NL2PDDL: A Conversational Interface for Model Generation and Iteration

Kshitij P. Fadnis and Kartik Talamadupula
IBM Research
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598
{kpfadnis, krtalamad} @ us.ibm.com

Abstract

Although the automated planning community has seen many
advances to planning techniques in the past decade, domain
model creation and maintenance has remained the central bot-
tleneck preventing wider adoption of planning technology in
the real world. While there has been some work on learning
these models in an automated fashion, there has been very
little focus on user-friendly interfaces for the creation, query-
ing, and editing of planning models. In this demonstration, we
present a novel approach to interfacing with planning models
using natural language via a conversation modality. We detail
the construction of the system and demonstrate its capabili-
ties in a short attached video.

1 Introduction

In recent years, automated planning techniques and systems
have achieved an impressive scale-up in terms of the size
of the problems that they can handle. Planners such as Fast
Downward (Helmert 2006) and its descendants routinely
solve problem instances of real world size in a matter of
seconds. Unfortunately, this scale-up has not led to a signifi-
cant increase in the adoption of planning techniques for real
world applications. One of the main reasons for this is the
extremely cumbersome task of specifying domain models
for planning tasks. The most widely accepted specification
language — PDDL (Mcdermott et al. 1998) — and its variants
are still fairly complex and have a steep learning curve. This
complexity of PDDL is a necessary evil, since the language
also needs to be expressive enough to model real domains.
Indeed, much planning work over the past two decades has
focused on this tension between increased expressivity on
the one hand, and planner efficiency on the other. Rather
than focus on this known problem, planning practitioners
should instead look at the other, much narrower end of this
real world bottleneck for planners — the modeling and spec-
ification of domains.

In this demonstration, we introduce the NL2PDDL sys-
tem, whose ultimate form is intended to make the specifi-
cation of planning domains — agnostic of representation lan-
guage — easier for subject matter experts (SMEs) who are not
familiar with planning technology. Our system introduces,
for the first time, the medium of conversation (and dialog)
as the backing technology for the creation and maintenance
of planning models.

Natural Language Entities/ Types’

Understanding

entities,

Search Engine

inten ‘l
. Orchestrator/ f\ ,
P E—v E’ Inference Engine |- crtitics & intent : % @ i
(| Knowledge Service

User Dialog
Simulator

Editor

Natural Language
Generation

Figure 1: The architecture of the NL2PDDL system.

2 System Architecture

In this section, we briefly describe the architecture of the
NL2PDDL system, outlined in Figure 1. We follow a modu-
lar design, where each component of the system can be ac-
cessed through a simplified set of APIs. There are six major
components in the system:

e Natural Language Understanding (NLU): The job of
the NLU component is to process a text utterance, in or-
der to identify the entities and intents present in it. For
example, on the input “show me some actions in this do-
main”, the output will be the entity actions” and the in-
tent “inform”. We employ lexical and fuzzy matching to
explore a given input for valid entities, while intent is
identified using the IBM Watson Natural Language Clas-
sifier (NLC) (Yates 2015). The NLC is trained with ten
different intents, which broadly cover the space of inter-
action this system is designed to handle.! One of the key
features of our NLU is that it restricts its entity match-
ing to a set of concepts and their paraphrases from the
domain of interest. This reduces the scope of the entity
detection, which in turn provides both speed-up and an
accuracy boost.

e Search Engine: The search engine is primarily respon-
sible for retrieving knowledge about the entities that are
present in the text input. This component formulates
queries based on the available entities and their sub-fields.

e Knowledge Service: This service is the internal memory
of the system. It reads in an existing planning domain

""The data that we used to train this classifier will be made avail-

able, along with the entire source code.

(when available) and builds a graphical representation of
the concepts in that domain. Each type, predicate, and
action are considered a separate node in this graph; the
edges reflect the associations between them. For example,
an action X with precondition y will feature an edge from
the x node to the v node, with the ”precondition” relation.
This graphical representation allows for easier query and
update mechanisms over planning domains. The knowl-
edge service also bootstraps the NLU with concepts asso-
ciated with the domain of interest.

e Editor: The Editor is responsible for edits to the model
that are requested by a user. These include things like the
addition or removal of type definitions, the addition or re-
moval of predicates from the add or delete effects of an
action, and so on. The Editor retrieves the entities iden-
tified by the NLU and sends the appropriate update re-
quest to the Knowledge Service. The Editor is currently
intended to support simple edit capabilities like the re-
moval of types, predicates, or actions by name; and the
addition of new types. We are in the process of extending
the Editor’s functionality to handle more complex opera-
tions like action editing.

e Natural Language Generation (NLG): The NLG is a
critical component that differentiates NL2PDDL from pre-
vious model editors, with its ability to produce conver-
sation. It enables feedback in natural language, which
makes interaction with the system more natural. We cur-
rently use a rule-based system with predefined response
classes; however, our aim is to replace it with a generative
model that delivers more human-like responses.

e Orechestrator/Inference Engine: This component is the
brain of the system — all communication flows through it.
Messages in the system are tagged with their source at
the point of their origin. The job of the orchestrator is to
determine where the message should be sent next, based
on where it came from and what it contains. For example,
a message originating from the Search Engine is tagged
with that source; when it arrives at the orchestrator, it is
redirected to the NLG in order to generate an appropriate
response based on the search results. Our orchestrator is
similar to the one used by (Feng et al. 2018).

On the platform side, the knowledge service is a standalone
RESTHful service deployed as a Docker container in a Kuber-
netes cluster. All the information serviced by the system is
backed up using a persistent storage mechanism.

3 Demonstration

The NL2PDDL system currently includes a web-based inter-
face, which can be used to interact with the system and ex-
plore a planning model. A live demonstration of our system
and this interface can be viewed at the following URL:

ibm.biz/nl2pddl

Please see Section 4 (Appendix) for a description of the in-
teractions that are currently supported by the interface.

References

Feng, S.; Gunasekara, R. C.; Shashidhara, S.; Fadnis, K. P;
and Polymenakos, L. C. 2018. A unified implicit dialog
framework for conversational search. AAAI 2018 Systems
Demonstrations.

Helmert, M. 2006. The fast downward planning system. J.
Artif. Int. Res. 26(1):191-246.

Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL - the
planning domain definition language. Technical Report TR-
98-003, Yale Center for Computational Vision and Control,.

Yates, R. 2015. Introducing the IBM Watson Natural Lan-
guage Classifier. IBM developerWorks/Developer Centers,
posted Jul 10.

4 Appendix

We use this Appendix to advise readers on the current (lim-
ited) expressiveness of the NLU component. The NLU han-
dles spelling mistakes in the name of concepts (types, pred-
icates, actions) as well as certain grammatical mistakes;
this flexibility exists as long as syntactic parsing and part-
of-speech tagging are still possible on the input sentence.
Please also note that words like named, addeffects and
argument are necessary for conditional statements in or-
der to uniquely identify appropriate nested concepts. It is
also crucial that proper nouns like action, type or predicate
names be capitalized, due to the current limitations of the
syntactic parser and the part-of-speech tagger. To assist read-
ers, we list a few typical queries that are currently supported
by the system:

e What-type questions — What are all
regarding top-level con- actions with
cepts: preconditions

— What are types
available in
this domain?

e Greeting statements:
Simple greetings to ini-

— What are actions tiate the conversation.

in this domain? — hello
— What are available _ p;
predicates? - good morning
. What-type.and To be- - good evening
?(’)I:lzit?:;stmns with a e Closing statements:

Simple utterances to

- Is there action end the current conver-
named <NAME>? sation.

— What are actions

: - thank you
with addeffects Y .
<PREDICATE-NAME>? — DRO. that will

be it.

— Is there a .
i am all set

predicate
with argument - nm. i am done.
<TYPE-NAME>? — thanks

Video A link to the storyboard for the demo is available at
the following URL: ibm.biz/nl2pddl-story

<PREDICATE-NAME>?

