DEMO: Visualizations for an Explainable Planning Agent
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Abstract

In this demonstration, we report on the visualization capa-
bilities of an Explainable Al Planning (XAIP) agent that can
support human in the loop decision making. Imposing trans-
parency and explainability requirements on such agents is
crucial for establishing human trust and common ground with
an end-to-end automated planning system. Visualizing the
agent’s internal decision making processes is a crucial step
towards achieving this. This may include externalizing the
“brain” of the agent: starting from its sensory inputs, to pro-
gressively higher order decisions made by it in order to drive
its planning components. We demonstrate these functionali-
ties in the context of a smart assistant in the Cognitive Envi-
ronments Laboratory at IBM’s T.J. Watson Research Center.

Recently, there have been concerted efforts towards mak-
ing the outputs of planning processes more palatable to
human decision makers — e.g. eXplainable Al Planning
(XAIP) (Fox, Long, and Magazzeni 2017; Langley et al.
2017). In this paradigm, emphasis is laid on the qualities
of trust, interaction, and transparency of an Al system. One
of the key features that an XAIP agent must support is vi-
sualization. The planning community has recently made a
concerted effort to support the visualization of key compo-
nents of the end-to-end planning process: from the modeling
of domains (Bryce et al. 2017); to assisting with plan man-
agement (Izygon, Kortenkamp, and Molin 2008); and be-
yond (Sengupta et al. 2017; Benton et al. 2017). For an end-
to-end planning system — which goes from lower level sen-
sory data (e.g. vision, speech) to progressively higher level
decision-making capabilities (planning, plan recognition) —
this becomes even more challenging. This is due to the fact
that the system’s state is determined by information at dif-
ferent levels of abstraction, all of which is being coalesced
in the course of decision making. It is in this spirit that we
present Mr . Jones, a set of visualization capabilities for
an XAIP agent that assists with human-in-the-loop decision-
making in an instrumented meeting space. These capabilities
are essential toward the establishment of common ground in
the collaborative planning process.

Introducing Mr . Jones — Mr . Jones (Chakraborti et al.
2017c), situated in the CEL — the Cognitive Environments
Laboratory — at IBM’s T.J. Watson Research Center is de-

signed to embody the key properties of a proactive assis-
tant while fulfilling the properties desired of an XAIP agent.
Similar to (Manikonda et al. 2017), we divide the responsi-
bilities of Mr . Jones into two processes (c.f. Figure 1) —
Engage, where plan recognition techniques are used to iden-
tify the task in progress; and Orchestrate, which involves
active participation in the decision-making process via real-
time plan generation, visualization, and monitoring.

Mind of Mr . Jones - The externalization of the “mind” of
Mr.Jones — i.e. the various processes that feed the dif-
ferent capabilities of the agent (c.f. Figure 2) — consists
of five widgets. The largest widget on the top represents
the probability distribution that indicates the confidence of
Mr.Jones in identifying the task being collaborated on,
along with a button that displays the provenance of each
such belief. The information used as provenance is gener-
ated directly from the plans used internally by the recogni-
tion module (Ramirez and Geffner 2010) and justifies why,
given the model of the underlying planning problems, these
tasks look likely in terms of plans that achieve those tasks.
The system is adept at handling uncertainty in its inputs (in
coming up with an explanatory plan, it has announced likely
assignments to unknown agents in its space).

Below this is a set of four widgets, each of which give
users a peek into an internal component of Mr . Jones. The
first of them (top left) presents a wordcloud representation of
Mr . Jones’s belief in each of the tasks; the size of the word
representing that task corresponds to the probability asso-
ciated with that task. The second widget (top right) shows
the agents that are recognized as being in the environment
currently — this information is used by the system to de-
termine what kind of task is more likely. This information
is obtained from four independent camera feeds that give
Mr.Jones an omnispective view of the environment; this
information is represented via snapshots (sampled at 10-20
Hz) in the third widget (bottom left). Finally, the fourth wid-
get (bottom right) represents a wordcloud based summariza-
tion of the audio transcript of the environment. This tran-
script provides a succinct representation of the things that
have been said in the environment in the recent past via the
audio channels. The interface thus provides a (constantly up-
dating) snapshot of the various sensory and cognitive organs
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Figure 1: The building blocks of Mr . Jones — the two main components Engage and Orchestrate situate the agent proactively in a decision
support setting with human decision makers in the loop. The top right inset shows the roles of Mr . Jones as a smart room orchestrator. The
bottom right inset illustrates the flow of control — each service runs in parallel and asynchronously to maintain anytime response.
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Figure 2: Snapshot of the mind of Mr . Jones. A video of the system in action can be viewed at https://youtu.be/ZEHxCKodEGs.

associated with Mr . Jones — the eyes, ears, and mind of the
CEL. This is organized at increasing levels of abstraction —

[1] Raw Inputs — These show the camera feeds and voice cap-
ture (speech to text outputs) as received by the system.
These help in externalizing what information the system
is working with at any point of time, and can be used in
debugging at the input level if the system makes a mistake
or in determining whether it is receiving enough informa-
tion to make the right decisions. It is especially useful for
an agent like Mr . Jones, which is not embodied in a sin-
gle robot or interface but is part of the environment as
a whole; in such cases, it is difficult to attribute specific
events and outcomes to the agent.

[2] Lower level reasoning — The next layer deals with the
first stage of reasoning over the raw inputs — What are
the topics being talked about? Who are the agents in the
room? Where are they situated? This helps a user identify
what knowledge is being extracted from the input layer
and fed into the reasoning engines. It increases the situ-
ational awareness of agents by visually summarizing the
contents of the scene at any point of time.

[3] Higher level reasoning — Finally, the top layer uses infor-
mation extracted at the lower levels to reason about ab-

stract tasks in the scene. It visualizes the outcome of the
plan recognition process, along with the provenance of
the information extracted from the lower levels (agents in
the scene, their positions, speech intents, etc.). This layer
puts into context the agent’s current understanding of the
processes in the scene.

In addition to this, we support a plan visualization tool
Fresco (Chakraborti et al. 2017a), that builds on recent
work in top-K planning (Katz et al. 2018) and model-based
plan explanations (Chakraborti et al. 2017b) to provide a
concise visualization of a plan. Specifically, we cast the plan
visualization problem as a plan explanation process and fil-
ter out irrelevant information from the underlying model
given a specific planning problem.

A detailed description of the system can be accessed at
https://arxiv.org/abs/1709.04517.
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