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Abstract

Using planning language, such as PDDL (Planning
Domain Description Language), to build domain
models from scratch is challenging for engineers,
which impedes the applications of planning tech-
niques in various domains. In this demonstration,
we design a user-friendly visualized system to help
alleviate the burden of building domain models, via
(1) graph-based user interaction, and (2) consis-
tency detection and model learning.

1 Introduction
Exploiting planning languages, such as PDDL [Fox and Long,
2003], to build domain models by hand is often difficult,
even for domain experts, which impedes planning applica-
tions in various real-world domains (c.f. [Yang et al., 2007;
Zhuo et al., 2010]). Automatically learning domain models
from historical data can indeed help reduce domain modelling
efforts (c.f. [Zhuo and Yang, 2014]). It requires, however,
users are able to provide large enough structured training data
(e.g., plan traces (c.f. [Zhuo and Yang, 2014])). On the other
hand, the domain models learnt are generally not one-hundred
percent accurate, i.e., they need to be further revised by users
before being used to generate solutions to planning problems.

To alleviate users’ burden of building domain models, we
build a graph-based visualized user-interaction system to con-
sider human-in-the-loop by integrating techniques of consis-
tency detection (c.f. [Bacchus et al., 2017]) and model learn-
ing. Different from our system, previous tools, such as itSIM-
PLE (c.f. [Vaquero et al., 2013]) and VIZ (c.f. [Vodrázka
and Chrpa, 2010]), do not consider effective consistency-
detection techniques and model-learning approaches. We call
our system KAVI, which stands for Knowledge Acquisition
with Visualized Interaction. The framework of KAVI is
shown in Figure 1, which is composed of seven main com-
ponents, i.e., domain visualized modelling, data convertor,
domain knowledge base, consistency detection, plan genera-
tion, plan validation, model learning (or fine-tuning). We will
introduce each component in detail in the following sections.

∗Corresponding Author

KAVI

Data Convertor

XML format

Planning Domain Visual Modeling

Language Editor

Operators Editor

Problems Editor

Domain Knowledge Base

Planning Component

Plan Validation Component

Domain Model Fine-tuning

Consistency Check

External 
Planning 
Systems

Metric-FF

Blackbox

LPG-td

External 
Plan Validation

System

VAL

PDDL format Plan in txt format

Figure 1: The architecture of KAVI

2 Graph-Based User Interactions
This component provides a graphical user interface for de-
scription of planning domains and problems, which uses sim-
ple diagrams to generate domain models represented with the
PDDL language. We divide complex tasks into three levels
(which is similar to VIZ (c.f. [Vodrázka and Chrpa, 2010])):

• defining classes and predicates;

• defining planning operators with variables and predi-
cates;

• defining planning problems with objects and predicates.

To reduce the effort of specifying the above-mentioned
three levels, we build a knowledge base, which is incremen-
tally added, to automatically fill “parts” of domain models
based on users’ current input. The knowledge base can be
categorized into two types (or templates):

The template of TYPE This type of template denotes a
unique type in real-world applications.

The template of PREDICATE This type of template de-
notes a predicate with zero or more parameters in the
form of “[identifier]([spaces][parameter’s type])*”. For
example, (at physobj place) is a predicate template with
at as the predicate’s identifier, physobj and place as the
types of two parameters.

Based on the knowledge base, when users input classes or
predicates to our system, KAVI is capable of automatically



completing other parts and drawing associated diagrams, as
shown in Figure 2. When inputting “a”, our system will au-
tomatically recommend a predicate “(at physobj place)”. The

Figure 2: Auto-completion for predicate definition

result after automatically completing the definition of predi-
cate “(at physobj place)” is shown in Figure 3.

Figure 3: The result after automatically completing the definition of
predicate “(at physobj place)”

3 Consistency Detection
When users defining predicates or action models, incon-
sistencies, such as missing arguments of predicates, con-
flicts on the PDDL model definition (e.g., predicates can-
not be deleted and added simultaneously), etc., can be in-
troduced into the system. We would like to automatically
detect those inconsistencies immediately when they are in-
troduced. To do this, we build a set of weighted constraints
based on the knowledge base, current domain models, and
the input information, and solve the constraints using off-
the-shelf MAX-SAT solvers [Borchers and Furman, 1998;
Bacchus et al., 2017]. According to the solution of the MAX-
SAT solver, we propose inconsistencies with highest weights
for users to rectify.

4 Model Learning
Once domain models (which may be incomplete or noisy),
initial states and goals are defined, we hope users can uti-
lize off-the-shelf planners to generate plan solutions. We thus
integrate three planners (i.e., metric-FF [Hoffmann, 2003],
Blackbox [Kautz and Selman, 1998], LPG-td [Gerevini et al.,
2004]) into KAVI, which users can select to generate plan so-
lutions. As domain models are noisy, plan solutions are of-
ten incorrect. We thus show the plan solutions for users to do
adaptations. Users can swap actions, correct actions, add new
actions and delete actions.

With domain models, initial states, goals, rectified plan
solutions, we call a plan validation component VAL (c.f.
[Howey et al., 2004]) to visualize conflicts among domain
models and plan solutions, and provide suggestions for solv-
ing the conflicts. Users can resolve the conflicts by rectifying

either domain models or plan solutions based on the sugges-
tions or their own domain knowledge. The process of rectifi-
cation is shown in Figure 4, where the right column is the plan
to be rectified, the top right part is the rectification suggestion,
the middle right part is the action model to be rectified, and
the bottom right part is the state before the action is executed.

Figure 4: The visualized rectification of plans and domain models

After users’ rectification, if there are still conflicts, we view
the plan solutions as new training data and build graphical
models based on those new training data and current domain
models. We learn the graphical models using an EM-style
framework, as done by [Zhuo and Kambhampati, 2013]. We
then convert the learnt graphical models to new models.

5 Final Remarks
In this demonstration, we design a novel system KAVI for
building domain models based on visualized interaction, con-
sistency detection, and model learning techniques. We exhibit
that our KAVI system can indeed effectively build domain
models by considering human-in-the-loop. In the future we
would like to consider the following aspects:

• When using off-the-shelf planners to generate plan solu-
tions, it is highly possible that there are no solutions gen-
erated given noisy domain models. In the future we will
consider to exploit model-lite planners [Kambhampati,
2007; Zhuo and Kambhampati, 2017] to help generate
plan solutions.

• Since plan solutions are generally “incorrect” based on
noisy domain models, to reduce the burden of users rec-
tifying plan solutions, we can exploit plan recognition
approaches [Kautz and Allen, 1986; Tian et al., 2016;
Zhuo, 2017] to “preprocess” the plans (i.e., recognize
the underlying correct plans), and show the recognized
plans to users.
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