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Goal

2

a brief introduction to various goal-oriented MDPs

an extensive discussion of heuristic search

a discussion on connections with classical planning



Plan

• Lecture 10

– Definition of Stochastic Shortest Path

– Various Heuristic Search Algorithms for SSPs

• Lecture 11

– Extensions of SSPs for MDPs with Dead Ends

– Determinization-based Approximation Algorithms 
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Our Setting

• vs. RL (Zico): model of the world is known

• vs. flat: model of the world in a declarative representation
– symbolic
– large problems

• vs. reward (Scott): goal directed
– PPDDL vs RDDL

• vs. finite-horizon MDPs (Thomas): indefinite horizon

• vs. classical planning (Malte/Gabi): probabilities

• vs. complete state space: knowledge of the start state

• domain independent: no additional human input



Heuristic Search for SSPs

Mausam

Computer Science and Engineering

Indian Institute of Technology (IIT) Delhi
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Infinite Horizon Discounted Reward MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition 
model

• R(s,a,s’): reward

• γ: discount factor



Where Does γ Come From?

• γ can affect optimal policy significantly

– γ = 0 + ε: yields myopic policies for “impatient” agents

– γ = 1 - ε: yields far-sighted policies, inefficient to compute

• How to set it?

– Sometimes suggested by data 
• (e.g., inflation or interest rate)

– Often set to whatever gives a reasonable policy
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Infinite Horizon Discounted Reward MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition 
model

• R(s,a,s’): reward

• γ: discount factor



Stochastic Shortest Path MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition 
model

• R(s,a,s’): reward

• γ: discount factor



Stochastic Shortest Path MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition 
model

• C(s,a,s’): cost

• γ: discount factor



Stochastic Shortest Path MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition 
model

• C(s,a,s’): cost

•



Stochastic Shortest Path MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition 
model

• C(s,a,s’): cost

• G: set of goals

Minimize
- expected cost to reach a goal
- under full observability
- indefinite horizon



Bellman Equations for SSP

add base case; no discount factor

V ¤(s) = 0 if s 2 G
= min

a2A

X

s02S
T (s; a; s0) [C(s; a; s0) + V ¤(s0)]



SSP vs. IHDR?

SSP
Discounted-

reward MDPs
Finite-horizon 

MDPs



Discounted Reward MDP  SSP
[Bertsekas&Tsitsiklis 95]
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When is SSP well formed/defined

Under two conditions:
• There is a proper policy (reaches a goal with P=1 from all states)

• Every improper policy incurs a cost of ∞ from every state from 
which it does not reach the goal with P=1
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[Bertsekas, 1995]

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition model

• C(s,a,s’): cost

• G: set of goals



Not an SSP MDP Example

17

S1 S2

a1

C(s2, a1, s1) = -1

C(s1, a1, s2) = 1

a2

a2

C(s1, a2, s1) = 7.2

C(s2, a2, sG) = 1

SG

C(sG, a2, sG) = 0

C(sG, a1, sG) = 0

C(s2, a2, s2) = -3

T(s2, a2, sG) = 0.3

T(s2, a2, sG) = 0.7

S3

C(s3, a2, s3) = 0.8C(s3, a1, s3) = 2.4

a1 a2

a1

No dead ends 
allowed!

a1

a2



Not an SSP MDP Example
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S1 S2

a1

C(s2, a1, s1) = -1

C(s1, a1, s2) = 1

a2

a2

C(s1, a2, s1) = 7.2

C(s2, a2, sG) = 1

SG

C(sG, a2, sG) = 0

C(sG, a1, sG) = 0

C(s2, a2, s2) = -3

T(s2, a2, sG) = 0.3

T(s2, a2, sG) = 0.7

a1

No dead ends 
allowed!

a1

a2

No cost-free 
“loops” allowed!



Value Iteration [Bellman 57]

19

iteration n

²-consistency

termination
condition

No restriction on initial value function



VI  Asynchronous VI

• Is backing up all states in an iteration essential?
– No!

• States may be backed up 
– as many times

– in any order

• If no state gets starved
– convergence properties still hold!!

20



Residual wrt Value Function V (ResV)

• Residual at s with respect to V

– magnitude(¢V(s)) after one Bellman backup at s

• Residual wrt respect to V

– max residual

– ResV = maxs (ResV(s))
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ResV (s) =

¯̄
¯̄
¯V (s)¡min

a2A

X

s02S
T (s; a; s0)[C(s; a; s0) + V (s0)]

¯̄
¯̄
¯

ResV <²

(²-consistency)



(General) Asynchronous VI
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find a state s

revise V(s) using a Bellman backup at s



Asynch VI: Lots of Extensions to VI

• Prioritized Sweeping

– select s that is likely to have the most change in V

• Backward VI

– backup states in reverse order starting from goal

• Partitioned VI

– divide states into partitions

– backup partitions in reverse order from goal partition
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Heuristic Search Algorithms

• Definitions

• Find & Revise Scheme.

• LAO* and Extensions

• RTDP and Extensions

• Other uses of Heuristics/Bounds

• Heuristic Design
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Limitations of VI/Extensions

• Scalability

– Memory linear in size of state space

– Time at least polynomial or more

• Polynomial is good, no?

– state spaces are usually huge.

– if n state vars then 2n states!

• Curse of Dimensionality!
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Heuristic Search

• Insight 1

– knowledge of a start state to save on computation

~ (all sources shortest path  single source shortest path)

• Insight 2

– additional knowledge in the form of heuristic function

~ (dfs/bfs  A*)
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Model: SSPs0

Under two conditions:
• There is a proper policy (reaches a goal with P= 1 from all states)

• Every improper policy incurs a cost of ∞ from every state from 
which it does not reach the goal with P=1
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• S: A set of states

• A: A set of actions

• T(s,a,s’): transition model

• C(s,a,s’): cost

• G: set of goals

• s0: start state



Model

• SSP (as before) with an additional start state s0

– denoted by SSPs0

• What is the solution to an SSPs0

• Policy (S !A)?

– are states that are not reachable from s0 relevant?

– states that are never visited (even though reachable)?
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Partial Policy

• Define Partial policy

– ¼: S’ ! A, where S’µ S

• Define Partial policy closed w.r.t. a state s.

– is a partial policy ¼s
– defined for all states s’ reachable by ¼s starting from s

29



Partial policy closed wrt s0
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9



Partial policy closed wrt s0
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

Is this policy closed wrt s0?



Partial policy closed wrt s0
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

Is this policy closed wrt s0?



Partial policy closed wrt s0
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

¼s0(s6)= a1

Is this policy closed wrt s0?



Policy Graph of ¼s0
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

¼s0(s6)= a1



Greedy Policy Graph

• Define greedy policy: ¼V = argmina QV(s,a)

• Define greedy partial policy rooted at s0

– Partial policy rooted at s0

– Greedy policy

– denoted by 

• Define greedy policy graph
– Policy graph of         : denoted by  
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¼Vs0

¼Vs0 GV
s0



Heuristic Function

• h(s): S!R

– estimates V*(s) 

– gives an indication about “goodness” of a state

– usually used in initialization V0(s) = h(s)

– helps us avoid seemingly bad states

• Define admissible heuristic

– optimistic

– h(s) · V*(s)
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Heuristic Search Algorithms

• Definitions

• Find & Revise Scheme.

• LAO* and Extensions

• RTDP and Extensions

• Other uses of Heuristics/Bounds

• Heuristic Design
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A General Scheme for 
Heuristic Search in MDPs

• Two (over)simplified intuitions
– Focus on states in greedy policy wrt V rooted at s0

– Focus on states with residual > ²

• Find & Revise: 
– repeat

• find a state that satisfies the two properties above

• perform a Bellman backup

– until no such state remains
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FIND & REVISE [Bonet&Geffner 03a]

• Convergence to V* is guaranteed

– if heuristic function is admissible

– ~no state gets starved in 1 FIND steps
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REVISE V(s) using a Bellman backup at s



Heuristic Search Algorithms

• Definitions

• Find & Revise Scheme.

• LAO* and Extensions

• RTDP and Extensions

• Other uses of Heuristics/Bounds

• Heuristic Design
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LAO* family

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand some states on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 choose a subset of affected states
 perform some REVISE computations on this subset
 recompute the greedy graph

until greedy graph has no fringe & residuals in greedy 
graph small

output the greedy graph as the final policy
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LAO* [Hansen&Zilberstein 98]

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 perform VI on this subset
 recompute the greedy graph

until greedy graph has no fringe & residuals in greedy 
graph small

output the greedy graph as the final policy
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

add s0 in the fringe and in greedy graph

s0
V(s0) = h(s0)
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0
V(s0) = h(s0)

FIND: expand some states on the fringe (in greedy graph)
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

s0

s1 s2 s3 s4

V(s0) 

h h h h
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

s0

s1 s2 s3 s4

V(s0) 

h h h h
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h h h

h h

V(s0) 
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h h h

h h

V(s0) 
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h V h

h h

V
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h V h

h h

V
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h V h

h h

V

V

h 0
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

h h V h

h h

V

V

h 0
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

V h V h

h h

V

V

h 0
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

V h V h

h h

V

V

h 0
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

V V V h

h h

V

V

h 0
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform VI on this subset

recompute the greedy graph

V V V h

h h

V

V

h 0
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

output the greedy graph as the final policy

V V V h

V h

V

V

h 0
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

output the greedy graph as the final policy

V V V h

V h

V

V

h 0
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

s4 was never expanded
s8 was never touched

V V V h

V h

V

V

h 0 s8
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LAO* [Hansen&Zilberstein 98]

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 perform VI on this subset
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

one expansion

lot of computation
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Optimizations in LAO*

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 VI iterations until greedy graph changes (or low residuals)
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy
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Optimizations in LAO*

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand all states in greedy fringe
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 VI iterations until greedy graph changes (or low residuals)
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy
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iLAO* [Hansen&Zilberstein 01]

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand all states in greedy fringe
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 only one backup per state in greedy graph
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

in what order?
(fringe  start)
DFS postorder



• LAO* may spend huge time until a goal is found

– guided only by s0 and heuristic

• LAO* in the reverse graph

– guided only by goal and heuristic

• Properties

– Works when 1 or handful of goal states

– May help in domains with small fan in
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Reverse LAO* [Dai&Goldsmith 06]



• Go in both directions from start state and goal

• Stop when a bridge is found
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Bidirectional LAO* [Dai&Goldsmith 06]



regular graph

soln:(shortest) path

A*

acyclic AND/OR graph

soln:(expected shortest)

acyclic graph

AO* [Nilsson’71]

cyclic AND/OR graph

soln:(expected shortest)

cyclic graph

LAO* [Hansen&Zil.’98]

All algorithms able to make effective use of reachability information!

A*  LAO*



68

AO* for Acyclic MDPs [Nilsson 71]

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 a single backup pass from fringe states to start state
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy



Heuristic Search Algorithms

• Definitions

• Find & Revise Scheme.

• LAO* and Extensions

• RTDP and Extensions

• Other uses of Heuristics/Bounds

• Heuristic Design
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Real Time Dynamic Programming
[Barto et al 95]

• Original Motivation
– agent acting in the real world

• Trial 
– simulate greedy policy starting from start state;

– perform Bellman backup on visited states

– stop when you hit the goal

• RTDP: repeat trials forever
– Converges in the limit #trials ! 1
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Trial
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8



Trial
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h h h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action



Trial
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h h h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

h h



Trial
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

h h



Trial
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

h h



Trial
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

V h



Trial
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

until hit the goal

V h



Trial
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s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

until hit the goal

V h

Backup all states
on trajectory

RTDP

repeat
forever



Real Time Dynamic Programming
[Barto et al 95]

• Original Motivation
– agent acting in the real world

• Trial 
– simulate greedy policy starting from start state;

– perform Bellman backup on visited states

– stop when you hit the goal

• RTDP: repeat trials forever
– Converges in the limit #trials ! 1

79

No termination
condition!



RTDP Family of Algorithms

repeat
s Ã s0

repeat //trials
REVISE s; identify agreedy

FIND: pick s’ s.t. T(s, agreedy, s’) > 0
s Ã s’

until s 2 G

until termination test
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F&R and Monotonicity

• Vk ≤p V*⇒ Vn ≤p V* (Vn monotonic from below)

– If h is admissible: V0 = h(s) ·p V*

) Vn ·p V* (8n)  

Q*(s,a1) < Q(s,a2) < Q*(s,a2) aaaa

a2 can’t be optimal aaaa
81

sQ*(s,a1)=5

.

.

Q(s, a2)=10

.

. All values < V*, Q*All values = V*, Q*



• Admissible heuristic & monotonicity

⇒ V(s) · V*(s)

⇒ Q(s,a) · Q*(s,a)

• Label a state s as solved 

– if V(s) has converged
best action

ResV(s) < ²

) V(s) won’t change!
label s as solved

sgs



Labeling (contd)
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best action

ResV(s) < ²

s' already solved
) V(s) won’t change!

label s as solved

sgs

s'



Labeling (contd)
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best action

ResV(s) < ²

s' already solved

) V(s) won’t change!

label s as solved

sgs

s'

best action

ResV(s) < ²

ResV(s’) < ²

V(s), V(s’) won’t change!
label s, s’ as solved

sgs

s'best action



Labeled RTDP [Bonet&Geffner 03b]

repeat
s Ã s0

label all goal states as solved

repeat //trials
REVISE s; identify agreedy

FIND: sample s’ from T(s, agreedy, s’)
s Ã s’

until s is solved

for all states s in the trial 
try to label s as solved

until s0 is solved
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• terminates in finite time

– due to labeling procedure

• anytime

– focuses attention on more probable states

• fast convergence

– focuses attention on unconverged states

86

LRTDP



Picking a Successor Take 2

• Labeled RTDP/RTDP: sample s’ / T(s, agreedy, s’)

– Adv: more probable states are explored first

– Labeling Adv: no time wasted on converged states

– Disadv: labeling is a hard constraint

– Disadv: sampling ignores “amount” of convergence

• If we knew how much V(s) is expected to change?

– sample s’ / expected change
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Upper Bounds in SSPs

• RTDP/LAO* maintain lower bounds

– call it Vl

• Additionally associate upper bound with s

– Vu(s) ¸ V*(s)

• Define gap(s) = Vu(s) – Vl(s)

– low gap(s): more converged a state

– high gap(s): more expected change in its value
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Backups on Bounds

• Recall monotonicity

• Backups on lower bound 
– continue to be lower bounds

• Backups on upper bound
– continues to be upper bounds 

• Intuitively
– Vl will increase to converge to V*
– Vu will decrease to converge to V*
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Bounded RTDP [McMahan et al 05]

repeat
s Ã s0

repeat //trials
identify agreedy based on Vl

FIND: sample s’ / T(s, agreedy, s’).gap(s’)
s Ã s’

until gap(s) < ²

for all states s in trial in reverse order
REVISE s

until gap(s0) < ²
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Action Elimination

If Ql(s,a1) > Qu(s,a2) then a1 cannot be optimal for s.

Leads to VPI-RTDP [Sanner et al 09]
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Heuristic Search Algorithms

• Definitions

• Find & Revise Scheme.

• LAO* and Extensions

• RTDP and Extensions

• Other uses of Heuristics/Bounds

• Heuristic Design
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Topological VI [Dai&Goldsmith 07]

• Identify strongly-connected components

• Perform topological sort of partitions

• Backup partitions to ²-consistency: reverse top. order 
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Topological VI [Dai&Goldsmith 07]

• Identify strongly-connected components

• Perform topological sort of partitions

• Backup partitions to ²-consistency: reverse top. order 
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Focused Topological VI [Dai, Mausam, Weld 09]

• Topological VI

– hopes there are many small connected components

– can‘t handle reversible domains…

• FTVI

– initializes Vl and Vu

– LAO*-style iterations to update Vl and Vu

– eliminates actions using action-elimination

– Runs TVI on the resulting graph
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Heuristic Search Algorithms

• Definitions

• Find & Revise Scheme.

• LAO* and Extensions

• RTDP and Extensions

• Other uses of Heuristics/Bounds

• Heuristic Design
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Admissible Heuristics

• Basic idea

– Relax probabilistic domain to deterministic domain

– Use heuristics(classical planning)

• All-outcome Determinization

– For each outcome create a different action

• Admissible Heuristics

– Cheapest cost solution for determinized domain

– Classical heuristics over determinized domain
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Summary of Heuristic Search

• Definitions

• Find & Revise Scheme
– General scheme for heuristic search

• LAO* and Extensions
– LAO*, iLAO*, RLAO*, BLAO*

• RTDP and Extensions
– RTDP, LRTDP, BRTDP, FRTDP, VPI-RTDP

• Other uses of Heuristics/Bounds
– Action Elimination, FTVI

• Heuristic Design
– Determinization-based heuristics

103



Shameless Plug
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Determinization-based Algorithms 
for SSPs and Beyond

Mausam

Computer Science and Engineering

Indian Institute of Technology (IIT) Delhi
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PPDDL

• PDDL/STRIPS
– precondition: conjunction of fluents

– effect: all changes in the state 

• PPDDL
– precondition: as above

– LIST of (effect, probability) 

• RDDL
– concurrent effects, natural dynamics
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BEYOND SSPs
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Domains with Dead-ends

• Dead-end state
– a state from which goal is unreachable

• Common in real-world
– rover

– traffic

– exploding blocksworld!

• SSP/SSPs0 do not model such domains
– assumption of “at-least one proper policy” violated
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Two Types of Dead-ends

• Explicit Dead-end

• Implicit Dead-end
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Modeling Dead-ends

• How should we model dead-end states?
– V(s) is undefined for deadends

) VI does not converge!!

• Proposal 1
– Add a penalty of reaching the dead-end state = P

• Is everything well-formed?

• Are there any issues with the model?
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Simple Dead-end Penalty P

• V*(s) = ²(P+1) + ².0 + (1-²).P

= P + ²
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Pr=²
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Proposal 2

• fSSPDE: Finite-Penalty SSP with Deadends
• Agent allowed to stop at any state

– by paying a price = penalty P
– Intuition: achieving a goal is worth –P to the agent

• Equivalent to SSP with special astop action
– applicable in each state
– leads directly to goal by paying cost P

• SSP = fSSPDE
112

V ¤(s) = min

Ã
P;min

a2A

X

s02S
T (s; a; s0)C(s; a; s0) + V ¤(s0)]

!



fSSPDE Algorithms

• All SSP algorithms applicable…

• Efficiency: unknown so far…

– Efficiency hit due to presence of deadends

– Efficiency hit due to magnitude of P

– Efficiency hit due to change of topology (e.g., TVI)
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SSPADE: Dead Ends are Avoidable from s0

• D.e.s may be avoidable from s0 via an optimal policy

• Can’t compute V*(s) for every state

• But need only “relevant” states to get the “right” value

• there exists a proper (partial) policy rooted at s0
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[Kolobov, Mausam, Weld, UAI’12]



SSPADE

• Can be solved with optimal heuristic search from s0

– FIND shouldn’t starve states; REVISE should halt

• Heuristic Search Algorithms

– LAO*: may not converge

• V(dead-ends) will get unbounded: VI may not converge

– iLAO*: will converge
• only 1 backup ) greedy policy will exit dead-ends

– RTDP/LRTDP: may not converge

• once stuck in dead-end  won’t reach the goal

• add max #steps in a trial… how many? adaptive?
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Unavoidable Dead-ends

• fSSPUDE: Finite-Penalty SSP with Unavoidable 

Dead-Ends [Kolobov et al 12]

– same as fSSPDE but now with a start state

• Same transformation applies

– add an astop action from every state

• SSPs0 = fSSPUDE
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Unavoidable Dead-ends

• iSSPUDE: Infinite-Penalty SSP with Unavoidable 

Dead-Ends [Kolobov et al 12]

– (MAXPROB) find policy that first maximizes the prob of 
reaching goal

– from all such policies find one minimum expected cost

• Dual objective

• iSSPUDE is much harder than SSPs0
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DETERMINIZATION-BASED
APPROXIMATION ALGORITHMS
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Motivation

• Even π* closed wr.t. s0  is often too large to fit in memory…

• … and/or too slow to compute …

• … for MDPs with complicated characteristics
– Large branching factors/high-entropy transition function 

– Large distance to goal

– Etc.

• Must sacrifice optimality to get a “good enough” solution
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Approximation Ideas
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Determinization-based 
techniques

Monte-Carlo planning

Heuristic search with 
inadmissible 

heuristics

Hybridized 
planning

Hierarchical 
planning

Dimensionality 
reduction

OfflineOnline



Overview

• Not a “golden standard” classification
– Others possible, e.g., optimal in the limit vs. suboptimal in the 

limit

• Most techniques assume factored fSSPUDE MDPs (SSPs0
MDPs with a finite dead-end penalty)

• Approaches differ in the quality aspect they sacrifice
– Probability of reaching the goal

– Expected cost of reaching the goal

– Both
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Example Domain
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Example Domain (cont’d)
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SSPs0 MDP

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition 
model

• C(s,a,s’): action cost

• s0: start state

• G: set of goals

GetW, GetH, GetS, Tweak, Smash 



Outline

• Online Algorithms

– FF Replan

– FF Hindsight

– RFF

• Offline Algorithms

– Inadmissible Heuristics 

– Dimensionality Reduction

– Other Determinization Approaches
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Online Algorithms: Motivation

• Defining characteristics:

– Planning + execution are 
interleaved

– Little time to plan
• Need to be fast!

– Worthwhile to compute 
policy only for visited states
• Would be wasteful for all 

states 
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Determinization-based Techniques

• A way to get a quick’n’dirty solution:

– Turn the MDP into a classical planning problem

– Classical planners are comparatively very fast

• Main idea:

1. Compile MDP into its determinization

2. Generate plans in the determinization

3. Use the plans to choose an action in the curr. state

4. Execute, repeat
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All-Outcome Determinization

Each outcome of each probabilistic action  separate action
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Most-Likely-Outcome Determinization
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FF-Replan: Overview & Example
1) Find a goal plan in

a determinization

130

2) Try executing it

in the original MDP

3) Replan&repeat if 

unexpected outcome

[Yoon, Fern, Givan 2007]



FF-Replan: Details

• Uses either the AO or the MLO determinization

– MLO is smaller/easier to solve, but misses possible plans

– AO contains all possible plans, but bigger/harder to solve

• Uses the FF planner to solve the determinization

– Super fast

– Other fast planners, e.g., LAMA, possible

• Does not cache computed plans

– Recomputes the plan in the 3rd step in the example
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FF-Replan: Theoretical Properties

• Optimizes the MAXPROB criterion in SSPs
– In SSPs, this is always 1.0 

– Super-efficient on SSPs w/o dead ends

– Largely ignores expected cost

• Ignores probability of deviation from the found plan
– Results in long-winded paths to the goal

– Troubled by probabilistically interesting MDPs [Little, Thiebaux, 2007]
• There, an unexpected outcome may lead to catastrophic consequences

• In particular, breaks down in the presence of dead ends
– Originally designed for MDPs without them
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FF-Replan and Dead Ends
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Deterministic plan: Its possible execution:

b



Putting “Probabilistic” Back Into Planning

• FF-Replan is oblivious to probabilities

– Its main undoing

– How do we take them into account?

• Sample determinizations probabilistically!

– Hopefully, probabilistically unlikely plans will be rarely found

• Basic idea behind FF-Hindsight
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FF-Hindsight: Overview
(Estimating Q-Value, Q(s,a))

1. For Each Action A, Draw Future Samples

2. Solve Time-Dependent Classical Problems

3. Aggregate the solutions for each action

4. Select the action with best aggregation

S: Current State, A(S) → S’

Each Sample is a Deterministic Planning Problem

See if you have goal-reaching solutions, estimate Q(s,A)

Max A Q(s,A)
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Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati



FF-Hindsight: Example
Action

Probabilistic
Outcome

Time 1

Time 2

Goal State
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Action

State

Objective: Optimize MAXPROB criterion

Dead End

Left Outcomes 
are more likely

A1 A2

A1 A2 A1 A2 A1 A2 A1 A2

I

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati



FF-Hindsight: Sampling a Future-1
Action

Probabilistic
Outcome

Time 1

Time 2

Goal State
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Action

State

Maximize Goal Achievement

Dead EndA1: 1
A2: 0

Left Outcomes 
are more likely

A1 A2

A1 A2 A1 A2 A1 A2 A1 A2

I

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati



FF-Hindsight: Sampling a Future-2
Action

Probabilistic
Outcome

Time 1

Time 2

Goal State
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Action

State
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Dead End

Left Outcomes 
are more likely

A1: 2
A2: 1

A1 A2

A1 A2 A1 A2 A1 A2 A1 A2

I

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati



FF-Hindsight: Sampling a Future-3
Action

Probabilistic
Outcome

Time 1

Time 2

Goal State
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FF-Hindsight: Details & Theoretical Properties

• For each s, FF-Hindsight samples w L-horizon futures FL

– In factored MDPs, amounts to choosing a’s outcome for each h

• Futures are solved by the FF planner
– Fast, since they are much smaller than the AO determinization

• With enough futures, will find MAXPROB-optimal policy
– If horizon H is large enough and a few other assumptions

• Much better than FF-Replan on MDPs with dead ends
– But also slower – lots of FF invocations!
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Providing Solution Guarantees

• FF-Replan provides no solution guarantees

– May have PG = 0 on SSPs with dead ends, even if P*G > 0 

– Wastes solutions: generates them, then forgets them

• FF-Hindsight provides some theoretical guarantees

– Practical implementations distinct from theory

– Wastes solutions: generates them, then forgets them

• RFF (Robust FF) provides quality guarantees in practice

– Constructs a policy tree out of deterministic plans
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RFF: Overview
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Make sure the probability of 
ending up in an unknown 

state is < ε

[Teichteil-Königsbuch, Kuter, Infantes,  2010]



RFF: Initialization
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S0
G

1. Generate either the AO or MLO determinization. Start with the 
policy graph consisting of the initial state s0 and all goal states G



RFF: Finding an Initial Plan
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S0 G

2. Run FF on the chosen determinization and add all the states 
along the found plan to the policy graph.



RFF: Adding Alternative Outcomes 
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S0 G

3. Augment the graph with states to which other outcomes of the 
actions in the found plan could lead and that are not in the graph 
already. They are the policy graph’s fringe states.



RFF: Run VI (Optional)
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S0 G

4. Run VI to propagate heuristic values of the newly added states. 
This possibly changes the graph’s fringe and helps avoid dead ends!



RFF: Computing Replanning Probability
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S0 G

5. Estimate the probability P(failure) of reaching the fringe states 
(e.g., using Monte-Carlo sampling) from s0. This is the current 
partial policy’s failure probability w.r.t. s0.

If P(failure) > ε

P(failure) = ?

Else, done!



RFF: Finding Plans from the Fringe 

151

S0
G

6. From each of the fringe states, run FF to find a plan to reach 
the goal or one of the states already in the policy graph.

Go back to step 3: Adding Alternative Outcomes



RFF: Theoretical Properties 

• Fast

– FF-Replan forgets computed policies

– RFF essentially memorizes them

• When using AO determinization, guaranteed to find a 
policy that with P = 1 - ε will not need replanning
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Summary of Determinization Approaches

• Revolutionized SSP MDPs approximation techniques
– Harnessed the speed of classical planners
– Eventually, “learned” to take into account probabilities
– Help optimize for a “proxy” criterion, MAXPROB

• Classical planners help by quickly finding paths to a goal
– Takes “probabilistic” MDP solvers a while to find them on their own

• However…
– Still almost completely disregard the expected cost of a solution
– Often assume uniform action costs (since many classical planners do)
– So far, not useful on FH and IHDR MDPs turned into SSPs

• Reaching a goal in them is trivial, need to approximate reward more directly

– Impractical on problems with large numbers of outcomes
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Outline

• Online Algorithms

– FF Replan

– FF Hindsight

– RFF

• Offline Algorithms

– Inadmissible Heuristics 

– Dimensionality Reduction

– Other Determinization Approaches
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Moving on to Approximate Offline Planning

• Useful when there is no time to plan as you go …

– E.g., when playing a fast-paced game
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Inadmissible Heuristic Search

• Why?

– May require less space than admissible heuristic search
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The FF Heuristic

• Taken directly from deterministic planning 
– A major component of the formidable FF planner

• Uses the all-outcome determinization of a PPDDL MDP
– But ignores the delete effects (negative literals in action outcomes)
– Actions never “unachieve” literals, always make progress to goal

• hFF(s) = approximate cost of a plan from s to a goal in the 
delete relaxation

• Very fast due to using the delete relaxation

• Very informative
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[Hoffmann and Nebel, 2001]



The GOTH Heuristic

• Designed for MDPs at the start (not adapted classical)

• Motivation: would be good to estimate h(s) as cost of a 
non-relaxed deterministic goal plan from s

– But too expensive to call a classical planner from every s

– Instead, call from only a few s and generalize estimates to others

• Uses AO determinization and the FF planner
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[Kolobov, Mausam, Weld, 2010]



GOTH Overview
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AOdet(M)

Start running an MDP 
solver (e.g., LRTDP)

MDP M

State s

Policy

hGOTH (s)

GOTH

Evaluate s

Plan precondition & cost

Determinize M

Plan

Run a classical planner (e.g., FF)

Regress plan
State s



Regressing Trajectories
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Plan 
preconditions

= 1

= 2

Precondition 
costs



Plan Preconditions
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Estimating State Values

• Intuition

– Each plan precondition cost is a “candidate” 
heuristic value 

• Define hGOTH(s) as MIN of all available plan precondition 
values applicable in s

– If none applicable in s, run a classical planner and find some

– Amortizes the cost of classical planning across many states
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What about Dead Ends?

• How to find an implicit dead-end state?

– FF doesn’t return a solution (say in some fixed time)

• GOTH generalizes each successful trajectory.

– Can we generalize each implicit dead-end state?

• SixthSense!

167



GOTH Overview

168

AOdet(M)

Start running an MDP 
solver (e.g., LRTDP)

MDP M

State s

Policy

hGOTH (s)

GOTH

Evaluate s

Plan precondition & cost

Determinize M

Plan

Run a classical planner (e.g., FF)

Regress plan
State s



GOTH+6S Overview
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AOdet(M)

Start running an MDP 
solver (e.g., LRTDP)

MDP M

State s

Policy

hGOTH (s)

GOTH

Evaluate s

Plan precond.

Determinize M

Plan

Run a classical planner (e.g., FF)

Regress 
plan SixthSense

State s

Dead End

Nogoods



Research Question

Can we devise a sound dead-end identification 
procedure fast enough to obviate memoization?
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Learns feature combinations whose presence 
guarantees a state to be a dead end



Nogoods
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Nogood



Generate-and-Test Procedure
[Kolobov, Mausam, Weld 2010]

• Generate a nogood candidate
– Key insight: Nogood = conjunction that defeats all known 

plan preconditions

– For each plan precndition, pick a literal that defeats it

• Test the candidate
– Needed for soundness, since we don’t know all preconditions

– Use the non-relaxed Planning Graph algorithm
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Generating a Nogood Candidate
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Compute histogram of literal occurrence in dead ends:

Training dead ends:



Generating a Nogood Candidate

Dead-end literal 
occurrence stats

Current basis 
function

Current nogood
candidate
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Generating a Nogood Candidate

Dead-end literal 
occurrence stats

Current basis 
function

Current nogood
candidate
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Testing the Candidate

Nogood

Literals over all 
vars not in 
nogood
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…

…

Planning graph



Testing the Candidate

• If the Planning Graph fails to reach the goal, the 
candidate is a nogood.

– Planning Graph is complete, hence this is sound

• Note:            in         is      is superfluous

– Remove literals one-by-one and test as above to get
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Scheduling

• Need to invoke learning more than once

• Never know how much training data is “enough”

• Solution: adaptive scheduler

– Finds a “good” amount of training data, invokes 
learning accordingly
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• Can act as submodule of many planners and ID 
dead ends

– By checking discovered nogoods against every state

Benefits of SixthSense
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hFF vs GOTH+6S
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Outline

• Online Algorithms

– FF Replan

– FF Hindsight

– RFF

• Offline Algorithms

– Inadmissible Heuristics 

– Dimensionality Reduction

– Other Determinization Approaches
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Previous Work

183

• Determinization
– Determinize the MDP
– Classical planners fast
– E.g., FF-Replan
– Cons: may be troubled by

• Complex contingencies
• Probabilities

• Function Approximation
– Dimensionality reduction
– Represent state values 

with basis functions
• E.g., V*(s) ≈ ∑iwi bi(s)

– Cons:
• Need a human to get bi

ReTrASE

Marry these paradigms to extract problem-specific 
structure in a fast, problem-independent way. 



ReTrASE

• Largely similar to hGOTH
– Uses preconditions of deterministic plan to evaluate states

• For each plan precondition p, defines a basis function
– Bp(s) = 1 iff p holds in s, ∞ otherwise

• Represents V(s) = minp wpBp(s)
– Thus, the parameters are wp for each basis function
– Problem boils down to learning wp

– Does this with modified  RTDP

• Crucial observation: # plan preconditions sufficient for 
representing V is typically much smaller than |S|
– Because one plan precondition  can hold in several states
– Hence, the problem dimension is reduced!
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[Kolobov, Mausam, Weld, 2009]



Exploding Blocks World: Success Rate

186
Exploding Blocks World’06 Problem #

%
 o

f 
Su

cc
e

ss
fu

l T
ri

al
s

ReTrASE

FFReplan

FPG



ReTrASE Theoretical Properties

• Empirically, gives a large reduction in memory vs LRTDP

• Produces good policies (in terms of MAXPROB) when/if 
converges

• Not guaranteed to converge (weights may oscillate)

• No convergence detection/stopping criterion
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Current Trend: Deep Probabilistic Planning

• Use deep RL ideas 

– for PPDDL or RDDL planning

• Ideas

– use given model effectively

– transfer between problem instances
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Outline

• Online Algorithms

– FF Replan

– FF Hindsight

– RFF

• Offline Algorithms

– Inadmissible Heuristics 

– Dimensionality Reduction

– Other Determinization Approaches
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Self-Loop Determinization

191191

0.1T = 0.9

C =  1 1

T = 1.0

C =  1/0.9 = 1.11

T = 1.0
C =  1/0.1 = 10



Self-Loop Determinization

• Like AO determinization, but modifies action costs

• “Unlikely” deterministic plans look expensive in SL det.!

• Used in the HMDPP planner
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Space of Determinizations
[Pineda & Zilberstein, 2017]

• Extreme 1
– most likely outcome determinization

• Extreme 2
– all outcome determinization

• Middle ground
– primary outcome (upto l) determinization

• Extreme 1
– all actions deterministic

• Extreme 2
– all actions completely probabilistic

• Middle ground
– actions have primary outcomes + (upto k) exception outcomes 
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BEYOND SSPs (contd)
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Unavoidable Dead-ends (contd)

• iSSPUDE: Infinite-Penalty SSP with Unavoidable 

Dead-Ends [Kolobov et al 12]

– (MAXPROB) find policy that first maximizes the prob of 
reaching goal

– from all such policies find one minimum expected cost

• Dual objective

• iSSPUDE is much harder than SSPs0
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MAXPROB: Dealing with Unavoidable 
Infinitely Damaging Dead Ends-1
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S0 S1

a1

C = 2

C = 1
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a2

C = 7

C = 1

SG

C = 3

T = 0.3

T = 0.7

Sd
C = 0.8a2

a1
a3

C = 5
P*G(s1)= 0.3

P*G(sd)= 0

P*G(s1)= 0.3

• Comparing policies in terms of cost meaningless
• MAXPROB/GSSP MDPs: evaluate policies by probability of reaching goal

– Set all action costs to 0 (they don’t matter), reward 1 for reaching goal
– Fixed-point methods such as VI or LRTDP don’t converge because of traps

0 0

0
0

0

0

-1 [Kolobov, Mausam, Weld, 
Geffner ICAPS’11]



(Maximization) MDP Examples
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Generalized SSPs: Example
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0
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Not a solution
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GSSPs: Is V* A Fixed Point of B?

• Reminder: in SSPs,  V* = B V*, where

– B is the Bellman backup operator

– B V(s) = maxa {R(s, a) + ∑s’ in succ(s,a)T(s, a, s’)V(s’)}

• In SSPs, V* is a fixed point of B

– Still true in GSSPs:
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0

0
0
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GSSPs: Is V* The Unique Fixed Point of B?

• In SSPs, V* is the unique fixed point of B
– I.e., V* = B o B o … B V0, V0 is a heuristic value function

– Not true in GSSPs:

– Moreover, all suboptimal fixed points are admissible!
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GSSPs: Is Every V*-greedy π A Solution?

• In SSPs, every π greedy w.r.t V* reaches the goal

– Not true in GSSPs:
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Efficiently Solving GSSPs: Attempt #1

• Just Run F&R!

– Start with an admissible V0

– Done!
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Attempt #1: What Went Wrong? 

• In GSSPs, suboptimal fixed points are admissible!
– When starting with V0 ≥ V*, F&R hit one of them.

– B can’t change V over traps – strongly connected 
components in V’s greedy graph

• Can yield an arbitrarily poor solution
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Efficiently Solving GSSPs: FRET

• Find, Revise, Eliminate Traps

– First heuristic search algorithm for MDPs beyond SSP

– Provably optimal if the heuristic is admissible

• Main idea 

– Run F&R until convergence

– Eliminate traps in the policy envelope

– Repeat until no more traps
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FRET Example: Finding V*
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FRET Example: Extracting π*
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• Iteratively “connect” states to the goals

– Using optimal actions

– Until s0 is connected
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Goal-Oriented MDP Hierarchy
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Thanks!
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