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ICAPS 2018 Summer School Lab 2:  
RL for RDDL 
 
This lab will introduce an infrastructure for running (deep) reinforcement learning (RL) 
experiments on RDDL planning problems. The lab will focus on using Q-learning for solving 
problems in the Wildfire domain. However, the infrastructure is applicable to any RDDL domain 
and problem defined over discrete state and action variables.  Most of the lab will focus on a 
simplified Wildfire domain to allow for faster experiment times with the end exercise 
considering the full domain.  
 
Goals of the Lab: 
 

1) Provide students with hands-on experience using the infrastructure to train and test RL 
agents on RDDL domains. While the lab focuses on Q-learning (with and without 
experience replay), the infrastructure also provides an actor-critic algorithm called A2C 
[1]. 

2) Learn about important practical choices, including how to select which RL policy to 
return and reward normalization.  

3) Experiment with a couple of algorithm options including the neural network architecture 
and experience replay.  

Getting Started 
 
This lab assumes that you have already installed the Summer School Lab VM and also 
successfully run the test at https://bitbucket.org/eshw/rl-lab/src/master/README.md. 
 
It is important to make sure that you have the latest version of the RL repository. We have 
adjusted the repository after the first announcement of the VM infrastructure. To make sure you 
have the latest you can run the following commands:  
 
    cd /vagrant 
    rm -rf RL 
    git clone https://eshw@bitbucket.org/eshw/rl-lab.git RL 
    pip3 install -r /vagrant/RL/requirements.txt 
    cd /vagrant/RL/src/rddl_parser && make && mv rddl-parser /vagrant/RL 
    cd /vagrant/RL/src/search && make 
    cd /vagrant/RL/src/search/.obj && g++ -shared -o clibxx.so -fPIC *.o utils/* -lbdd -lstdc++fs 
&& mv clibxx.so /vagrant/RL 
    cd /vagrant 
 
 

https://bitbucket.org/eshw/rl-lab/src/master/README.md
https://eshw@bitbucket.org/eshw/rl-lab.git
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Part #1: Running Q-Learning for Single-Action Wildfire 
 
We will start with a highly simplified version of the Wildfire RDDL domain. This version of the 
domain and problem files can be found in the directory /vagrant/RL/env/wildfire_single_action, 
where wildfire_single_mdp.rddl is the domain file and wildfire_single_action_inst_mdp__1.rddl 
will be the problem instance that we focus on. The simplifications in this domain compared to 
the original Wildfire domain are:  
 

1) There are no ‘cutout’ actions. 
2) There is a single ‘putout’ action which takes no arguments. This action puts out any 

fire that is currently burning on the map.  
 
So there are two actions in this domain (‘putout’ and ‘noop’). We would like to see an RL agent 
learn to use the ‘putout’ action when a fire is present and ‘noop’ otherwise. Note that since the 
immediate reward for ‘putout’ is -10 and for ‘noop’ is 0, a greedy agent that maximizes 
immediate reward (by only taking ‘noop’) will do poorly. So an agent must appreciate how its 
actions influence future reward in order to do well.  
 
To start the RL infrastructure we first need to start the RDDL server, which is the same server 
used for the International Planning Competition. Do this from a Vagrant ssh prompt via the 
commands. 
 

cd /vagrant/RDDLSim 
 

./run rddl.competition.Server /vagrant/RL/env/wildfire_single_action 
 
This will start the server with the simplified wildfire domain and the server will now wait to 
serve a requested problem instance to the RL agent.  
 
To start the RL training open another ssh terminal and execute the following. 
 

cd /vagrant/RL 
 
 python3 q_learning.py --inst wildfire_single_action_inst_mdp__1 --eps 0.3 --norm_reward 
--path_suffix "normalized" --train_episodes 1000 --scratch 
 
This will train a basic Q-learning agent on the wildfire problem for 1000 episodes  
(--train_episodes 1000) starting from scratch (--scratch) using 𝜖𝜖-greedy exploration with a 
constant 𝜖𝜖 = 0.3 (--eps 0.3). Ignore the other command-line arguments for the moment.  
 
The default policy architecture (illustrated in Figure 1) used for training is a neural network with 
two fully-connected hidden layers: (defined via class QNet) 
  

• Input Layer: contains the state variables, which for the above problem instance are 
out-of-fuel(x,y) and burning(x,y) for 𝑥𝑥 ∈ {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3} and 𝑦𝑦 ∈ {𝑦𝑦1,𝑦𝑦2,𝑦𝑦3}. 

• Hidden Layers: # of hidden units in each layer is the number of state variables times 
hidden_unit_factor, where the default for hidden_unit_factor is 3 



3 
 

• Output Layer: # of output units for each action, which for the above problem is ‘putout’ 
and ‘noop’.  

 

 
Figure 1. (Figure taken from [4]) Illustration of default neural network structure for a problem with 4 state 
variables {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4} and 4 actions {𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4} where 𝑎𝑎0 is considered to be the noop action. There are 2 
hidden layers, each having 3x the number of units as the number of state variables. It is assumed that the layers are 
fully connected, so that there is a weight connecting each pair of units in neighboring layers. The figure does not 
show all of the weight connections.  

Note that this default network architecture is well defined for any RDDL domain and the size 
scales with the number of state variables and actions. Note that the infrastructure uses the 
PyTorch libraries for all neural network structures and training.  
 
After training is finished the returned policy is automatically evaluated by the RDDL server for 
30 episodes. You can go to the ssh terminal of the server and see the actions of the agent. Also in 
the ssh terminal where training was executed you can scroll back and observe both the states and 
actions during the evaluation.  
 
During training the algorithm performs and prints out an evaluation of the current policy after 
every 20 steps. Each evaluation involves running the greedy policy without exploration for a 
number of episodes and then averaging the results. The number of test episodes used for each 
evaluation can be set via the command-line parameter --test_episodes, which defaults to 30. The 
average reward of each test evaluation is printed as the algorithm runs. Further, the algorithm 
keep track of the best model found so far in terms of test episode performance and saves the 
current best model to disk. Whenever an improved model is found and saved the code will print 
“model saved”. The model is saved to:  
 
/vagrant/RL/results/wildfire_single_action_inst_mdp__1/QLearning_normalized/wildfire_inst_mdp_
_1_model.p 
 
Note that you will not likely need to access this file yourself. It is this best model that is used for 
the RDDL server evaluation at the end of learning. The code also creates graphs of the learning 
curves under the directory:  
 
/vagrant/RL/results/wildfire_single_action_inst_mdp__1/QLearning_normalized/plots/  
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Note that the command-line argument --pathsuffix <string> is used to influence the naming of 
the directory (in this case --pathsuffix “normalized”). Graphs are also produced for both the 
test and training reward versus the number of training episodes. For the above RL run the best 
model likely achieved a score between -45 and -65, which appears to be close to optimal in this 
domain (taking inherent variance of returns into account).  
 
We will often want to continue training a previously trained agent. To do this we just need to 
execute the above command again, but remove the --scratch argument:  
 
 python3 q_learning.py --inst wildfire_single_action_inst_mdp__1 --eps 0.3 --norm_reward 
--path_suffix "normalized" --train_episodes 1000 
 
When the --scratch argument is not present, the code first looks for an existing model from 
previous runs (at the above mentioned location) and if it exists, the model is loaded and used as 
the initial policy for the training. For Q-learning this corresponds to initializing the Q-function 
network with the previously saved network. When you execute the above command you will 
notice that the initial test evaluations are based on the previously learned good policy. If we 
instead wanted to start from scratch and forget the first learning run, then we would have kept the 
--scratch argument and the initial test evaluations during training would have had lower values.  
 
Important Lesson: RL learning curves are almost never smooth and often look like very noisy 
signals, ideally with an upward trend. This is important to remember when selecting a final 
policy to return after learning. To see this clearly look at the learning curve generated from the 
previous “continuation run”, which started from a good policy and continued training for 1000 
additional episodes. 
 
/vagrant/RL/results/wildfire_single_action/wildfire_single_action_inst_mdp__1/QLearning_normal
ized/plots/Test_Performance.png 
     
You will likely see that the test performance of the current policy along the curve has non-trivial 
variation in expected value. This illustrates why it is critical to track and store the policy 
encountered during training that was estimated to have the highest test performance. Otherwise 
if one simply returns the policy that happens to be current at the end of training, the performance 
may be substantially worse than that of the best policy encountered during training.  

Part #2: Normalization of Rewards 
 
The magnitude of the reward signal can often influence the proper choice of parameters, 
especially parameters related to the learning rate. Our library currently uses a popular adaptive 
learning rate control algorithms called Adam [2], which is included in the PyTorch library. This 
algorithm has a parameter called ‘lr’ that controls how “aggressive” the learning is initially. 
Setting this parameter properly is often important for fast and good convergence. Unfortunately, 
the best value for the parameter can depend very much on the magnitude of the reward signal.  
 
To see this experimentally, we will rerun the above experiment, but will remove the 
--norm_reward command-line argument.  
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 python3 q_learning.py --inst wildfire_single_action_inst_mdp__1 --eps 0.3 --path_suffix 
"raw_reward" --train_episodes 1000 --scratch 
 
This has the effect of having the Q-learning agent learn directly from the raw reward signal in 
the wildfire domain as is usually the case in algorithm descriptions. The rewards in this domain 
are of the order of magnitudes 102 to 103.  
 

How does the resulting policy perform compared to the policy learned with 
--norm_reward turned on?  

 
You will likely see that the RL agent does not find a policy that achieve an average test reward in 
the range -45 to -65.  
 
If your agent did not perform as well, then adjusting the learning rate parameter is one 
mechanism to improve. The learning rate parameter for the optimizer can be set via the 
command-line argument --lr <positive float> which has a default of 0.0001.  
 
Exercise: Vary the learning rate parameter (try 3 to 4 values) with the goal of getting the agent 
with unnormalized reward to learn a policy in the range -45 to -65 within 1000 episodes. For 
example, decreasing by an order of magnitude would yield the following command line: 
 

python3 q_learning.py --inst wildfire_single_action_inst_mdp__1 --eps 0.3 --path_suffix 
"raw_reward_lr_0.00001 --lr 0.00001 --train_episodes 1000 --scratch 
 

Were you able to find a learning rate parameter that achieved our goals?  
 
For this small problem, finding an appropriate parameter may not be too difficult, since running 
the episodes is not too expensive and we don’t need to run many of them to learn. For larger 
problems where training is very expensive, searching through learning rate parameters can be 
problematic.  
 
If our goal is to develop an RL system for arbitrary RDDL domains, it is importan to have a 
robust and automatic mechanism for dealing with varying reward magnitudes, since RDDL 
domains can have arbitrary magnitudes. One way to do this is to normalize the rewards inside the 
algorithm by dividing each reward by the range of the reward values (difference between the 
maximum possible reward and the minimum possible reward). For RDDL domains it is possible 
to compute upper and lower bounds on the reward magnitude by analyzing the domain and 
problem definition. By including the --norm_reward in the command-line, this normalization is 
applied. Thus, the learning agent learns from the normalized reward rather than the raw reward. 
The default learning rate of 0.0001 has been found to work reasonably well with this reward 
normalization scheme. We note that this has not been explored in depth and it is likely that other 
approaches will ultimately improve on these choices.   
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Part #3: Neural Net Architecture 
 
The above results used the default policy representation (2 hidden layers). One should always 
ask whether or not the complexity of a neural network is needed compared to simpler 
representations such as linear functions (i.e. zero hidden layers).  
 
Exercise: Modify q_learning.py to use and learn a linear policy, with zero hidden layers and 
compare its learning performance to the 2 hidden-layer network.  
 
To do this first make a copy of q_learning.py called linear_q_learning.py. Modify 
linear_q_learning.py as follows. 
 

1) Comment out the two procedures __init__(self) and forward(self, input) in class 
QNet(nn.Module) under the heading """ Create network with 2 hidden layers """  

2) Uncomment the procedures __init__(self) and forward(self, input) under the heading  
""" Create network with 0 hidden layers """   

 
Now run Q-learning again using the resulting linear network.  
 
 python3 linear_q_learning.py --inst wildfire_single_action_inst_mdp__1 --eps 0.3 --
norm_reward --path_suffix "normalized_linear" --train_episodes 1000 --scratch 
 
Did you notice any significant difference between the linear and non-linear versions?  
 
It is likely that the linear network worked just as well for this problem. Indeed, if you think about 
the problem, it is not hard to see that the Q-values of the actions can be reasonably approximated 
via linear functions.  
 
For more complex functions, deeper neural networks structures are essential to achieving top 
performance. As an example let us consider a very simple domain called “xor”. This domain has 
just two binary state variables ‘code0’ and ‘code1’ and a single action ‘detect-xor’. At each time 
step the values of ‘code0’ and ‘code1’ is selected by flipping a fair coin. The reward function is 
defined as:  
 

• If xor(code0, code1) == true, then ‘detect-xor’ gives a reward of 0 and otherwise 
selecting ‘noop’ gives a reward of -100. 

• If xor(code0, code1) == false then ‘noop’ gives reward 0 and ‘detect-xor’ gives reward -
100.  

 
The optimal policy for the “xor” problem is to return ‘detect-xor’ iff xor(code0, code1) == true.  
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To run this experiment, kill the currently running RDDL server and start up the following server 
instance: 
 

cd /vagrant/RDDLSim 
 

./run rddl.competition.Server /vagrant/RL/env/xor 
 

Conceptually the default 2 hidden-layer network can represent the required xor function. 
However, to allow for faster and more reliable learning we will increase the size of the hidden 
layers. To do this in q_learning.py change the value of hidden_unit_factor from 3 to 15. Next, 
train this network for 1000 episodes.  
 

python3 q_learning.py --inst xor_inst_mdp__1 --eps 0.3 --path_suffix "normalized" --
train_episodes 1000 --scratch 

 
This network should find a policy with an optimal average reward of 0 quite quickly.   
 
Now let’s see if the linear network is able to learn an optimal policy. 
 

python3 linear_q_learning.py --inst xor_inst_mdp__1 --eps 0.3 --path_suffix 
"normalized_linear" --train_episodes 1000 –scratch 

 
What did you observe? 
 
It is well established that linear networks are not capable of representing the xor function. So no 
matter how long you run this network, it will not achieve an optimal policy.  
 
The simple xor example was a simple illustrative example. We can now consider a more 
complex example where we merge the xor concept into the single-action wildfire domain. To do 
this, kill the current RDDL server and startup the wildfire_single_action_xor domain: 
 

cd /vagrant/RDDLSim 
 

./run rddl.competition.Server /vagrant/RL/env/wildfire_single_action_xor 
 

This domain adds the ‘code0’ and ‘code1’ variables to single-action wildfire and has two ‘put-
out-xor’ and ‘put-out-not-xor’. We think of the code variables as indicating which of two fire-
fighting troops are available at a given time step.  
 

• The “xor troop” is available iff xor(code0, code1) == true.  
• The “not-xor troop” is available iff xor(code0, code1) == false.  
• The only way to put out the fires at a time step is to send the available troop via the 

appropriate acton, either ‘put-out-xor’ or ‘put-out-not-xor’. Selecting an unavailable 
troop fails to put out any fires.  

 
This problem is quite a bit more difficult to learn than the basic single-action wildfire domain. 
We already know that a linear network will not be able to learn an optimal policy for this 
domain, since it requires encoding the xor function in the policy.  
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Exercise: Try to learn a high-quality policy for this domain using a 2 hidden-layer network with 
hidden_unit_factor = 15.  
 

python3 q_learning.py --inst wildfire_single_action_xor_inst_mdp__1 --eps 0.3 --
path_suffix "normalized" --train_episodes 10000 --scratch 
 
You should be able to learn a good policy for this domain (expected reward within -45 to -65) 
within 15K episodes. If the about 10K training episodes is not enough, then learn for another 5K 
episodes (make sure to remove the --scratch flag). 
  

Part #4: DQN: Experience Replay 
 
The basic Q-learning algorithm processes each state transition once and then throws away the 
transition data. This can be wasteful, especially when collecting data is expensive (e.g. an 
expensive simulator). As discussed in the lecture, experience replay is a mechanism to more 
effectively using transition data by saving experience and performing multiple updates on 
experience tuples. A recent example of Q-learning with experience replay is the DQN algorithm, 
which was the first to demonstrate successful RL performance on Atari games based on pixel-
level input using convolutional neural network (CNN) policies [3].  
 
Brief DQN Description: DQN is quite simple. It follows an exploration policy and stores each 
transition tuple (𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′) in a replay buffer of some specified maximum size (randomly 
removing tuples when the size is exceeded). After each transition DQN samples a batch of tuples 
from the replay buffer and does a batch gradient update to the Q-function using the standard Q-
learning target value for each tuple in the batch. Further, DQN also uses the concept of a “target 
network” and “performance network”. The target network is used to compute the target values 
used to update the performance network during learning. After every 𝐶𝐶 state transitions the 
current performance network is copied to the target network. This idea appears to sometimes 
stabilize Q-learning.  
 
DQN is implemented in q_learning_exp_replay.py. In addition to the command line arguments 
for q_learning.py, DQN has the following arguments:  
 

• --capacity <int> specifies the maximum replay buffer size 
• --batch_size <int> specifies the batch size used for each Q-function update 
• --target_update <int> specifies 𝑇𝑇, the number of steps between updates of the target 

network 
 
We can get an algorithm that is effectively equivalent to the basic Q-learning algorithm explored 
earlier in the lab by using arguments: --capacity 1 --batch_size 1 --target_update 1. 
 
Exercise: Observe whether or not DQN can find a good policy for single-action wildfire in 
fewer trajectories (on average) compared to regular Q-learning.  
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To do this, first kill and restart the RDDL server for the wildfire_single_action domain. Run 
DQN via the following:  
 

python3 q_learning_exp_replay.py --inst wildfire_single_action_inst_mdp__1 --eps 0.3 --
norm_reward --path_suffix "normalized" --train_episodes 10000 --scratch --capacity 1000 --
batch_size 64 --target_update 10 
 
Do this several times to see on average how many episodes it takes to find a policy in the good 
range (-45 to -65). Do the same for standard Q-learning (make sure to set hidden_unit_factor in 
q_learning.py back to 3 to be comparable with DQN. The above DQN parameters were just an 
initial guess that seemed to work, but you may want to play with them to see the impact (if any) 
of each one.  
 
Was there a clear difference between the “episode efficiency” of DQN versus pure Q-learning?  
 
While DQN will often be more efficient in terms of number of episodes required to reach a 
certain performance level, each episode takes more computational time compared to Q-learning. 
Thus, DQN can has a larger potential to improve overall runtime when the environment 
simulator is more computationally expensive to apply.  

Part #5: Full Wildfire 
 
Now that you’ve got some experience, you can go ahead and attempt to learn a policy for the 
original wildfire domain. Kill and restart the RDDL server for wildfire: 
 

cd /vagrant/RDDLSim 
 

./run rddl.competition.Server /vagrant/RL/env/wildfire 
 

This is a much harder problem, since now there are two actions for each cell: ‘cut-out(x,y)’ and 
‘put-out(x,y)’. For the first problem instance with 9 cells, this gives a total of 19 actions 
(considering noop). We should expect learning to take significantly more time. Indeed, during 
learning in order to one experience that shows the utility of an action it is necessary for there to 
be a fire in a cell and then to take the appropriate action for that cell via exploration.  
 
It appears that the basic Q-learning agent can achieve near optimal performance in 10K to 15K 
episodes. The achievable reward is close to that achievable in the single-action case.  
 
Exercise: Learn a near optimal policy for this problem using any combination of the lessons 
learned above. As time allows, consider variations and observe the impact on learning efficiency 
(both in terms of number of episodes and time). 
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