we need to take into consideration that they need
to be packed and shipped to different destinations from fac-
tories at different locations around the world. Another pa-
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rameter to explore is the fidelity of nesting, where we used
only the medium fidelity in the experiments, but results may
vary significantly for different fidelity levels and datasets.
Finally, while the minimization of the number of tardy builds
is a correct and satisfactory condition for achieving all dead-
lines, it may not accurately reflect the cost associated with
the number of tardy parts when it is impossible to make all
deadlines.

The experiments deserve further extension in direction of
the time given to the planner per problem instance, vari-
ous densities of constraints including over-constrained prob-
lems, and investigation of problems with lots of small parts,
big parts, and various distributions among them.
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Abstract

The satellite data transmission traffic appears a considerable
growth tendency with the increase in the number of satellites
and the client requirements, so how to solve the large-scale
multiobjective satellite data transmission scheduling problem
(SDTSP) within a valid period of time has become more and
more important. In this context, a multiobjective satellite da-
ta transmission model is developed for the practical appli-
cation, and a novel SVM+NSGA-II algorithm is proposed
based on the periodicity of resource confliction in satellite da-
ta transmission, the large-scale characteristic of SDTSP and
the multidimensional characteristic of the optimization ob-
jectives. Experimental results show that NSGA-II has a good
performance to solve the multiobjective SDTSP by compar-
ing with the genetic algorithm (GA) , and SVM+NSGA-II
can efficiently solve the large-scale multiobjective SDTSP in
a very short period of time on the basis of ensuring the satis-
factory optimization objectives by comparing with the single
NSGA-II.

1 Introduction
Satellite data transmission scheduling is a critical stage in

the process of the target information acquisition, transmis-
sion, and application. Satellites use sensors to observe tar-
gets, and then transmit data to ground stations in their visi-
bility time windows (VTW). In order to downlink the obser-
vation data in a timely and effective way and gain more com-
prehensive profit for both clients and servers, it is extremely
significant to study the large-scale satellite data transmission
scheduling problem and the corresponding solving methods
under the condition of multi-satellite and multi-ground sta-
tion in the future.

As an important part of satellite range scheduling (SRS),
the traditional SDTSP was proved to be NP-Hard (Barbules-
cu et al. 2004; Vazquez and Erwin 2014). It refers to the al-
location of non-conflicting data transmission resource (DTR
for short, including transmission time windows and ground
station antennas) and the time windows to the satellite data
transmission tasks (SDTT), which needs to meet the relevan-
t constraints and the client requirements, and optimize the
scheduling objectives. In addition, scheduling daily SDTT
under a small set of ground stations is getting more difficult

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with an increasing number of satellites. Thus, the SDTSP is
always oversubscribed, and a number of SDTT are usually
unserved (Yuqing et al. 2015).

To solve the contradiction between the limited ground sta-
tions and the increasing requirements of satellite, the SDTSP
and its variations have been studied for decades. As early as
the 1990s, Gooley developed a mixed integer programming
model to solve the SRS problem from the US Air Force
Satellite Control Network (AFSCN). In 1994, Parish pro-
posed a classical genetic algorithm approach to deal with the
SRS problem. In 2002, Barbulescu et al. utilized data from
AFSCN to make a comparison of a GA, a simple heuristic
and local search methods. Subsequently, Barbulescu, Howe,
and Whitley present the evolution of the problem during 10
years at the AFSCN. So far, many simple heuristics methods
(2005; 2008; 2011) were applied to the problem, and most
successful approaches to highly complex SDTSP problem-
s are those using meta-heuristics (2004; 2011; 2012; 2013;
2015; 2014). Certainly, there appears many other new tech-
nologies (2008; 2014; 2014; 2014) to deal with the similar
antenna-satellite assignment problems.

However, all above mentioned studies on SDTSP have not
considered the periodicity of resource confliction in satel-
lite data transmission, the large-scale characteristic of SDTT
and the multidimensional characteristic of the optimization
objectives. Firstly, the Earth observation satellites (EOS) run
along the fixed orbit, the longitude and latitude of ground s-
tations are usually constant, and the data reception range of
antennas remain unchanged generally. When satellites come
into the data reception range of antennas, it always appears
the characteristics of revisit, which shows the periodic con-
flict features in contention for DTR between satellites, espe-
cially in the satellite clusters.

Subsequently, a large set of requests for satellite data must
be scheduled every day. This is becoming a critical prob-
lem since the rapid increase in the number of satellites can-
not be counterbalanced by installing additional and expen-
sive ground stations. Thus, the general meta-heuristics (such
as genetic algorithms, particle swarm optimization and so
on) may perform worse to find a satisfactory solution for
the large-scale SDTSP due to the high complexity of global
search and the feature of time-consuming computation.

In addition, as the size of the problem increases, tradition-
al single objective scheduling may lead to the unbalance of
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DTR arrangement and cause a large difference in the com-
pletion of SDTT.

To tackle the large-scale multiobjective SDTSP, this paper
first takes into account two objectives from both client and
server: 1) maximizing the total weighted transmission time
of SDTT; 2) maximizing the load balancing degree of DTR,
and then develops the corresponding satellite data transmis-
sion model. Next, it combines the classical multiobjective
evolutionary algorithm NSGA-II with a mature classifica-
tion approach SVM to solve this problem. Finally, the anal-
ysis of computational results proves the high effectiveness
of SVM+NSGA-II.

The remainder of this paper is organized as follows. In
Section 2, we introduce the SDTSP and develop its math-
ematical model. In Section 3, SVM+NSGA-II is proposed
according to the basic problem characteristics. Section 4 de-
signs the simulation experiments, and Section 5 presents the
computational results. In Section 6, we give some conclu-
sions and remarks for further research.

2 Problem Description
The SDTSP is regarded as a combinatorial optimization

problem for the allocation of DTR to the tasks in the visibil-
ity time windows, which can be divided into two phase de-
cision subproblems: 1) to determine the allocation sequence
of DTR for each task; 2) to complete DTR assignment for
tasks. The main purpose of the satellite data transmission
scheduling is to make a satisfactory data transmission plan
that can download more data and make full use of ground
station resources. In this section we formulate the SDTSP
based on some practical constraints and assumptions.

In general, the SDTSP could be defined as follows:

SDTS = {T,G, S,W, ST,ET} (1)
and the related notations are described as follows.

• T = {ti|1 ≤ i ≤ nt} is the set of data transmission tasks
with |T | = nt. Each task ti is composed of a seven tuple:

ti = {idti , sti , stti , etti , durti , pti , fti} (2)

where idti is the ID of ti, sti is the satellite identifier to
which ti belongs, [stti , etti ]is the required transmission
time window of ti, durti is the minimal transmission du-
ration of ti, pti is the priority of ti, and fti is the trans-
mission frequency band of ti.

• G = {gk|1 ≤ k ≤ ng} is the set of ground stations with
|G| = ng . Each ground station gk is composed of a three
tuple:

gk = {idgk , locgk , Agk} (3)
where idgk is the ID of gk, locgk is the coordinates of
gk (including longitude, latitude and altitude), and Agk =
{agkd|1 ≤ d ≤ dgk} is the set of ground station antennas
belonging to gk with |Agk | = dgk . Each antenna agkd
corresponds to a frequency band afgkd.

• S = {sj |1 ≤ j ≤ ns} is the set of satellites with |S| =
ns. Each satellite sj is composed of a three tuple:

sj = {idsj , orbsj , Asj} (4)

where idsj is the ID of sj , orbsj is the orbit parameters of
sj , andAsj = {asjm|1 ≤ m ≤ msj} is the set of satellite
antennas belonging to sj with |Asj | = msj . Each antenna
asjm corresponds to a frequency band afsjm.

• W = {wz
jk|1 ≤ j ≤ ns, 1 ≤ k ≤ ng, 1 ≤ z ≤ nw} is

the set of visibility time windows for ground stations and
satellites with |W | = nw. Each visibility time window
wz

jk is composed of a four tuple:

wz
jk = {swz

jk, ew
z
jk, sj , gk} (5)

where [swz
jk, ew

z
jk] is the access period of wz

jk, sj is
the corresponding satellite, and gk is the corresponding
ground station.

• [ST,ET ] is the scheduling horizon.

In order to develop analyses and research easily, we make
the following assumptions:

1) Without consideration of the unexpected accident in the
running of satellites and ground stations, all equipment
operates normally in the whole scheduling horizon.

2) Without considering the impact from technical aspects
such as bit error rate, a task can be transmitted to the
ground station if it meets the basic constraints.

3) The shift time of antennas is set to be a constant C1, and
no task can be transmitted during this period.

4) Once the transmission of a task starts, it cannot be pre-
empted.

5) All the tasks are independent with each other.

Based on the above notations and assumptions, the mathe-
matical statement of the SDTSP could be established as fol-
lows.

The decision variables of the model are as follows. Let

•

xzijmkd =





1

if task ti is successfully scheduled from
antenna asjm to ajkd in the visibility ti-
me window wz

jk

0 otherwise

• TWi = [stwi, etwi] be the transmission time window of
task ti.

The objective function F (s) contains two optimization
objectives f1(s) and f2(s) from clients and servers where
s is the scheduling scheme, respectively:

max F (s) = {f1(s), f2(s)} (6)

• f1(s), the total weighted transmission time of SDTT, is
calculated as the sum of the product of the priority and the
transmission time of the task in the scheduling scheme:

f1(s) =

nt∑

i=1

xzijmkd · (etwi − stwi) · pti (7)
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• f2(s), the load balancing degree of DTR, is calculated as
the mean square error of the load in each ground station
antenna:

f2(s) = 1−{
∑ng

k=1

∑dgk

d=1[L(agkd)− ¯L(Agk)]∑ng

k=1 dgk
} 1

2 \ ¯L(Agk)

(8)
where

L(agkd) =

nt∑

i=1

ns∑

j=1

msj∑

m=1

xzijmkd · (etwi − stwi) (9)

¯L(Agk) =

∑ng

k=1

∑dgk

d=1 L(agkd)∑ng

k=1 dgk
(10)

Eq. (6) is subjected to the constraints as follows:

∀i, j,m, k, d, z : stti ≤ stwi < etwi ≤ etti (11)

∀i, j,m, k, d, z :

(xzijmkd = 1) ∩ (swz
jk ≤stwi < etwi ≤ ewz

jk)
(12)

∀i, j,m, k, d, z :

(xzijmkd = 1) ∩ (afsjm = fti)∩(afgkd = fti)
(13)

∀j,m, k, d, z;∃i1, i2(i1 6= i2) :

(xzi1jmkd · xzi2jmkd = 0) ∪ (TWi1 ∩ TWi2 = ∅) (14)

∀i, j,m, z;∃k1, k2, d1,d2((k1 6= k2) ∪ (d1 6= d2)) :

xzijmk1d1
+ xzijmk2d2

≤ 1
(15)

∀i : durti ≤ etwi − stwi (16)

∀i :

ns∑

j=1

msj∑

m=1

ng∑

k=1

dgk∑

d=1

nw∑

z=1

xzijmkd ≤ 1 (17)

∀i1, i2, j1, j2,m1,m2, z1, z2, k, d :

(xz1i1j1m1kd
· xz2i2j2m2kd

= 1)∩
[max(stwi1 , stwi2)−min(etwi1 , etwi2) ≥ C1]

(18)

∀i, j,m, k, d, z : xzijmkd ∈ {0, 1} (19)

∀i : stwi, etwi ≥ 0 (20)
Constraint (11) ensures that each task is scheduled with-

in the required transmission window. Constraint (12) guar-
antees that each task is scheduled within the visibility time
windows for ground stations and satellites. Constraint (13)
indicates that the frequency bands of both satellite anten-
na and ground station antenna must be identical. Constrain-
t (14) shows the fact that one ground station antenna could
not support two or more tasks simultaneously. Constrain-
t (15) ensures that every free task is assigned to at most one

ground station antenna. Constraint (16) guarantees that each
transmission time window of a task satisfy the requirement
of its minimal transmission duration. Constraint (17) indi-
cates that all the tasks are scheduled at most once. Constrain-
t (18) ensures that the spare time between two tasks must
be enough for the shift time of antennas. Constraints (19)
and (20) describe the domain of definitions for the decision
variables.

3 Methodology
For the characteristics of large scale, high complexity and

high cost in the future SDTSP, we introduce the mature
SVM (Cortes and Vapnik 1995) algorithm from the field
of machine learning to solve the large-scale problem, and
the classical NSGA-II (Deb 2000) from the field of intelli-
gent optimization to solve the multiobjective problem. First,
through learning from the historical scheduling data, SVM
builds a classification model and directly generates the ini-
tial scheduling scheme by making predictions for the new
tasks. Next, NSGA-II is applied for the tasks unsuccessfully
scheduled in the initial scheduling scheme. Finally, the final
scheduling scheme is produced.

3.1 NSGA-II
Evolutionary algorithms (EA), which are heuristic search

algorithms, have been successfully applied to multiobjec-
tive optimization problems,and multiobjective evolutionary
algorithms (MOEAs) have become promising areas of re-
search in evolutionary computation (EC). Among MOEAs,
the non-dominated sorting genetic algorithm (NSGA) pro-
posed by Srinivas and Deb in 1995 is one of the ear-
ly dominance-based evolutionary algorithms. In 2000, for
overcoming the drawbacks of NSGA, Deb proposed NSGA-
II which is regarded as one of the most excellent MOEAs.
Consequently, NSGA-II is applied to solve the SDTSP in
this section by comprehensively considering the running
time, accuracy and the number of objectives.

Given that solving the SDTSP is a dynamic process of
dealing with the resource contention conflict for each task,
it may provide more available transmission resources for the
subsequent tasks by scheduling the tasks of less conflict first,
which indicates that reasonable utilization of the heuristic
information about conflict is an effective way to tackle the
SDTSP. Thus, we first give the definition of possible conflict
as follows.

Definition 1 Let ti and tj be two different tasks, if there is
an overlap between their required transmission time win-
dows, we say that there exists a possible conflict between ti
and tj .

PC(ti, tj) =

{
true if min(etti , ettj ) > max(stti , sttj )

false otherwise

Based on the Def. 1, the process of solving the SDTSP by
means of single NSGA-II could be designed for two parts:
1) to determine the task set of possible conflict, which can
limit the length of individual encoding in NSGA-II; 2) to de-
termine the allocation sequence of DTR for tasks in the task
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Figure 1: Illustration of the process of solving the SDTSP
by means of single NSGA-II

set of possible conflict and then complete the DTR assign-
ment by using NSGA-II. The main steps is given in Fig. 1,
where Task is the original set of tasks, Pre is the prefer-
ence of users, P is the final scheduling scheme, CTask is
the current task set of possible conflict, and temp P is the
current scheduling scheme of the tasks in CTask. The func-
tion sort() is to sort tasks in ascending order of their earliest
start time. Details of the operators in NSGA-II can be seen
as follows.

Individual Representation Since the characteristic of
two-phase decision in SDTSP, the individual representation
of a solution should contain the information of two parts:
the allocation sequence of DTR and the assignment of DTR
for each task, which can be denoted as resource allocation
sequence and resource assignment, respectively.
1. Resource allocation sequence representation

The resource allocation sequence is represented in a ran-
dom number permutation way, and then the allocation
sequence of DTR for tasks is determined by decoding.
For each task Ti in CTask = {T1, T2, · · ·Tn} which has
been sorted in ascending order of the earliest start time,
a random number ri in [0,1] is generated. As shown in
Fig. 2, the generated set of {r1, r2, · · · rn} is called a ran-
dom number sequence. During the running process of the
algorithm, the task sequence {T1, T2, · · ·Tn} of CTask
remains unchanged, while there exist more than one ran-
dom number sequences corresponding to this fixed task
sequence. Thus, one of the random number sequences
can be regarded as the resource allocation sequence rep-
resentation of one individual, and a random number is
interpreted as the value at the corresponding bit.
Decoding is a mapping procedure that determines the al-
location sequence of DTR for tasks in CTask by means

Figure 2: Simple example of the resource allocation se-
quence representation

Figure 3: Simple example of the resource assignment repre-
sentation

of the random number sequence: the larger the random
number is, the earlier the DTR is allocated to the corre-
sponding task. When two tasks correspond to the same
random number, the DTR is firstly allocated to the fron-
t task in the task sequence of CTask. For example, the
decoding of the representation in Fig. 2 is as follows:

T4 → T2 → T3 → T1 → T5 (21)

2. Resource assignment representation
The resource assignment representation depends on the
task sequence of CTask. For the value on position k in
the resource assignment representation, it indicates the
DTR selected to transimit the kth task in the task se-
quence. For example, as shown in Fig. 2, assume that
the tasks T1, T2, T3, T4 and T5 has 3, 2, 5, 4 and 7
DTRs, respectively. A resource assignment representa-
tion is presented in Fig. 3, which represents that the tasks
T1, T2, T3, T4 and T5 select their second, first, third,
second and sixth DTR to transmit data, respectively.

Crossover and Mutation According to individual repre-
sentation, one thing both the resource allocation sequence
representation and the resource assignment representation
have in common is the randomness of encoding, whereas the
difference between them is the expression of the encoding
meaning. Therefore, this section still describes the crossover
and mutation operators from two parts independently.

1. Resource allocation sequence operators
For the resource allocation sequence representation, the
one-point crossover operator is employed. First, for t-
wo parent representations, a random point is selected to
divide them into two parts, respectively. Secondly, both
their left parts are exchanged and generate two offspring
representations.
Then, we apply the one-point mutation operator in our al-
gorithm. First, a random position in the resource alloca-
tion sequence representation is selected. Secondly, a new
random number in [0,1] is generated to replace the origi-
nal number.

2. Resource assignment operators
For the resource assignment representation, we employ
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Figure 4: Simple example for illustration of one-point
crossover operator and one-point mutation operator

Figure 5: Simple example for illustration of two-point
crossover operator

the two-point crossover operator in order to avoid gener-
ating unreasonable coding (see Fig. 5). First, two points
randomly generated is used to separate two parent rep-
resentations into three parts, respectively. Secondly, both
their middle parts are exchanged and generate two off-
spring representations.
Then, considering the optimization objective of maximiz-
ing the load balancing degree of DTR proposed in Sec-
tion 2, we design a mutation operator based on the re-
source load probability of the ground station antennas.
The main steps are as follows:

1) Calculate the sum of transmission time for al-
l tasks that have been scheduled on the ground station
antenna al, which is regarded as the total load time of al
and is denoted as timeal

:

timeal
=

∑

agkd=al

(TWi · xzijmkd) (22)

2) The mutation probability of ground station anten-
na al in the next stage is calculated based on the current
total load time of all antennas, and is denoted as probal

:

probal
=

{
0.99 if timeal

= 0

1− timeal∑
timeaj

otherwise

where timeal∑
timeaj

is the resource load probability of anten-
na al.

3) The mutation operator is applied for all the po-
sitions in the resource assignment representation. And
the mutation direction of each position is determined by

Figure 6: Simple example for illustration of the mutation op-
erator based on the resource load probability of the ground
station antennas

means of the roulette-wheel method, where the probabil-
ity of being selected for antenna al is denoted as Pal

:

Pal
=

probal∑
probai

(23)

As shown in Fig. 6, assume that both tasks T1 and T2
can be scheduled on antennas a1, a2, a3 and a4, and the
resource load probabilities of the four antennas are cal-
culated to be 0.5, 0.2, 0 and 0.3, respectively. Thus, the
corresponding mutation probabilities of the four antennas
are 0.5, 0.8, 0.99 and 0.7, and the corresponding proba-
bility of being selected for the four antennas are 0.17,
0.27, 0.33 and 0.23, respectively. Then, Roulette will be
undertaken to decide the mutation direction.

Crowding Distance Measure Due to the application of
the heuristic information of possible conflict, the solution
scale in algorithm is reduced, which limits the length of in-
dividual representation. Furthermore, there exists many-to-
one mapping from decision space to objective space. Con-
sequently, there are not many nondominated solutions in
NSGA-II. In order to keep a good diversity of solutions, we
modify the crowding distance as a measure in decision space
by means of two rules:

1. Rule 1
When the number of nondominated solutions obtained by
fast nondominated sorting is less than 10, the crowding
distance is measured by a function of the times of a re-
source assignment that occurs in the population. It is sim-
ply calculated as follows:

C[i]distance =
nPop− T [i]GR assignment

nPop
(24)

where C[i]distance is the crowding distance of individual
i, nPop is the size of population, and T [i]GR assignment

represents the number of individuals in the population
which have the same resource assignment with individ-
ual i.

2. Rule 2
In addition, the traditional crowding distance measure
(Deb 2000) is employed.

User Preference Design Due to the generation of a set of
good compromise solutions by applying NSGA-II, there will
appear a series of scheduling schemes. Thus, the selection of
one satisfactory scheduling scheme is significant for clients
and servers with different requirements. In this section, we
design an approach of selecting the scheduling scheme on
the basis of user preference:
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• First, according to the optimization objectives f1
and f2, users give their probabilities of preference
(pre prob1, pre prob2) such that

pre prob1 + pre prob2 = 1 (25)

• Then, based on the ideal point of the pareto-optimal set
(f∗1 , f

∗
2 ), the preference point of users (fpre1 , fpre2 ) is cal-

culated as follows:

fprei = f∗i · pre probi, i = 1, 2 (26)

where

f∗i = max{fi|fi ∈ pareto-optimal set} (27)

• Finally, compute the Euclidean distance between
(fpre1 , fpre2 ) and all solutions in the pareto-optimal set,
and choose the optimal solution with minimum distance
to generate the corresponding scheduling scheme.

3.2 SVM+NSGA-II
Support Vector Machine (SVM) is a machine learning al-

gorithm based on statistical learning theory and stems from
Vapnik’s theory which avoids estimating probabilities on fi-
nite data (Vapnik 1995). It can automatically seek those sup-
port vectors with better classification performance, obtain a
better separation between different categories, and make the
generalization error of the classifier lower.

Generation of the Initial Scheduling Scheme Although
SVM was originally used to separate the two classes of
data, each transmission task is faced with more than two
antennas in the SDTSP, which means that the multiclass
SVM is required. Therefore, we introduce the classical mul-
ticlass SVM based on one-verses-one approach (Hsu and
Lin 2002). Then, the libsvm toolbox developed by Chang
and Lin is employed to solve the satellite data transmis-
sion classification problem to generate an initial scheduling
scheme. The running process of the SVM is shown in Fig. 7,
where q represents the users demanding accuracy of predic-
tion model, and p represents the actual prediction accuracy
of the test data.

The historical data contained in SVM consists of two part-
s: 1) the task set data T ; 2) the corresponding scheduling
scheme data P . As shown in Table 1, data features of each
task are selected as follows: the satellite identifier s, the ear-
liest start time st, the latest end time et, the minimal trans-
mission duration dur, the priority p, the transmission fre-
quency band f and the number of transmission time win-
dows n. The data label of each task is the ground station an-
tenna identifier ant assigned to it in the scheduling scheme.

Generation of the Final Scheduling Scheme Since the
initial scheduling scheme obtained by running the SVM di-
rectly assigns the ground station antennas to each new task,
it does not consider that 1) some tasks may conflict with
each other and 2) some tasks can not be scheduled because
of the mismatching between the prediction result and the
DTRs. For example, a task T1 has three DTRs that con-
tain the ground station antennas a1, a4 and a9 respectively,
whereas the prediction result for T1 is a8, which will make

Figure 7: Illustration of the process of generating initial
scheduling scheme by means of SVM

T1 unscheduled. Thus, NSGA-II described in Section 3.1 is
applied to produce the final scheduling scheme by dealing
with the remaining tasks that fails to be scheduled.

4 Design of the Experiments
In order to demonstrate the validity of SVM+NSGA-II,

we first configure the interface between STK and MATLAB
by the STK/Connect module to realize the programming
control of STK by MATLAB. Then, the STK is employed to
establish the simulation scenarios. Finally, the test instances
is generated based on the scenario forecast flow data from
STK.

4.1 Design of Scenarios
In the simulation scenarios designed by STK, five ground

stations in China participated in the scheduling, and each
ground station is equipped with two S-band antennas. We
designed ten sun-synchronous orbits with six satellites u-
niformly distributed on each orbit. The altitude difference
between two neighboring orbits is 30km, and the minimum
orbit altitude is 370 km. All satellites are equipped with an
S-band antenna.

This section designed six scenarios, including SCEN 1
with 5 stations and 10 satellites, SCEN 2 with 5 stations and
20 satellites, SCEN 3 with 5 stations and 30 satellites, S-
CEN 4 with 5 stations and 40 satellites, SCEN 5 with 5 sta-
tions and 50 satellites, SCEN 6 with 5 stations and 60 satel-
lites. The locations of the ground stations in each scenario
are identical, while the satellites in each scenario consist of 1
satellite, 2 satellites, 3 satellites, 4 satellites, 5 satellites and
6 satellites on each orbit, respectively. The planning horizon
is set to be 24h from 2017/06/01 00:00:00 to 2017/06/02
00:00:00 for all scenarios.

4.2 Generation of Test Instances
First, the basic properties of the transmission tasks are de-

signed as follows.
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Table 1: Computational results of performance metrics
feature 1 feature 2 feature 3 feature 4 feature 5 feature 6 feature 7 label

data s st et dur p f n ant

1) The sum of the number of transmission tasks belonging
to each satellite can not be more than the number of non-
overlapping visibility time windows between this satel-
lite and all the ground stations.

2) The priority of each task is randomly generated from 1
to 10, where 10 represents the highest priority.

3) The required transmission time window of each task
must be inside the planning horizon.

4) If the duration of the required transmission time window
of a task is less than 7min, the minimal transmission du-
ration of this task will be the same as the length of the
required transmission time window; otherwise, the mini-
mal transmission duration of this task is set to be 7min.

5) The transmission frequency band of all tasks is set to be
S-band.

6) All tasks can not be divided, that is, each task will be
scheduled once at most in the planning horizon.

7) The shift time of all antennas is set to be 1min.
Then, on the basis of above task properties, the generation

algorithm of test instances is described in Alg. 1.

Algorithm 1 Generation of test instances
Input: S: the satellite set; W : the visible time window set
Output: T : the task set
1: for sj in S

2: new W ← sort(W (sj))

3: new W∗ ← merge(new W )

4: for wi in new W∗

5: if dur(wi) ≥ 420 then q ← random(0, 1)

6: if q < 0.3 then
7: repeat
8: [stti , etti ]← real generate(wi)

9: until etti − stti < 420

10: durti = etti − stti
11: else
12: [stti , etti ]← store generate(wi)

13: durti = 420

14: Endif
15: else
16: [stti , etti ]← real generate(wi)

17: durti = etti − stti
18: Endif
19: pti

← intrandom(1, 10)

20: Endfor
21: Endfor
22: T ← T + ti

In Alg.1, the function sort(W (sj)) is to sort all the vis-
ibility time windows of sj in ascending order of their ear-
liest start time. The function merge(new W ) is to merge
the mutually overlapping visibility time windows into the
new time windows which are non-overlapping with each

Table 2: Statistical results of test instances for each scenario
SCEN 1 SCEN 2 SCEN 3 SCEN 4 SCEN 5 SCEN 6

scale 5 × 10 5 × 20 5 × 30 5 × 40 5 × 50 5 × 60

num Avg 87 176 275 369 452 546

other. The function real generate(wi) is to generate the re-
quired transmission time window of the task by randomly
selecting two time points in the visibility time window wi as
the earliest start time and the latest end time. The function
store generate(wi) represents that the required transmis-
sion time window of the task is the same as the visibility
time window wi. The function int random(1, 10) is to pro-
duce a random integer in [1,10] to be the task priority.

The statistical results of the average number of tasks
(num Avg) in each scenario are indicated in Table 2.

5 Computational Results and Analysis
This section evaluates SVM+NSGA-II by comparing with

GA and NSGA-II. We generated 20 groups of different test
instances for each scenario by the way described in Section
4.2. All the test instances run 10 times, and the average was
taken as the final value for each test instance. In each sce-
nario, the task set of the former ten test instances and their
corresponding solutions obtained by employing NSGA-II
will act as the training data set, and the tasks of the latter
ten test instances will act as test data set to compare the per-
formance of different algorithms.

We implemented our algorithms in MATLAB R2013a and
tested them on a PC with Intel Core i5-3210 CPU (2.50
GHz).

5.1 Experimental Configurations
In the experiments, the parameters of the GA are set as:

the generational gap Gap = 0.9, which indicates that 90%
of the individuals in the current population are retained to
the next generation and the remaining 10% will be supplied
in another way. The probabilities of crossover and mutation
are chosen to be Pc = 0.8 and Pm = 0.1, respective-
ly. The objective function f1(s), the total weighted trans-
mission time of SDTT, is employed as the fitness function
of the GA. The other operators, including individual repre-
sentation, crossover and mutation, are the same as those of
NSGA-II.

The parameters of NSGA-II determined by means of
the pilot experiments are set as: crossover percentage=0.8,
crossover probability=0.8, mutation percentage=0.4, mu-
tation probability=0.1. For the convenience of conduct-
ing experiments, we decide to set the user preference
(pre prob1, pre prob2) to be (0.5, 0.5).
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Table 3: The size of population and the number of genera-
tions in NSGA-II

nP nG

|CTask| ≤ 3 10 20

3 < |CTask| ≤ 6 20 40

6 < |CTask| ≤ 9 30 60

9 < |CTask| 40 80

In order to further improve the efficiency of the algorithm-
s, the size of population nP and the number of generations
nG are designed based on the number of the elements con-
tained in the task set of possible conflict |CTask| (shown in
Table 3).

5.2 Evaluation Metrics
Statistics based on the execution time, the objective func-

tion values, and the number of unscheduled tasks for each
test instance are employed to evaluate the performance of
the algorithms.

The experimental results are indicated in Table 4, whose
columns of are as follows (from left to right): the identifier
of scenarios, the average execution time from the latter ten
groups of test instances in each scenario (T Avg), the aver-
age objective function values from the latter ten groups of
test instances in each scenario (Obj Avg), and the average
number of unscheduled tasks from the latter ten groups of
test instances in each scenario (unST Avg).

From the results cast in Table 4, we can find that NSGA-II
performs well to solve the multiobjective SDTSP by com-
paring with the GA, and SVM is an efficient technology to
solve the large-scale scheduling problem within a period of
limited time by comparing NSGA-II and SVM+NSGA-II.
Thus, it can initially proves that the performance of the com-
bination of SVM and NSGA-II is better.

In order to intuitively and clearly verify the performance
of the algorithms, we made the corresponding statistical
graphs for the results in Table 4.

5.3 Analysis of Multiobjective
As shown in Fig. 8, the objective values of the GA in f1(s)

is a little larger than that of NSGA-II in all scenarios, while
its value of f2(s) yielded through the second objective func-
tion is much smaller than that of NSGA-II. In Fig. 9, we
can find that there is little difference in the execution time
between NSGA-II and the GA. And from Fig. 10, it shows
that the number of unscheduled tasks of NSGA-II in all sce-
narios is much less than that of the GA. Therefore, it proves
that NSGA-II performs well to deal with the multiobjective
SDTSP.

5.4 Analysis of Large Scale
Fig. 8 shows that the objective function values of NSGA-

II and SVM+NSGA-II just have a little difference that
the total weighted transmission time of SDTT f1(s) in
SVM+NSGA-II is a little more than that in NSGA-II in all

Figure 8: The Obj Avg values with GA, NSGA-II and
SVM+NSGA-II

Figure 9: The T Avg (second) values with GA, NSGA-II
and SVM+NSGA-II

Figure 10: The unST Avg values with GA, NSGA-II and
SVM+NSGA-II

scenarios, whereas the load balancing degree of DTR f2(s)
of SVM+NSGA-II is less than that of NSGA-II in all scenar-
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Table 4: Computational results of performance metrics

Scenario
T Avg (second) Obj Avg unST Avg

GA NSGA-II SVM+NSGA-II GA NSGA-II SVM+NSGA-II GA NSGA-II SVM+NSGA-II

SCEN 1 56.976 85.412 5.728 (41806.541, 0.403) (38643.509, 0.816) (39384.253, 0.688) 1.2 0.9 0
SCEN 2 157.405 212.253 18.381 (83955.616, 0.436) (79214.814, 0.909) (79480.833, 0.772) 3.7 0.9 1.4
SCEN 3 380.647 476.119 31.108 (126414.318, 0.441) (118516.757, 0.945) (119464.044, 0.826) 5.1 3.4 2.5
SCEN 4 927.464 1119.623 69.093 (168724.203, 0.501) (158584.585, 0.972) (160173.671, 0.878) 8.3 4.5 3.8
SCEN 5 1298.919 1661.753 210.935 (204983.337, 0.501) (191954.621, 0.977) (193146.216, 0.932) 13.9 7.7 7.2
SCEN 6 2411.278 2476.617 284.180 (247180.303, 0.519) (230690.426, 0.984) (232299.949, 0.940) 18.5 7.8 7.4

ios. One reason is that the search of all solutions in NSGA-II
is guided by the heuristic information from the process of
mutation of the resource assignment representation for each
individual.

From Fig. 9, we can see that SVM+NSGA-II exhausted
much less time than NSGA-II in all scenarios. In partic-
ular, with the expansion of the problem scale, the growth
of execution time of NSGA-II is much faster than that of
SVM+NSGA-II.

Simultaneously, Fig. 10 indicates that the number of un-
scheduled tasks of NSGA-II in any other scenarios is a little
more than that of SVM+NSGA-II except in Scen 2.

5.5 Conclusion
From the above experimental results we can see that

SVM+NSGA-II is an excellent technology with high effi-
ciency to solve the large-scale multiobjective satellite data
transmission scheduling problem. Because it can yield a sat-
isfactory scheduling scheme in a very short period of time
on the basis of ensuring the good optimization objectives.

Theoretically, the better the prediction effect of SVM is,
the less the execution time of SVM+NSGA-II is. Fig. 11
with error bars was generated by comparing the final
scheduling scheme obtained from NSGA-II with that from
SVM+NSGA-II in the same test instances. It shows that the
average prediction accuracy for each scenario does not ex-
ceed 50%, and the standard deviation of prediction accuracy
in the small-scale scenarios such as SCEN 1 and SCEN 2
is larger. Therefore, it is worthwhile to consider how to im-
prove the prediction accuracy and the prediction stability of
SVM in the future research.

6 Summary and Prospects
Satellite data transmission scheduling problem is a com-

plex combinatorial optimization problem with highly com-
plex and over-constrained characteristics. In this paper, we
combined the SVM in the field of machine learning and the
NSGA-II in the field of intelligent optimization to design an
efficient technology for solving the large-scale multiobjec-
tive SDTSP. Experimental results show that this technology
can greatly shorten the execution time on the basis of ensur-
ing the satisfactory optimization objectives in all simulation
experiments.

Of course, there exist many kinds of practical problems
in the field of satellite range scheduling, and we just choose
the SDTSP to conduct the research. It is worth mentioning

Figure 11: The average prediction accuracy and the standard
deviation of prediction accuracy for SVM

that this paper is an effective try to integrate the classical
technologies of intelligent optimization and machine learn-
ing, which provides an efficient idea to deal with the similar
problems for researchers.

In our future work, we will continue to research the way
of hybridization of different methods from different fields,
and then further improve our solving technology to expand
its applicability to more kinds of problems.
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Abstract

The application of reconfigurable multi-robot systems
introduces additional degrees of freedom to design
robotic missions compared to classical multi-robot sys-
tems. To allow for autonomous operation of such sys-
tems, planning approaches have to be investigated that
can not only cope with the combinatorial challenge aris-
ing from the increased flexibility of combining systems,
but also exploit this flexibility to improve for exam-
ple the safety of operation. While the problem origi-
nates from the domain of robotics it is of general nature
and significantly intersects with operations research.
This paper suggests a constraint-based mission plan-
ning approach, and presents our revised definitions for
reconfigurable multi-robot systems including the repre-
sentation of the planning problem using spatially and
temporally qualified resource constraints. Planning is
performed using a multi-stage approach, and a com-
bined use of knowledge-based reasoning, constraint-
based programming and integer linear programming.
The paper concludes with the illustration of the solution
of a planned example mission.

1 Introduction
Flexibility is the primary feature of reconfigurable multi-
robot systems, since their modularity adds an additional de-
gree of freedom to design robotic operations compared to
the application of traditional multi-robot systems. For that
reason Dignum et al. (Dignum 2009) discuss the so-called
strategic flexibility, which offers an exploitation of proac-
tive and reactive adjustment in the context of reconfigurable
organizations. The strategic flexibility allows to tackle a set
of unforeseen tasks with a robustly equipped system that al-
lows recovery from malfunction thanks to increased redun-
dancy. Exploiting strategic flexibility provides a strong moti-
vation to combine increasingly capable autonomous robotic
systems with a concept for modularity.

The main benefit of reconfigurable multi-robot systems
lies in the fact that resources can easily, although not ar-
bitrarily, be (re)used by any agent being a member of the
reconfigurable system. Using this flexibility allows to bal-
ance resource usage and hence to adapt dynamically to op-
erational demands. While modularity can lead to significant
operational advantages it has drawbacks: if the level of mod-
ularity is chosen arbitrarily high this can lead to less capa-

ble systems. One can observe the effect in swarm-based sys-
tems, which come with a high degree of modularity: a swarm
typically consists of cheap agents with a simple design, and
thus , apart from emergent high-level behaviors, these agents
come with a rather limited applicability by design. Although
the mentioned emergent behaviors can be exploited, these
behaviours remain harder to control or will be focused on a
single task only. In general, reconfigurable multi-robot sys-
tems offer a feasible solution which consists of a mix of in-
dividually capable agents, including swarm-like units that
can augment the overall robotic team. This augmentation is
done either by acting as a fully autonomous agent or as an
extension unit. Roehr et al. (Roehr, Cordes, and Kirchner
2014) implement this idea in the context of robotic space
exploration missions in order to show the general feasibility
and identify critical limitations: the implemented approach
validates the potential for increasing the flexibility in future
robotic missions, but it also comes with increased opera-
tional demands. Thus, they suggest the introduction of a ded-
icated system model in order to automate operation of recon-
figurable multi-robot systems and exploit the offered system
capabilities to improve not only efficiency, but also safety
of future robotic missions. Roehr and Kirchner (Roehr and
Kirchner 2016) show how planning as essential element for
automated operation for such a reconfigurable multi-robot
system can be approached.

This paper details the problem definition and presents the
results of the continued development of the planning ap-
proach. In Section 2 we briefly outline relevant background
references for the state of the art. Section 3 introduces the
planning problem, and in Section 4 we give details on the
organization model and its extended use. Section 5 outlines
the revised planning approach. We close with a conclusion
and outlook in Section 6.

2 Background
The initial motivation for the planning problem is given
by Sonsalla et al. (Sonsalla et al. 2014), where a reconfig-
urable multi-robot system shall establish a logistics chain
operation in order to support sample-return missions as
part of extraterrestrial exploration. The robotic team con-
sists of mobile and immobile agents, which can be physi-
cally connected via a set of electro-mechanical interfaces.
By connecting one or more robots, they can form a new
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type of agent, comprising features none of the individual
agents offers. The ability for reconfiguration offers novel
ways of dealing with robotic missions, but Roehr and Kirch-
ner (Roehr and Kirchner 2016) is to our best knowledge
the only approach particularly dealing with reconfigurabil-
ity. This mission planning problem can be understood as a
logistic planning problem where mobile robots can trans-
port other immobile and mobile robots. Hence, it is closely
related to the Vehicle Routing Problem (VRP) (Toth and
Vigo 2014): a fleet of (most often homogeneous) mobile
vehicles shall serve a set of customers, e.g., by delivering
and/or picking up items, while minimizing a cost function
– typically the overall travelled distance. The VRP applies
to transportation and logistics scenarios and comes in many
variants among which Capacitated VRP (CVRP), VRP with
Time Windows (VRPTW) and VRP with Pick-up and De-
livery (VRPPD) are the most popular ones. The pickup-and
delivery problem can be further distinguished into a many-
to-many (M-M), one-to-many-to-one (1-M-1), and one-to-
one (1-1) problems, where the notation can be read as car-
dinalities for the origin, transition point, and target of a
commodity, i.e. from-to or from-via-to. The M-M variant
for example accounts for multiple commodity (good) ori-
gins and destinations, while the 1-M-1 variants assume a
start and end of all vehicles at a single depot. The ma-
jority of these approaches are either focusing on a single-
commodity case, homogeneous vehicle capacities or opti-
mization of routing cost, were our approach has to deal with
multi-commodities, heterogeneous vehicles, multi-depots,
and fleet size optimization. Hence, a closer relation can be
established to more specialized VRP approaches, e.g., such
as the Heterogeneous or mixed Fleet VRP (HFVRP) (Bal-
dacci, Battarra, and Vigo 2008) which accounts for a hetero-
geneous fleet and optionally with unlimited vehicle avail-
ability, or Dondo et al. (Dondo and Cerdá 2007) who
approach Multi-depot heterogeneous fleet VRP with time
windows (MDHFVRPTW). The variant VRP with Trailers
and Transshipments (VRPTT) and more generalized VRP
with multiple synchronization constraints (VRPMSs) (Drexl
2013) adds synchronization constraints between vehicles,
which form a special instance of a reconfigurable multi-
agent system containing agents or in this case vehicles of dif-
ferent categories: autonomous and non-autonomous, as well
as support and task vehicles. Drexl (Drexl 2013) formulates
a graph-based modelling approach to account for the inter-
dependence of vehicles. He does not, however, provide an
implementation of a solution approach.

While much of the research in VRP originates from the
area of operational research, Coltin and Veloso (Coltin and
Veloso 2014a; 2014b; 2014c) investigate a pick-up and de-
livery variant in the context of multi-robot systems and
also apply their approach to a taxi problem with rideshar-
ing. They implement optimal approaches as well as meta-
heuristics, in particular simulated annealing, and Very Large
Neighborhood Search (VLNS) (Ahuja, Orlin, and Sharma
2000) their application of VLNS results not only in a scal-
able approach, but also proves a general benefit of using
transfers in a pickup and delivery scenario. In Section 3 we
will outline the distinction between existing VRP and our

approach, and provide additional constraints for our mission
planning problem.

3 Mission Representation
The planning problem presented in the following aims to
solve the problem of planning and scheduling a mission per-
formed by a reconfigurable multi-robot system. While a mis-
sion can initially be seen as a task assignment for a multi-
robot system, here it comes with an essential difference:
agents are able to dynamically form physical coalitions re-
ferred to as composite agents. These composite agents are
formed for three main reasons. Firstly, to perform agent
transport: one carrier agent attaches one or multiple (most
likely, but not necessarily) immobile systems. Secondly, to
provide functionality: some functionality is only available
as so-called super-additive effect and requires two or more
agents to join so that this functionality becomes available
only for this composite agent, but not for the individual
agents. Thirdly, to increase the functional redundancy: for
agents that are assigned to fulfil requirements, we assume
that adding relevant resources improves the redundancy and
safety of operation, and effectively the likelihood of a suc-
cessful performance of an agent.

While most VRP assume homogeneous agents, the team
of agents in a reconfigurable multi-robot system is formed
by heterogeneous agents; agents with individual capabilities
and functionalities, as well as limitations to reconfigure and
constraining attributes such as an overall transport capacity.
We will look at a mission as a particular (minimal) partition-
ing problem of an agent team to achieve a requested agent-
and function-distribution over space and time.

Definitions & Assumptions
In the following we introduce the basic notation, definitions
and assumptions regarding reconfigurable multi-robot sys-
tems. The provided definitions describe a modular multi-
agent system, which can form composite agents from a set
of available agents:

Definition 3.1. An atomic agent a represents a monolithic
physical robotic system, where A = {a1, . . . , |A|}, is the set
of all atomic agents, and a ∈ A or equivalently {a} ⊆ A.

Definition 3.2. A mechanically coupled system of two or
more atomic agents is denoted a composite agent CA,
where CA ⊆ A, and |CA| > 1.

Definition 3.3. The type of an atomic agent a is denoted â
and equivalently for a composite agent CA the type is de-
noted ĈA. The set of all agent types is denoted θ(A) =
{1, . . . , |θ(A)|}, with the corresponding type-partitioned
sets A1, . . . , A|θ(A)|, where A = A1 ∪ · · · ∪A|θ(A)|.

Definition 3.4. A (general) agent is denoted GA, where
GA ⊆ A, and GA 6= ∅. A (general) agent represents the
wrapping concept for atomic and composite agents, with
the corresponding type-partitioned setsGA1, . . . , GA|θ(A)|,
where GA = GA1 ∪ · · · ∪GA|θ(A)|

Definition 3.5. A (general) agent type ĜA will be repre-
sented as a function γ

ĜA
: θ(A) → N0, which maps an
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atomic agent type â to the cardinality câ of the type par-
tition, such that câ = |GAâ|. The set of all constructible
general agent types from a set of atomic agents A is denoted
θ(Â); it represents the collection of all general agent types
that are found in the powerset of all agents PA.

Note, that a general agent type can equivalently be repre-
sented as tuple set of agent type and type cardinality: ĜA =
{(â1, c1), . . . , (ân, cn)}, where ai ∈ A and ci = |GAi|.
ĜA ⊇ ĜA′ ⇐⇒ ∀(ai, ci) ∈ ĜA, (âi, c′i) ∈ ĜA′ : ci ≥
c′i, where i = 1 . . . |A|.
Definition 3.6. A set of atomic agentsA is denoted an agent
pool and it can be represented by a general agent type ĜA,
such that ∀a ∈ A : γ

ĜA
(â) = |Aâ|.

Definition 3.7. An atomic agent role râ represents an
anonymous agent instance of an atomic agent type â.
Definition 3.8. A coalition structure of an agent set A is
denoted CSA and is represented by a set of disjunct gen-
eral agents CSA = {GA0, . . . , GAn}, where GA0 ∪ · · · ∪
GAn = A, and ∀i, j ∧ i 6= j : GAi ∩GAj = ∅.

Assumptions
Our design of the organization model and planning system
for a reconfigurable multi-robot system, which both will be
detailed in the following section, is based on a set of assump-
tions to simplify the modelling approach.
Assumption 3.1. Each atomic and composite agent can be
mapped to a single agent type only.
A reconfigurable multi-robot system requires coupling inter-
faces, e.g., an electro-mechanical interface (Dettmann et al.
2011), to create physical linking between atomic agents to
establish a composite system. Although multiple links could
be considered between any two agents, interfaces cannot be
arbitrarily coupled and the following assumption holds:
Assumption 3.2. A mechanical coupling between two
atomic agents can only be established through a single link
and two and only two compatible physical coupling inter-
faces.

Mission specification
The mission specification is a temporal database description,
and it defines the initial, intermediate and goal state for a re-
configurable multi-robot system. A valid mission specifica-
tion is described by the following two definitions:
Definition 3.9. A spatio-temporal requirement is a spatio-
temporally qualified expression (stqe) s which describes the
functional requirements and agent instance requirements
for a given time-interval and a particular location: s =
(F , ĜAr)@(l, [ts, te]), whereF is a set of functionality con-
stants, ĜAr is the general agent type representing the re-
quired atomic agent type cardinalities, l ∈ L is a location
variable, and ts, te ∈ T are temporal variables describing a
temporal interval with the implicit constraint ts < te. Vari-
ables associated with s will also be referred to using the
following notation: Fs,ĜAsr,ls,tss, and tse.

t0 t1 t2 t3 t4 t5 . . .

l0

l1

[ ](∅,Ĉ0)

[ ](F0,{(â0, 3)})[ ](∅,Ĉ1)

Figure 1: A mission specification example based on a space-
time representation

Definition 3.10. The robotic mission is a tuple M =

〈ĜA, STR,X ,OM〉, where the agent pool ĜA describes
the available set of agents, STR is a set of spatio-temporally
qualified expressions, X is a set of constraints, and OM
represents the organization model.

The initial state is defined by the earliest timepoint and
binds available agents to their starting depot. The earliest
timepoint is t0 ∈ T and ∀t ∈ T, t 6= t0 : t > t0. Figure 1
illustrates a mission specification, where

ĜA = {(â0, 3), (â1, 2)},
STR = {(∅, Ĉ0)@(l0, [t0, t1]), (∅, Ĉ1)@(l1, [t0, t1]),

(F0, {(â0, 3)})@(l1, [t3, t5])}
X = {t0 < t1, . . . , t4 < t5}

OM = {mobile(â0),¬mobile(â1), . . .}

Ĉ0 = {(â0, 2), (â1, 1)}, Ĉ1 = {(â0, 1), (â1, 1)}, l0, l1 are
location variables and t0, . . . , t5 are timepoint variables.
Two general agents Ĉ0 and Ĉ1 are assigned to location l0
and l1 respectively. Two stqes related to the interval [t0, t1]
define the initial agent assignments; no functional require-
ments are part of the initial state description. The goal state
is defined over the interval [t3, t5] and requires a function-
ality set F0 in combination of least 3 agents of type â0 at
location l1.

Mission constraints
A mission can be detailed by constraints in the constraint
set X . The only initially required constraints are temporal
ones to describe the starting state, e.g., in the presented ex-
ample all stqes relating to a start at t0, e.g., cardinality con-
straints allow to set upper and lower bounds on the usage of
agents and functionalities to reduce the combinatorial chal-
lenge. Other optional constraints can be added to detail and
constrain the evolution of a mission. The following list de-
scribes the available constraint types; minimum constraints
come with a corresponding max constraint implementation:
temporal qualitative timepoints describe time intervals,

where timepoint constraints are provided using point al-
gebra (<,>,=) (Dechter 2003).

duration minDuration(s, t), s ∈ STR : sets a lower
bound of time t for the duration of the time interval as-
sociated with the stqe s.

min cardinality minCard(s, â, cmin), s ∈ STR : repre-
sents a minimum cardinality constraint so that |GAâ| ≥
cmin
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all distinct allDistinct(S, â) describes the constraint:
∀s ∈ S :

⋂
Aâ,s = ∅, where S ⊆ STR, and Aâ,s repre-

sents the subset of agents of type â which are associated
with the stqe s.

min distinct minDistinct(S, â, n) describes the con-
straint: ∀si, sj ∈ S, i 6= j :

∣∣|Aâ,si | − |Aâ,sj |
∣∣ ≥ n,

where n ≥ 0, S ⊆ STR, and Aâ,s represents the par-
tition of A which contains only agents of type â which
are associated with the stqe s.

all equal allEqual(S,Ae) describes the constraint: ∀s ∈
S∃Ae : Ae = Asr, where Ae ⊆ A, S ⊆ STR.

min equal minEqual(S,Ae) describes the constraint:
∀s ∈ S∃Ae : Ae ⊂ Ase, where Ae ⊂ A, S ⊂ STR.

min-function minFunc(s, f): requirement for a function-
ality f to be available at stqe s: f ∈ Fs

min-property minProp(s, f, p, n) constrains the property
pf of a functionality f to be pf ≥ n, where the constraint
implies minFunc(s, f)

To handle service preferences within this representation,
e.g., when a particular agent should visit two distinct lo-
cations, equality constraints are required. An equality con-
straints can define partial or full paths for the same instances
of agents, e.g., to control that the same agent visiting loca-
tion l0 at timepoint t0 will also visit location l1 at t1. Detail-
ing functionality request with min and max property con-
straints are motivated by informed repair strategies, e.g., a
property constraint can demand a mobile agent with a par-
ticular transport capacity. In Section 4 we will detail this
reasoning further.

Distinction & Observation
Existing VRP based approaches most often only consider a
subset of the presented constraints, while the mission plan-
ning problem formulation embeds the following VRP prop-
erties: time windows, capacity constraints, heterogeneous
agents, fleet size minimization and vehicle synchronization.
Furthermore, additional special features are introduced: (i) it
is not only accounted for commodity demand, but rather a
combination of commodities and vehicles that provide cer-
tain functional properties; (ii) the use of qualitative temporal
constraints (in contrast to hard or soft quantitative time win-
dows), which enables partially ordered requirements and in-
crease the flexibility to synchronize agent activities; (iii) the
mix-in of a multi-pickup multi-delivery problem in contrast
to a single drop-off.

4 Organization Modeling
To reason upon a reconfigurable multi-robot system a spe-
cial so-called organization model is introduced which de-
scribes all resources that can be part of a reconfigurable
multi-robot team: atomic agents as well as their functionali-
ties and properties thereof. As detailed in (Roehr and Kirch-
ner 2016) the organization model builds upon an ontological
description, which: (a) encodes information about resources
that are associated with agent types, (b) associates interfaces
with agent types, (c) defines compatibility between inter-
faces, (d) allows the identification of feasible, and (e) allows

inferencing functionality of composite agents.
In combination of all features the organization model

serves as main reasoner to identify composite agents and
coalition structures, which are suitable to support a set of
time and location bounded functional requirements.

The following sections will describe agent properties, and
the details of identifying feasible composite agents, and sub-
sequently suitable agent with respect to a given functional-
ity.

Atomic agent type
Each agent type is associated with the following essential
attributes:
mobility mobile(â) defines whether an agent of type â is

mobile or not.
transport capacity tcap(â) defines the maximum total ca-

pacity (measured in storage units) of an agent of type â to
transport others, and tcap(âi, âj) defines the maximum
capacity of an agent type âi to transport an agent type âj .

capacity consumption tcon(â) defines the number of stor-
age units an agent of type â consumes temporarily when
being transported (currently this is set to 1 by default);

velocity vnom(â) defines the nominal velocity of an agent
type â, vnom ≥ 0 for mobile atomic agent types and
vnom = 0 for immobile

power pw(â) defines the nominal required power to operate
an agent of type â

mass mass(â) defines the mass of an agent
energy energy(â) defines the available electrical energy

that initially comes with an atomic agent

General and composite agent type
Some properties of composite agents can be inferred from
their compositing atomic agents: Avella et al. (Avella, Boc-
cia, and Sforza 2004) (though in the context of route con-
straints) label these as ’numerical totalisable’, e.g., here
mass and energy, which can be easily represented as sum of
the property values of each atomic agent forming the com-
posite agent. Inferring the capacity, in contrast, can be com-
plex due to geometrical packaging constraints. The present
model, however, currently ignores geometrical packing con-
straints and checks only connectivity based on interface
compatibility.

Feasible agents
The main feature of a reconfigurable multi-robot system is
the possibility for physical interconnection, but the not all
composite agents are feasible. The compatibility and avail-
ability of connecting interfaces can restrict the design of
a fully connected composite agent. Interfaces can come in
different variants, e.g., for the reference system in (Roehr
and Hartanto 2014) a male and female (also referred to as
EmiPassive and EmiActive). But only one male and one fe-
male interface can be coupled. Atomic agents can comprise
any number of interfaces, but based on Assumption 3.2 ex-
actly one interface can be used for the connection to another
agent’s interface. For a successful connection, both inter-
faces need to be compatible.
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Checking feasibility is a matching problem for graphG =
(V,E), with constraints for the existence of edges, where a
vertex v ∈ V represents a single interface. We denote IA as
the set of all interfaces of a set of agent A, so that V = IA

with the corresponding partitioning IA = I0 ∪ I1 ∪ . . . In,
where n = |A| − 1 and the set of interfaces of an agent a0

is represented as I0 = {i0,0, i0,1, . . . , i0,|I0|−1}. The adja-
cency matrix is an m ×m Matrix C, where m = |IA|, and
∀i, j ∈ IA : ci,j = 0, 1 (rows and columns are annotated
with the interface):

i0,0 i0,1 · · · in,|In|





i0,0 ci0,0,i0,0 ci0,0,i0,1 · · · ci0,0,in,|In|
i0,1 ci0,1,i0,0 ci0,1,i0,1 · · · ci0,1,in,|In|

...
...

...
. . .

...
in,|In| cin,|In|,i0,0 cin,|In|,i0,0 · · · cin,|In|,in,|In|

Checking connectivity means search for a valid assign-
ment for the adjacency matrix C, while the following con-
straints hold for this symmetric matrix, where cp,q = cq,p,
p, q ∈ IA:

∀ak ∈ A, p, q ∈ Ik : cp,q = 0 (1)

∀ak ∈ A, p ∈ Ik :
∑

q∈IA
cp,q ≤ 1 (2)

∀ak, al ∈ A :
∑

p∈Ik

∑

q∈Il
cp,q ≤ 1 (3)

Constraint 1 defines that no self links are allowed for an
atomic agent, while Constraint 2 restricts each interface to
be part of maximum one link only. Finally, Constraint 3 en-
forces Assumption 3.2, so that two atomic agents have to be
connected by one link.

The assignment problem is solved using constraint-based
programming and implemented using Generic constraint de-
velopment environment (Gecode) (Schulte and Tack 2012),
where the matrix entries represent the constraint-satisfaction
problem (CSP) variables, each with the domain Dc =
{0, 1}. Since a single agent might have multiple interfaces of
the same type, the corresponding column assignments in the
adjacency matrix are interchangeable, and create redundant
solutions. We use symmetry breaking to reduce the number
of redundant solutions, and to further speed the assignment
process up, variable assignments are done in order of the
least constrained agents, i.e.

a∗ = argmin
ak∈A

1

|Ik|
∑

q∈IA

∑

p∈Ik
c∗p,q (4)

, where

c∗p,q =

{
1 if cp,q is already assigned
0 otherwise

In practice, we will also add a small fractional random bias
which serves as tie breaker when between variables with
equally constrained agents.

Figure 2: A feasible link structure for a composite agent
after solving the assignment problem. Edges are annotated
with the interface corresponding to the source vertex. Agent
models and interfaces are related to the reference system de-
scribed in (Roehr, Cordes, and Kirchner 2014).

Figure 2 shows the result of a successful assignment pro-
cedure, for a set of seven agents, where the agent Sherpa
comprises four male and two female interfaces, Payload one
of each, CoyoteIII two male and BaseCamp five male.

Suitable agents
An atomic agent is associated with a set of resources, being
either physical components or virtual ones such as capabili-
ties and functionalities it can offer; the same holds for com-
posite agents. Additionally, virtual resources can depend
upon other resources, leading to a hierarchical dependency
structure. In order to resolve the functional requirements of
the mission specification to actual suitable agent type which
support the requirements, the organization model provides
a mapping function: µ : PF → Pθ(A), where PF repre-
sents the powerset of all functionalities, and Pθ(Â) denotes
the powerset of all general agent types. The function µ thus
maps a set of functions to a set of general agent types which
support this set of functions and forms feasible agents. The
organization model encodes functionality based on resource
availability, where resources can be physical devices and
capabilities belonging to an agent. Thus, the organization
model allows to infer functionality from a given agent type
and its associated resource structure: µ−1 : Pθ(Â) → PF .
Thereby, the organization allows to map from agents to func-
tionalities and back. An additional generalization can be
achieved, when the mapping does not only account for a set
of functionalities, but a set of arbitrary resource types which
can be associated with a general agent. Currently, however,
we have restricted the mapping to functionality.

Each agent type is associated with a maximum cardinal-
ity for a resource type, which reflects its initial and original
state. Note, that setting the maximum cardinality still allows
to lower the bound, in contrast to defining the exact cardi-
nality. Therefore, the current modeling approach is prepared
to consider resource failure or removal in future extensions.

Support is defined for an agent type and a single resource
concept c as follows (cf. Roehr and Kirchner (Roehr and
Kirchner 2016)):

support(â, c, f) =
cardmax(c, â)

cardmin(c, f)
(5)

, where cardmin and cardmax return the minimum and
maximum required cardinality of resource instances. Ac-
cordingly, support of a function f with respect to a resource
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class c can be categorized as follows:

support(â, c, f) =





0 no support
≥ 1 full support
> 0 and < 1 partial support

(6)

Since composite agents might comprise a high level of
redundancy, the introduction of a saturation bound shall re-
duce the number of agents which have to be considered
when a given set of functionalities is demanded. We define
the functional saturation bound for an atomic agent type â
with respect to functionality f using the inverse of support:

FSB(â, f) = max
c∈C

1

support(â, c, f)
, (7)

where C is a set of resource classes and ∀c ∈ C :
cardmin(c, f) ≥ 1 to account only for relevant resource
classes. If there is no support for a c ∈ C such that
support(â, c, f) then FSB(â, f) = ∞. Similarly, the
bound for a set of functions F is defined as:

FSB(â,F) = max
f∈F

FSB(â, f) (8)

Identifying functionality support for a general agent type
is equivalent to an atomic agent type, but to compute the
maximum resource cardinalities the following holds:

cardmax(c, ĜA) =
∑

â∈ĜA

γ
ĜA

(â)cardmax(c, â) (9)

, where c ∈ C. Minimum resource cardinalities will be com-
puted equivalently using cardmin(c, â).

The number of general agent types that can support some
functionality can be large, but it can be observed that for
a supported set of functionalities a set of minimal general
agent types Gmin exists.
Definition 4.1. A general agent type which supports a given
set of functionalities and whose agent type cardinalities can-
not be further reduced is denoted minimal with respect to
the given set of functionalities.

Hence, a minimal general agent type represents a lower
bound to satisfy functionality requirements with a given
combination of agent types.

5 Mission planning
The primary goal is to provide a valid assignment for the
provided mission specification (cf. Section 3), while fleet
size minimization and total cost minimization are secondary.
The actual planning process is based on several stages in or-
der to generate solutions:
(1) temporal ordering of all timepoints using a temporal

constraint network
(2) upper and lower bounding of agent type cardinality for

each spatio-temporal requirement
(3) generation of agent role timelines according to unifica-

tion constraints and agent type cardinalities
(4) flow optimization to transfer immobile agents with mo-

bile agents
(5) quantification of timepoints, based on transition times

Stage (1) creates a sequence of ordered timepoints, which
is a necessary precondition for all next stages in order to
identify concurrent resource usage and creating a commod-
ity flow network. Stage (2) identifies the minimally required
set of agent roles, and is for this reason a key element for
minimization of the resources in use. Stage (3) takes all mis-
sion constraints into account in order to suggest a feasible
agent role assignment. This assignment is handed toa opti-
mized in stage (4).

Constraint-based programming is involved in the rea-
soning of the organization model, and the planning stages
(1),(2), and (3). Each of these stages involves the definition
of appropriate branching strategies, and symmetry breaking
conditions, and (3) uses of special implemented constraint
propagator. If at any listed stage the search process fails,
backtracking will be performed to the previous stage. The
following sections will describe the details of the individual
stages:

Temporal Ordering of Timepoints To generate valid
timelines and identify resource conflicts the approach re-
quires a fully ordered set of timepoints. The generation of
a fully constrained set of timepoints is based on qualitative
temporal reasoning using point algebra with the set of rela-
tions REL = {>,<,=} (Rina Detcher 2003). Consistency
of the Temporal Constraint Network (TCN) is checked us-
ing a CSP which is defined by a set timepoint variables T =
{t1, t2, . . . , t|T |}, a set D = {D1, D2, . . . , D|T |} to repre-
sent the domain values for each timepoint t ∈ T , and a con-
straint set C with constraints of the form C = 〈tn, reli, tm〉,
where n,m = 1, . . . , |T |, and reli ∈ REL. A constraint
is fulfilled if the relation described by c ∈ C between two
timepoint variables is fulfilled.

The final domain for each variable is restricted to a
singleton: |Di| = 1 and permitted values are Di ⊆
{1, 2, . . . , |T |}. If a full assignment of values can be found,
the TCN is consistent, and the ordering of timepoints cor-
responds to the ordering of the assigned values. The quali-
tative temporal reasoning is sufficient to synchronize tasks,
but only the quantification of time in the last stage of the
planning approach will verify the temporal consistency of a
solution.

Bounding agent type cardinality To perform an upper
and lower bounding of agent type cardinality a matrix based
representation for spatio-temporal requirements and agent
types is used, where xi,j represents the cardinality of agent
type âj ∈ Â and si ∈ STR. The following matrix rep-
resentation with annotated rows and columns illustrates the
meaning of each related CSP variable:

â0 â1 · · · ân





s0 x0,0 x0,1 · · · x0,n

s1 x1,0 x1,1 · · · x1,n

...
...

...
. . .

...
sm xm,0 xm,1 · · · xm,n

(10)

, where n = |Â| − 1, and m = |STR| − 1. Each variable x
has an initial domain of positive integers Dx = {0, 1, . . .}.
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Since resource availability is restricted, the general agent
type ĜA which is part of the mission specification defines
an upper bound for all agent type cardinalities, which will
be referred to as ĜAUB for readability.

Spatio-temporal requirements, however, can overlap, i.e.
when they refer to the same location and their time intervals
overlap. For a set of overlapping spatio-temporal require-
ments Ω = {si, . . . , sj}, si, sj ∈ STR the upper bound is
enforced as follows:

∀âj ∈ Â :
∑

si∈Ω

xi,j ≤ γĜAUB
(âj) (11)

The organization model is required to translate the re-
quirements for functionalities into requirements for (suit-
able) general agent types, and apply the functional satu-
ration bound. Lower bounds for each spatio-temporal re-
quirement result from the combination of demanded func-
tionalities and the given minimum agent type cardinalities.
This lower bound represents a set of minimal general agents
which is translated into the spatio-temporal requirement’s
CSP variable domain. This domain is considered in the CSP
by using extensional constraints for the assignment of model
cardinalities, thus restricting model combination to minimal
general agents. The extensional constraints enforce an ex-
act assignment, but any full assignment of model cardinali-
ties is only a lower bound for the subsequent agent role as-
signment stage. If no assignment can be found, too few re-
sources are available to fulfil the mission requirements; the
planning continues with another assignment of the temporal
constraint network if possible or fails otherwise.

Agent roles Subsequent to the CSP branching on bounded
agent type cardinalities, a candidate assignment of agent
roles to spatio-temporal constraints can be computed using
a set of integer variables yi,k,j , for si ∈ STR, âk ∈ Â, and
0 ≤ j ≤ γ

ĜAUB
(âk), which have the domain D = {0, 1}:

râ00 · · · râk0 · · · rânl





s0 y0,0,0 · · · y0,k,0 · · · y0,n,l

s1 y1,0,0 · · · y1,k,0 · · · y1,n,l

...
...

. . . . . . . . .
...

sm ym,0,0 · · · ym,k,0 · · · ym,n,l

(12)

, where l = γ
ĜAUB

(ân) − 1, m = |STR| − 1, and n =

|Â| − 1.
Additional constraints are applied to guarantee unary

agent role usage for time-overlapping constraints, and the
general mission constraints described in Section 3 can di-
rectly be translated into low level CSP constraints, e.g., such
as equality constraints minEqual, maxEqual as well as dis-
tinction constraints. Since agent roles of the same agent type
are interchangeable symmetry breaking is applied to reduce
the number of redundant solutions. While constraint propa-
gation will reduce the corresponding domain and will lead to
value assignment, full assignment of variables will only be
performed for agent roles that (a) have an assignment apart
from the single starting location, and (b) are mobile. To the

first kind of agent roles we will also refer to as active agent
roles. This partial assignment allows to extract full timelines
for active mobile agents and partial timelines for active im-
mobile agents. Both form the basis for a multi-commodity
flow problem which is solved using integer linear program-
ming.

Timeline Generation Variable assignment for a single
agent role variable assignment have to fulfill another impor-
tant property: they have form a path in a temporal-expanded
network. Ford and Fulkerson (Ford and Fulkerson 1963)
have shown that networks can represent flow over time, and
we similarly rely on what we call a temporal-expanded net-
work to compute a flow-based representation for the mis-
sion planning problem. The temporal-expanded network has
a bound on the number of edges by allowing only edges be-
tween vertices which are related to neighbouring timepoints
and point forward in time:

Definition 5.1. A time-expanded network for a set of time-
points T and a set of locations L is a graph G = (V,E)
with the following properties: Each vertex in V corresponds
to a unique location timepoint tuple vl,t = (l, t), where
l ∈ L, and t ∈ T . The set of edges is restricted: e ∈
E =⇒ e = (vtn,li , vtn+1,lj ), where n = 0, . . . , |T | − 1
and i, j = 1, . . . , |L|. Without loss of generality t0 ≤ t1 ≤
· · · ≤ t|T |−1.

A custom (path) propagator has been implemented to ex-
ploit the structure of the network and enforce a constrained
path in the network. This leads to a faster assignment pro-
cess of agent role variables.

Multi-commodity flow When the role assignment process
is completed (fully for the mobile agents, and partially for
the immobile ones), it is straightforward to translate the
agent role timelines into a multi-commodity min-cost flow
problem (Ahuja, Magnanti, and Orlin 1993): mobile agents
represent transport providers, while immobile agents will
be treated as individual commodities. Thus, edges in the
network are either ’local’ connections since they refer to
the same location, or they are part of mobile agent routes.
While we assume that local connections have infinite ca-
pacity, edges created as result of a mobile agent transition
have an upper capacity bound defined by the transport ca-
pacity of the corresponding mobile agent. All available mo-
bile agents span a flow network over which commodities, or
here immobile agents, can be routed to their target destina-
tions. But agents are not restricted to a single target des-
tination, so that requirements partially define a route for
each agent. Therefore, the flow network represents all im-
mobile agent requirements by minimum trans-flow require-
ments. Although bundling all agent types into one commod-
ity would lead to a compact representation, route require-
ments for individual agents could not be set properly. Hence,
each immobile agent role corresponds to a commodity, and
role usage requirement are translated in to minimum transi-
tion requirements as already mentioned.

Mobile and immobile agent routes are transformed into
a multi-commodity min-cost flow problem with unit com-
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modity cost (Ahuja, Magnanti, and Orlin 1993):

min
∑

k,m

xkm

s.t.
∑

em∈An

xkm −
∑

em∈Bn

xkm =





S+
k if n = sk
−S−k if n = tk , ∀ n, k
0 otherwise

xkm ≥ lkm ∧ xkm ≤ ukm
, where

G = (V,E)

K = number of commodities, k = {1, . . . ,K}
m = {1, . . . ,M},M = |E|
em = edge between node i and node j, i.e. (i,j)

xkm = flow for commodity k in arc em
ckm = unit cost for commodity k in arc em

ukm, l
k
m = upper/lower bound for commodity k flow

through edge m
sk, tk = source/target of commodity k, sk ∈ V

S+
k , S

−
k = supply/demand of sk ∈ V
Bn = set of incoming edges of node n
An = set of outgoing edges of node n

To solve the network flow problem, the problem is first
translated into a standard representation (CPLEX LP) so
that different LP solvers can be used to solve the opti-
mization problem (here: SCIP (Achterberg et al. 2008) and
GLPK (Free Software Foundation 2015)). Any feasible and
optimal solution of the network flow problem is also a fea-
sible, but not necessarily an optimal solution for the mission
assignment problem.

Quantification of time A full solution still requires the
quantification of temporal intervals: the qualified temporal
network is therefore converted into a quantitative simple
temporal network where the transitions between locations
(and stqes) are based on the time required for the mobile sys-
tems to perform the location transitions and to form compos-
ite agents. Any min and max duration constraints will also
apply at this planning stage.

Search & Solution repair
The previously described constraints lead to the generation
of role timelines, and the CSP framework Gecode (Schulte
and Tack 2012) has been used for the implementation. All
role timelines are not only checked for feasibility via the
multi-commodity min-cost flow optimization, but at the
same time locally optimized. Still, finding a feasible solu-
tion for a highly restricted set of resources can be a sig-
nificant challenge. Several strategies can be considering for
search, and our initial approach interprets lower agent type
cardinality bounds as exact bounds - with the intention to
keep the fleet size minimal and enlarge only when nec-
essary. Hence, in the case when no optimal solution can

be found, the infeasible (LP) solution is analysed to iden-
tify open flaws, i.e. unfulfilled minimum commodity trans-
flow requirements. Upon identification of all flaws, a repair
heuristic can be applied which injects additional transport
provider requirements, thereby triggering either the change
of existing mobile agent routes, or an increase of the lower
agent type cardinality. The min-property constraint is used
to augment the mission and restart the search after the local
repair. For highly constrained missions, the repair process
can reduce the number of flaws, but is slow at finding fea-
sible solutions, hence showing that the heuristic is currently
insufficient for complex setups.

An alternative is offered by the relaxation of cardinality
bounds. In order to speed up finding an initial feasible solu-
tion, it is beneficial not to interpret the lower agent type car-
dinalities as exact bounds. Allowing an additional set of mo-
bile systems (still within the number of the available ones)
can reduce the time to find a feasible solution, but leads to
higher redundancies and therefore less efficient solutions,
since more agents will be required.

Figure 3 shows a computed feasible solution. The general
agents available for the mission are 3 Sherpa, 2 CREX, 3
Coyote II, 16 Payload, and 5 BaseCamp, where some agent
interfaces are listed in the upper left corner of the figure. The
assignment at the location lander shows, that only a subset
of atomic agent is required for the solution. Fulfilled atomic
agent requirements are highlighted as green squares, while
the presence of systems without requirements is shown in
green. These requirements, however, only represent one fea-
sible set of atomic agent requirements which has been in-
ferred from required functionalities. This solution has been
computed within few seconds but only for a relaxed cardi-
nality bound with two additional mobile agent roles (per mo-
bile agent type).

Mission solution & cost function
The overall state of the agent organization, i.e. current con-
nection state of atomic and composite agents is reflected by
the coalition structure. In order to cost factor the dynamics in
an agent organization two related concepts have to be used:
policies and heuristics. Policies are required to define rules
for selection and attribution. For example in the case of a
transport multiple mobile robot may be available to perform
this transport. To decide which one to take, a transport pol-
icy has been introduced, which chooses the agent with the
largest transport capacity. For attribution energy consump-
tion in a composite agent serves as main example. Since
multiple power sources might exist is such system, a con-
sumption policy has to distribute the consumption to all en-
ergy providers. Here, for the default policy each provider
takes a share relative to its contribution to the overall energy
capacity of the composite agent. Heuristics serve to interpo-
late a organizational state and estimate final mission costs: a
duration heuristic for moving between locations relies on the
information about the distance and the nominal speed of the
transporting agent. Energy cost are depending upon the du-
ration heuristic by relating duration to the power consump-
tion of a composite system. Any reconfiguration changes
this coalition structure, but requires a transition time, so that
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Figure 3: Example of a feasible solution for a full mission with locations = {lander,b1,b2,b4,b6}, timepoints =
{t0,t1,. . . ,t10,t14}. Fillbars indicate the consumed capacity of mobile agents. Color-coded boxes represent unique agent roles
(only for better visualization limited to 16 per agent type): green = fulfilled requirement, gray = presence without a requirement.

ρ(CSAi , CS
A
j ) defines the time to transition from one coali-

tion structure CSAi to another CSAj . This cost heuristic as-
sumes the same location of all agents in A.

The objectives of the planner is to find a solution that bal-
ances the overall energy consumed with the level of safety:
distance d(a,Ms) travelled distance of an agent a in mis-

sionMs

operation time op(a,Ms) = d(a,Ms)/vnom(a) duration
of operation of an agent a

energy E(a,M), where E(a,Ms) = op(a,Ms) · pw(â)
overall consumed energy by agent a to perform Ms;
E(M) =

∑
a∈A overall consumed energy per mission

safety SAF (Ms) = mins∈STR saf(s) represents the
minimal safety level (here: redundancy) of the mission,
where saf(s) defines the safety metric associated with
an stqe s based on the available (general) agent and with
respect to the required set of resources; currently a redun-
dancy based model is used to estimate the probability of
survival based on an agent’s set of component required to
provide the functionalities in F (cf. (Roehr and Kirchner

2016) for details), such that 0 ≤ saf(s) ≤ 1.
fulfillment SAT (M) = 1

|STR|
∑
s∈STR sat(s) represents

the ratio of fulfilled requirements, where

sat(s) =

{
0 , unfulfilled
1 , fulfilled

This following cost function reflects a balancing of three
general mission aspects: efficiency through the energy cost
function, efficacy through checking the level of fulfillment,
and safety as redundancy dependant survival metric; for bal-
ancing the parameters α, β and gamma can be used:

cost(Ms) = αE(Ms) + βSAT (Ms) + γSAF (Ms)

Figure 3 shows an example of a feasible solution. Each
such solution can be translated into action plans for individ-
ual agent roles. Each vertex of the solution network serves
as synchronization point and assumes reconfiguration opera-
tion to account for necessary coalition structure changes; the
reconfiguration cost are annotated accordingly, along with

71



the safety metric. Overall cost for the provided solution net-
work are computed by constructing a simple temporal con-
straint network (Dechter 2003) where the bounds are defined
by the transition times of the mobile agents.

6 Conclusion & Future Work
This paper presents the continued work for developing a
planning system for a reconfigurable multi-robot system.
The planner relies on constraint-based programming to spec-
ify and solve missions involving reconfigurable multi-robot
systems, which is combined with multi-commodity flow op-
timization as local search. Furthermore, it suggests a multi-
objective optimization target involving efficacy, efficiency
and safety. The approach presented in this paper does not
only result in a planning system for reconfigurable multi-
robot system, but also in a tool which allows to analyse
the effects of using reconfigurable multi-robot systems in
robotics missions. Future work will firstly focus on intro-
ducing better plan repair heuristics, and the extended use of
meta-heuristic search strategies to improve the performance
and scalability of the embedded local search approach. Sec-
ondly, a resource augmentation stage will be added in or-
der to use previously unused resources to raise the level of
safety.
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Abstract

Advance in applied scheduling is a source of innovation in the
manufacturing field, where new results help industrial prac-
titioners in improving manufacturing line performances. In
this domain, the manufacturing line environment is usually
assumed to be static, in contrast to real life scenarios where
disruptions are frequent and the original solution can dras-
tically change. To address this intrinsic characteristic of a
real environment, the scheduling system accounted to pro-
vide the solution for the production schedule needs to be able
of monitoring possible disruptions and, through a reschedul-
ing process, to produce a new scheduling solution that con-
siders the unforeseen. The literature of rescheduling prob-
lems in the case of single-objective optimization is a well
study field, while there is a lack of extensive studies for the
case of rescheduling for multi-objective optimization, espe-
cially when one of the objective represents energy measures
(energy aware scheduling). To improve the field, this paper
extends a previous work over an energy aware scheduling
problem, modeled from a real industrial case study, extend-
ing the manufacturing environment as a dynamic one and in-
troducing specific rescheduling techniques tackling the ma-
chines unavailabilities through new rescheduling techniques.
Two new rescheduling techniques are developed (greedy-
heuristic and meta-heuristic) and compared to existing ap-
proach thought manufacturing environment simulations. The
results give insight over which techniques better performs in
terms of rescheduling quality and computational time.

1 Introduction
Applied scheduling is the field of study that aims to fill in
the gap between the scheduling theory and its application
to real scenario, giving scheduling practitioners new and in-
novative solutions to face current trend in their domain of
work. Of particular interest for the applied scheduling is the
manufacturing domain, where one of the main application
of the scheduling problems is in the context of optimizing
the manufacturing line production. In this scheduling en-
vironment, the usual assumption is to analyze the problem
as static, meaning that all the information of the scheduling
problem are not going to change over the time. While this
assumption can be useful for theoretical results and research

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

simulations, when dealing with real scenario this assump-
tion limits the possibility to concretely apply the developed
static scheduling technique, because the only way to face
environment disruption is to solve a new scheduling prob-
lem with substantial computational cost and lack of system
responsiveness. To improve this situation, the environment
has to be considered as dynamic and faced with predictive-
reactive scheduling strategies. In this way, from the initial
environment, a (predictive) scheduling solution is produced
and when a disruption occurs a reactive strategy (reschedul-
ing) tackles this issue producing a new feasible scheduling
solution.

Current literature of rescheduling methods for dynamic
scheduling environment is well developed. To understand
the concepts of rescheduling strategies, policies, and meth-
ods in rescheduling manufacturing systems, the work of
(Vieira, Herrmann, and Lin 2003) is of great helps thanks to
the proposed framework to classify the rescheduling prob-
lem under analysis. There exist many works on concrete
rescheduling problems, those mostly differs in terms of the
kind of disruption they can manage. (Hall and Potts 2004)
studies a scheduling problem where a set of original jobs has
already been scheduled in order to minimize a cost objective,
and then, a new set of jobs arrives and creates a disruption.
The decision-maker needs to insert the new jobs into the ex-
isting schedule without excessively disrupting. The authors
provide either an efficient algorithm or a proof that such an
algorithm is unlikely to exist. (Qi, Bard, and Yu 2006) pro-
pose the problem of updating a machine schedule when ei-
ther a random or an anticipated disruption occurs affecting a
subset of the jobs. The proposed approach differs from most
rescheduling analysis in that the cost associated with the
deviation between the original and the new schedule is in-
cluded in the model. In (Nouiri et al. 2018) a meta-heuristic
rescheduling strategies for the dynamic flexible job-shop en-
vironment under machine disruption is presented and exten-
sively tested against usual approach. The work outlines how
machines disruption scenario significantly affects initial so-
lution and the tradeoff between the evaluated approaches.

Most of the literature works over rescheduling problems
address scheduling environment in which the main objec-
tives are related to production objectives (completion time,
tardiness, lateness, etc.), while current trends in manufactur-
ing are taking in to consideration more complex objectives,
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where environmental issues have to be addressed through
the consideration of energy consumption in the optimiza-
tion process (i.e. energy-aware scheduling problem) lead-
ing to the creation of the sustainable scheduling field of
study. Even though the importance of sustainable schedul-
ing is broadly affirmed through the scientific community
(Bruzzone et al. 2012; Dai et al. 2013; Plitsos et al. 2017),
most of the current literature in this field is addressing static
problems (predictive scheduling), while literature works re-
lated to dynamic environments are very few in compar-
ison to the variety of possible dynamic rescheduling en-
vironments determined by the combinatorial combination
between scheduling environments, optimization functions,
constraints and analyzed disruptions. In (Wang et al. 2016),
authors tackle a bi-objective single machine batch schedul-
ing problem where the first objective is to minimize the
makespan and the second is to minimize the total energy
costs, by considering both the machine utilization and the
economic cost. An integer programming model is proposed
and then, an exact ε-constraint method is adapted to ob-
tain the exact Pareto front. In (Le and Pang 2013), the need
to deal with uncertainties in energy optimization of flexi-
ble manufacturing systems is faced. It considers a dynamic
scheduling problem which minimizes the sum of energy cost
and tardiness penalty under power consumption uncertain-
ties. In (Tonelli et al. 2016), a simple multi-agent system
model is proposed to decompose an energy-aware schedul-
ing problem into smaller subproblems. In this approach,
each agent solves a subproblem by using a Mixed Integer
Linear Programming (MILP) model and the results are com-
bined to obtain a global solution. A similar idea is proposed
in (Nicolo et al. 2017) where a set of solving techniques
are compared and job features are studied in order to tackle
energy-aware scheduling problems.

The proposed work is an extension of a well studied
scheduling scenario derived from analyzing a manufacturing
real case of an injection molding plastic industry (Paolucci,
Anghinolfi, and Tonelli 2015). This problem can be consid-
ered as an energy-aware unrelated parallel machine schedul-
ing problem with machine-dependent energy consumption
and sequence-dependent setup time. The current literature
that works over this problem, considered it as a static en-
vironment (predictive scheduling), and no previous works
have been developed to manage this problem as a dynamic
one. For the best of our knowledge, only one work can be
considered slightly close to our proposal. The work of (Ar-
naout 2014) tackles a similar scheduling environment where
a bi-objective function is optimized, but the main difference
is the absence of energy information, leading to a interesting
approach that cannot be applied in the energy-aware config-
uration. From above considerations, this work pretends to fill
this lack in literature proposing new methodologies to solve
a dynamic energy-aware scheduling problem.

The remainder of the paper is organizes as follow. Sec-
tion 2 reports the problem under analysis introducing formal
notation and a mathematical model for solving the predic-
tive scheduling problem. Section 3 introduces the reactive
rescheduling problem describing the category of disruptions
taken in consideration. Section 4 describes the proposed ap-

proach to face the analyzed rescheduling problem introduc-
ing two new techniques. Section 5 compares the proposed
techniques with a usual approach in the rescheduling liter-
ature (right-shift rescheduling). Section 6 summarizes the
results and insights from the current work outlining possi-
ble future directions for improving and extending the current
results.

2 Description of the Scheduling Problem
The scheduling problem under analysis is the energy-
aware unrelated parallel machine scheduling problem with
machine-dependent energy consumption and sequence-
dependent setup time. It was firstly introduced in (Paolucci,
Anghinolfi, and Tonelli 2015) and better studied in (Tonelli
et al. 2016; Nicolò et al. 2016; Nicolo et al. 2017). In this
problem, a set of orders, represented by jobs, has to be
scheduled on a set of unrelated parallel machines. Each job
has associated to its specific temporal and cost features: re-
lease date, due date and penalty cost. A job can be processed
by one or more machines, where processing time and energy
consumption of the job depends by the machine assigned to
process it. Between the execution of two consecutive jobs
over the same machine a setup time is needed, where its val-
ues depend on the jobs sequence and machine assigned to
them. In the next section, the problem under observation is
formally described and its mathematical formulation, intro-
duced in (Paolucci, Anghinolfi, and Tonelli 2015) as Mixed
Integer Linear Programming model, is reported.

2.1 Mathematical formulation
The following scheduling notation (Graham et al. 1979) for-
mally represent the problem under study:

Rm|Mj , pjk, Ejk, rj , sijk|
∑

wjTj ,
∑

Ejk,
∑

Sijk

The problem is multi-objective since there are three mea-
sures to be minimized, which are expressed as objective
functions: the total weighted tardiness of the jobs TT (s), the
total energy consumption EN(s), and the total setup time
ST (s). The solution s∗ can be obtained by minimizing a 3-
dimensional objective function:

s∗ = arg min
s∈S

[TT (s), EN(s), ST (s)] (1)

where S denotes the feasibility space for the problem solu-
tion space. To represent the problem model and the objec-
tive function components to be optimized, a list of notations
extracted from (Paolucci, Anghinolfi, and Tonelli 2015) is
presented below.

2.2 Mixed integer programming model
In order to evaluate a solution of the problem, the three ob-
jective functions must be aggregated. The mixed integer lin-
ear programming (MILP) model (Paolucci, Anghinolfi, and
Tonelli 2015) combines the three factors into a scalar func-
tion with a minimum deviation method, resulting in the fol-
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Sets
Notation Definition
J = {1, . . . , n} the set of jobs
j0, jn+1 two fictitious jobs as first

and last job on each machine
M = {1, . . . ,m} the set of machines
Mj , ∀j ∈ J the set of machines

that can execute job j
Jk, ∀k ∈M the set of jobs that

can be executed by machine k

Parameters
Notation Definition
B a sufficiently large constant
Dj , ∀j ∈ J the due date of job j
Rj , ∀j ∈ J the release date of job j
Wj , ∀j ∈ J the tardiness penalty of job j
Pjk, ∀j ∈ J , ∀k ∈Mj the processing time of job j

on the eligible machine k
Ejk, ∀j ∈ J , ∀k ∈Mj the energy consumption of job j

on the eligible machine k
Sijk, ∀i, j ∈ J the setup time on machine k
∀k ∈Mj ∩Mi , i 6= j between the completion of job i

and the start of the subsequent job j
Πg , g = 1, 2, 3 the weights of the objective

function components

lowing scalar objective function F to be minimized:

min Π1 ·

∑

j∈J
Wj · tj − f−1

f+
1 − f−1

+ Π2 ·

∑

j∈J

∑

k∈Mj

Ejk

∑

i∈Jk
i 6=j

xijk − f−2

f+
2 − f−2

+

Π3 ·

∑

k∈M

∑

i∈Jk

∑

j∈Jk
i 6=j

Sijk · xijk − f−3

f+
3 − f−3

(2)

The quantity f−g , g ∈ {1, 2, 3} in (2) represents the best (i.e.,
minimum) value for the g-th component when this is opti-
mized individually; f+g is an estimation of the worst value
for fg(s) that can be fixed as f+g = maxh6=g fg(s∗h), where
(s∗h) is the optimal solution found when the objective fh(s)
is individually optimized. The weights Πg , g ∈ {1, 2, 3}
in (2) express the relative importance given by the decision
maker to the different objective components and are selected

Variables
Notation Definition
cj , ∀j ∈ J ∪ {0} the completion time of job j
stj , ∀j ∈ J ∪ {0} the starting time of job j
tj , ∀j ∈ J tardiness of job j with

respect to its due date
xijk ∈ {0, 1}, binary sequencing variables
∀i, j ∈ J ∪ {0, n+ 1} (i.e., xijk = 1 denotes that
k ∈Mi ∩Mj , i 6= j job i immediately precedes job j

on machine k)
yjk ∈ {0, 1}, binary assignment variables
∀j ∈ J , (i.e., yjk = 1 denotes that
k ∈Mj , j is processed by k)

such that
∑

g Πg = 1. The above function (2) is subject to:
∑

i∈Jk
i 6=j

xijk = yjk ∀j ∈ J, k ∈Mj (3)

∑

j∈Jk
j 6=i

xijk = yik ∀i ∈ J, k ∈Mi (4)

∑

k∈Jk

yjk = 1 ∀j ∈ J (5)

∑

j∈Jk

x0jk ≤ 1 ∀k ∈M (6)

cj ≥ Rj +
∑

k∈Mj

Pjkyjk ∀j ∈ J (7)

tj ≥ cj −Dj ∀j ∈ J (8)

cj ≥ ci + Pjk + Sijk −B · (1− xijk)

∀k ∈M, ∀i, j ∈ Jk, i 6= j
(9)

c0 = 0 (10)
cj ≥ 0, tj ≥ 0 (11)
xijk ∈ {0, 1} ∀i, j ∈ J, i 6= j, k ∈Mi ∩Mj , (12)
yjk ∈ {0, 1} ∀j ∈ J, k ∈Mj (13)

Constraints (3) and (4) impose that each job assigned to a
machine must be sequenced on that machine. Specifically,
it must have a predecessor and a successor on the machine.
Constraint (5) guarantees that each job is assigned to a single
machine among the ones eligible to process it. Constraint (6)
imposes that, at most, a single job is the first one scheduled
on each machine. Constraint (7) defines the lower bound for
the job completion time, and Constraint (8) defines the job
tardiness. Constraint (9) controls the job completion times,
ensuring that each machine processes one job at a time and
the setup time between two successive jobs is satisfied. Con-
straint (10) fixes the completion time for the dummy job0,
and Constraints (11), (12) and (13) define the problem deci-
sion variables.

3 Definition of Incidence
An ”incidence” is an unpredictable event that transforms the
original schedule into a non-executable plan, such as: break-
downs on machines, power cuts, work accidents, etc. The
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representation for an incidence is independent of its origin
and nature. This means that the representation of an inci-
dence only has information about its technical characteris-
tics ignoring the reason for the incidence. An incidence can
be formally defined as:

i = [idi, sti,mi, ttsi]

where

• idi: an identification number for the incidence

• sti (starting time): the time point when the incidence i
starts

• mi (machine): an integer representing the ID of the af-
fected machine by i

• ttsi(time to solve): the necessary time to solve the inci-
dence i. It has to be estimated by a human expert. From
sti to sti + ttsi, the machine m will be inoperative.

Notice that, with this formalization, an incidence can only
affect a single machine, because its representation has only
one integer to indicate the machine id. Thus, if there exists
an incident that affects more than one machine (e.g: a global
power cut) it has to be represented as a set of incidences, one
per each affected machine. This representation linked to one
single machine allows to model an incidence as a normal
job with the constraint that has to be scheduled in the exact
moment that it happens.

4 System Proposal
4.1 Assumptions
Some considerations must be taken into account when a in-
cidence is inserted into the system and a rescheduling is
carried out. These considerations define the rules (or con-
straints) to be satisfied during the execution of the reschedul-
ing techniques. They model some real-world conditions re-
lated to the specific production environment (air injection
presses) that cannot be changed. Concretely, the considera-
tions to take into account are:

• Preemptive tasks: all jobs can be interrupted during its ex-
ecution by an incidence. When the incidence is solved and
the interrupted job recovers its execution it can continue
the process from the point it was interrupted. This means
that the process carried out by a job will not be lost if the
job is force to stop by an incidence.

• Static interrupted-jobs: once an incidence is solved, the
affected job must continue its execution in the same ma-
chine it was interrupted. Furthermore, the interrupted job
must be the first job to be executed after the recovery. The
remaining jobs must be rescheduled without these con-
straints.

4.2 Example problem
Let’s analyze an example with the parameters shown in ta-
bles 1 and 2. A possible solution for this instance is shown
in figure 1. Let’s also suppose, as shown on figure 1, that

Table 1: Example: possible machines
Job j Mj Job j Mj

1 {1,3} 7 {2}
2 {1,2} 8 {3}
3 {1,2,3} 9 {1,3}
4 {1} 10 {1,2,3}
5 {2,3} 11 {2,3}
6 {1,2,3} 12 {1,2,3}

during execution of the job j2 an incidence (specifically, in-
cidence i = [0, 6, 1, 4]) occurs on the machine 1 and it will
be inoperative during a period of 4 units of time.

In this situation, we propose 3 different rescheduling tech-
niques to be analyzed and compared: a baseline that con-
sists on the propagation of the incidence without interac-
tion with other machines, a Greedy-Rescheduling (GR) al-
gorithm based on the Worst Local Job strategy presented
in (Nicolo et al. 2018) and, a Genetic Algorithm (GA) ex-
tracted from (Nicolo et al. 2017) that is combined with the
GR algorithm by initializing the population from the GA
with the GR strategy in order to improve its results.

4.3 Proposed baseline
The proposed baseline is based on the propagation of the in-
cidence along the schedule on the machine affected by the
incidence using a Right-Shift technique (Vieira, Herrmann,
and Lin 2003). This baseline models the behavior of wait-
ing until broken machine is repaired without any other ac-
tions nor intelligent response that manage this situation. As
shown in figure 2, this technique causes that the whole set of
jobs scheduled after the incidence to be delayed, worsening
system performance and delaying the end of the affected ma-
chine the same time needed to repair the incidence. Notice
that the delay introduced by the incidence may increase the
tardiness of the delayed jobs affecting directly to the multi-
objective function (eq. 2). We will use this baseline to com-
pare the performance of our proposals, which implement a
more intelligent way of tackling these situations.

Table 2: Example: processing times
Job j

1 2 3 4 5 6 7 8 9 10 11 12
Pj1 2 4 5 2 - 3 4 - 4 3 - 4
Pj2 - 3 5 - 4 2 - - - 5 4 4
Pj3 4 - 8 - 3 4 - 3 2 4 3 5

4.4 Greedy rescheduling (GR) algorithm
In contrast to the baseline, a new reallocation approach is
proposed. It analyzes every affected job to determinate if it
has to be moved to another machine and, if applicable, what
is the best machine and in which position to introduce this
job. An ”affected job by an incidence” is defined as ”Ev-
ery job scheduled in the same machine in which the inci-
dence occurs and its execution time is scheduled after the
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Figure 1: Possible given solution before the incidence

Figure 2: Proposed baseline

incidence starts”. Formally, the set of affected jobs (AJ) by
an incidence i is defined as:

AJ = {j : yjmi
= 1 ∧ stj > sti} (14)

Thus, for example, the affected jobs by the incidence in
figure 2 are {J3, J4, J12}. Notice that the job interrupted by
the incidence (j2 in the example) is not considered to be an
affected job since it cannot be rescheduled or moved to an-
other machine by any technique and it must be the first job
to execute after the recovery (section 4.1).Also notice that,
probably exist some jobs that, in practice, were not delayed
by the incidence but they are being considered as affected-
Jobs. The reason is that the main objective is always to min-
imize the objective function (eq. 2) and not to recover the
original schedule since the original schedules are not sup-
posed to be optimal.

For each affected job, it has to be analyzed if it is conve-
nient to move it to another machine or is more productive to
wait until the machine is repaired. Thus, the Best Available
Machine (BAM) for each job is determined. If the BAM of
a job is the machine in which it is previously scheduled, the
job will not be moved, otherwise the job will be moved to its
BAM.

Given a job j already scheduled in a machine k’, we need
to do the next calculations to determinate its BAM. First we
need to study how the rest of machines improve or worsen
their performance when receiving job j:
∀j ∈ AJ do

∆k = F (Sk + j)− F (Sk),∀k 6= k′ ∈Mj (15)

where:

• Mj : is the set of machines that can execute job j (see sec-
tion 2).

• Sk: is the schedule of machine k. Sk is a sorted list in-
cluding all the jobs assigned to machine k. Formally:

Sk = {j : yjk = 1} (16)

• F (Sk): is the multi-objective value resulting from the ap-
plication of the evaluation function (eq. 2) on the schedule
Sk.

• Sk + j: is the resulting schedule from inserting the job
j into schedule Sk in the best position inside Sk (deter-
mined by brute force). In this case, the symbol ’+’ rep-
resents the operator of adding a new job into an existing
schedule into the best position inside it.

• ∆k: represents how much the evaluation of the schedule
Sk is worsened when job j is added into it.

Each ∆k stores how much each machine k is deteriorated
when receiving the job j, so it can be selected the best ma-
chine k* with lower value:

k∗ = argmink 6=k′∆k (17)

In this way, k∗ is selected as the best machine to receive
job j, but j is already in a machine k’ that could event be
better than k∗. To evaluate how job j fits on k’, j is taken
out from S′k and an evaluation of how the machine k’ per-
formances without j is carried out by:

∆k′ = F (Sk′)− F (Sk′ − j) (18)

where:

• Sk′ − j: is the resulting schedule from extracting the job
j from schedule Sk.

So, ∆k′ stores how much machine k’ deteriorates its per-
formance due to job j. So, finally, the BAM for a given job j
can be defined as:

BAM = k ∈ {k′, k∗} : k = argmin∆k (19)

If BAM is k’ means that j is already in its best machine
and it does not need to be reallocated in other machine to
produce better results. By contrast, if BAM is k∗ means
that moving job j into k∗ will produce a better performance
(∆k∗ < ∆k′ ).

Given this BAM definition, algorithm 1 presents the algo-
rithm used by the system to manage the incoming incidences
into an existing schedule:

Algorithm 1: Rescheduling algorithm
INPUT: solution S and incidence I
OUTPUT: solution S with I inside and affected jobs by I

reallocated
1: id← I[0]; st← I[1]; m← I[2]; tts← I[3]; # see

section 3
2: affectedJobs← {j : yjm = 1 ∧ stj > stid}
3: Right-Shift(I,S) # Inserts incidence. See figure 2
4: for job ∈ affectedJobs do {
5: ∆k = F (Sk + j)− F (Sk),∀k 6= m ∈Mj

6: k∗ = argmink 6=m∆k

7: ∆m = F (Sm)− F (Sm − j)
8: BAM = k ∈ {m, k∗} : k = argmin∆k

9: if (BAM 6= m) {moveJob(job, BAM) }
10: }
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Line 3 implements the Right-Shift repairing technique
(Vieira, Herrmann, and Lin 2003). That means to apply the
baseline before rescheduling starts in order to take into ac-
count the delay introduced by the incidence when evaluat-
ing the reallocation possibilities for each job. In line 9, the
moveJob function moves the job to its BAM, both elements
received as parameters. The position for the job inside its
BAM is selected by brute-force: trying one by one all the
possible places. Formally, the index i to introduce the job j
into its BAM is selected as:

i = argmin0≤i<|SBAM |F (SBAM + j, i) (20)

where:

• SBAM is the current schedule for machine BAM.

• F (SBAM + j, i) is the application of the evaluation func-
tion (eq. 2) to the schedule SBAM with the job j intro-
duced in the position i by Right-Sift technique.

Figure 3 shows a possible solution for the incidence pre-
sented in figure 1. As shown, using a reallocation strategy
(e.g.:GR) the system only needs to use 28 units of time
(UoT) instead of 30 UoT that needs the Right-Shift strategy
showed in figure 2.

Figure 3: Proposed solution

4.5 A Genetic Algorithm with GR initialization
(GA+GR)

In this section, a Genetic Algorithm (GA) for rescheduling
a solution after an incidence is proposed. The main idea is
to run a GA only with the affected jobs (AJ) (eq. 21) in or-
der to preserve the solution before the incidence and trying
to reschedule all the jobs after the incidence with the objec-
tive of minimizing the impact of the disruption. Notice that
incidences are supposed to appear in the production environ-
ment while the scheduling is being already executed by the
machines, therefore the decision to keep the previous jobs
without rescheduling them is not really a decision but a con-
straint of the environment. A competitive GA to tackle this
problem has been used in (Nicolo et al. 2017), where the
GA is embebed in a multi-agent system. Taking this GA as
a starting point and our definition of AJ, some modifications
to them have been carried out:

• In order to reschedule the whole set of jobs that can be
moved after the incidence, a new definition of AJ is pre-
sented:

AJ = {j : stj > sti} (21)

With this new definition, the whole set of jobs executed
after the incidence is selected for the rescheduling, inde-
pendently of the machine in which the job is scheduled,
which allows the GA to explore a larger search space than
the GR algorithm. The main idea behind this choice is to
be able to compare two options of general rescheduling
approaches: to preserve as much as possible the previous
solution (stability) by rescheduling only the jobs of the af-
fected machine (done by GR) or to reschedule the whole
solution after the incidence (done by this modification of
GA).

• The fitness function of the GA is modified to contemplate
the previous schedule to the solutions given by the GA
in order to calculate the multi-objective function (eq. 2)
with the complete schedule. Notice that GA is executed
only with the AJ as input so the schedule given as solu-
tion only contains the AJ. Nevertheless, the evaluation of
the solution needs the previous schedule (the one contain-
ing the non affected jobs) in order to decide the quality of
a solution. In this way, it is achieved that the GA solves
a sub-problem of scheduling (only the problem contain-
ing the AJ) but it evaluates its solutions with respect the
complete schedule

• The initialization of the GA is modified to create an ini-
tial population which includes the solution given by the
GR algorithm. The incidences will be solved accumula-
tively (see section 5), which implies that as incidences
appear, the GR and the GA may have different solutions
for each incidence. However, in the first disruption, both
algorithms starts in the same state. Only in this first inci-
dence, the GA includes the solution given by the GR as an
individual of its initial population. This decision is given
to guide the GA search with the previous solutions which
allows to study if this solutions is replaced during the pro-
cess by another better solutions or it is preserved during
the whole process.

5 Evaluation
To evaluate the proposed system, a set of incidences was
generated. The incidences were randomly generated follow-
ing some rules:

• mi: The machine affected by the incidence was randomly
selected among all the machines involved in the problem.

• sti: The starting time of the incidence was randomly se-
lected before the 75% of the total time in the schedule
Smi

. Formally:

sti = random(0, 0.75 ∗ |Smi
|)

This decision avoids the generation of incidences at the
end of the schedule because when an incidence is intro-
duced at the end of the schedule the set AJ may be empty
or composed of few jobs. This situation does not provide
an effective environment to carry out an objective com-
parison of the different techniques.

• ttsi: The necessary time to solve the incidence was ran-
domly generated between 10% of the longest job LJ as-
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signed tomi and its total processing time Pjmi . Formally:

LJ = argmaxj∈JPjmi
: yjmi

= 1

ttsi = random(0.1 ∗ Pjmi
, Pjmi

)

where random(a,b) is a function that returns a random
number in the interval [a,b).
The incidences were solved accumulatively, which means

that the input solution in which the incidence i+1 was intro-
duced was the schedule with the incidence i already intro-
duced in it. By accumulating the incidences in the schedule
it can be compared how the different techniques absorb the
incoming incidences as new disruptions arrive into the sys-
tem.

Algorithm 2 shows the algorithm to compare all tech-
niques. Notice that the proposed techniques are rescheduling
techniques but not solving techniques so they need an initial
solution and an incoming incidence to operate. The initial
solutions were taken from the system proposed in (Nicolo et
al. 2018) which present a good set of solutions for the given
problem but it can not be used with rescheduling purposes
for two reasons:
• It can not deal with the hard constraint associated to the

starting time of the incidence.
• It is not prepared to receive a solution as input and carry

out from this solution a local search. Instead of this, the
system receives a specification input of the problem and
executes a global search with all the combinatorial possi-
bilities.

These limitations are solved in the proposed modification
(section 4.5) resulting on the GA+GR algorithm that is eval-
uated in this section.

Algorithm 2: Rescheduling algorithm
INPUT: a solution S and set of incidences I
OUTPUT: solution S with I solved by 4 different

techniques
1: GA solution← S
2: baseline solution← S
3: GR solution← S
4: GA+GR solution← S
5: for i ∈ I do {
6: GA solution← GA(i, GA solution)
7: baseline solution← BL(i, baseline solution)
8: GR solution← GR(i, GR solution)
9: GA+GR solution← GA+GR(i, GA+GR solution)

10: }
11: return baseline solution, GA solution, GR solution,

GA+GR solution

Lines 1 to 4 copy the original solution to be used for each
technique. Line 5 declares the loop that will accumulatively
solve the incidences. Function GA(i, s) in line 6 is a func-
tion that solves the incidence i on solution s by applying
the GA proposed in (Nicolo et al. 2017) without the GR
technique proposed in this paper. Functions BL, GR and

GA + GR in lines 7-9 are functions that implements the
rescheduling techniques proposed in sections 4.3, 4.4 and
4.5 respectively.

The instances of the problem were taken from the bench-
mark proposed in (Tonelli, Evans, and Taticchi 2013) which
presents 4 classes of instances depending on the number of
jobs and machines per incidence. Table 3 shows the different
descriptions for each class of instances.

Table 3: Benchmark instances
Instance No. machines No. jobs

j30 4 30
j50 6 50

j100 10 100
j250 20 250

To test and compare the four techniques, a subset of the
10 largest instances per class were selected (40 instances).
They were solved with the system proposed in (Nicolo et al.
2018) and the solutions given by this system were used as
the input for our system, described in algorithm 2. Table 4
shows the average needed time per instance by each tech-
nique to be executed (table shows values from j250; smaller
instances needed proportional time to their size measured
in terms of No.jobs*No.machines). GA (Nicolo et al. 2017)
and GA+GR(section 4.5) have been both fixed to 30 seconds
timeout, which presents a reasonable time in the environ-
ment context of the problem.

Table 4: Execution times
Algorithm Time (s)
baseline 0.2

GR 2.3
GA 30

GA+GR 30

Figures 4, 5, 6, 7 show the results of applying the four
techniques to each class of the problem. In order to combine
the multi-objective nature of the problem with the perfor-
mance of our system, all solutions are evaluated by using
the multi-objective function (eq. 2) to minimize. For this, it
is necessary to set the values of weights π1, π2 and π3 from
eq. ( 2). These values where fixed to 0.6, 0.35 and 0.05 re-
spectively, values that come from (Nicolo et al. 2018), where
authors carry out a study of what values can provide bet-
ter results. As shown on figure 4, for small instances the
GR algorithm obtained the best results, but as problem gets
larger, the GA+GR algorithm got a better behavior than the
rest of the techniques. It is also interesting to compare GA
vs GA+GR since GA+GR maintained a better performance
that GA in all cases, although both were very similar. This
is due to the fact that the only difference between them is
that GA+GR includes an initialization with the greedy algo-
rithm GR. This difference could came from the fact that GA
was designed in (Nicolo et al. 2017) to have a good perfor-
mance in solving (not rescheduling) the instance and with
a larger timeout (10 minutes) than the timeout fixed for the
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Figure 4: Results on j30

Figure 5: Results on j50

rescheduling tasks. It can also be observed that GA was in
some cases even worse than the baseline (figures 5 and 6).
This effect could be explained taking into account that the
baseline technique try to maintain the previous solution (ro-
bustness), meanwhile GA does not respect the previous so-
lution but executes the complete GA algorithm with random
initialization.

6 Conclusions and Future Works
In this paper, two different techniques for solving the
rescheduling on the unrelated parallel machine problem
have been proposed. The proposed GR algorithm obtained
the best results in small instances of the problem. However,
as the instances were larger, the GA+GR algorithm obtained
a better behavior than the rest of the techniques. Indeed, high
quality improvements have been achieved to the existing al-
gorithm (Nicolo et al. 2017) designed to solve this problem,
due to the GA+GR algorithm proposed in this paper got bet-
ter results in large instances than GA. As future work, some
improvements to the GA+GR algorithm can be carried out,

Figure 6: Results on j100

Figure 7: Results on j250

such as executing the GR algorithm on each incidence and
not only in the first incidence. Furthermore, it is proposed to
manage the incidences by a match-up technique to recover
the original solution as soon as possible in order to improve
stability of solutions.
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