
1

ICAPS 2018 Summer School Lab 2:
RL for RDDL

This lab will introduce an infrastructure for running (deep) reinforcement learning (RL)
experiments on RDDL planning problems. The lab will focus on using Q-learning for solving
problems in the Wildfire domain. However, the infrastructure is applicable to any RDDL domain
and problem defined over discrete state and action variables. Most of the lab will focus on a
simplified Wildfire domain to allow for faster experiment times with the end exercise
considering the full domain.

Goals of the Lab:

1) Provide students with hands-on experience using the infrastructure to train and test RL
agents on RDDL domains. While the lab focuses on Q-learning (with and without
experience replay), the infrastructure also provides an actor-critic algorithm called A2C
[1].

2) Learn about important practical choices, including how to select which RL policy to
return and reward normalization.

3) Experiment with a couple of algorithm options including the neural network architecture
and experience replay.

Getting Started

This lab assumes that you have already installed the Summer School Lab VM and also
successfully run the test at https://bitbucket.org/eshw/rl-lab/src/master/README.md.

It is important to make sure that you have the latest version of the RL repository. We have
adjusted the repository after the first announcement of the VM infrastructure. To make sure you
have the latest you can run the following commands:

 cd /vagrant
 rm -rf RL
 git clone https://eshw@bitbucket.org/eshw/rl-lab.git RL
 pip3 install -r /vagrant/RL/requirements.txt
 cd /vagrant/RL/src/rddl_parser && make && mv rddl-parser /vagrant/RL
 cd /vagrant/RL/src/search && make
 cd /vagrant/RL/src/search/.obj && g++ -shared -o clibxx.so -fPIC *.o utils/* -lbdd -lstdc++fs
&& mv clibxx.so /vagrant/RL
 cd /vagrant

https://bitbucket.org/eshw/rl-lab/src/master/README.md
https://eshw@bitbucket.org/eshw/rl-lab.git

2

Part #1: Running Q-Learning for Single-Action Wildfire

We will start with a highly simplified version of the Wildfire RDDL domain. This version of the
domain and problem files can be found in the directory /vagrant/RL/env/wildfire_single_action,
where wildfire_single_mdp.rddl is the domain file and wildfire_single_action_inst_mdp__1.rddl
will be the problem instance that we focus on. The simplifications in this domain compared to
the original Wildfire domain are:

1) There are no ‘cutout’ actions.
2) There is a single ‘putout’ action which takes no arguments. This action puts out any

fire that is currently burning on the map.

So there are two actions in this domain (‘putout’ and ‘noop’). We would like to see an RL agent
learn to use the ‘putout’ action when a fire is present and ‘noop’ otherwise. Note that since the
immediate reward for ‘putout’ is -10 and for ‘noop’ is 0, a greedy agent that maximizes
immediate reward (by only taking ‘noop’) will do poorly. So an agent must appreciate how its
actions influence future reward in order to do well.

To start the RL infrastructure we first need to start the RDDL server, which is the same server
used for the International Planning Competition. Do this from a Vagrant ssh prompt via the
commands.

cd /vagrant/RDDLSim

./run rddl.competition.Server /vagrant/RL/env/wildfire_single_action

This will start the server with the simplified wildfire domain and the server will now wait to
serve a requested problem instance to the RL agent.

To start the RL training open another ssh terminal and execute the following.

cd /vagrant/RL

 python3 q_learning.py --inst wildfire_single_action_inst_mdp__1 --eps 0.3 --norm_reward
--path_suffix "normalized" --train_episodes 1000 --scratch

This will train a basic Q-learning agent on the wildfire problem for 1000 episodes
(--train_episodes 1000) starting from scratch (--scratch) using 𝜖𝜖-greedy exploration with a
constant 𝜖𝜖 = 0.3 (--eps 0.3). Ignore the other command-line arguments for the moment.

The default policy architecture (illustrated in Figure 1) used for training is a neural network with
two fully-connected hidden layers: (defined via class QNet)

• Input Layer: contains the state variables, which for the above problem instance are
out-of-fuel(x,y) and burning(x,y) for 𝑥𝑥 ∈ {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3} and 𝑦𝑦 ∈ {𝑦𝑦1,𝑦𝑦2,𝑦𝑦3}.

• Hidden Layers: # of hidden units in each layer is the number of state variables times
hidden_unit_factor, where the default for hidden_unit_factor is 3

3

• Output Layer: # of output units for each action, which for the above problem is ‘putout’
and ‘noop’.

Figure 1. (Figure taken from [4]) Illustration of default neural network structure for a problem with 4 state
variables {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4} and 4 actions {𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4} where 𝑎𝑎0 is considered to be the noop action. There are 2
hidden layers, each having 3x the number of units as the number of state variables. It is assumed that the layers are
fully connected, so that there is a weight connecting each pair of units in neighboring layers. The figure does not
show all of the weight connections.

Note that this default network architecture is well defined for any RDDL domain and the size
scales with the number of state variables and actions. Note that the infrastructure uses the
PyTorch libraries for all neural network structures and training.

After training is finished the returned policy is automatically evaluated by the RDDL server for
30 episodes. You can go to the ssh terminal of the server and see the actions of the agent. Also in
the ssh terminal where training was executed you can scroll back and observe both the states and
actions during the evaluation.

During training the algorithm performs and prints out an evaluation of the current policy after
every 20 steps. Each evaluation involves running the greedy policy without exploration for a
number of episodes and then averaging the results. The number of test episodes used for each
evaluation can be set via the command-line parameter --test_episodes, which defaults to 30. The
average reward of each test evaluation is printed as the algorithm runs. Further, the algorithm
keep track of the best model found so far in terms of test episode performance and saves the
current best model to disk. Whenever an improved model is found and saved the code will print
“model saved”. The model is saved to:

/vagrant/RL/results/wildfire_single_action_inst_mdp__1/QLearning_normalized/wildfire_inst_mdp_
_1_model.p

Note that you will not likely need to access this file yourself. It is this best model that is used for
the RDDL server evaluation at the end of learning. The code also creates graphs of the learning
curves under the directory:

/vagrant/RL/results/wildfire_single_action_inst_mdp__1/QLearning_normalized/plots/

4

Note that the command-line argument --pathsuffix <string> is used to influence the naming of
the directory (in this case --pathsuffix “normalized”). Graphs are also produced for both the
test and training reward versus the number of training episodes. For the above RL run the best
model likely achieved a score between -45 and -65, which appears to be close to optimal in this
domain (taking inherent variance of returns into account).

We will often want to continue training a previously trained agent. To do this we just need to
execute the above command again, but remove the --scratch argument:

 python3 q_learning.py --inst wildfire_single_action_inst_mdp__1 --eps 0.3 --norm_reward
--path_suffix "normalized" --train_episodes 1000

When the --scratch argument is not present, the code first looks for an existing model from
previous runs (at the above mentioned location) and if it exists, the model is loaded and used as
the initial policy for the training. For Q-learning this corresponds to initializing the Q-function
network with the previously saved network. When you execute the above command you will
notice that the initial test evaluations are based on the previously learned good policy. If we
instead wanted to start from scratch and forget the first learning run, then we would have kept the
--scratch argument and the initial test evaluations during training would have had lower values.

Important Lesson: RL learning curves are almost never smooth and often look like very noisy
signals, ideally with an upward trend. This is important to remember when selecting a final
policy to return after learning. To see this clearly look at the learning curve generated from the
previous “continuation run”, which started from a good policy and continued training for 1000
additional episodes.

/vagrant/RL/results/wildfire_single_action/wildfire_single_action_inst_mdp__1/QLearning_normal
ized/plots/Test_Performance.png

You will likely see that the test performance of the current policy along the curve has non-trivial
variation in expected value. This illustrates why it is critical to track and store the policy
encountered during training that was estimated to have the highest test performance. Otherwise
if one simply returns the policy that happens to be current at the end of training, the performance
may be substantially worse than that of the best policy encountered during training.

Part #2: Normalization of Rewards

The magnitude of the reward signal can often influence the proper choice of parameters,
especially parameters related to the learning rate. Our library currently uses a popular adaptive
learning rate control algorithms called Adam [2], which is included in the PyTorch library. This
algorithm has a parameter called ‘lr’ that controls how “aggressive” the learning is initially.
Setting this parameter properly is often important for fast and good convergence. Unfortunately,
the best value for the parameter can depend very much on the magnitude of the reward signal.

To see this experimentally, we will rerun the above experiment, but will remove the
--norm_reward command-line argument.

5

 python3 q_learning.py --inst wildfire_single_action_inst_mdp__1 --eps 0.3 --path_suffix
"raw_reward" --train_episodes 1000 --scratch

This has the effect of having the Q-learning agent learn directly from the raw reward signal in
the wildfire domain as is usually the case in algorithm descriptions. The rewards in this domain
are of the order of magnitudes 102 to 103.

How does the resulting policy perform compared to the policy learned with
--norm_reward turned on?

You will likely see that the RL agent does not find a policy that achieve an average test reward in
the range -45 to -65.

If your agent did not perform as well, then adjusting the learning rate parameter is one
mechanism to improve. The learning rate parameter for the optimizer can be set via the
command-line argument --lr <positive float> which has a default of 0.0001.

Exercise: Vary the learning rate parameter (try 3 to 4 values) with the goal of getting the agent
with unnormalized reward to learn a policy in the range -45 to -65 within 1000 episodes. For
example, decreasing by an order of magnitude would yield the following command line:

python3 q_learning.py --inst wildfire_single_action_inst_mdp__1 --eps 0.3 --path_suffix
"raw_reward_lr_0.00001 --lr 0.00001 --train_episodes 1000 --scratch

Were you able to find a learning rate parameter that achieved our goals?

For this small problem, finding an appropriate parameter may not be too difficult, since running
the episodes is not too expensive and we don’t need to run many of them to learn. For larger
problems where training is very expensive, searching through learning rate parameters can be
problematic.

If our goal is to develop an RL system for arbitrary RDDL domains, it is importan to have a
robust and automatic mechanism for dealing with varying reward magnitudes, since RDDL
domains can have arbitrary magnitudes. One way to do this is to normalize the rewards inside the
algorithm by dividing each reward by the range of the reward values (difference between the
maximum possible reward and the minimum possible reward). For RDDL domains it is possible
to compute upper and lower bounds on the reward magnitude by analyzing the domain and
problem definition. By including the --norm_reward in the command-line, this normalization is
applied. Thus, the learning agent learns from the normalized reward rather than the raw reward.
The default learning rate of 0.0001 has been found to work reasonably well with this reward
normalization scheme. We note that this has not been explored in depth and it is likely that other
approaches will ultimately improve on these choices.

6

Part #3: Neural Net Architecture

The above results used the default policy representation (2 hidden layers). One should always
ask whether or not the complexity of a neural network is needed compared to simpler
representations such as linear functions (i.e. zero hidden layers).

Exercise: Modify q_learning.py to use and learn a linear policy, with zero hidden layers and
compare its learning performance to the 2 hidden-layer network.

To do this first make a copy of q_learning.py called linear_q_learning.py. Modify
linear_q_learning.py as follows.

1) Comment out the two procedures __init__(self) and forward(self, input) in class
QNet(nn.Module) under the heading """ Create network with 2 hidden layers """

2) Uncomment the procedures __init__(self) and forward(self, input) under the heading
""" Create network with 0 hidden layers """

Now run Q-learning again using the resulting linear network.

 python3 linear_q_learning.py --inst wildfire_single_action_inst_mdp__1 --eps 0.3 --
norm_reward --path_suffix "normalized_linear" --train_episodes 1000 --scratch

Did you notice any significant difference between the linear and non-linear versions?

It is likely that the linear network worked just as well for this problem. Indeed, if you think about
the problem, it is not hard to see that the Q-values of the actions can be reasonably approximated
via linear functions.

For more complex functions, deeper neural networks structures are essential to achieving top
performance. As an example let us consider a very simple domain called “xor”. This domain has
just two binary state variables ‘code0’ and ‘code1’ and a single action ‘detect-xor’. At each time
step the values of ‘code0’ and ‘code1’ is selected by flipping a fair coin. The reward function is
defined as:

• If xor(code0, code1) == true, then ‘detect-xor’ gives a reward of 0 and otherwise
selecting ‘noop’ gives a reward of -100.

• If xor(code0, code1) == false then ‘noop’ gives reward 0 and ‘detect-xor’ gives reward -
100.

The optimal policy for the “xor” problem is to return ‘detect-xor’ iff xor(code0, code1) == true.

7

To run this experiment, kill the currently running RDDL server and start up the following server
instance:

cd /vagrant/RDDLSim

./run rddl.competition.Server /vagrant/RL/env/xor

Conceptually the default 2 hidden-layer network can represent the required xor function.
However, to allow for faster and more reliable learning we will increase the size of the hidden
layers. To do this in q_learning.py change the value of hidden_unit_factor from 3 to 15. Next,
train this network for 1000 episodes.

python3 q_learning.py --inst xor_inst_mdp__1 --eps 0.3 --path_suffix "normalized" --
train_episodes 1000 --scratch

This network should find a policy with an optimal average reward of 0 quite quickly.

Now let’s see if the linear network is able to learn an optimal policy.

python3 linear_q_learning.py --inst xor_inst_mdp__1 --eps 0.3 --path_suffix
"normalized_linear" --train_episodes 1000 –scratch

What did you observe?

It is well established that linear networks are not capable of representing the xor function. So no
matter how long you run this network, it will not achieve an optimal policy.

The simple xor example was a simple illustrative example. We can now consider a more
complex example where we merge the xor concept into the single-action wildfire domain. To do
this, kill the current RDDL server and startup the wildfire_single_action_xor domain:

cd /vagrant/RDDLSim

./run rddl.competition.Server /vagrant/RL/env/wildfire_single_action_xor

This domain adds the ‘code0’ and ‘code1’ variables to single-action wildfire and has two ‘put-
out-xor’ and ‘put-out-not-xor’. We think of the code variables as indicating which of two fire-
fighting troops are available at a given time step.

• The “xor troop” is available iff xor(code0, code1) == true.
• The “not-xor troop” is available iff xor(code0, code1) == false.
• The only way to put out the fires at a time step is to send the available troop via the

appropriate acton, either ‘put-out-xor’ or ‘put-out-not-xor’. Selecting an unavailable
troop fails to put out any fires.

This problem is quite a bit more difficult to learn than the basic single-action wildfire domain.
We already know that a linear network will not be able to learn an optimal policy for this
domain, since it requires encoding the xor function in the policy.

8

Exercise: Try to learn a high-quality policy for this domain using a 2 hidden-layer network with
hidden_unit_factor = 15.

python3 q_learning.py --inst wildfire_single_action_xor_inst_mdp__1 --eps 0.3 --
path_suffix "normalized" --train_episodes 10000 --scratch

You should be able to learn a good policy for this domain (expected reward within -45 to -65)
within 15K episodes. If the about 10K training episodes is not enough, then learn for another 5K
episodes (make sure to remove the --scratch flag).

Part #4: DQN: Experience Replay

The basic Q-learning algorithm processes each state transition once and then throws away the
transition data. This can be wasteful, especially when collecting data is expensive (e.g. an
expensive simulator). As discussed in the lecture, experience replay is a mechanism to more
effectively using transition data by saving experience and performing multiple updates on
experience tuples. A recent example of Q-learning with experience replay is the DQN algorithm,
which was the first to demonstrate successful RL performance on Atari games based on pixel-
level input using convolutional neural network (CNN) policies [3].

Brief DQN Description: DQN is quite simple. It follows an exploration policy and stores each
transition tuple (𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′) in a replay buffer of some specified maximum size (randomly
removing tuples when the size is exceeded). After each transition DQN samples a batch of tuples
from the replay buffer and does a batch gradient update to the Q-function using the standard Q-
learning target value for each tuple in the batch. Further, DQN also uses the concept of a “target
network” and “performance network”. The target network is used to compute the target values
used to update the performance network during learning. After every 𝐶𝐶 state transitions the
current performance network is copied to the target network. This idea appears to sometimes
stabilize Q-learning.

DQN is implemented in q_learning_exp_replay.py. In addition to the command line arguments
for q_learning.py, DQN has the following arguments:

• --capacity <int> specifies the maximum replay buffer size
• --batch_size <int> specifies the batch size used for each Q-function update
• --target_update <int> specifies 𝑇𝑇, the number of steps between updates of the target

network

We can get an algorithm that is effectively equivalent to the basic Q-learning algorithm explored
earlier in the lab by using arguments: --capacity 1 --batch_size 1 --target_update 1.

Exercise: Observe whether or not DQN can find a good policy for single-action wildfire in
fewer trajectories (on average) compared to regular Q-learning.

9

To do this, first kill and restart the RDDL server for the wildfire_single_action domain. Run
DQN via the following:

python3 q_learning_exp_replay.py --inst wildfire_single_action_inst_mdp__1 --eps 0.3 --
norm_reward --path_suffix "normalized" --train_episodes 10000 --scratch --capacity 1000 --
batch_size 64 --target_update 10

Do this several times to see on average how many episodes it takes to find a policy in the good
range (-45 to -65). Do the same for standard Q-learning (make sure to set hidden_unit_factor in
q_learning.py back to 3 to be comparable with DQN. The above DQN parameters were just an
initial guess that seemed to work, but you may want to play with them to see the impact (if any)
of each one.

Was there a clear difference between the “episode efficiency” of DQN versus pure Q-learning?

While DQN will often be more efficient in terms of number of episodes required to reach a
certain performance level, each episode takes more computational time compared to Q-learning.
Thus, DQN can has a larger potential to improve overall runtime when the environment
simulator is more computationally expensive to apply.

Part #5: Full Wildfire

Now that you’ve got some experience, you can go ahead and attempt to learn a policy for the
original wildfire domain. Kill and restart the RDDL server for wildfire:

cd /vagrant/RDDLSim

./run rddl.competition.Server /vagrant/RL/env/wildfire

This is a much harder problem, since now there are two actions for each cell: ‘cut-out(x,y)’ and
‘put-out(x,y)’. For the first problem instance with 9 cells, this gives a total of 19 actions
(considering noop). We should expect learning to take significantly more time. Indeed, during
learning in order to one experience that shows the utility of an action it is necessary for there to
be a fire in a cell and then to take the appropriate action for that cell via exploration.

It appears that the basic Q-learning agent can achieve near optimal performance in 10K to 15K
episodes. The achievable reward is close to that achievable in the single-action case.

Exercise: Learn a near optimal policy for this problem using any combination of the lessons
learned above. As time allows, consider variations and observe the impact on learning efficiency
(both in terms of number of episodes and time).

10

References

[1] V. Mnih, A. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K.
Kavukcuoglu. (2016). Asynchronous methods for deep reinforcement learning. International
Conference on Machine Learning.

[2] https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M.
Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen. (2015). Human-level control through deep
reinforcement learning. Nature. Feb;518(7540):529.

[4] Murugeswari Issakkimuthu, Alan Fern, and Prasad Tadepalli. (2018). Training Deep
Reactive Policies for Probabilistic Planning Problems. International Conference on Automated
Planning and Scheduling Systems.

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

	Getting Started
	Part #1: Running Q-Learning for Single-Action Wildfire
	Part #2: Normalization of Rewards
	Part #3: Neural Net Architecture
	Part #4: DQN: Experience Replay
	Part #5: Full Wildfire
	References

