Classical Planning Algorithms

3. Planning Algorithms

Malte Helmert

ICAPS 2018 Summer School

June 21, 2018
The Big Three
Classical Planning Algorithms

In This Part

very high-level overview of classical planning algorithms

- **bird’s eye view**: no details, just some very brief ideas
- some in-depth coverage in Gabi’s presentation tomorrow
- basic literature pointers provided, but please get in touch during or after the summer school if you want more!
Of the many planning approaches, three techniques stand out:

1. heuristic state-space search
2. SAT planning
3. symbolic search
Heuristic State-Space Search
State-Space Search in a Nutshell

Which open node should we select for expansion?
Heuristic Search

- prioritize open nodes with **heuristic**
- **heuristic**
 - estimates cost of path from state to closest goal state
 - $h : S \rightarrow \mathbb{R}_0^+$
- search algorithms differ in how they exploit the heuristic:
 - h: heuristic estimate of state
 - g: cost of path from initial state to open node
 - **greedy best-first search**: expand node with minimum h
 - A^*: expand node with minimum $g + h$
Planning Heuristics

The central question for heuristic search approaches to classical planning:

How do we find good heuristics in a domain-independent way?

⇝ Gabi’s presentation tomorrow
SAT Planning
SAT Planning: Basic Ideas

- formalize problem of finding plan with a given horizon (length bound) as a propositional satisfiability problem and feed it to a generic SAT solver

- to obtain a (semi-) complete algorithm, try with increasing horizons until a plan is found (= the formula is satisfiable)

- important optimization: allow applying several non-conflicting actions “at the same time” so that a shorter horizon suffices
SAT Formulas: Variables

- assume STRIPS encoding \(\langle V, I, G, A \rangle \)
- given horizon \(T \in \mathbb{N}_0 \)

Variables of SAT Encoding

- propositional variables \(v^i \) for all \(v \in V, 0 \leq i \leq T \)
 encode state after \(i \) steps of the plan
- propositional variables \(a^i \) for all \(a \in A, 1 \leq i \leq T \)
 encode actions applied in \(i \)-th step of the plan
SAT Formulas: Clauses

- assume STRIPS encoding $\langle V, I, G, A \rangle$
- given horizon $T \in \mathbb{N}_0$

Clauses of SAT Encoding

- unit clauses encoding initial state:
 v^0 for all $v \in I$ and $\neg v_0$ for all $v \notin I$
- unit clauses encoding goal:
 v^T for all $v \in G$
- ...
SAT Formulas: Clauses

- assume STRIPS encoding \(\langle V, I, G, A \rangle \)
- given horizon \(T \in \mathbb{N}_0 \)

Clauses of SAT Encoding

For all \(1 \leq i \leq T \):

- **subformulas encoding action preconditions:**
 \[
 a^i \rightarrow \bigwedge_{v \in \text{pre}(a)} v^{i-1}
 \]

- **subformulas encoding action conflicts:**
 \[
 \neg (a^i \land b^i) \quad \text{for all } a, b \in A \text{ with } a \neq b,
 \]
 \[
 (\text{pre}(a) \cup \text{add}(a)) \cap \text{del}(b) \neq \emptyset
 \]

- **subformulas encoding successor states:**
 \[
 v^i \leftrightarrow \left(\bigvee_{a \in A : v \in \text{add}(a)} a^i \lor (v^{i-1} \land \neg \bigvee_{a \in A : v \in \text{del}(a)} a^i) \right)
 \]
Advanced SAT Planning

Much fancier SAT encodings and SAT planning techniques exist.

- e.g., Madagascar planner (Rintanen, IPC 2011 & 2014)
- many papers by Jussi Rintanen (e.g., Rintanen; AIJ 2012)
- related: property-directed reachability (Suda, JAIR 2014)
Symbolic Search
Symbolic Search Planning: Basic Ideas

- search processes sets of states at a time
- operators, goal states, state sets reachable with a given cost etc. represented by binary decision diagrams (BDDs) (or related data structures)
- hope: exponentially large state sets can be represented as polynomially sized BDDs, which can be efficiently processed
- perform symbolic Dijkstra search on these set representations
Symbolic Breadth-First Progression Search

simple symbolic search for unit-cost problems:

```python
def bfs_progression(V, I, O, G):
    goal_states := conjunction(G)
    reached_0 := \{I\}
    i := 0
    loop:
        if reached_i \cap goal_states \neq \emptyset:
            return solution found
        reached_i+1 := reached_i \cup apply(reached_i, O)
        if reached_i+1 = reached_i:
            return no solution exists
        i := i + 1
```

If we can implement operations conjunction, \{I\}, \emptyset, \cup, apply and = efficiently, this is a reasonable algorithm.
Symbolic Breadth-First Progression Search

simple symbolic search for unit-cost problems:

```
Progression Breadth-first Search

def bfs-progression(V, I, O, G):
    goal_states := conjunction(G)
    reached_0 := {I}
    i := 0
    loop:
        if reached_i \cap goal_states \neq \emptyset:
            return solution found
        reached_{i+1} := reached_i \cup apply(reached_i, O)
        if reached_{i+1} = reached_i:
            return no solution exists
        i := i + 1
```

⇝ If we can implement operations `conjunction`, `{I}`, `\cap`, `\neq \emptyset`, `\cup`, `apply` and `=` efficiently, this is a reasonable algorithm.
Symbolic Search Planning: Some Pointers

- Symbolic planning systems:
 - Gamer (Edelkamp & Kissmann, IPC 2008)
 - SymBA* (Torralba et al., IPC 2014)

- Red-hot paper using EVMDDs for symbolic search at ICAPS next week (Speck et al., 2018)
Summary
Summary

three major algorithmic approaches to classical planning:

- heuristic state-space search
- SAT planning
- symbolic search